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ABSTRACT. For α an ordinal, we investigate the class SZα consisting of all op-
erators whose Szlenk index is an ordinal not exceeding ωα. We show that each
class SZα is a closed operator ideal and study various operator ideal proper-
ties for these classes. The relationship between the classes SZα and several
well-known closed operator ideals is investigated and quantitative factoriza-
tion results in terms of the Szlenk index are obtained for the class of Asplund
operators.
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INTRODUCTION

For Banach spaces, the Szlenk index is an isomorphic invariant introduced
by W. Szlenk in [38], where an ordinal-valued index is used to show that there
is no separable reflexive Banach space containing all separable reflexive Banach
spaces isomorphically. Since then, the Szlenk index has found various applica-
tions in the study of the geometry of Banach spaces. For example, it has proved
to be useful in the study of universality problems, linear classification of separa-
ble C(K) spaces, renorming theory and the Lipschitz and uniform classification
of Banach spaces. We refer the reader to [21] for a survey on the Szlenk index and
its applications in the study of the geometry of Banach spaces. Quite recently, the
Szlenk index has also found application in fixed point theory [10], and connec-
tions between the Szlenk index, metric embeddings of trees into Banach spaces
and the uniform classification of Banach spaces are established in [4].

The notion of Szlenk index of a Banach space has a natural analogue for
operators, and this more general setting for the Szlenk index has been considered
by several authors, for example in [2], [3], p. 68 of [5], [6] and [12]. A survey on the
applications of the Szlenk index to the study of operators on spaces of continuous
functions can be found in [35].
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The last couple of decades have bore witness to substantial interest in the
relationship between the geometry of a Banach space E, on the one hand, and the
closed ideal structure of B(E), on the other (B(E) is the Banach algebra of all
bounded linear operators E → E). One of the main tools in the study of these
relationships is the notion of a closed operator ideal. Given the increasingly im-
portant role that the Szlenk index plays in the study of Banach space geometry,
we are thus prompted to consider whether there are closed operator ideals nat-
urally associated with the notion of Szlenk index of an operator. We show here
that the Szlenk index gives rise to a family of closed operator ideals SZα, where
α is an ordinal. We study the operator ideal properties of the classes SZα and the
relationship of the classes SZα with several other operator ideals already familiar
to analysts.

We now outline the contents and layout of the current paper. Section 1
contains most of the necessary notation and background results that we shall
require. In Section 2 we formally introduce the classes SZα, establishing them
as closed operator ideals and investigating their relationship with the operator
ideals of compact operators, Asplund operators and separable range operators.
Section 3 is a discussion of some examples involving a number of well-known Ba-
nach spaces. In Section 4 we show that every α-Szlenk operator factors through
a Banach space of Szlenk index not exceeding ωα+1. We go on to deduce that for
a proper class of ordinals α, SZα possesses the factorization property. Section 5
is then devoted to establishing a similar, but negative, result. In particular, we
show that for a proper class of ordinals α, SZα lacks the factorization property.
In Section 6 we introduce and study a class of space ideals that are of interest in
determining whether the operator ideals SZα+1 have the factorization property.
We conclude in Section 7 with discussion of possible future directions for work
related to the problems addressed here.

Throughout, we rely heavily on results and techniques developed in [7],
where a detailed analysis of the behaviour of the Szlenk index under direct sums
is carried out. Indeed, forming direct sums of Banach spaces and their operators
is important to many of the results presented here. We also note that the results
of Section 4 in particular make significant use of the interpolation techniques de-
veloped by S. Heinrich in [15].

1. PRELIMINARIES

1.1. NOTATION AND TERMINOLOGY. The class of all Banach spaces is denoted
BAN, and typical elements of BAN are denoted by the letters D, E, F and G. For
a Banach space E and nonempty bounded S ⊆ E, we define |S| := sup

x∈S
‖x‖. The

closed unit ball of E is denoted BE, and the identity operator of E is IE. By an
operator we mean a norm-continuous linear map acting between Banach spaces.
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The class of all operators between arbitrary Banach spaces is denoted B, and for
given Banach spaces E and F the set of all operators E → F is B(E, F). For a
Banach space F, the canonical embedding of F is the map JF : F −→ `∞(BF∗) given
by setting JF(y) = (〈y∗, y〉)y∗∈BF∗ , y ∈ F. For a Banach space E, the canonical
surjection onto E is the mapping QE : `1(BE) −→ E : (ax)x∈BE 7→ ∑

x∈BE

axx.

We write ORD for the class of all ordinals, whose elements shall typically be
denoted by the lower-case Greek letters α, β and γ. For an ordinal α, we write
c f (α) for the cofinality of α. For Λ a set, Λ<∞ shall denote the set of all nonempty
finite subsets of Λ. Whenever Λ and Υ are used to denote index sets over which
we take direct sums and direct products, we assume for simplicity that Λ and Υ
are nonempty.

Let 1 6 q < ∞. We say that p ∈ {0} ∪ [1, ∞) is predual to q if it satisfies:

p =

{
0 if q = 1,
q(q− 1)−1 if 1 < q < ∞.

For 1 6 p 6 ∞, a set Λ and Banach spaces Eλ, λ ∈ Λ, the `p-direct sum of
{Eλ : λ ∈ Λ} is denoted (

⊕
λ∈Λ Eλ)p, and the c0-direct sum of {Eλ : λ ∈ Λ} is

denoted (
⊕

λ∈Λ Eλ)0. Throughout, for 1 < p, q < ∞ satisfying p + q = pq, we
implicitly identify (

⊕
λ∈Λ Eλ)

∗
p with (

⊕
λ∈Λ E∗λ)q, so that the dual of a direct sum

is the dual direct sum of the duals of the spaces Eλ. Making this identification
allows us to consider direct products of the form ∏

λ∈Λ
Kλ, where Kλ ⊆ E∗λ and

(|Kλ|)λ∈Λ ∈ `q(Λ), as subsets of (
⊕

λ∈Λ Eλ)
∗
p. Similarly, (

⊕
λ∈Λ Eλ)

∗
0 is naturally

identified with (
⊕

λ∈Λ E∗λ)1 throughout.
We shall often consider operators T : (

⊕
λ∈Λ Eλ)p → (

⊕
υ∈Υ Fυ)p, where

Λ and Υ are sets, {Eλ : λ ∈ Λ} and {Fυ : υ ∈ Υ} families of Banach spaces
and p = 0 or 1 < p < ∞. In this setting, for R ⊆ Λ we denote by UR the
canonical injection of (

⊕
λ∈R Eλ)p into (

⊕
λ∈Λ Eλ)p. For S ⊆ Υ, we denote by VS

the canonical injection of (
⊕

υ∈S Fυ)p into (
⊕

υ∈Υ Fυ)p, and by QS the canonical
surjection of (

⊕
υ∈Υ Fυ)p onto (

⊕
υ∈S Fυ)p. Thus VS and QS act to and from the

codomain of T respectively.
We work within the theory of operator ideals as expounded by A. Pietsch

in [29]. The starting point of this theory is the following definition that we shall
refer to in the proof of Theorem 2.2.

DEFINITION 1.1 ([29], Section 1.1.1). An operator ideal I is a subclass of B
such that for Banach spaces E and F, the components I (E, F) := B(E, F) ∩I
satisfy the following three conditions:
(OI1) IK ∈ I ;
(OI2) S + T ∈ I (E, F) whenever S, T ∈ I (E, F);
(OI3) U ∈ B(D, E), T ∈ I (E, F) and V ∈ B(F, G) implies VTU ∈ I .
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We otherwise assume the reader is familiar with the rudiments of operator
ideal theory, and refer the reader to Part I of [29] for any unexplained notions
regarding operator ideals. In particular, we assume the reader is familiar with
what it means for an operator ideal to be closed, injective and surjective. For a
given operator ideal I , the closed, injective and surjective hulls of I are denoted
I , I inj and I sur, respectively. We also assume knowledge of basic notions and
facts regarding space ideals ([29], p. 53).

Well-known operator ideals that we shall be concerned with here are the
compact operators K , the weakly compact operators W , the separable range op-
erators X and the Hilbert space-factorable operators Γ2. For a Cartesian Banach
space E (that is, E is isomorphic to its square E⊕ E), we denote by GE the oper-
ator ideal consisting of all operators that admit a continuous linear factorization
through E.

For an operator ideal I , we denote by Space(I ) the space ideal consisting
of all Banach spaces whose identity operator belongs to I . For a space ideal I,
we denote by Op(I) the operator ideal consisting of all operators that admit a
continuous linear factorization through an element of I. For operator ideals I
and J , we say that I has the J -factorization property if I ⊆ Op(Space(J ));
evidently, this implies that I ⊆ J . An operator ideal I has the factorization
property if it has the I -factorization property.

In various parts of the paper we call upon a factorization result due to
S. Heinrich. In order to state Heinrich’s result, we require the following defi-
nition.

DEFINITION 1.2. Let I and J be operator ideals and 1 < p < ∞. We say
that (I , J ) is a Σp-pair if the following holds for any sequences of Banach spaces
(Em)m∈N and (Fn)n∈N and T ∈ B((

⊕
m∈N Em)p, (

⊕
n∈N Fn)p): if QGTUF ∈ I for

all F , G ∈ N<∞, then T ∈J .

Heinrich establishes the following result in [15]:

THEOREM 1.3. Let 1 < p < ∞ and let I and J be surjective operator ideals
such that (I , J ) is a Σp-pair and J is injective. Then I has the J -factorization
property.

We note that Theorem 1.3 is presented and proved in [15] under the addi-
tional hypothesis that I = J . This restriction is, in fact, unnecessary, and we
leave it to the interested reader to verify that Heinrich’s proof of Theorem 1.3
holds in the generality in which it is stated above (a straightforward notational
substitution in Heinrich’s proofs should suffice for the reader familiar with inter-
polation theory).

A real Banach space E is said to be Asplund if every real-valued convex
continuous function defined on a convex open subset U of E is Fréchet differ-
entiable on a dense Gδ subset of U. A complex Banach space E is said to be
Asplund if its underlying real Banach space ER is Asplund in the real scalar
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sense. Of particular importance to the context of our discussion is the follow-
ing theorem that collects several useful characterizations of Asplund spaces; for
C ⊆ E∗, ε > 0 and x ∈ E, the w∗-slice of C determined by x and ε is the set
{x∗ ∈ C : <〈x∗, x〉 > sup{<〈y∗, x〉 : y∗ ∈ C} − ε}.

THEOREM 1.4. Let E be a Banach space. The following are equivalent:
(i) E is an Asplund space;

(ii) every separable subspace of E is an Asplund space;
(iii) every separable subspace of E has separable dual;
(iv) every bounded nonempty subset of E∗ admits nonempty w∗-slices of arbitrarily

small diameter.

Theorem 1.4 is proved for real Banach spaces in Chapter I.5 of [9]. For com-
plex Banach spaces E, Theorem 1.4 follows from the real scalar case and proper-
ties of the canonical linear surjection ϕ : x∗ 7→ <x∗ of E∗ onto (ER)

∗. In particular,
ϕ is a norm-to-norm isometric, σ(E∗, E)-to-σ((ER)

∗, ER) homeomorphism; this
is easily deduced from Proposition 1.9.3 of [22].

Let E and F be Banach spaces. An operator T : E → F is Asplund if for
any finite positive measure space (Ω, Σ, µ), any S ∈ B(F, L∞(Ω, Σ, µ)) and any
ε > 0, there exists B ∈ Σ such that µ(B) > µ(Ω) − ε and { f χB : f ∈ ST(BE)}
is relatively compact in L∞(Ω, Σ, µ) (here χB denotes the characteristic function
of B on Ω). The class of all Asplund operators is denoted D . We note that some
authors, for example in [29] and [15], refer to Asplund operators as decomposing
operators. Standard references for Asplund operators are [29] and [37], where it is
shown that the Asplund operators form a closed operator ideal and that a Banach
space is an Asplund space if and only if its identity operator is an Asplund oper-
ator. A further result is that every Asplund operator factors through an Asplund
space, due independently to O. Reı̆nov [31], S. Heinrich [15] and C. Stegall [37].

1.2. THE SZLENK INDEX. We now define the Szlenk index, noting that our defi-
nition varies from that given by W. Szlenk in [38]. However, the two definitions
give the same index for operators acting on separable Banach spaces containing
no isomorphic copy of `1 (see the proof of Proposition 3.3 in [19] for details).

Let E be a Banach space, K ⊆ E∗ a w∗-compact set and ε > 0. Define

sε(K) = {x ∈ K : diam(K ∩V) > ε for every w∗-open V 3 x}.

We iterate sε transfinitely as follows: s0
ε (K) = K, sα+1

ε (K) = sε(sα
ε (K)) for each

ordinal α and sα
ε (K) =

⋂
β<α

sβ
ε (K) whenever α is a limit ordinal.

The ε-Szlenk index of K, denoted Szε(K), is the class of all ordinals α such that
sα

ε (K) 6= ∅. The Szlenk index of K is the class
⋃

ε>0
Szε(K). Note that Szε(K) (respec-

tively, Sz(K)) is either an ordinal or the class ORD of all ordinals. If Szε(K) (respec-
tively, Sz(K)) is an ordinal, then we write Szε(K) < ∞ (respectively, Sz(K) < ∞),
and otherwise we write Szε(K) = ∞ (respectively, Sz(K) = ∞). For a Banach
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space E, the ε-Szlenk index of E is Szε(E) = Szε(BE∗), and the Szlenk index of E
is Sz(E) = Sz(BE∗). If T : E → F is an operator, the ε-Szlenk index of T is
Szε(T) = Szε(T∗BF∗), whilst the Szlenk index of T is Sz(T) = Sz(T∗BF∗). For α
an ordinal, SZLα := {E ∈ BAN : Sz(E) 6 ωα}.

It is clear that the Szlenk index of a nonempty w∗-compact set cannot be
0. We also note that, by w∗-compactness, the ε-Szlenk index of a nonempty w∗-
compact set K is never a limit ordinal.

The following proposition collects some known facts about Szlenk indices.

PROPOSITION 1.5. Let E and F be Banach spaces.
(i) If E is isomorphic to a quotient or subspace of F, then Sz(E) 6 Sz(F). In partic-

ular, the Szlenk index is an isomorphic invariant of a Banach space.
(ii) Sz(E) < ∞ if and only if E is Asplund.

(iii) If K ⊆ E∗ is nonempty, absolutely convex and w∗-compact, then either Sz(K) =
∞ or there exists an ordinal α such that Sz(K) = ωα. In particular, for T ∈ B either
Sz(T) = ∞ or Sz(T) = ωα for some ordinal α.

(iv) If E is separable, then E∗ is norm separable if and only if Sz(E) < ω1, if and only
if Sz(E) < ∞.

(v) Sz(E⊕ F) = max{Sz(E), Sz(F)}.
(vi) SZLα is a space ideal for each ordinal α.

We briefly indicate the origins of the various assertions of Proposition 1.5.
Part (i) is well-known; see, for example, p. 2032 of [14]. Part (ii) follows from
Theorem 1.4(i) ⇐⇒ (iv) above. Part (iii) is due to G. Lancien [20]; note that al-
though Lancien’s proof is given for the case where K is the closed unit ball of a
dual Banach space, his argument works equally well in the more general setting
presented above. We mention also that the first occurrence of a statement like
(iii) is a similar result for the Lavrientiev index of a Banach space due to A. Ser-
souri [36]. For (iv), see Theorem 3.1 of [23] and its proof. Part (v) follows from
Lemma 2.6 of the current paper (which is due to P. Hájek and G. Lancien [13]). Fi-
nally, (vi) is a consequence of (i), (v) and the well-known fact that a Banach space
is finite-dimensional if and only if it has Szlenk index equal to 1 (this is noted in
p. 211 of [21], but see also Proposition 2.4 below).

2. α-SZLENK OPERATORS

Here we consider the Szlenk index of an operator and show that this index
can be used in a natural way to define a class of closed operator ideals indexed
by the class of all ordinals.

DEFINITION 2.1. For each ordinal α, define SZα := {T ∈ B : Sz(T) 6 ωα}.
An element of SZα shall be known as an α-Szlenk operator. For each ordinal α and
pair of Banach spaces (E, F), define SZα(E, F) := B(E, F) ∩SZα.
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It is trivial that SZα ⊆ SZβ whenever α and β are ordinals satisfying α 6 β.
In fact, SZα ( SZβ whenever α < β. Indeed, it is shown in Proposition 2.16 of
[7] that for each ordinal α there exists a Banach space E with Sz(E) = ωα+1; the
identity operator of such a space E belongs to SZα+1\SZα.

The following theorem is the main result of the current section.

THEOREM 2.2. For α an ordinal, SZα is a closed, injective and surjective operator
ideal.

For α = 0, the assertion of Theorem 2.2 follows from the following proposi-
tion and the well-known fact that K is closed, injective and surjective.

PROPOSITION 2.3. SZ0 = K .

Proposition 2.3 is a consequence of Schauder’s theorem and the following
general result:

PROPOSITION 2.4. Let E be a Banach space, K a nonempty w∗-compact subset of
E∗. Then K is norm-compact if and only if Sz(K) = 1.

Proof. We use the fact that K is norm-compact if and only if the relative norm
and w∗ topologies of K are the same (see, e.g., Corollary 3.1.14 of [11]).

First suppose that Sz(K) = 1. Let (xi)i∈I be a w∗-convergent net in K; the
norm-compactness of K will follow if (xi)i∈I is necessarily norm convergent. Let
x = w∗-lim

i
xi ∈ K and note that, as x /∈ ⋃

ε>0
sε(K), for every ε > 0 there exists

w∗-open Uε 3 x such that diam(Uε ∩ K) 6 ε. For each ε > 0 let jε ∈ I be such
that jε ≺ j′ implies xj′ ∈ Uε ∩ K. Then jε ≺ j′ implies ‖x − xj′‖ 6 ε. As ε > 0 is
arbitrary, ‖x− xi‖→0.

Now suppose Sz(K) > 1. Then there is x ∈ K and ε > 0 such that x ∈ sε(K),
so for each w∗-open U 3 x there is xU ∈ U ∩ K such that ‖x− xU‖ > ε/2. Since

xU
w∗→ x and xU

‖ · ‖9 x (here, the set of w∗-open sets containing x carries the usual
order induced by reverse set inclusion), the relative norm and w∗ topologies of K
are not the same. Hence K is not norm-compact.

We now prove the general case.

Proof of Theorem 2.2. Let α be an ordinal. We must first show that SZα satis-
fies OI1–OI3 of Definition 1.1. To see that SZα satisfies OI1, note that by Proposi-
tion 2.3 we have

IK ∈ K = SZ0 ⊆ SZα.

Next we show that SZα satisfies OI3. Let D, E, F and G be Banach spaces
and U ∈ B(D, E), T ∈ SZα(E, F) and V ∈ B(F, G) operators. We want to show
that VTU ∈ SZα; this is clearly true if either U or V is zero, so we henceforth
assume that U and V are nonzero. It suffices to show separately that TU ∈ SZα

and VT ∈ SZα. The fact that TU ∈ SZα will be deduced from the following
generalization of Lemma 2 of [14].
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LEMMA 2.5. Let D and G be Banach spaces, S ∈ B(D, G) a nonzero operator,
K ⊆ G∗ a w∗-compact set, α an ordinal and ε > 0. Then sα

ε (S∗K) ⊆ S∗(sα
ε/(2‖S‖)(K)).

Proof. We proceed by induction on α. The assertion of the lemma is trivially
true for α = 0. Suppose that β > 0 is an ordinal such that the assertion of the
lemma is true for all α < β; we show that it is then true for α = β. First suppose
that β is a successor, say β = γ + 1. Let x ∈ sβ(S∗K). Then there is a net (xi)i∈I in

sγ
ε (S∗K) with xi

w∗→ x and ‖xi − x‖ > ε/2 for all i (for example, let I be the set of
all w∗-neighbourhoods of x, ordered by reverse set inclusion). By the induction
hypothesis, for each i there is yi ∈ sγ

ε/(2‖S‖)(K) such that S∗yi = xi. Passing to

a subnet, we may assume that the net (yi)i∈I has a w∗-limit y ∈ sγ
ε/(2‖S‖)(K).

Then S∗y = x and for all i we have ‖yi − y‖ > ‖xi − x‖/‖S‖ > ε/(2‖S‖), hence
y ∈ sβ

ε/(2‖S‖)(K). It follows that the assertion of the lemma passes to successor
ordinals.

Now suppose that β is a limit ordinal. Let x ∈ sβ
ε (S∗K) =

⋂
α<β

sα
ε (S∗K). For

each α < β there is yα ∈ sα
ε/(2‖S‖)(K) with S∗yα = x. The net (yα)α<β admits a

subnet (yj)j∈J with w∗-limit y ∈ ⋂
α<β

sα
ε/(2‖S‖)(K) = sβ

ε/(2‖S‖)(K). Since S∗y = x,

we are done.

By Lemma 2.5,

Sz(TU) = sup
ε>0

Szε((TU)∗BF∗) 6 sup
ε>0

Szε/(2‖U‖)(T
∗BF∗) = Sz(T) 6 ωα,

hence TU ∈ SZα.
As VT = (‖V‖−1V)T(‖V‖IE) and T(‖V‖IE) ∈ SZα (take U = ‖V‖IE

above), to show that VT ∈ SZα we may assume that ‖V‖ 6 1. Then

(VT)∗BG∗ = T∗(V∗BG∗) ⊆ T∗BF∗ ,

hence Sz(VT) = Sz((VT)∗BG∗) 6 Sz(T∗BF∗) = Sz(T) 6 ωα, as desired. We have
now shown that SZα satisfies OI3.

To show that SZα satisfies OI2, we make use of the following lemma of
P. Hájek and G. Lancien (see equation (2.3) of [13]). The author is grateful to
Professor Lancien for communicating to him a corrected proof of Lemma 2.6
(the proof of Lemma 2.6 in [13] seems to be slightly incorrect); the proof of Sub-
lemma 5.12 of the current paper uses some similar arguments.

LEMMA 2.6. Let E1, . . . , En be Banach spaces and let K1 ⊆ E∗1 , . . . , Kn ⊆ E∗n be

w∗-compact sets. Consider
n
∏
i=1

Ki as a subset of (
⊕n

i=1 Ei)
∗
1 . Then, for all ε > 0 and

ordinals α,

(2.1) sωα

ε

( n

∏
i=1

Ki

)
⊆

⋃
g1,...,gn<ω, g1+···+gn= 1

n

∏
i=1

sωα ·gi
ε (Ki).
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Let E and F be Banach spaces and let S, T ∈ B(E, F) be operators such
that S + T /∈ SZα. Define operators Q : E → E ⊕1 E and R : E ⊕1 E → F by
setting Qx = (x, x) for x ∈ E, and R(y, z) = Sy + Tz for (y, z) ∈ E⊕1 E, so that
RQ = S + T /∈ SZα. Then Sz(Q∗(R∗BF∗)) > ωα, hence Sz(R∗BF∗) > ωα since
SZα satisfies OI3. We have R∗BF∗ = {(S∗x, T∗x) : x ∈ BF∗} ⊆ S∗BF∗ × T∗BF∗ ,
hence Sz(S∗BF∗ × T∗BF∗) > ωα. Let ε > 0 be such that sωα

ε (S∗BF∗ × T∗BF∗) is
nonempty. By Lemma 2.6, either sωα

ε (S∗BF∗) or sωα

ε (T∗BF∗) is nonempty, hence
either Sz(S) > ωα or Sz(T) > ωα. In other words, either S /∈ SZα or T /∈ SZα.
Thus SZα satisfies OI2, and is an operator ideal.

The injectivity of SZα follows from the fact that for Banach spaces E and F
and an operator T ∈ B(E, F), the Szlenk indices of T and JFT are determined by
the same set, namely T∗BF∗ = (JFT)∗B`∞(BF∗ )∗

.
The surjectivity of SZα is only slightly more difficult. Notice that for Ba-

nach spaces E and F and T ∈ B(E, F), the restriction of Q∗E to T∗BF∗ is a norm-
isometric w∗-homeomorphic embedding of T∗BF∗ into `1(BE)

∗. It follows then
that Q∗E(s

α
ε (T∗BF∗)) ⊆ sα

ε (Q
∗
ET∗BF∗) = sα

ε ((TQE)
∗BF∗) for all ordinals α and ε > 0

(the proof is a straightforward transfinite induction), hence Sz(T) 6 Sz(TQE). In
particular, SZα is surjective.

Finally, we turn our attention to showing that SZα is a closed operator ideal.
Recall that for a Banach space E, a nonempty, w∗-compact set K ⊆ E∗ and x ∈ E∗,
there exists y ∈ K such that ‖x − y‖ = d(x, K) (here d(x, K) denotes the norm
distance of x to K, defined as d(x, K) := inf{‖x − z‖ : z ∈ K}). Our proof that
SZα is closed will be a straightforward application of the following lemma.

LEMMA 2.7. Let D be a Banach space, ε > 0 and K, L ⊆ D∗ nonempty, w∗-
compact sets with sup{d(x, L) : x ∈ K} 6 ε/8. Then Szε(K) 6 Szε/4(L).

Proof. It clearly suffices to show that for all γ ∈ Szε(K),

(2.2) sγ
ε/4(L) 6= ∅ and sup{d(x, sγ

ε/4(L)) : x ∈ sγ
ε (K)} 6

ε

8
.

The assertions of (2.2) hold trivially for γ = 0. Suppose that β ∈ Szε(K) is
such that (2.2) holds for all γ < β; we will show that (2.2) holds for γ = β.

First suppose that β is a successor, say β = ζ + 1, and let x ∈ sβ
ε (K). Then

there exists a net (xi)i∈I in sζ
ε (K) with xi

w∗→ x and ‖xi − x‖ > ε/2 for all i (for
example, take I to be the set of all w∗-neighbourhoods of x, ordered by reverse
set inclusion). By the induction hypothesis, for each i ∈ I there is yi ∈ sζ

ε/4(L)
with ‖xi − yi‖ 6 ε/8. Passing to a subnet, we may assume (yi)i∈I has a w∗-limit,
y say, in sζ

ε/4(L). By w∗-lower semicontinuity, ‖x− y‖ 6 lim inf
i∈I

‖xi − yi‖ 6 ε/8.

Thus, for all i ∈ I,

‖y− yi‖ > ‖x− xi‖ − ‖xi − yi‖ − ‖x− y‖ > ε

2
− ε

8
− ε

8
=

ε

4
,
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hence y ∈ sε/4(s
ζ
ε/4(L)) = sβ

ε/4(L). In particular, sβ
ε/4(L) is nonempty. Moreover,

d(x, sβ
ε/4(L)) 6 ‖x − y‖ 6 ε/8. Thus, since x ∈ sβ

ε (K) is arbitrary, we conclude

that sup{d(x, sβ
ε/4(L)) : x ∈ sβ

ε (K)} 6 ε/8. We have now shown that (2.2) passes
to successor ordinals in Szε(K).

Now suppose that β is a limit ordinal. Then sβ
ε/4(L) is nonempty by the

induction hypothesis and w∗-compactness. For the second assertion of (2.2),
we again let x ∈ sβ

ε (K). By the induction hypothesis, for each ζ < β there is
yζ ∈ sζ

ε/4(L) such that ‖x − yζ‖ 6 ε/8. Let (zj)j∈J be a w∗-convergent subnet

of (yζ)ζ<β, with w∗-limit y, say. Then y ∈ ⋂
ζ<β

sζ
ε/4(L) = sβ

ε/4(L) and ‖x − y‖ 6

lim inf
j∈J

‖x − zj‖ 6 ε/8, hence d(x, sβ
ε/4(L)) 6 ‖x − y‖ 6 ε/8. As x ∈ sβ

ε (K) is

arbitrary, the second assertion of (2.2) holds for γ = β. This completes the proof
of the lemma.

Let E and F be Banach spaces and T ∈ B(E, F) an operator such that
T /∈ SZα. Then there is ε > 0 such that Szε(T) > ωα. Let S ∈ B(E, F) be
such that ‖T − S‖ < ε/8. Taking K = T∗BF∗ and L = S∗BF∗ in the statement of
Lemma 2.7 yields ωα < Szε(T) 6 Szε/4(S) 6 Sz(S), hence S /∈ SZα. In particu-
lar, the open ball in B(E, F) centred at T and of radius ε/8 has trivial intersection
with SZα(E, F). It follows that SZα(E, F) is closed in B(E, F), and the proof of
Theorem 2.2 is complete.

We now describe the relationship between the classes SZα and the class
of Asplund operators. For this we shall call on the following characterization
of Asplund operators that follows readily from work of C. Stegall, in particular
Proposition 2.10 and Theorem 1.12 of [37].

PROPOSITION 2.8. Let E and F be Banach spaces and T : E → F an operator.
Then T is Asplund if and only if for every separable Banach space D and every operator
S : D → E, the set S∗T∗BF∗ is norm separable.

We also require the following result concerning metrizable w∗-compact sets;
the proof is essentially contained in the proof of Proposition 1.5(iv).

LEMMA 2.9. Let K be a w∗-compact set that is metrizable in the w∗ topology and
nonseparable in the norm topology. Then Sz(K) = ∞.

The following proposition asserts that the class of Asplund operators coin-
cides with

⋃
α∈ORD

SZα.

PROPOSITION 2.10. Let E and F be Banach spaces and T : E → F an operator.
The following are equivalent:

(i) T is an α-Szlenk operator for some ordinal α.
(ii) T is an Asplund operator.



ASPLUND OPERATORS AND THE SZLENK INDEX 415

Proof. First suppose that T is Asplund. By the Reı̆nov–Heinrich–Stegall fac-
torization theorem for Asplund operators (c.f. Section 1), there exists an Asplund
space G such that IG factors T. By Proposition 1.5(iii), there is an ordinal α such
that Sz(G) = ωα, hence Sz(T) 6 Sz(IG) = Sz(G) = ωα. That is, T is α-Szlenk.

Now suppose that T is not Asplund. By Proposition 2.8, there exists a sep-
arable Banach space D and an operator S : D → E such that S∗T∗BF∗ is nonsep-
arable in the norm topology. As D is norm separable, we have that S∗T∗BF∗ is
w∗-metrizable, hence by Lemma 2.9 it follows that Sz(TS) = Sz(S∗T∗BF∗) = ∞.
That is, TS fails to be α-Szlenk for any ordinal α. As the classes SZα are operator
ideals, T fails to be α-Szlenk for any α.

For every pair of Banach spaces (E, F), there is an ordinal α such that if
T ∈ B(E, F) is β-Szlenk for some ordinal β, then T is α-Szlenk. Indeed, we
may take α to satisfy ωα = sup{Sz(T) : T ∈ SZβ(E, F) for some ordinal β}. By
Proposition 2.10, with α so defined we have D(E, F) = SZα(E, F).

We now determine the relationship between the operator ideals SZα and
the operator ideal X of operators having separable range. In what follows, X ∗

denotes the operator ideal of operators T with T∗ ∈ X . The following result is
essentially an operator-theoretic generalization of Proposition 1.5(iv).

PROPOSITION 2.11. We have:

X ∗ = X ∩D = X ∩
⋃

α∈ORD

SZα = X ∩
⋃

α<ω1

SZα = X ∩SZω1 .

Proof. First note that SZω1 ⊆
⋃

α<ω1

SZα. Indeed, for T ∈ SZω1 we have

c f (Sz(T)) = c f (sup{Sz1/n(T) : n ∈ N}) 6 ω, whereas c f (ωω1) = ω1. We
thus deduce that Sz(T) < ω1, hence T ∈ ⋃

α<ω1

SZα. By this observation and

Proposition 2.10 we have

X ∩SZω1 = X ∩
⋃

α<ω1

SZα ⊆ X ∩
⋃

α∈ORD

SZα = X ∩D ,

and so it now suffices to show that X ∩D ⊆ X ∗ and X ∗ ⊆ X ∩SZω1 .
To prove X ∩ D ⊆ X ∗, we first note that Heinrich [15] has shown that

(D , D) is a Σp-pair for every 1 < p < ∞. We claim that (X , X ) is also a Σp-pair
for all 1 < p < ∞. To verify our claim, we note that if (Em)m∈N and (Fn)n∈N are
sequences of Banach spaces, 1 < p < ∞ and T ∈ B((

⊕
m∈N Em)p, (

⊕
n∈N Fn)p)

is such that T /∈ X , then the set
⋃{QGTUF (

⊕
m∈N Em)p : F , G ∈ N<∞} is non-

separable since its uniform closure contains T(
⊕

m∈N Em)p. As N<∞ is countable,
it follows that are F , G ∈ N<∞ such that QGTUF (

⊕
m∈N Em)p is nonseparable.

That is, QGTUF /∈ X . This completes the proof of the claim, and it follows that
(X ∩D , X ∩D) is a Σp-pair for all 1 < p < ∞. Moreover, X ∩D is injective
and surjective since the same is true for X and D . Thus, by Theorem 1.3, every
element of X ∩D factors through a separable Asplund space. By Theorem 1.4,
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this implies that every element of X ∩ D factors through a Banach space with
separable dual, and the inclusion X ∩D ⊆ X ∗ follows.

We now show that X ∗ ⊆ X ∩SZω1 . The inclusion X ∗ ⊆ X is well-
known (see, for example, Proposition 4.4.8 of [29]), so we need only show that
X ∗ ⊆ SZω1 . To this end, note that similar arguments to those used above show
that (X ∗, X ∗) is a Σp-pair for every 1 < p < ∞. Moreover, X ∗ is injective and
surjective, hence Theorem 1.3 implies that every element of X ∗ factors through
a Banach space with separable dual. By Proposition 1.5(iv), this means that every
element of X ∗ factors through a Banach space of countable Szlenk index; the
inclusion X ∗ ⊆ SZω1 follows.

To conclude the current section we mention two sequential variants of the
Szlenk index that have appeared in the literature. Sequential definitions are often
advantageous from a utilitarian point-of-view, but, as we shall now see, they do
not seem to be sufficient for the development of a general theory of operator
ideals associated with the Szlenk index such as that that initiated here.

For E a Banach space, K ⊆ E∗ and ε > 0, we define derivations

mε(K) := {x∗ ∈ K : ∃(x∗n)n ⊆ K, x∗n
w∗→ x∗, ‖x∗n − x∗‖ > ε for all n ∈ N}

and

nε(K) :=
{

x∗ ∈ K :∃(x∗n) ⊆ K, ∃(xn) ⊆ BE, x∗n
w∗→ x∗, xn

w→ 0, lim
n
|〈x∗n, xn〉| > ε

}
on K. As with sε, we may iterate mε and nε to obtain derivations mα

ε and nα
ε for

ε > 0 and α an ordinal, with corresponding indices Mzε(K), Mz(K), Nzε(K) and
Nz(K). Analogously to the definition of the classes SZα, for each ordinal α we
define MZα := {T ∈ B : Mz(T) 6 ωα} and NZα := {T ∈ B : Nz(T) 6 ωα}.

The main obstacle to proving that the classes MZα form operator ideals
is that we do not seem to have an analogue of Lemma 2.5 for the derivations
mα

ε (since it need not be the case that every sequence in K has a w∗-convergent
subsequence). However, we may form operator ideals from the classes MZα by
taking their intersection with the class M consisting of all operators having w∗-
sequentially compact adjoint. That is, an operator T : E→ F belongs to M if and
only if T∗BF∗ is w∗-sequentially compact. Standard arguments, similar to those
used to show the same for K , show that M is a closed, injective, surjective opera-
tor ideal. A proof similar to that of Theorem 2.2 shows that MZα ∩M is a closed,
injective, surjective operator ideal for every ordinal α. Moreover, it is elementary
to show that the indices Sz and Mz coincide for operators T : E → F with the
property that T∗BF∗ is w∗-metrizable; this is the case precisely when the range of
T is norm separable. Thus, when dealing with operators having separable range,
one may usually work with Mz in place of Sz if it is more convenient.

We now discuss the index Nz and the associated classes NZα. The index
Nz is in fact that introduced by Szlenk in [38], and it coincides with Sz and Mz
for operators whose domain is a separable Banach space containing no subspace
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isomorphic to `1 ([19], Proposition 3.3). However, the index Nz lacks sufficiently
good permanence properties for the classes NZα to be operator ideals over the
class of all Banach spaces. We illustrate this claim by way of the following simple
example. Let U : `2 → `∞ be an isometric linear embedding. As observed by
J. Bourgain, p. 88 of [6], if E is a Grothendieck space with the Dunford–Pettis
property, then Nz(E) = 1. In particular, Nz(`∞) = 1. We thus have I`∞ ∈ NZ0.
On the other hand, I`∞ U /∈ NZ0 since Nz(I`∞ U) = Nz(B`∗2

) = ω > ω0. In
particular, NZ0 fails to satisfy condition OI3 of Definition 1.1. Similar examples,
based on the spaces defined by the construction of Szlenk (see Example 3.6 of the
current paper), show that NZα+1 fails to satisfy OI3 for every α < ω1.

Despite the apparent deficiency of the index Nz from the point of view of
developing a theory of operator ideals associated with the Szlenk index, we wish
to emphasize the importance of the index Nz in the study of the structure of op-
erators acting on spaces C(K), where K is a metrizable compact space. Indeed, a
number of authors have studied the connections between the Nz index of oper-
ators acting on C(K) spaces and “fixing” properties of such operators; we refer
to [35] for a survey, and to the work of I. Gasparis [12] for more recent results.
In fact, we believe that both of the indices Sz and Nz are of interest in the study
of operators in B(C[0, 1]). For example, the following question is of interest in
studying the closed ideal structure of the Banach algebra B(C[0, 1]):

QUESTION 2.12. Let R ∈ X ∗(C[0, 1]). Does there exist S ∈ W (C[0, 1]) such
that Sz(R + S) = Nz(R + S)?

Question 2.12 asks whether the indices Sz and Nz coincide on X ∗(C[0, 1])
up to a weakly compact perturbation. The motivation for Question 2.12 is the fact
that W is a closed operator ideal and that, for T ∈ B(C[0, 1]), Nz(T) is minimal
(that is, is equal to 1) if and only if T is weakly compact; this latter fact regarding
minimality of Nz(T) for T ∈ B(C[0, 1]) is due to D. Alspach ([2], Remark 2).

3. EXAMPLES

In this section we discuss the algebras SZα(E) for a number of well-known
Banach spaces E. In particular, we study the place of the ideals SZα(E) in the
lattice of closed, two-sided ideals of B(E) by relating them to other well-known
closed ideals (for example, the ideal of weakly compact operators).

EXAMPLE 3.1. Our first example is the Banach space L∞ = L∞[0, 1]. We
will show that the operator ideals W , G`2 , D , SZ1 and X ∗ coincide on L∞. For
this purpose, we state the following impressive result of H. Jarchow [16]:

THEOREM 3.2. Let A be a C∗-algebra and F a Banach space. Then

W (A, F) = Γ
inj
2 (A, F).
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We also require the following lemma.

LEMMA 3.3. LetH be a Hilbert space and E a Banach space such that every weakly
compact subset of E is norm separable. Then B(H, E) = G`2(H, E).

Proof. Let T ∈ B(H, E). The reflexivity of H implies T ∈ W (H, E), and
the norm separability of T(BH) implies T ∈ X . Thus, by the (separable) DFJP
factorization theorem ([8], Lemma 1(xi)), there is a separable, reflexive Banach
space F and operators A : H −→ F and B : F −→ E such that T = BA. Since
F∗ is separable, we have that A∗(F∗) is isometric to a separable closed subspace
of H∗, hence isometric to a closed subspace of `2. Thus A∗ ∈ G`2 . Making the
identificationsH = H∗∗ and F = F∗∗ via the canonical injections ofH and F into
their second duals, we have A = A∗∗ ∈ G`∗2

= G`2 , hence T = BA ∈ G`2 .

The inclusion X (L∞) ⊆ W (L∞) holds since L∞ is a Grothendieck space,
and W (L∞) ⊆ X (L∞) since weakly compact subsets of L∞ are norm separable
([32], Proposition 4.7). Thus X (L∞) = W (L∞). As Sz(H) = ω for H a Hilbert
space (see p. 106 of [23]), and since L∞ is both a C∗-algebra and an injective Ba-
nach space, Theorem 3.2 yields X (L∞) = W (L∞) = Γ2(L∞) ⊆ SZ1(L∞) ⊆
D(L∞). We have X ∗ = X ∩D by Proposition 2.11, hence X ∗(L∞) = X (L∞).
Thus, to show that W , G`2 , D , SZ1 and X ∗ coincide on L∞, it now suffices to
show that D(L∞) ⊆ W (L∞) and Γ2(L∞) ⊆ G`2(L∞). The first of these inclusions
is justified by the fact that nonweakly compact operators on L∞ fix a copy of the
non-Asplund space L∞ (see Proposition 1.2 of [33] and the main result of [25]).
The second inclusion follows from Lemma 3.3 and the fact that every weakly
compact subset of L∞ is norm separable.

EXAMPLE 3.4. For our next example, we consider the space L1 = L1[0, 1].
Similarly to the previous example, we will show that the operator ideals W , G`2 ,
D , SZ1 and X ∗ coincide on L1.

Let Q : L1 ↪→ L∗∗1 denote the canonical embedding and let P : L∗∗1 −→ L1
be a projection (that L1 is complemented in its bidual is well-known; see, for
example, Proposition 6.3.10 of [1]). It is clear that, since Sz(`2) = ω, we have
G`2(L1) ⊆ SZ1(L1) ⊆ D(L1). Moreover, since X ∗ and D coincide on separable
Banach spaces by Proposition 2.11, it suffices to show that D(L1) ⊆ W (L1) and
W (L1) ⊆ G`2(L1). The first of these inclusions is justified by the fact that non-
weakly compact operators into L1 fix a copy of `1 ([26], Theorem 1), and therefore
fail to be Asplund. For the second inclusion, let T ∈ W (L1). Then, by Gant-
macher’s theorem, T∗ is a weakly compact operator on the (up to isomorphism)
C∗-algebra L∗1 . Moreover, L∗1 is an injective Banach space, hence Theorem 3.2 en-
sures the existence of a sequence (Sn) in Γ2(L∗1) satisfying ‖T∗ − Sn‖ → 0. It fol-
lows then that, since T = PT∗∗Q, we have ‖T − PS∗nQ‖ = ‖P(T∗∗ − S∗n)Q‖ → 0.
In particular, T ∈ Γ2(L1) since S∗n ∈ Γ2 for all n. As L1 is separable, it follows that
T ∈ G`2(L1).
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EXAMPLE 3.5. We now consider the ideals SZα(C[0, 1]). The lattice of
closed, two-sided ideals in B(C[0, 1]) contains the following linearly ordered
chain, where 0 < β < ω1:

{0} ( K (C[0, 1]) = SZ0(C[0, 1]) ( W (C[0, 1]) ( SZ1(C[0, 1]) ⊆ · · ·

⊆
⋃

γ<β

SZγ(C[0, 1]) ⊆ SZβ(C[0, 1]) ( SZβ+1(C[0, 1]) ⊆ · · ·

⊆
⋃

α<ω1

SZα(C[0, 1])=D(C[0, 1])=X ∗(C[0, 1])(B(C[0, 1]).

Note that the ideal X ∗(C[0, 1]) is the unique maximal ideal in B(C[0, 1]) since
each element of B(C[0, 1]) \X ∗(C[0, 1]) factors the identity operator of C[0, 1].
Indeed, combining theorems of H. Rosenthal ([34], Theorem 1) and A. Pełczyński
([27], Theorem 1), for any T ∈ B(C[0, 1]) \X ∗(C[0, 1]) there exists a closed
subspace E ⊆ C[0, 1] such that T|E is an isomorphism, E is isomorphic to C[0, 1]
and T(E) is complemented in C[0, 1]. Let R be an isomorphism of C[0, 1] onto E,
let P : C[0, 1] → T(E) be a continuous projection and set V = (TR)−1P. Then
IC[0, 1] = VTR.

We now justify the other claims above regarding the lattice of closed ideals
in B(C[0, 1]). With A : C[0, 1] → `2 a surjective operator and B : `2 → C[0, 1]
noncompact, BA ∈ W (C[0, 1]) \K (C[0, 1]). That W (C[0, 1]) ⊆ SZ1(C[0, 1])
follows from Theorem 3.2 and the fact that, since Hilbert spaces have Szlenk in-
dex ω and SZ1 is closed and injective, Γ

inj
2 ⊆ SZ1. Any projection of C[0, 1]

onto a subspace isomorphic to c0 (of which there are many) belongs to the dif-
ference SZ1(C[0, 1]) \W (C[0, 1]) since c0 is nonreflexive and of Szlenk index ω.
Similarly, the difference SZβ+1(C[0, 1]) \SZβ(C[0, 1]) contains any projection of

C[0, 1] onto a subspace isomorphic to C(ωωβ
+ 1) (here, ωωβ

+ 1 is equipped with
its (compact) order topology; see [13] for a proof that Sz(C(ωωβ

+ 1)) = ωβ+1 for
β < ω1). That the operator ideals

⋃
α<ω1

SZα, D and X ∗ coincide on C[0, 1] fol-

lows from Proposition 2.11.

EXAMPLE 3.6. Let V denote the complementably universal unconditional
basis space of Pełczyński [28]. Then, as in the case of C[0, 1] above, we have
SZβ(V) ( SZβ+1(V) for every β < ω1. To show this, it suffices to find, for
each β < ω1, a Banach space Gβ having an unconditional basis and Szlenk index
ωβ+1. Indeed, the existence of such a space ensures the existence of a projection
of V onto a complemented subspace isomorphic to Gβ, and such a projection
clearly belongs to SZβ+1(V) \SZβ(V). For the existence of the desired spaces
Gβ, we turn to Szlenk’s construction in [38] of a family of separable, reflexive
Banach spaces whose Szlenk indices are (collectively) unbounded above in ω1.
The construction is as follows: Let E0 = {0}, Eα+1 = Eα ⊕1 `2 for α < ω1 and,
if α < ω1 is a limit ordinal, Eα = (

⊕
γ<α Eγ)2. A straightforward transfinite

induction on α < ω1 shows that Eα has a 1-unconditional basis for all nonzero α <
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ω1. Moreover, a slight modification of arguments in proof of Proposition 2.16 of
[7] show that for each β < ω1 there exists α(β) < ω1 such that Sz(Eα(β)) = ωβ+1.
Taking Gβ = Eα(β) gives the desired spaces Gβ (β < ω1).

Finally, note that
⋃

α<ω1

SZα(V) = D(V) = X ∗(V) ( B(V) by Proposi-

tion 2.11 and the existence of P ∈ B(V) \X ∗(V) with P2 = P and P(V) isomor-
phic to `1.

4. QUANTITATIVE FACTORIZATION OF ASPLUND OPERATORS

An important, basic question in operator ideal theory is whether a given op-
erator ideal I has the factorization property; that is, whether every element of I
factors through a Banach space whose identity operator belongs to I . The most
well-known and widely applied result in this direction is the celebrated Davis–
Figiel–Johnson–Pełczyński factorization theorem [8] asserting that every weakly
compact operator factors through a reflexive Banach space. In the absence of
the factorization property, one may then ask whether I satisfies some nontrivial
“weak” factorization property. For example, W. Johnson has shown in [17] that
there exists a separable, reflexive Banach space E with the property that every
approximable operator (= uniform limit of finite-rank operators) factors through
E with approximable factors. In this and subsequent sections of the current paper
we study factorization properties of the operator ideals SZα.

Our main task in this section is to establish the following weak factoriza-
tion result for the operator ideals SZα. In light of Proposition 2.10 and Propo-
sition 1.5(ii), this result can be considered a quantitative refinement of the inde-
pendent efforts of Reı̆nov, Heinrich and Stegall (c.f. Section 1) showing that the
operator ideal of Asplund operators possesses the factorization property.

THEOREM 4.1. For α an ordinal, SZα has the SZα+1-factorization property.
That is, each T ∈ SZα can be factored through a Banach space whose Szlenk index
is no larger than ωα+1.

Before embarking on a proof of Theorem 4.1, we mention a similar result
due to B. Bossard. It is shown in Theorem 3.9 of [5] that there is a universal
function ϕ : ω1 → ω1 such that for any separable Banach spaces E and F and
any Asplund operator T : E → F, there exist a Banach space G and operators
A : E → G and B : G → F such that G has a shrinking basis, Sz(G) 6 ϕ(Sz(T))
and T = BA. It will be shown at the end of Section 5 that ϕ necessarily exceeds
the identity function of ω1 at uncountably many points of ω1.

We shall deduce Theorem 4.1 from the following proposition.

PROPOSITION 4.2. Let Λ and Υ be sets, {Eλ : λ ∈ Λ} and {Fυ : υ ∈ Υ} families
of Banach spaces, p = 0 or 1 < p < ∞, T : (

⊕
λ∈Λ Eλ)p → (

⊕
υ∈Υ Fυ)p an operator

and α > 0 an ordinal. The following are equivalent:
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(i) Sz(T) 6 ωα.
(ii) sup{Szε(TUF ) : F ∈ Λ<∞} < ωα for every ε > 0.

(iii) sup{Szε(QGT) : G ∈ Υ<∞} < ωα for every ε > 0.
(iv) sup{Szε(QGTUF ) : F ∈ Λ<∞, G ∈ Υ<∞} < ωα for every ε > 0.

Let us now see how Theorem 4.1 follows from Proposition 4.2. We begin
by letting 1 < p < ∞. By Theorem 2.2 and Theorem 1.3, it suffices to show
that (SZα, SZα+1) is a Σp-pair. To this end, let (Em)m and (Fn)n be sequences
of Banach spaces and suppose T ∈ B((

⊕
m∈N Em)p, (

⊕
n∈N Fn)p) is such that

QGTUF ∈ SZα for all F , G ∈ N<∞. Then

∀ε > 0 sup{Szε(QGTUF ) : F , G ∈ N<∞} 6 ωα < ωα+1,

hence T ∈ SZα+1 by Proposition 4.2, and we are done.
To prove Proposition 4.2, we draw on several preliminary results. The first

of these is the following variant of Proposition 2.2 in [13], which can be useful for
obtaining an upper estimate on the Szlenk index of an operator.

PROPOSITION 4.3. Let E and F be Banach spaces, T : E → F an operator and β

an ordinal. Suppose that for every ε > 0 there exist βε < ωβ and δε ∈ (0, 1) such that
sβε

ε (T∗BF∗) ⊆ δεT∗BF∗ . Then Sz(T) 6 ωβ.

Proof. Fix ε > 0. We claim that sβε ·n
ε (T∗BF∗) ⊆ δn

ε T∗BF∗ for all n ∈ N. Indeed,
it is true for n = 1 by assumption, and if is true for n 6 k then

sβε ·(k+1)
ε (T∗BF∗) ⊆ sβε

ε (δk
ε T∗BF∗) = δk

ε sβε

ε/δk
ε
(T∗BF∗) ⊆ δk

ε sβε
ε (T∗BF∗) ⊆ δk+1

ε T∗BF∗ ,

so that the above claim holds by induction on n.
For each ε > 0 let Nε ∈ N be large enough that sβε ·Nε

ε (T∗BF∗) ⊆ (ε/2)BE∗ .
Then sβε ·Nε+1

ε (T∗BF∗)=∅ for each ε>0, hence Sz(T)6sup
ε>0

(βε · Nε+1)6ωβ.

The next two lemmas concern the action of the ε-Szlenk derivations on w∗-
compact sets contained in the dual of a direct sum of Banach spaces. The first is a
discrete variant of Lemma 3.3 of [13] and is proved in Lemma 2.6 of [7].

LEMMA 4.4. Let Λ be a set, {Eλ : λ ∈ Λ} a family of Banach spaces, 1 6 q < ∞,
p predual to q and K ⊆ (

⊕
λ∈Λ Eλ)

∗
p a nonempty w∗-compact set. Let α be an ordinal,

R ⊆ Λ and ε > δ > 0. If x ∈ sα
ε (K) is such that ‖U∗R x‖q > |K|q − ((ε− δ)/2)q, then

U∗R x ∈ sα
δ (U

∗
R K).

LEMMA 4.5. Let Υ be a set, {Fυ : υ ∈ Υ} a family of Banach spaces, E a Banach
space, 1 6 q < ∞, p predual to q, K ⊆ (

⊕
λ∈Λ Eλ)

∗
p a nonempty w∗-compact set,

T : E → (
⊕

υ∈Υ Fυ)p a nonzero operator and ε > 0. Let α be an ordinal and let
x ∈ sα

ε (T∗K). Then there is y ∈ sα
ε/(2‖T‖)(K) such that T∗y = x. Further, if S ⊆ Υ is

such that ‖Q∗SV∗Sy‖q > |K|q − (ε/(8‖T‖))q, then T∗Q∗SV∗Sy ∈ sα
ε/4(T

∗Q∗SV∗SK).
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Proof. The lemma is clearly true for α = 0. We now assume it true for
some α = γ, and show that it is also true for α = γ + 1. To this end, let
x ∈ sγ+1

ε (T∗K) = sε(s
γ
ε (T∗K)). Then there exists a net (xi)i∈I in sγ

ε (T∗K) such

that xi
w∗→ x and ‖xi − x‖ > ε/2 for all i ∈ I (for example, take I to be the set of

all w∗-neighbourhoods of x, ordered by reverse set inclusion). For each i ∈ I let
yi ∈ sγ

ε/(2‖T‖)(K) be such that T∗yi = xi. Passing to a subnet, we may assume

that (yi)i∈I has a w∗-limit y ∈ sγ
ε/(2‖T‖)(K), and then T∗y = x. Moreover, as

‖yi − y‖ > ‖xi − x‖/‖T‖ > ε/(2‖T‖) for all i, we have y ∈ sγ+1
ε/(2‖T‖)(K). Now

suppose that ‖Q∗SV∗Sy‖q > |K|q− (ε/(8‖T‖))q, where S ⊆ Υ. Passing to a subnet,
we may assume ‖Q∗SV∗Syi‖q > |K|q − (ε/(8‖T‖))q for all i. Then for all i,

‖yi −Q∗SV∗Syi‖ = (‖yi‖q − ‖Q∗SV∗Syi‖q)1/q 6 (|K|q − ‖Q∗SV∗Syi‖q)1/q <
ε

8‖T‖ ,

hence ‖y−Q∗SV∗Sy‖ 6 ε/(8‖T‖) by w∗-lower semicontinuity. Thus, for all i,

‖T∗Q∗SV∗Syi−T∗Q∗SV∗Sy‖>‖T∗yi−T∗y‖−‖T∗y−T∗Q∗SV∗Sy‖−‖T∗yi−T∗Q∗SV∗Syi‖
>‖xi − x‖ − ‖T‖‖y−Q∗SV∗Sy‖ − ‖T‖‖yi −Q∗SV∗Syi‖

>
ε

2
− 2‖T‖ · ε

8‖T‖ =
ε

4
.

Since T∗Q∗SV∗Syi ∈ sγ
ε/4(T

∗Q∗SV∗SK) for each i by the induction hypothesis, and

since T∗Q∗SV∗Syi
w∗→ T∗Q∗SV∗Sy, we have T∗Q∗SV∗Sy ∈ sγ+1

ε/4 (T∗Q∗SV∗SK). Thus, in
particular, the assertion of the lemma passes to successor ordinals.

Finally, let γ be a limit ordinal and suppose that the assertion of the lemma
holds whenever α < γ. Let x ∈ sγ

ε (T∗K) =
⋂

α<γ
sα

ε (T∗K) and for each α < γ let

yα ∈ sα
ε/(2‖T‖)(K) be such that T∗yα = x. By w∗-compactness, there is a directed

set J and a mapping f : J → γ such that (y f (j))j∈J is a w∗-convergent subnet of
(yα)α<γ. Let y denote the w∗-limit of (y f (j))j∈J . Then T∗y = x, and since f (J) is

cofinal in γ (by definition of a subnet), y ∈ ⋂
j∈J

s f (j)
ε/(2‖T‖)(K) = sγ

ε/(2‖T‖)(K). Now

suppose that ‖Q∗SV∗Sy‖q > |K|q− (ε/(8‖T‖))q, where S ⊆ Υ. Passing to a subnet,
we may assume ‖Q∗SV∗Syj‖q > |K|q− (ε/(8‖T‖))q for all j, hence by the induction

hypothesis T∗Q∗SV∗Sy f (j) ∈ s f (j)
ε/4 (T

∗Q∗SV∗SK) for all j. Again, by the cofinality of
f (J) in γ,

T∗Q∗SV∗Sy = w∗− lim
j

T∗Q∗SV∗Sy f (j) ∈
⋂
j∈J

s f (j)
ε/4 (T

∗Q∗SV∗SK) = sγ
ε/4(T

∗Q∗SV∗SK).

The assertion of the lemma thus passes to limit ordinals, and we are done.

The final step in our preparation to prove Proposition 4.2 is to state the fol-
lowing definition and lemma.
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DEFINITION 4.6. For real numbers a > 0, b > c > 0 and 1 6 d < ∞, define

σ(a, b, c, d) := inf{n ∈ N : (b− c)d(n− 1) > (2a)d − bd} .

LEMMA 4.7 ([7], Lemma 2.8). Let Λ be a set, {Eλ : λ ∈ Λ} a family of Banach
spaces, 1 6 q < ∞, p predual to q, K ⊆ (

⊕
λ∈Λ Eλ)

∗
p a nonempty, w∗-compact set

and ε > δ > 0. Suppose ηδ is a nonzero ordinal such that sηδ
δ (U∗FK) = ∅ for every

F ∈ Λ<∞. Then sηδ ·σ(|K|,ε,δ,q)
ε (K) = ∅, hence Szε(K) 6 ηδ · σ(|K|, ε, δ, q).

Proof of Proposition 4.2. We prove (i)⇒(ii)⇒(iv)⇒(iii)⇒(i), assuming T 6= 0
(the result is obvious otherwise).

To see that (i)⇒ (ii), suppose that there is ε > 0 such that

sup{Szε(TUF ) : F ∈ Λ<∞} > ωα.

We want to show that Sz(T) > ωα, so to this end note that by Lemma 2.5 we have

Szε/2(T) = Szε/2(T∗B(
⊕

υ∈Υ Fυ)∗p) > sup{Szε(U∗FT∗B(
⊕

υ∈Υ Fυ)∗p) : F ∈ Λ<∞}

= sup{Szε(TUF ) : F ∈ Λ<∞} > ωα .

As Szε/2(T)F cannot be a limit ordinal, it follows that Sz(T) > Szε/2(T) > ωα.
We now show (ii) ⇒ (iv). Let F ∈ Λ<∞. Then for G ∈ Υ<∞ we have

U∗FT∗Q∗GB(
⊕

υ∈G Fυ)∗p ⊆ U∗FT∗B(
⊕

υ∈Υ Fυ)∗p , hence Szε(QGTUF ) 6 Szε(TUF ) for all
G ∈ Υ<∞ and ε > 0. Thus, for each ε > 0,

sup{Szε(QGTUF ) : F ∈ Λ<∞, G ∈ Υ<∞} 6 sup{Szε(TUF ) : F ∈ Λ<∞},

and the implication (ii)⇒ (iv) follows.
Suppose that (iv) holds and fix G ∈ Υ<∞. An application of Lemma 4.7 with

K = T∗Q∗GB(
⊕

υ∈Υ Fυ)∗p , δ = δ(ε) = ε/2 and

ηδ(ε) = sup{Szε/2(QGTUF ) : F ∈ Λ<∞, G ∈ Υ<∞} (< ωα)

yields
Szε(T∗Q∗GB(

⊕
υ∈Υ Fυ)∗p) 6 ηδ(ε) · σ(‖T‖, ε, ε/2, q) .

As G ∈ Υ<∞ was arbitrary and ηδ(ε) and σ(‖T‖, ε, ε/2, q) do not depend on our
choice of G, we deduce that

sup{Szε(QGT) : G ∈ Υ<∞} 6 ηδ(ε) · σ(‖T‖, ε, ε/2, q) < ωα ,

hence (iv)⇒(iii).
Suppose that (iii) holds. The implication (iii)⇒ (i) will follow from Propo-

sition 4.3 if we can show that for every ε > 0 there is βε < ωα and δε ∈ (0, 1) with
sβε

ε (T∗B(
⊕

υ∈Υ Fυ)∗p) ⊆ δεT∗B(
⊕

υ∈Υ Fυ)∗p . If ε > 2‖T‖, then sε(T∗B(
⊕

υ∈Υ Fυ)∗p) = ∅,
hence βε = 1 and any δε ∈ (0, 1) suffice. So it remains to find suitable βε and δε

for ε ∈ (0, 2‖T‖). For each ε ∈ (0, 2‖T‖), let ξε = sup{Szε(QGT) : G ∈ Υ<∞}.
As T∗Q∗GB(

⊕
υ∈G Fυ)∗p = T∗Q∗GV∗GB(

⊕
υ∈Υ Fυ)∗p for each G ∈ Υ<∞, it follows that

sup{Szε(VGQGT) : G ∈ Υ<∞} = ξε for each ε ∈ (0, 2‖T‖). Let ε ∈ (0, 2‖T‖)
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be fixed and let x ∈ sξε/4
ε (T∗B(

⊕
υ∈Υ Fυ)∗p) (if sξε/4

ε (T∗B(
⊕

υ∈Υ Fυ)∗p) = ∅, then taking

βε = ξε/4 and any δε ∈ (0, 1) will do). Since sξε/4
ε/4 (T

∗Q∗GV∗GB(
⊕

υ∈Υ Fυ)∗p) = ∅ for all

G ∈ Υ<∞, an appeal to Lemma 4.5 gives us y ∈ sξε/4
ε/(2‖T‖)(B(

⊕
υ∈Υ Fυ)∗p) such that

T∗y = x and

‖y‖q = sup
G∈Υ<∞

‖Q∗GV∗G y‖q 6 1−
( ε

8‖T‖

)q
.

In particular, since x ∈ sξε/4
ε (T∗B(

⊕
υ∈Υ Fυ)∗p) was arbitrary,

sξε/4
ε (T∗B(

⊕
υ∈Υ Fυ)∗p) ⊆

(
1−

( ε

8‖T‖

)q)1/q
T∗B(

⊕
υ∈Υ Fυ)∗p .

Taking βε = ξε/4 and δε = (1− (ε/(8‖T‖))q)1/q for each ε ∈ (0, 2‖T‖) completes
the proof.

COROLLARY 4.8. Let α be an ordinal of uncountable cofinality. Then SZα has
the factorization property.

Proof. By Theorem 2.2 and Theorem 1.3, it suffices to show that (SZα, SZα)
is a Σp-pair (1 < p < ∞). To this end, let (Em)m and (Fn)n be sequences of Banach
spaces and let T ∈ B((

⊕
m∈N Em)p, (

⊕
n∈N Fn)p) be such that QGTUF ∈ SZα

for all F , G ∈ N<∞. By Proposition 1.5(iii), for each pair (F , G) ∈ N<∞ ×N<∞

there is α(F , G) 6 α such that Sz(QGTUF ) = ωα(F ,G). However, since

c f (α(F , G)) 6 c f (ωα(F ,G)) = c f
(

sup
n∈N

Sz1/n(QGTUF )
)
= ω < ω1 6 c f (α),

it must be that α(F , G) < α for each (F , G) ∈ N<∞ ×N<∞. Consider the ordinal
α′ = sup{α(F , G) : F , G ∈ N<∞}. We have α′ 6 α and, since N<∞ × N<∞ is
countable, c f (α′) is countable also, hence α′ < α. As α is of uncountable cofinality,
it is also a limit ordinal, hence α′ + 1 < α. Moreover,

∀ε > 0 sup{Szε(QGTUF ) : F , G ∈ N<∞} 6 ωα′ < ωα′+1,

and so Proposition 4.2 yields T ∈ SZα′+1 ⊆ SZα. We have thus shown that
(SZα, SZα) is a Σp-pair, which completes the proof.

The following is open:

PROBLEM 4.9. Let α be an ordinal. Are the following equivalent?
(i) α is of uncountable cofinality.

(ii) SZα has the factorization property.

With Corollary 4.8 we have already just established the implication (i)⇒(ii)
of Problem 4.9. The remainder of this paper is motivated by the search for a proof
of the reverse implication (ii)⇒(i). Although we do not obtain the full answer, we
obtain some partial results and anticipate that further development of the ideas
presented here may eventually lead to a complete solution. Note that Theorem 1.3
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does not yield any further information on the classification of those ordinals α for
which SZα has the factorization property since, as noted later in Remark 5.13,
(SZα, SZα) fails to be a Σp-pair for any 1 < p < ∞ whenever α is an ordinal of
countable cofinality.

5. COUNTEREXAMPLES TO THE FACTORIZATION PROPERTY

Our goal in this section is to prove the following theorem.

THEOREM 5.1. Let β be an ordinal of countable cofinality. Then SZωβ does not
have the factorization property.

One of the main ingredients in our construction of counterexamples to the
factorization property is the following result concerning the submultiplicity of
the ε-Szlenk index of a Banach space, due to G. Lancien.

PROPOSITION 5.2 ([21], p. 212). Let E be a Banach space and ε, ε′ > 0. Then

Szεε′(E) 6 Szε(E) · Szε′(E) .

Some remarks concerning the use of Proposition 5.2 are in order. Suppose
that E is an infinite-dimensional Asplund space and let α denote the unique ordi-
nal satisfying Sz(E) = ωα. The submultiplicity of the ε-Szlenk index seems to be
of use in analysis of E only in the case that the ordinal ωα is closed under ordi-
nal multiplication, which is true if and only if α is closed under ordinal addition,
which is true if and only if α = ωβ for some ordinal β. Indeed, suppose that α is
not a power of ω; then there is γ < α such that γ · 2 > α. Let ε be so small that
Szε(E) > ωγ. Then for 0 < ε′, ε′′ 6 ε we have

Szε′ε′′(E) 6 ωα 6 ωγ·2 6 Szε′(E) · Szε′′(E),

so that submultiplicity of the ε-Szlenk index of E is essentially trivial in this case.
In particular, in this case the submultiplicity of the ε-Szlenk index of E does not
yield any information regarding the growth of Szε(E) as ε goes to zero. By con-
trast, if α = ωβ for some β, then it is possible to use the submultiplicity of the
ε-Szlenk index to obtain a certain growth condition on Szε(E), and similar growth
conditions on the ε-Szlenk indices of operators in Op(SZLα) (see Proposition 5.4
below). By constructing an element of SZα that cannot satisfy any such growth
condition, we will show that the containment Op(SZLα) ⊆ SZα is proper.

DEFINITION 5.3. Let β be an ordinal of countable cofinality. A sequence
(βn)n∈N in ωβ is called a superadditive cofinal sequence for ωβ if {βn : n ∈ N} is
cofinal in ωβ and βn1 + βn2 6 βn1+n2 for all n1, n2 ∈ N (including when n1 = n2).

It is easy to see that each ordinal β of countable cofinality admits a super-
additive cofinal sequence for ωβ. Indeed, for such an ordinal β we have that ωβ

is also of countable cofinality, and so we may choose a sequence (γm)m∈N in ωβ
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such that {γm : m ∈ N} is cofinal in ωβ. It is then straightforward to inductively
define a strictly increasing sequence (mn)n∈N in N such that (βn = γmn)n∈N is a
superadditive cofinal sequence for ωβ.

For a nonzero ordinal β of countable cofinality, the following proposition es-
tablishes a necessary condition for membership of the operator ideal Op(SZLωβ),
and will be used in the proof of Theorem 5.1. The proposition asserts that ele-
ments of Op(SZLωβ) must possess a certain restricted-growth property defined
in terms of arbitrary superadditive cofinal sequences for ωβ.

PROPOSITION 5.4. Let β be a nonzero ordinal of countable cofinality. For each
T ∈ Op(SZLωβ) and superadditive cofinal sequence for ωβ, (βn)n∈N say, there exists
n0 ∈ N such that

Sz1/2n(T) 6 ωβn0 ·n

for all n ∈ N.

Proof. The result if trivial if T = 0, so we assume henceforth that T 6= 0. Let
D, E and F be Banach spaces and A ∈ B(E, D) and B ∈ B(D, F) operators such
that D ∈ SZLωβ , T = BA and, without loss of generality, ‖B‖ 6 1. The bound
‖B‖ 6 1 and Lemma 2.5 ensure that

(5.1) ∀ ε > 0 Szε(T) 6 Szε(A) 6 Szε/(2‖A‖)(D) .

Let s ∈ {n ∈ N : Sz1/(2‖A‖)(D) 6 ωβn}, t ∈ {n ∈ N : Sz1/2(D) 6 ωβn} and
set n0 = s + t (our assumption that β > 0 guarantees the existence of such s and
t). By Proposition 5.2 and (5.1), for each n ∈ N we have

Sz1/2n(T) 6 Sz1/(2n+1‖A‖)(D) 6 Sz1/(2‖A‖)(D) · ( Sz1/2(D))n

6 ωβs ·ωβt ·n 6 ωβs+tn 6 ωβn0 ·n .

For the remainder of this section, let r = 0 or 1 < r < ∞ be fixed. We
now detail a construction (inspired by Szlenk’s construction in [38] of a family
of Banach spaces whose Szlenk indices are unbounded in ω1) that takes a given
operator T and yields an operator Tα for each ordinal α in such a way that T0 = T
and Tα is obtained via direct sums of predecessors in the construction. For Banach
spaces D and G and an operator S ∈ B(D, G), we write S[n] = (

⊕n
i=1 S)1 for each

n ∈ N and S+ = (
⊕

n∈N S[n])r.

CONSTRUCTION 5.5. For Banach spaces E and F and T ∈ B(E, F), define
T0 = T, Tα+1 = (Tα)+ for each ordinal α and Tα = (

⊕
ξ<α Tξ)r whenever α is a

limit ordinal.

With respect to Construction 5.5, note that ‖Tα‖ = ‖T‖ for all ordinals α.
Our counterexamples to the factorization property shall be obtained as direct
sums of operators obtained via this construction. For this we shall require some
estimates on the Szlenk and ε-Szlenk indices of the operators Tα in terms of Sz(T).



ASPLUND OPERATORS AND THE SZLENK INDEX 427

For a noncompact Asplund operator T, let αT denote the unique ordinal
satisfying Sz(T) = ωαT . Then we may write αT = ηT + ωζT , where ζT is uniquely
determined by the Cantor normal form of αT and ηT = inf{η : αT = η + ωζT}.
The following result gives the required estimates of Sz(Tα) and Szε(Tα), α ∈ ORD.

PROPOSITION 5.6. Let T be a noncompact Asplund operator.
(i) Suppose ε > 0 is so small that Szε(T) > ωηT . Then Szε(Tα) > ωηT+α for every

ordinal α.
(ii) Sz(Tα) = Sz(T) for all α < ωζT .

To prove part (i) of Proposition 5.6, we require the following lemma.

LEMMA 5.7. Let E1, . . . , En be Banach spaces and K1 ⊆ E∗1 , . . . , Kn ⊆ E∗n w∗-

compact sets. Consider
n
∏
i=1

Ki as a subset of (
⊕n

i=1 Ei)
∗
1 = (

⊕n
i=1 E∗i )∞. Then for all

ε > 0, ordinals α and 1 6 j 6 n,

(5.2) K1 × · · · × Kj−1 × sα
ε (Kj)× Kj+1 × · · · × Kn ⊆ sα

ε (∏n
i=1 Ki).

It follows that for all ε > 0 and ordinals α,

(5.3)
n

∏
i=1

sα
ε (Ki) ⊆ sα·n

ε (∏n
i=1 Ki).

Proof. We prove (5.2), with (5.3) then following from n applications of (5.2).
Trivially, (5.2) holds for α = 0. We now suppose that β is an ordinal such that (5.2)
holds for α = β, and show that (5.2) then holds for α = β + 1. Fix j ∈ {1, . . . , n}.
Let (k1, . . . , kn) ∈

n
∏
i=1

Ki be such that k j ∈ sβ+1
ε (Kj) (if sβ+1

ε (Kj) is empty then

we are done) and let V 3 (k1, . . . , kn) be w∗-open. Then there are w∗-open sets
Vi ⊆ E∗i , 1 6 i 6 n, such that (k1, . . . , kn) ∈ V1 × · · · ×Vn ⊆ V. For 1 6 l 6 m 6 n

we shall write Kl, m =
m
∏
i=l

Ki and W l, m =
m
∏
i=l

(Vi ∩ Ki). Assuming 1 < j < n (the

argument for the other two cases being similar), we have

diam(V ∩ sβ
ε (∏n

i=1 Ki)) > diam((∏n
i=1 Vi) ∩ (K1, j−1 × sβ

ε (Kj)× K j+1, n))

= diam(W1, j−1 × (Vj ∩ sβ
ε (Kj))×W j+1, n)

> diam(Vj ∩ sβ
ε (Kj)) > ε.

It follows that (k1, . . . , kn) ∈ sβ+1
ε (∏n

i=1 Ki), thus (5.2) holds for α = β + 1.
Now suppose that β is a limit ordinal and that (5.2) holds for every α < β.

Assuming once again, for notational convenience, that 1 < j < n, we have

K1, j−1 × sβ
ε (Kj)× K j+1, n = K1, j−1 × (

⋂
α<β

sα
ε (Kj))× K j+1, n

=
⋂

α<β

(K1, j−1 × sα
ε (Kj)× K j+1, n)



428 PHILIP A.H. BROOKER

⊆
⋂

α<β

sα
ε (∏n

i=1 Ki) = sβ
ε (∏n

i=1 Ki).

The inductive proof is now complete.

REMARK 5.8. The reverse inclusion to (2.1) also holds; this is achieved by
substituting ωα in place of α in (5.2) (see the statement of Lemma 2.6).

To prove Proposition 5.6(i), we fix ε and proceed via transfinite induction on
α. Part (i) is trivially true for α = 0. So suppose that (i) holds for some α = γ; we
show that it then holds for α = γ + 1. We have Szε((Tγ)[n]) > ωηT+γ · n for all
n ∈ N by Lemma 5.7, hence

Szε(Tγ+1) > sup
n∈N

Szε((Tγ)[n]) > sup
n∈N

ωηT+γ · n = ωηT+γ+1 .

As Szε(Tγ+1) cannot be a limit ordinal, we conclude that Szε(Tγ+1) > ωηT+γ+1.
In particular, assertion (i) of Proposition 5.6 passes to successor ordinals.

Now suppose that γ is a limit ordinal and that assertion (i) of Proposition 5.6
holds for all α < γ. Then

Szε(Tγ) > sup
α<γ

Szε(Tα) > sup
α<γ

ωηT+α = ωηT+γ,

hence Szε(Tγ) > ωηT+γ. This concludes the inductive proof of Proposition 5.6(i).
The proof of assertion (ii) of Proposition 5.6 will take substantially more

effort. We proceed via a sequence of lemmas, giving proofs as necessary. We
must first make a note of some convenient notation. For a set Λ, a family of
Banach spaces {Eλ : λ ∈ Λ}, a family {Kλ ⊆ E∗λ : λ ∈ Λ} of nonempty, absolutely
convex, w∗-compact sets satisfying sup

λ∈Λ

|Kλ| < ∞, and 1 6 q < ∞, we define

Bq(Kλ : λ ∈ Λ) :=
⋃

(aλ)λ∈Λ∈B`q(Λ)

∏
λ∈Λ

aλKλ ,

and always consider Bq(Kλ : λ ∈ Λ) as a subset of (
⊕

λ∈Λ Eλ)
∗
p, where p is pre-

dual to q. Such a set Bq(Kλ : λ ∈ Λ) so defined is bounded and w∗-compact.
Indeed, if for each λ ∈ Λ we let Tλ : Eλ → C((Kλ, w∗)) denote the opera-
tor that sends x ∈ Eλ to the w∗-continuous map Kλ → K : k 7→ 〈k, x〉, then
Bq(Kλ : λ ∈ Λ) = (

⊕
λ∈Λ Tλ)

∗
pB(

⊕
λ∈Λ C((Kλ , w∗)))∗p .

Our immediate goal is to establish the following lemma.

LEMMA 5.9. Let E1, . . . , En be Banach spaces, K1 ⊆ E∗1 , . . . , Kn ⊆ E∗n nonempty,
absolutely convex, w∗-compact sets, ε > 0, α a nonzero ordinal and 1 6 q < ∞. If
sωα

ε (Bq(Ki : 1 6 i 6 n)) 6= ∅, then for every δ ∈ (0, ε) there is i 6 n such that
sωα

δ (Ki) 6= ∅.

The proof of Lemma 5.9 is similar to that of Lemma 2.5 in [7] (though neither
Lemma 5.9 above or Lemma 2.5 of [7] are strong enough to be used in place of the
other). To prove Lemma 5.9, we require the following three preliminary results;
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the first two sublemmas are proved in Lemma 3.5 and Lemma 3.1 of [7], and the
third we shall prove here.

SUBLEMMA 5.10. Let E1, . . . , En be Banach spaces, K1 ⊆ E∗1 , . . . , Kn ⊆ E∗n
nonempty, absolutely convex, w∗-compact sets, 1 6 q < ∞ and l ∈ N. Let L =
Nn ∩ (l + n1/q)B`n

q . Then

Bq(Ki : 1 6 i 6 n) ⊆
⋃

(ki)
n
i=1∈L

n

∏
i=1

ki
l

Ki .

SUBLEMMA 5.11. Let E be a Banach space, K1, . . . , Kn ⊆ E∗ w∗-compact sets
and ε > 0. Let α be an ordinal and m < ω. Then:

(i) smn
ε (

⋃n
i=1 Ki) ⊆

n⋃
i=1

sm
ε (Ki).

(ii) If α is a limit ordinal, then sα
ε (
⋃n

i=1 Ki) ⊆
n⋃

i=1
sα

ε (Ki).

SUBLEMMA 5.12. Let E1, . . . , En be Banach spaces and K1 ⊆ E∗1 , . . . , Kn ⊆ E∗n
nonempty w∗-compact sets. Let 1 6 q < ∞ and a1, . . . , an > 0 be real numbers such

that
n
∑

i=1
aq

i 6 1. Let p be predual to q and consider
n
∏
i=1

aiKi as a subset of (
⊕n

i=1 Ei)
∗
p.

Then, for all ε > 0 and ordinals α,

(5.4) sωα

ε (∏n
i=1 aiKi) ⊆

⋃
g1,...,gn<ω, g1+···+gn= 1

n

∏
i=1

ais
ωα ·gi
ε (Ki) .

Proof. We give the proof for the case n = 2, the proof of the general case
being similar. To minimize the use of subscripts, let a = a1, b = a2, K = K1 and
L = K2; our goal is thus to show that for all ordinals α and ε > 0:

sωα

ε (aK× bL) ⊆ (asωα

ε (K)× bL) ∪ (aK× bsωα

ε (L)) .(5.5)

We fix ε > 0 and proceed via induction on α. To establish (5.5) for α = 0, let k ∈ K
and l ∈ L be such that

(ak, bl) ∈ (aK× bL) \ ((asε(K)× bL) ∪ (aK× bsε(L))) .

Then there exist w∗-open sets U 3 k and V 3 l such that diam(K ∩U) 6 ε and
diam(L ∩V) 6 ε. The w∗-neighborhood W := aU × bV 3 (ak, bl) satisfies

diam((aK× bL) ∩W) 6 ((a · diam(K ∩U))q + (b · diam(L ∩V))q)1/q 6 ε ,

hence (ak, bl) /∈ sε(aK× bL), as required.
Suppose that β is an ordinal such that (5.5) holds for α = β. For each j ∈ N

let mj =
j

∑
t=1

t. To establish (5.5) for α = β + 1, we first show that for all j ∈ N,

s
ωβ ·mj
ε (aK× bL) ⊆

j⋃
h=0

asωβ ·h
ε (K)× bsωβ ·(j−h)

ε (L) .(5.6)
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For j = 1, (5.6) is the induction hypothesis that (5.5) holds for α = β. For j ∈ N
such that (5.6) holds, it follows by Sublemma 5.11 ((i) if β = 0, (ii) if β > 0) that

s
ωα ·mj+1
ε (aK×bL)⊆ sωβ ·(j+1)

ε (
⋃j

h=0
asωβ ·h

ε (K)× bsωβ ·(j−h)
ε (L))

⊆
j⋃

h=0

sωβ

ε (asωβ ·h
ε (K)×bsωβ ·(j−h)

ε (L))⊆
j+1⋃
j=0

asωβ ·h
ε (K)×bsωβ ·(j+1−h)

ε (L),

hence (5.6) holds for all j ∈ N (by induction on j).

By (5.6), for each (x, y) ∈ sωβ+1
ε (aK× bL) =

⋂
j∈N

s
ωβ ·mj
ε (aK× bL) we have:

∀m < ω ∃ i(m) 6 m x ∈ sωβ ·i(m)
ε (K), y ∈ sωβ ·(m−i(m))

ε (L) .

If (i(m))m<ω is unbounded in ω then x ∈ asωβ+1
ε (K), otherwise (m − i(m))m<ω

is unbounded in ω and y ∈ bsωβ+1
ε (L). It follows that (5.5) passes to successor

ordinals.
If β is a limit ordinal and (5.5) holds for all α < β, then a similar argument

to that used above shows that for (x, y) ∈ sωβ

ε (aK × bL) =
⋂

α<β
sωα

ε (aK × bL)

we have either x ∈ asωβ

ε (K) or y ∈ bsωβ

ε (L). In particular, (5.5) passes to limit
ordinals. The inductive proof is now complete.

Proof of Lemma 5.9. Fix δ ∈ (0, ε). Let l > δn1/q(ε− δ)−1 be an integer and
let L = Nn ∩ (l + n1/q)B`n

q . By Sublemma 5.10 and the hypothesis of Lemma 5.9,

sωα

ε (
⋃

(ki)∈L ∏n
i=1

ki
l

Ki) ⊇ sωα

ε (Bq(Ki : 1 6 i 6 n)) ) ∅ .

Thus, since L is finite and ωα is a limit ordinal, Sublemma 5.11(ii) ensures the
existence of (hi)

n
i=1 ∈ L such that

(5.7) sωα

ε (∏n
i=1

hi
l

Ki) 6= ∅ .

Let ρ = (1+ n1/q/l)−1. By (5.7) and the homogeneity of the derivations sγ
ε′ (where

γ is an ordinal and ε′ > 0), we have

(5.8) sωα

ρε (∏n
i=1

ρhi
l

Ki) = ρsωα

ε (∏n
i=1

hi
l

Ki) 6= ∅ .

Thus, since ‖((ρhi)/l)n
i=1‖`n

q 6 1, it follows from (5.8) and Sublemma 5.12 that

there is i6n such that sωα

ρε (Ki) 6=∅. As ρε>δ, we have sωα

δ (Ki)⊇ sωα

ρε (Ki))∅.

We will now prove Proposition 5.6(ii). Let T be a noncompact Asplund
operator, with Sz(T) = ωαT (c.f. the paragraph preceding Proposition 5.6). If αT
is a successor ordinal, then ωζT = 1, hence (ii) holds in this case since T0 = T.
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Suppose αT is a limit ordinal. For each ε > 0, let βε = inf{β : Szε(T) < ωβ}
and νε = inf{βδ : 0 < δ < ε} (note that βε and νε exist for all ε > 0 since the set
{ωβ : β < αT} is cofinal in ωαT ). Our immediate goal is to show the following:

(5.9) ∀ε > 0 ∀α ∈ ORD Szε(Tα) < ωνε+α+1 .

We proceed by induction on α. For ε > 0 we have

Szε(T0) < ωβε 6 ωνε < ωνε+0+1 ,

hence the estimate of (5.9) holds for α = 0 and all ε > 0.
Now suppose that γ is an ordinal such that the estimate of (5.9) holds for

α = γ and all ε > 0; we will show that it then holds for α = γ+ 1 and all ε > 0. By
the induction hypothesis, for every ε > 0 we have Szε(Tγ) < ωνε+γ+1. It follows
then by Lemma 2.6 that

∀ε > 0 ∀n ∈ N Szε((Tγ)[n]) < ωνε+γ+1 .

Thus, Lemma 5.9 yields

(5.10) ∀ε > ρ > 0 ∀F ∈ N<∞ Szε((
⊕

n∈F (Tγ)[n])r) < ωνρ+γ+1 .

Moreover, (5.10) implies that

∀ε > ρ > 0 ∀F ∈ N<∞

Szε((
⊕

n∈F (Tγ)[n])r) 6 Sz(ε+ρ)/2((
⊕

n∈F (Tγ)[n])r) < ωνρ+γ+1 .(5.11)

Let D denote the domain of Tγ+1 and let K = T∗γ+1BD∗ , so that sωνρ+γ+1

(ε+ρ)/2 (U
∗
FK) is

empty for every F ∈ N<∞ by (5.11) (here UF denotes the canonical embedding
of the `r-direct sum of the domains of the operators (Tγ)[n], n ∈ F , into the `r-
direct sum of the domains of the operators (Tγ)[n], n ∈ N). It follows then by an
application of Lemma 4.7 with δ = (ε + ρ)/2 and ηδ = ωνρ+γ+1 that

∀ε > ρ > 0 Szε(Tγ+1) 6 ωνρ+γ+1 · σ(‖T‖, ε, (ε + ρ)/2, r(r− 1)−1) .(5.12)

For each ε > 0 there exists π(ε) ∈ (0, ε) such that νπ(ε) = inf{νρ : 0 < ρ < ε}. We
have

(5.13) νπ(ε) = inf
ρ∈(0, ε)

νρ = inf
ρ∈(0, ε)

inf
τ∈(0, ρ)

βτ = inf
ρ∈(0, ε)

βρ = νε ,

and so from (5.13) and (5.12) (with ρ = π(ε)) we have, for every ε > 0,

Szε(Tγ+1) < ωνε+γ+1 · σ(‖T‖, ε, (ε + π(ε))/2, r(r− 1)−1) < ωνε+(γ+1)+1 .

In particular, the estimate of (5.9) passes to successor ordinals for every ε > 0.
Let γ be a limit ordinal and suppose that the estimate of (5.9) holds for every

α < γ and ε > 0. By Lemma 5.9 we have

(5.14) ∀ε > ρ > 0 ∀F ∈ γ<∞ Szε((
⊕

α∈F Tα)r) < ωνρ+(maxF )+1 < ωνρ+γ .
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Moreover, (5.14) implies that

∀ε > ρ > 0 ∀F ∈ γ<∞

Szε((
⊕

α∈F Tα)r) 6 Sz(ε+ρ)/2((
⊕

α∈F Tα)r) < ωνρ+γ .(5.15)

Let D denote the domain of Tγ and let K = T∗γ BD∗ , so that sωνρ+γ

(ε+ρ)/2(U
∗
FK) is empty

for every F ∈ N<∞ by (5.15) (here UF denotes the canonical embedding of the
`r-direct sum of the domains of the operators Tα, α ∈ F , into the `r-direct sum
of the domains of the operators Tα, α < γ). It follows then by an application of
Lemma 4.7 with δ = (ε + ρ)/2 and ηδ = ωνρ+γ that

∀ε > ρ > 0 Szε(Tγ) 6 ωνρ+γ · σ(‖T‖, ε, (ε + ρ)/2, r(r− 1)−1) .(5.16)

With π(ε) ∈ (0, ε) as above, taking ρ = π(ε) in (5.16) yields

∀ε > 0 Szε(Tγ) < ωνε+γ · σ(‖T‖, ε, (ε + π(ε))/2, r(r− 1)−1) < ωνε+γ+1 .

This concludes the inductive proof of (5.9).
To complete the proof of Proposition 5.6, we now only need show how part

(ii) follows from (5.9). On the one hand, it is clear from the construction that Tα

factors T for each ordinal α, hence Sz(Tα) > Sz(T). On the other hand, if α < ωζT

then by (5.9) and the fact that ν + ωζT 6 αT whenever ν < αT ,

Sz(Tα) = sup
ε>0

Szε(Tα) 6 sup
ε>0

ωνε+α+1 6 sup
ε>0

ωνε+ωζT 6 ωαT = Sz(T) .

REMARK 5.13. It is now easy to determine precisely the Szlenk index of the
operators Tα in terms of α and αT . Indeed, if T is a noncompact Asplund operator
and α an ordinal, then the Szlenk index of Tα is given by the equation

(5.17) Sz(Tα) =

{
ωαT if α < ωζT ,

ωαT + (−ωζT+α) + 1 if α > ωζT ,

where−ωζT + α denotes the unique ordinal order isomorphic to α \ωζT . To prove
(5.17), one proceeds via transfinite induction, making use of the following fact:
for a set Λ, a family of Asplund operators {Sλ : λ ∈ Λ} with sup

λ∈Λ

‖Sλ‖ < ∞,

β an ordinal such that sup
λ∈Λ

Sz(Sλ) 6 ωβ and p = 0 or 1 < p < ∞, we have

Sz((
⊕

λ∈Λ Sλ)p) 6 ωβ+1. This fact follows easily from Proposition 4.2, also from
the results of [7]. Similar arguments show that if Construction 5.5 is applied to a
nonzero compact operator T, then for all α > 0 the Szlenk index of Tα is ω(−1+α)+1,
where −1 + α denotes the unique ordinal order isomorphic to α \ 1. Moreover, in
this case if α > 0 is of countable cofinality and (αn)n is a non-decreasing cofinal
sequence in α, it follows from the properties of Construction 5.5 discussed above
that (

⊕n
i=1 Tαn)1 ∈ SZα for all n and (

⊕
n∈N(

⊕n
i=1 Tαn)1)p /∈ SZα (1 < p < ∞).

In particular, if α is of countable cofinality, then (SZα, SZα) is not a Σp-pair.

We require the following result from Proposition 2.18 of [7]:
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PROPOSITION 5.14. Let α be an ordinal of countable cofinality. Then there exists
an operator of Szlenk index ωα.

At last, we are ready to prove Theorem 5.1. For simplicity we shall assume
β > 0, but note that proof in the case of β = 0 is achieved by similar arguments
to those used here. In fact, a different proof altogether for the case β = 0 will
be presented in Section 6, so there is no real loss for us in assuming β nonzero.
Moreover, there is a saving: we need not establish an analogue of Proposition 5.4
for the case β = 0 (though it is not difficult to do so).

Let β be a nonzero ordinal of countable cofinality and fix a superadditive
cofinal sequence for ωβ, which we denote (βn)n∈N. Since the necessary condi-
tion for membership of Op(SZLωβ) imposed by Proposition 5.4 holds for an ar-
bitrary superadditive cofinal sequence for ωβ, it suffices to construct an element
of SZLωβ that fails this necessary condition for our fixed superadditive cofinal se-
quence (βn)n∈N. To this end, let R be an operator such that Sz(R) = ωωβ

(Propo-
sition 5.14) and note that Sz(m−1R) = ωωβ

for all m ∈ N. For each m ∈ N let
s(m) ∈ N be so large that Sz1/2s(m)(m−1R) > ω0 = 1, and let Wm = (m−1R)βs(m)2

(that is, Wm is the βs(m)2 th operator obtained in the application of Construction 5.5
with initial operator m−1R). Finally, set W = (

⊕
m∈N Wm)0. To prove the theorem,

we will show that W ∈ SZωβ \Op(SZLωβ).
For each m ∈ N, let Em and Fm denote the domain and codomain of Wm

respectively, so that W ∈ B((
⊕

m∈N Em)0, (
⊕

m∈N Fm)0). Since βs(m)2 < ωβ for
every m ∈ N, it follows by Proposition 5.6(ii) that Wm ∈ SZωβ for all m. For each
m ∈ N, let Zm := V{1,...,m}Q{1,...,m}W ∈ SZωβ((

⊕
m∈N Em)0, (

⊕
m∈N Fm)0) (here

{1, . . . , m} is considered a subset of the underlying index set of (
⊕

m∈N Fm)0, and
V{1,...,m} and Q{1,...,m} are as defined in Section 1). Since

‖W − Zm‖ = sup
k>m
‖Wk‖ = (m + 1)−1‖R‖ m→ 0

and SZωβ is closed, it must be that W ∈ SZωβ .
On the other hand, by Proposition 5.6(i) we have that for each m ∈ N,

Sz1/2s(m)(W) > Sz1/2s(m)(Wm) = Sz1/2s(m)((m−1R)βs(m)2
) > ω

βs(m)2 .

Moreover, since ‖m−1R‖ → 0, it follows that {s(m) : m ∈ N} is unbounded in N.
Thus, for any n0 ∈ N there is m ∈ N such that s(m) > n0, and for such m we have

Sz1/2s(m)(W) > ω
βs(m)2 > ω

βn0 ·s(m) .

In particular, W /∈ Op(SZLωβ) by Proposition 5.4. The proof of Theorem 5.1 is
complete.

We now return to our earlier discussion regarding a universal function ϕ
of B. Bossard (c.f. the paragraph following the statement of Theorem 4.1). The
proof of Theorem 5.1 begins with an appeal to Proposition 5.14 for the existence
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of an operator R having Szlenk index ωωβ
. If β < ω1, then the construction

of the operator R provided by the proof of Proposition 2.18 in [7] (see Proposi-
tion 5.14 above) may be effected with the additional property that the domain
and codomain of R are both norm separable. Under this additional assumption,
the domain and codomain of the operator W constructed in the proof of Theo-
rem 5.1 above are also both norm separable. Moreover, we have Sz(W) = ωωβ

and W /∈ Op(SZLωβ), hence ϕ(ωωβ
) > ωωβ

. Thus ϕ necessarily exceeds the
identity mapping of ω1 at every point of the uncountable set {ωωβ

: β < ω1}.

6. A CLASS OF SPACE IDEALS ASSOCIATED WITH THE SZLENK INDEX

In this section we consider a family of space ideals indexed by the class
of ordinals. In particular, we shall consider the following classes, where α is an
ordinal:

PZL0
α := {E ∈ BAN : ∃c ∈ (0, 1) ∃p > 1 ∀ ε ∈ (0, 1), sωα

ε (BE∗) ⊆ (1− cεp)BE∗}

and

PZLα := {E ∈ BAN : E is linearly isomorphic to some F ∈ PZL0
α} .

The motivation for studying these classes is the following proposition, to be
proved at the end of the current section.

PROPOSITION 6.1. Let α be an ordinal. Then at most one of the following two
statements holds:

(i) SZLα+1 = PZLα.
(ii) SZα+1 has the factorization property.

Thus, with an interest in solving Problem 4.9, we are prompted to ask:

QUESTION 6.2. Let α be an ordinal. Is PZLα = SZLα+1?

For each ordinal α, the inclusion PZLα ⊆ SZLα+1 is attained via an appli-
cation of Proposition 4.3 with β = α + 1, βε = ωα and δε = 1 − cεp (see also
Proposition 2.2 of [13]). The decision to consider the classes PZLα is not arbitrary,
for Question 6.2 is known to have an affirmative answer in the case α = 0, a result
due to M. Raja [30]. We thus obtain from Proposition 6.1 a proof that SZ1 lacks
the factorization property (Theorem 5.1 with β = 0). We note that prior to Raja’s
work [30], it had been shown by H. Knaust, E. Odell and Th. Schlumprecht [18]
that every separable space in SZL1 belongs to PZL0.

The first result to be proved in this section is the following.

PROPOSITION 6.3. PZLα is a space ideal for each ordinal α.

To prove Proposition 6.3, it suffices to establish the following two facts:

(I) Let E ∈ PZL0
α and let F be a closed linear subspace of E. Then F ∈ PZL0

α.
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(II) Let E, F ∈ PZL0
α. Then E⊕∞ F ∈ PZL0

α.
The proof of (I) is straightforward. Indeed, let i : F ↪→ E denote the isomet-

ric linear inclusion operator and let c′ ∈ (0, 1) and p′ > 1 be scalars such that
sωα

ε (BE∗) ⊆ (1− c′εp′)BE∗ for all ε > 0. By Lemma 2.5, for every ε > 0 we have

(6.1) sωα

ε (i∗BE∗) ⊆ i∗(sωα

ε/2(BE∗)) ⊆ i∗
((

1− c′

2p′ ε
p′
)

BE∗
)
=
(

1− c′

2p′ ε
p′
)

BF∗ .

As sωα

ε (BF∗) = sωα

ε (i∗BE∗), it follows from (6.1) that F satisfies the defining prop-
erty of PZL0

α with c = c′/2p′ and p = p′.
The proof of (II) is somewhat more involved. Let c′ ∈ (0, 1) and p′ > 1 be

such that sωα

ε (BE∗) ⊆ (1− c′εp′)BE∗ and sωα

ε (BF∗) ⊆ (1− c′εp′)BF∗ for all ε > 0.
We introduce the following notation: for ε > 0 and a ∈ [0, 1] ⊆ R, define

Aa
ε := {(b1, b2) ∈ [0, 1]× [0, 1] : ab1 + (1− a)b2 > ε}.

We henceforth adhere to the following notational convention: for a w∗-compact
set K and ordinal α, we write sα

0(K) = K. As the final step in our preparation to
prove (II), we state a couple of lemmas:

LEMMA 6.4. Let E be a Banach space, K1, . . . , Kn ⊆ E∗ w∗-compact sets, ε > 0

and α an ordinal. Then sα
ε (
⋃n

i=1 Ki) ⊆
n⋃

i=1
sα

ε/2(Ki).

LEMMA 6.5. Let E and F be Banach spaces, a ∈ [0, 1] ⊆ R, ε > 0 and α an
ordinal. Consider aBE∗ × (1− a)BF∗ as a subset of (E⊕∞ F)∗ and let δ ∈ (0, ε). Then

sωα

ε (aBE∗ × (1− a)BF∗) ⊆
⋃

(b1, b2)∈Aa
δ/2

asωα

b1
(BE∗)× (1− a)sωα

b2
(BF∗) .

The proof of Lemma 6.4 is a straightforward transfinite induction (see, for
example, Lemma 3.1 of [7]). Lemma 6.5 follows immediately from Lemma 3.3
of [7].

Continuing towards a proof of (II), we consider the following situation: let
l ∈ N and suppose that a1, a2 ∈ R are such that a1 + a2 6 1. For i = 1, 2 let
li denote the unique integer satisfying li − 1 < lai 6 li, so that ai 6 li/l. Then
l1 + l2 − 2 < l(a1 + a2) 6 l, hence l1 + l2 6 l + 1. By these considerations, and
by Lemma 6.4, Lemma 6.5 and the fact that ε/9 < εl/(4l + 4) for all l ∈ N, the
following holds for every ε > 0:

sωα

ε (B(E⊕∞ F)∗)

= sωα

ε (
⋃

a∈[0, 1]
aBE∗ × (1− a)BF∗)

⊆
⋂
l∈N

sωα

ε

(⋃l+1

k=0

( k
l

BE∗ ×
l + 1− k

l
BF∗
))

⊆
⋂
l∈N

l+1⋃
k=0

sωα

ε/2

( k
l

BE∗ ×
l + 1− k

l
BF∗
)
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=
⋂
l∈N

l+1⋃
k=0

l + 1
l

sωα

εl/(2l+2)

( k
l + 1

BE∗ ×
l + 1− k

l + 1
BF∗
)

⊆
⋂
l∈N

l + 1
l

l+1⋃
k=0

⋃
(b1, b2)∈Ak/(l+1)

ε/9

( k
l + 1

sωα

b1
(BE∗)×

l + 1− k
l + 1

sωα

b2
(BF∗)

)

⊆
⋂
l∈N

l + 1
l

l+1⋃
k=0

⋃
(b1, b2)∈Ak/(l+1)

ε/9

( k
l + 1

(1− c′bp′
1 )BE∗ ×

l + 1− k
l + 1

(1− c′bp′
2 )BF∗

)

⊆
⋂
l∈N

l + 1
l

l+1⋃
k=0

⋃
(b1, b2)∈Ak/(l+1)

ε/9

(
1− c′

( k
l + 1

bp′
1 +

l + 1− k
l + 1

bp′
2

))
B(E⊕∞ F)∗

⊆
⋂
l∈N

l + 1
l

l+1⋃
k=0

⋃
(b1, b2)∈Ak/(l+1)

ε/9

(
1− c′

( k
l + 1

b1 +
l + 1− k

l + 1
b2

)p′)
B(E⊕∞ F)∗

⊆
⋂
l∈N

l + 1
l

(
1− c′

( ε

9

)p′)
B(E⊕∞ F)∗ =

(
1−

( c′

9p′

)
εp′
)

B(E⊕∞ F)∗ .

Thus E⊕∞ F satisfies the defining property of PZL0
α with c = c′/9p′ and p = p′.

This concludes the proof of (II), and it follows that PZLα is a space ideal for each
ordinal α.

We now establish several preliminary results which shall be used to show
that Op(PZLα) is never closed. In what follows, we adhere to the usual con-
vention of denoting by dae the least integer greater than or equal to a given real
number a.

PROPOSITION 6.6. Let α be an ordinal, E and F Banach spaces and T : E → F
an operator. If T ∈ Op(PZLα), then there exist real scalars c ∈ (0, 1), d > 0 and p > 1
such that

Sz1/2n(T) 6 ωα ·
⌈

1− n + d
log2(1− c2−np)

⌉
for every n ∈ N.

Proof. The result is trivial if T = 0, so we assume henceforth that T 6= 0. As
T ∈ Op(PZLα), there is a Banach space D ∈ PZL0

α and operators A ∈ B(E, D)
and B ∈ B(D, F) such that T = BA, ‖A‖ > 1 and ‖B‖ 6 1. By Lemma 2.5, the
bound ‖B‖ 6 1 ensures that Szε(T) 6 Szε(A) 6 Szε/2‖A‖(D) for every ε > 0.

Let c′ ∈ (0, 1) and p > 1 be such that sωα

ε (BD∗) ⊆ (1− c′εp)BD∗ for every
ε ∈ (0, 1), let c = c′(2‖A‖)−p and let d = 2 + log2 ‖A‖. For each ε ∈ (0, 1) define

lε := inf{l<ω : Szε/2‖A‖(D)6ωα · l} and mε := inf{m<ω : 4‖A‖(1−cεp)m6ε}.
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Fix ε ∈ (0, 1). By the argument used in the proof of Proposition 4.3, for each
m < ω we have

sωα ·m
ε/(2‖A‖)(BD∗) ⊆

(
1− c′

( ε

2‖A‖

)p)m
BD∗ = (1− cεp)mBD∗ .

In particular,

sωα ·(mε+1)
ε/(2‖A‖) (BD∗) ⊆ sωα ·mε+1

ε/(2‖A‖)(BD∗) ⊆ sε/(2‖A‖)((1− cεp)mε BD∗)

⊆ sε/(2‖A‖)

( ε

4‖A‖BD∗
)
= ∅ ,

hence lε 6 mε + 1. As 1− cεp ∈ (0, 1), the definition of the logarithm yields

mε =
⌈

log1−cεp

( ε

4‖A‖

)⌉
=
⌈ log2 ε− log2 4− log2 ‖A‖

log2(1− cεp)

⌉
=
⌈ log2 ε− d

log2(1− cεp)

⌉
.

It follows now that for each n ∈ N we have

l1/2n 6 1 +
⌈ log2 2−n − d

log2(1− c2−np)

⌉
=
⌈

1− n + d
log2(1− c2−np)

⌉
,

hence

Sz1/2n(T) 6 Sz1/(2n+1‖A‖)(D) 6 ωα · l1/2n 6 ωα ·
⌈

1− n + d
log2(1− c2−np)

⌉
.

PROPOSITION 6.7. Let α be an ordinal, Λ a set and for each λ ∈ Λ let Dλ ∈ SZLα.
Then (

⊕
λ∈Λ Dλ)0 ∈ PZL0

α.

Proof. Fix ε > 0 and suppose x ∈ sωα

ε (B(
⊕

λ∈Λ Dλ)
∗
0
). By Proposition 1.5(v),

sωα

ε (U∗FB(
⊕

λ∈Λ Dλ)
∗
0
) = sωα

ε (B(
⊕

λ∈F Dλ)
∗
0
) = ∅ for every F ∈ Λ<∞. Applying

Lemma 4.4 thus yields ‖U∗F x‖ 6 1− ε/2 for every F ∈ Λ<∞, hence

‖x‖ = sup
F∈Λ<∞

‖U∗F x‖ 6 1− ε

2
.

As x ∈ sωα

ε (B(
⊕

λ∈Λ Dλ)
∗
0
) was arbitrary, sωα

ε (B(
⊕

λ∈Λ Dλ)
∗
0
) ⊆ (1− ε/2)B(

⊕
λ∈Λ Dλ)

∗
0
.

In particular, (
⊕

λ∈Λ Dλ)0 satisfies the defining property of PZL0
α with c = 1/2

and p = 1.

PROPOSITION 6.8. For α an ordinal, the class PZLα \ SZLα is nonempty.

Proof. Let T = Ic0 , the identity operator on c0. For each ordinal α, let Tα be
the αth operator given by Construction 5.5 with r = 0, and let Eα denote the Ba-
nach space that is the domain and codomain of Tα (so that Tα is the identity oper-
ator on Eα). With ηT = 0 and ζT = 0 in the notation introduced in the paragraph
preceding Proposition 5.6 (since Sz(c0) = ω), it follows from Proposition 5.6(i)
that there is ε > 0 such that Sz(Eα) = Sz(Tα) > Szε(Tα) > ωα for all ordinals α.
We thus have Eα /∈ SZLα for all α, and so to complete the proof it suffices to show
that Eα ∈ PZLα for all α. In this endeavour, we proceed by transfinite induction
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and recall from the paragraph following Question 6.2 that PZLα ⊆ SZLα+1 for all
ordinals α.

For α = 0, we have E0 = c0 ∈ PZLα by an application of Proposition 6.7
with Λ = N and Dλ = K for all λ ∈ Λ.

Suppose that α is an ordinal such that Eβ ∈ PZLβ for all β < α. If α is
a successor ordinal, say α = ζ + 1, then since PZLζ ⊆ SZLζ+1 it follows by
Proposition 1.5(v) that (

⊕n
i=1 Eζ)1 ∈ SZLζ+1 for all n ∈ N. By Proposition 6.7,

Eα = (
⊕

n∈N(
⊕n

i=1 Eζ)1)0 ∈ PZLζ+1 = PZLα, as required. If α is a limit or-
dinal, then for each β < α we have Eβ ∈ PZLβ ⊆ SZLβ+1 ⊆ SZLα, hence
Eα = (

⊕
β<α Eβ)0 ∈ PZLα by Proposition 6.7. This completes the induction.

THEOREM 6.9. For α an ordinal, the operator ideal Op(PZLα) is not closed.

Proof. Our proof relies on ideas similar to those used to prove Theorem 5.1.
Let D ∈ PZLα \ SZLα (c.f. Proposition 6.8) and let I denote the identity operator
of D. As PZLα is a space ideal, (

⊕m
i=1 D)1 ∈ PZLα for all m ∈ N.

For each m ∈ N, let s(m) ∈ N be so large that Sz1/2s(m)(m−1 I) > ωα, let

t(m) =
⌈ −s(m)2

log2(1− 2−s(m)2
)

⌉
and let Jm = m−1(

⊕t(m)
i=1 I)1 ∈ Op(PZLα). Finally, we set J = (

⊕
m∈N Jm)0. To

prove the theorem, we will show that J ∈ Op(PZLα) \Op(PZLα).
For each m ∈ N let Hm = (

⊕t(m)
i=1 D)1, so that J ∈ B((

⊕
m∈N Hm)0). For

each m, let Lm = V{1,...,m}Q{1,...,m} J ∈ Op(PZLα) (here {1, . . . , m} is considered
a subset of the underlying index set of (

⊕
m∈N Hm)0, and V{1,...,m} and Q{1,...,m}

are as defined in Section 1). Then ‖Lm − J‖ = sup
k>m
‖Jk‖ = (m + 1)−1 m→ 0, hence

J ∈ Op(PZLα).
On the other hand, by Lemma 5.7 we have that for each m ∈ N,

Sz1/2s(m)(J) > Sz1/2s(m)(Jm) > ωα · t(m) = ωα ·
⌈ −s(m)2

log2(1− 2−s(m)2
)

⌉
.

Moreover, since ‖m−1 I‖ → 0, it follows that {s(m) : m ∈ N} is unbounded in N.
Thus, for any c ∈ (0, 1), d > 0 and p > 1 there is m ∈ N such that⌈ −s(m)2

log2(1− 2−s(m)2
)

⌉
>
⌈

1− s(m) + d
log2(1− c2−s(m)p)

⌉
,

and for such m we have

Sz1/2s(m)(J) > ωα ·
⌈

1− s(m) + d
log2(1− c2−s(m)p)

⌉
.

We have now shown that J does not satisfy the conclusion of Proposition 6.6,
hence J /∈ Op(PZLα).
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REMARK 6.10. Earlier in this section it was mentioned that recent work
of M. Raja [30], which removed the separability hypothesis from earlier work
of H. Knaust, E. Odell and Th. Schlumprecht [18], leads to a different proof of
the fact that SZ1 lacks the factorization property. However, it is not difficult
to see that the greater generality of Raja’s result is in fact not needed to estab-
lish the alternative proof. To see why this is so, let SEP denote the space ideal
consisting of all separable Banach spaces. Taking D = c0 in the proof of The-
orem 6.9, one obtains an operator J such that the domain of J is separable and
J ∈ SZ1 \Op(PZL0). If it were the case that J ∈ Op(SZL1), then it would fol-
low from the separability of the domain of J and the main result of [18] that
J ∈ Op(SZL1 ∩ SEP) = Op(PZL0 ∩ SEP) ⊆ Op(PZL0), a contradiction. Thus
J /∈ Op(SZL1), hence SZL1 lacks the factorization property.

We conclude our results with the following proof, promised at the begin-
ning of the section.

Proof of Proposition 6.1. Trivially, Op(PZLα) ⊆ Op(SZLα+1) ⊆ SZα+1. Note
that statement (i) of the proposition implies Op(PZLα) = Op(SZLα+1), whilst
statement (ii) of the proposition implies Op(SZLα+1) = SZα+1. As SZα+1 is
closed and Op(PZLα) is not, the inclusion Op(PZLα) ⊆ SZα+1 is strict, hence (i)
and (ii) cannot both hold.

7. CONCLUDING REMARKS

We have shown that the operator ideals SZα fail to have the factorization
property for a large (indeed, proper) class of ordinals α. However, we have not
addressed here the possibility of the operator ideals SZα possessing some sort
of approximate factorization property. Noting that SZα is closed, injective and
surjective for every α, it is worth considering whether there is some composi-
tion of the closed, injective and surjective hull procedures that yields SZLα from
Op(SZLα) for every ordinal α. We give some possible examples of such composi-
tions via the open questions below:

QUESTION 7.1. Let α be an ordinal. Is SZα = Op(SZLα)?

QUESTION 7.2. Let α be an ordinal. Is SZα = (Op(SZLα)
inj
)sur?

Note that the injective and surjective hull procedures commute; that is,
(I inj)sur = (I sur)inj for every operator ideal I (c.f. Proposition 4.7.20 of [29]).
Evidently, Corollary 4.8 ensures that the answer to Question 7.1 and Question 7.2
is yes in both cases when α is of uncountable cofinality. We do not know if the
counterexample constructed in the proof of Theorem 5.1 provides a counterexam-
ple to either of the two questions above. It is well-known that in the case α = 0,
the answer to Question 7.1 is no and the answer to Question 7.2 is yes. Indeed, in



440 PHILIP A.H. BROOKER

this case SZα is precisely the class of compact operators, whilst Op(SZLα) is the
class F of finite rank operators; it is well-known that F ( F

inj
= K . However,

nothing appears to be known for Question 7.1 and Question 7.2 in the case that
0 < c f (α) 6 ω.

Besides answering Question 6.2 in the affirmative, one could possibly show
that the operator ideals SZα+1 (α ∈ ORD) lack the factorization property by fol-
lowing a line of inquiry such as the following. Let α be an ordinal and E ∈ SZLα+1.
For each ε > 0, let mε = inf{m < ω : Szε(E) < ωα · m} (note that mε exists for
every ε). We ask: What special properties do the numbers mε have? Are they
submultiplicative with respect to ε? Do they satisfy some other general property
that ensures that the growth of the ε-Szlenk indices of elements of Op(SZLα+1)
is restricted in some useful way? The straightforward homogeneity argument
used by Lancien in [21] to establish the submultiplicity of the ε-Szlenk indices of
a given Banach space does not seem to be sufficient for a useful analysis of growth
properties of the numbers mε, so a more subtle argument is likely to be required
if this direction of inquiry is to prove fruitful.

More generally, to investigate whether SZα has the factorization property
for α an ordinal of countable cofinality, and not of the form ωβ for any β, one
possibility would be to consider growth properties of a family of ordinals αε,
ε > 0, or perhaps of a (finite or infinite) sequence of ordinals (αε, n)n, defined in
terms of the derivations sγ

ε and depending in some way on the Cantor normal
form of α. It would also be interesting to know whether such growth conditions
are sufficient for factorization through a Banach space whose Szlenk index does
not exceed ωα.
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[27] A. PEŁCZYŃSKI, On C(S)-subspaces of separable Banach spaces, Studia Math.
31(1968), 513–522.
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