THE RANGE OF THE INVARIANT FOR RING AND C*-ALGEBRA DIRECT LIMITS OF FINITE-DIMENSIONAL SEMISIMPLE REAL ALGEBRAS

P.J. STACEY

Communicated by Kenneth R. Davidson

Abstract

A description is given of the diagrams which arise as classifying invariants for ring and C^{*}-algebra direct limits of countable sequences of finite-dimensional semisimple real algebras.

Keywords: Real C*-algebra, approximately finite-dimensional, direct limit, range, invariant.

MSC (2010): 46L35, 46L05, 46L80, 19K14, 16 S99.

INTRODUCTION

Let R be a direct limit of a countable sequence of finite dimensional semisimple real algebras. In [1] and [2] such algebras are classified using the invariant

$$
K_{0}(R) \xrightarrow{K_{0}\left(\sigma_{R}\right)} K_{0}(R \otimes \mathbb{C}) \xrightarrow{K_{0}\left(\tau_{R}\right)} K_{0}(R \otimes \mathbb{H}),
$$

together with order units in the unital case or generating intervals in the nonunital one, where the groups are partially ordered, σ_{R} is the natural map from R into $R \otimes \mathbb{C}, \tau_{R}$ is the natural map from $R \otimes \mathbb{C}$ into $R \otimes \mathbb{H}$ and \mathbb{H} is the algebra of real quaternions. As a consequence, the invariant, together with the canonical order units or generating intervals, is used to classify approximately finite dimensional real C^{*}-algebras.

The diagrams arising in the unital classification are of the form

$$
\left(G_{1}, u_{1}\right) \xrightarrow{g_{1}}\left(G_{2}, u_{2}\right) \xrightarrow{g_{2}}\left(G_{3}, u_{3}\right)
$$

consisting of triples G_{1}, G_{2}, G_{3} of dimension groups with order units u_{1}, u_{2}, u_{3}, together with unit preserving ordered group homomorphisms g_{1}, g_{2}. Non-unital direct limits are classified by a similar invariant using generating intervals rather than order units. The memoir [1] contains many properties of the invariant including a description of its range, using a complicated equational condition. In
[1] the equational condition is simplified in two cases: where R is a direct limit of direct sums of complex matrix algebras (with possibly real-linear connecting maps) and where R is a direct limit of sums of real and quaternionic matrix algebras. In this note we provide a simpler description of the range in the general case, eliminating the equational condition and combining the two special cases from [1].

1. THE UNITAL CASE

We start with a minor extension and a simple consequence of Lemma 10.2 of [1].

Lemma 1.1. Let H be a dimension group with an involution $*$ and let G, K be subgroups of $\operatorname{ker}(1-*)$ such that $G^{+}+K^{+}=\operatorname{ker}(1-*)^{+}$. Assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Given $p_{1}, p_{2}, \ldots p_{m} \in \operatorname{row}(\mathbb{Z})$ and $x \in \operatorname{col}\left(H^{+}\right)$with $p_{i}\left(x-x^{*}\right)=0$ for $1 \leqslant$ $i \leqslant m$, there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right), y_{4} \in \operatorname{col}\left(K^{+}\right)$and $q_{1}, q_{2}, q_{3}, q_{4} \in$ $\operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $x=q_{1} y_{1}+q_{2} y_{2}+q_{3} y_{2}^{*}+q_{4} y_{4}$ and $p_{i}\left(q_{2}-q_{3}\right)=0$ for $1 \leqslant i \leqslant m$.

Proof. By Lemma 10.2 of [1] there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right), y_{4} \in$ $\operatorname{col}\left(K^{+}\right)$and $q_{1}, q_{2}, q_{3}, q_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $x=q_{1} y_{1}+q_{2} y_{2}+q_{3} y_{2}^{*}+q_{4} y_{4}$ and $p_{1}\left(q_{2}-q_{3}\right)=0$.

Assume inductively that it has been shown that there exist $z_{1} \in \operatorname{col}\left(G^{+}\right)$, $z_{2} \in \operatorname{col}\left(H^{+}\right), z_{4} \in \operatorname{col}\left(K^{+}\right)$and $r_{1}, r_{2}, r_{3}, r_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that

$$
x=r_{1} z_{1}+r_{2} z_{2}+r_{3} z_{2}^{*}+r_{4} z_{4}
$$

and $p_{i}\left(r_{2}-r_{3}\right)=0$ for $1 \leqslant i \leqslant n<m$. Then

$$
0=p_{n+1}\left(x-x^{*}\right)=p_{n+1}\left(\left(r_{2}-r_{3}\right)\left(z_{2}-z_{2}^{*}\right)\right)
$$

So, applying Lemma 10.2 of [1], with $p=p_{n+1}\left(r_{2}-r_{3}\right)$, there exist $Z_{1} \in \operatorname{col}\left(G^{+}\right)$, $Z_{2} \in \operatorname{col}\left(H^{+}\right), Z_{4} \in \operatorname{col}\left(K^{+}\right)$and $R_{1}, R_{2}, R_{3}, R_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that

$$
z_{2}=R_{1} Z_{1}+R_{2} Z_{2}+R_{3} Z_{2}^{*}+R_{4} Z_{4}
$$

and $p_{n+1}\left(r_{2}-r_{3}\right)\left(R_{2}-R_{3}\right)=0$. Then, putting $y_{1}=\binom{z_{1}}{z_{1}}, y_{2}=Z_{2}, y_{4}=\binom{z_{4}}{Z_{4}}$, $q_{1}=\left(r_{1},\left(r_{2}+r_{3}\right) R_{1}\right), q_{2}=r_{2} R_{2}+r_{3} R_{3}, q_{3}=r_{2} R_{3}+r_{3} R_{2}$ and $q_{4}=\left(r_{4},\left(r_{2}+\right.\right.$ $\left.\left.r_{3}\right) R_{4}\right)$,

$$
\begin{aligned}
x & =r_{1} z_{1}+r_{2}\left(R_{1} Z_{1}+R_{2} y_{2}+R_{3} y_{2}^{*}+R_{4} Z_{4}\right)+r_{3}\left(R_{1} Z_{1}+R_{2} y_{2}+R_{3} y_{2}^{*}+R_{4} Z_{4}\right)^{*}+r_{4} z_{4} \\
& =r_{1} z_{1}+\left(r_{2}+r_{3}\right) R_{1} Z_{1}+\left(r_{2} R_{2}+r_{3} R_{3}\right) y_{2}+\left(r_{2} R_{3}+r_{3} R_{2}\right) y_{2}^{*}+r_{4} z_{4}+\left(r_{2}+r_{3}\right) R_{4} Z_{4} \\
& =q_{1} y_{1}+q_{2} y_{2}+q_{3} y_{2}^{*}+q_{4} y_{4}
\end{aligned}
$$

with

$$
p_{n+1}\left(q_{2}-q_{3}\right)=p_{n+1}\left(\left(r_{2} R_{2}+r_{3} R_{3}\right)-\left(r_{2} R_{3}+r_{3} R_{2}\right)\right)=p_{n+1}\left(r_{2}-r_{3}\right)\left(R_{2}-R_{3}\right)=0
$$

and also

$$
p_{i}\left(q_{2}-q_{3}\right)=p_{i}\left(r_{2}-r_{3}\right)\left(R_{2}-R_{3}\right)=0
$$

for $1 \leqslant i \leqslant n$.
Lemma 1.2. Let H be a dimension group with an involution $*$ and let G, K be subgroups of $\operatorname{ker}(1-*)$ such that $G^{+}+K^{+}=\operatorname{ker}(1-*)^{+}$. Assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Given $p \in \operatorname{row}(\mathbb{Z}), x_{1} \in \operatorname{col}\left(G^{+}\right), x_{2} \in \operatorname{col}\left(H^{+}\right)$and $x_{4} \in \operatorname{col}\left(K^{+}\right)$with $p\left(x_{2}-x_{2}^{*}\right)=0$, there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right), y_{4} \in \operatorname{col}\left(K^{+}\right)$and $r_{1}, s_{4}, q_{1}, q_{2}, q_{3}, q_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $x_{1}=r_{1} y_{1}, x_{2}=q_{1} y_{1}+q_{2} y_{2}+q_{3} y_{2}^{*}+q_{4} y_{4}$, $x_{4}=s_{4} y_{4}$ and $p\left(q_{2}-q_{3}\right)=0$.

Proof. By Lemma 10.2 of [1] there exist $Y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right), Y_{4} \in$ $\operatorname{col}\left(K^{+}\right)$and $Q_{1}, q_{2}, q_{3}, Q_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that

$$
x_{2}=Q_{1} Y_{1}+q_{2} y_{2}+q_{3} y_{2}^{*}+Q_{4} Y_{4} \quad \text { and } \quad p\left(q_{2}-q_{3}\right)=0
$$

The result then holds with

$$
\begin{aligned}
y_{1} & =\binom{x_{1}}{Y_{1}}, \quad y_{4}=\binom{x_{4}}{Y_{4}}, \\
r_{1}=\left(\begin{array}{ll}
I & 0
\end{array}\right), \quad s_{4} & =\left(\begin{array}{ll}
I & 0
\end{array}\right), \quad q_{1}=\left(\begin{array}{ll}
0 & Q_{1}
\end{array}\right) \quad \text { and } \quad q_{4}=\left(\begin{array}{ll}
0 & Q_{4}
\end{array}\right),
\end{aligned}
$$

for suitably sized identity and zero matrices.
Lemma 1.3. Let H be a dimension group with an involution $*$, let $\operatorname{ker}(1+*)=$ $(1-*)(H)$, let $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$and let $F=\operatorname{ker}(1-*)$. Assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Let $x_{1} \in \operatorname{col}\left(F^{+}\right), x_{2} \in \operatorname{col}\left(H^{+}\right)$and $a_{1}, a_{2}, a_{3} \in \operatorname{row}(\mathbb{Z})$ with

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2}^{*}=0
$$

Then there exist $y_{1} \in \operatorname{col}\left(F^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$and $b_{11}, b_{12}, b_{21}, b_{22}, b_{23} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$with

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*}
\end{array}\right)=\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
b_{12} & b_{22} & b_{23} \\
b_{12} & b_{23} & b_{22}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
b_{12} & b_{22} & b_{23} \\
b_{12} & b_{23} & b_{22}
\end{array}\right)=0
$$

Proof. From $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2}^{*}=0$ it follows that also $a_{1} x_{1}+a_{2} x_{2}^{*}+a_{3} x_{2}=$ 0 and therefore $2 a_{1} x_{1}+\left(a_{2}+a_{3}\right)\left(x_{2}+x_{2}^{*}\right)=0$ and $\left(a_{2}-a_{3}\right)\left(x_{2}-x_{2}^{*}\right)=0$. The first of these can be rewritten

$$
\left(\begin{array}{ll}
a_{1} & a_{2}+a_{3}
\end{array}\right)\left[\binom{x_{1}}{x_{2}}+\binom{x_{1}}{x_{2}}^{*}\right]=0
$$

Lemma 10.3 of [1] implies the applicability of Lemma 10.1 of [1], which yields $z_{2} \in \operatorname{col}\left(H^{+}\right)$and $q_{21}, q_{22}, q_{31}, q_{32} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that

$$
\binom{x_{1}}{x_{2}}=\binom{q_{21}}{q_{22}} z_{2}+\binom{q_{31}}{q_{32}} z_{2}^{*} \quad \text { and } \quad\left(\begin{array}{ll}
a_{1} & a_{2}+a_{3}
\end{array}\right)\left(\binom{q_{21}}{q_{22}}+\binom{q_{31}}{q_{32}}\right)=0
$$

From $q_{21} z_{2}+q_{31} z_{2}^{*}=x_{1}=x_{1}^{*}=q_{21} z_{2}^{*}+q_{31} z_{2}$ it follows that $\left(q_{21}-q_{31}\right)\left(z_{2}-\right.$ $\left.z_{2}^{*}\right)=0$. By Lemma 1.1 with $G=F$ and $K=0$ it follows that there exist $Z_{1} \in$ $\operatorname{col}\left(F^{+}\right), Z_{2} \in \operatorname{col}\left(H^{+}\right)$and $r_{1}, r_{2}, r_{3} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$with $z_{2}=r_{1} Z_{1}+r_{2} Z_{2}+r_{3} Z_{2}^{*}$ and $\left(q_{21}-q_{31}\right)\left(r_{2}-r_{3}\right)=0$.

Let $c_{11}=\left(q_{21}+q_{31}\right) r_{1}, c_{12}=\left(q_{22}+q_{32}\right) r_{1}, c_{21}=q_{21} r_{2}+q_{31} r_{3}, c_{22}=q_{22} r_{2}+$ $q_{32} r_{3}$ and $c_{23}=q_{22} r_{3}+q_{32} r_{2}$. Using the fact that

$$
q_{21} r_{2}+q_{31} r_{3}=q_{31} r_{2}+q_{21} r_{3}
$$

it follows that

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*}
\end{array}\right)=\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22}
\end{array}\right)\left(\begin{array}{l}
Z_{1} \\
Z_{2} \\
Z_{2}^{*}
\end{array}\right)=C\left(\begin{array}{l}
Z_{1} \\
Z_{2} \\
Z_{2}^{*}
\end{array}\right) \text { and } \\
& \left(2 a_{1} \quad a_{2}+a_{3} \quad a_{2}+a_{3}\right)\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22}
\end{array}\right)=0 .
\end{aligned}
$$

The condition $\left(a_{2}-a_{3}\right)\left(x_{2}-x_{2}^{*}\right)=0$ can be rewritten as

$$
0=\left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right)\left(Z_{2}-Z_{2}^{*}\right)
$$

Applying Lemma 1.2 with $G=F$ and $K=0$ gives $y_{1} \in \operatorname{col}\left(F^{+}\right), y_{2} \in$ $\operatorname{col}\left(H^{+}\right)$and $s_{1}, s_{2}, t_{1}, t_{2}, t_{3} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $Z_{1}=s_{1} y_{1}+s_{2} y_{2}+s_{2} y_{2}^{*}, Z_{2}=$ $t_{1} y_{1}+t_{2} y_{2}+t_{3} y_{2}^{*}$ and $\left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right)\left(t_{2}-t_{3}\right)=0$. Let

$$
D=\left(\begin{array}{lll}
s_{1} & s_{2} & s_{2} \\
t_{1} & t_{2} & t_{3} \\
t_{1} & t_{3} & t_{2}
\end{array}\right)
$$

Then

$$
\left.\begin{array}{l}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*}
\end{array}\right)=C D\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*}
\end{array}\right) \text { and } \\
\left(\begin{array}{lll}
0 & a_{2}-a_{3} & a_{3}-a_{2}
\end{array}\right) C=\left(\begin{array}{lll}
0 & \left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right.
\end{array}\right) \quad\left(a_{3}-a_{2}\right)\left(c_{22}-c_{23}\right)
\end{array}\right), ~ \$
$$

so $\left(\begin{array}{lll}0 & a_{2}\end{array} a_{3} \quad a_{3}-a_{2}\right) C D=0$. Combining this with the earlier equation

$$
\left(2 a_{1} \quad a_{2}+a_{3} \quad a_{2}+a_{3}\right) C=0
$$

gives $\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right) C D=0$, as required.
The next two results are variants of Lemma 9.1 of [1]. The first result is a variant of condition (III) in the proof of that lemma.

Lemma 1.4. Let H be a dimension group with an involution $*$, let $\operatorname{ker}(1+*)=$ $(1-*)(H)$, let $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$and let G, K be subgroups of $F=\operatorname{ker}(1-$ *) such that $G \cap K=(1+*) H$ and $G^{+}+K^{+}=F^{+}$. Assume that, whenever $a, b \in H^{+}$ with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Let $z \in \operatorname{col}\left(F^{+}\right)$and $c_{1}, c_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $c_{1} z \in \operatorname{col}\left(G^{+}\right)$and $c_{4} z \in$ $\operatorname{col}\left(K^{+}\right)$. Then there exist $w_{1} \in \operatorname{col}\left(G^{+}\right), w_{2} \in \operatorname{col}\left(H^{+}\right), w_{4} \in \operatorname{col}\left(K^{+}\right)$and d_{1}, d_{2}, d_{4} $\in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $z=d_{1} w_{1}+d_{2}\left(w_{2}+w_{2}^{*}\right)+d_{4} w_{4}$ while $c_{1} d_{4}$ and $c_{4} d_{1}$ are even.

Proof. Firstly it will be shown by induction on the number of rows in c_{4} that, when $z_{1} \in \operatorname{col}\left(G^{+}\right)$with $c_{4} z_{1} \in \operatorname{col}\left(K^{+}\right)$, then there exist $w_{1} \in \operatorname{col}\left(G^{+}\right)$, $w_{2} \in \operatorname{col}\left(H^{+}\right)$and $d_{1}, d_{2} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $z_{1}=d_{1} w_{1}+d_{2}\left(w_{2}+w_{2}^{*}\right)$ while $c_{4} d_{1}$ is even. To start the induction, following Lemma 9.1 of [1], first let $c_{4} \in$ $\operatorname{row}\left(\mathbb{Z}^{+}\right)$and $z_{1} \in \operatorname{col}\left(G^{+}\right)$with $c_{4} z_{1} \in K^{+}$. Then $c_{4} z_{1} \in G^{+} \cap K^{+}=(1+*)\left(H^{+}\right)$ and so $c_{4} z_{1}=z_{2}+z_{2}^{*}$ for some $z_{2} \in H^{+}$. Applying Lemma 1.3 with $x_{1}=z_{1}$, $x_{2}=z_{2}, a_{1}=c_{4}$ and $a_{2}=a_{3}=-1$, there exist $y_{1} \in \operatorname{col}\left(F^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$and $b_{11}, b_{21}, b_{12}, b_{22}, b_{23} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$with

$$
\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{2}^{*}
\end{array}\right)=\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
b_{12} & b_{22} & b_{23} \\
b_{12} & b_{23} & b_{22}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
c_{4} & -1 & -1
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
b_{12} & b_{22} & b_{23} \\
b_{12} & b_{23} & b_{22}
\end{array}\right)=0
$$

Then $c_{4} b_{11}$ is even. Let $y_{1}=w_{1}+w_{4}$ where $w_{1} \in \operatorname{col}\left(G^{+}\right)$and $w_{4} \in \operatorname{col}\left(K^{+}\right)$. Then $z_{1}=b_{11} w_{1}+b_{11} w_{4}+b_{21}\left(y_{2}+y_{2}^{*}\right)$ where $b_{11} w_{4}=z_{1}-b_{11} w_{1}-b_{21}\left(y_{2}+\right.$ $\left.y_{2}^{*}\right) \in \operatorname{col}\left(G^{+}\right) \cap \operatorname{col}\left(K^{+}\right)$, so that $b_{11} w_{4}=v+v^{*}$ for some $v \in \operatorname{col}\left(H^{+}\right)$. Therefore

$$
z_{1}=b_{11} w_{1}+\left(\begin{array}{ll}
b_{21} & I
\end{array}\right)\left[\binom{y_{2}}{v}+\binom{y_{2}}{v}^{*}\right]
$$

with $c_{4} b_{11}$ even.
To implement the inductive step, again follow Lemma 9.1 of [1] by letting $z_{1} \in \operatorname{col}\left(G^{+}\right)$with $c_{4} z_{1} \in \operatorname{col}\left(K^{+}\right)$and $c_{4}=\binom{p_{4}}{q_{4}}$ where $p_{4} \in \operatorname{row}\left(\mathbb{Z}^{+}\right), p_{4} z_{1} \in$ K^{+}and $q_{4} z_{1} \in \operatorname{col}\left(K^{+}\right)$. By the inductive hypothesis, there exist $u_{1} \in \operatorname{col}\left(G^{+}\right)$, $u_{2} \in \operatorname{col}\left(H^{+}\right)$and $e_{1}, e_{2} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $z_{1}=e_{1} u_{1}+e_{2}\left(u_{2}+u_{2}^{*}\right)$ while $q_{4} e_{1}$ is even. Then $p_{4} e_{1} \in \operatorname{row}\left(\mathbb{Z}^{+}\right)$and $u_{1} \in \operatorname{col}\left(G^{+}\right)$with $p_{4} e_{1} u_{1}=p_{4} z_{1}-p_{4} e_{2}\left(u_{2}+\right.$ $\left.u_{2}^{*}\right) \in K^{+}$so, by the first part of the proof, there exist $v_{1} \in \operatorname{col}\left(G^{+}\right), v_{2} \in \operatorname{col}\left(H^{+}\right)$ and $f_{1}, f_{2} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $u_{1}=f_{1} v_{1}+f_{2}\left(v_{2}+v_{2}^{*}\right)$ with $p_{4} e_{1} f_{1}$ even. Then

$$
z_{1}=e_{1} u_{1}+e_{2}\left(u_{2}+u_{2}^{*}\right)=e_{1} f_{1} v_{1}+\left(\begin{array}{ll}
e_{1} f_{2} & e_{2}
\end{array}\right)\left(\binom{v_{2}}{u_{2}}+\binom{v_{2}}{u_{2}}^{*}\right)
$$

with $q_{4} e_{1}, p_{4} e_{1} f_{1}$ and hence $c_{4} e_{1} f_{1}$ even.
By symmetry it now follows that when $z_{4} \in \operatorname{col}\left(K^{+}\right)$with $c_{1} z_{4} \in \operatorname{col}\left(G^{+}\right)$, then there exist $w_{2} \in \operatorname{col}\left(H^{+}\right), w_{4} \in \operatorname{col}\left(K^{+}\right)$and $d_{2}, d_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $z_{4}=d_{2}\left(w_{2}+w_{2}^{*}\right)+d_{4} w_{4}$ while $c_{1} d_{4}$ is even. These two results can be combined to prove the lemma by letting $z \in \operatorname{col}\left(F^{+}\right)=z_{1}+z_{4}$, where $z_{1} \in \operatorname{col}\left(G^{+}\right)$and $z_{4} \in \operatorname{col}\left(K^{+}\right)$and noting that $c_{1} z_{4}=c_{1} z-c_{1} z_{1} \in \operatorname{col}\left(G^{+}\right)$. Applying the second case gives $z_{4}=d_{2}\left(v_{2}+v_{2}^{*}\right)+d_{4} v_{4}$ with $v_{2} \in \operatorname{col}\left(H^{+}\right), v_{4} \in \operatorname{col}\left(K^{+}\right)$and $d_{2}, d_{4} \in$ $\operatorname{mat}\left(\mathbb{Z}^{+}\right)$with $c_{1} d_{4}$ even. Then $z=z_{1}+d_{2}\left(v_{2}+v_{2}^{*}\right)+d_{4} v_{4}$ where $z_{1} \in \operatorname{col}\left(G^{+}\right)$ with $c_{4} z_{1}=c_{4} z-c_{4} d_{2}\left(v_{2}+v_{2}^{*}\right)-c_{4} d_{4} v_{4} \in \operatorname{col}\left(K^{+}\right)$so that, by the first case, $z_{1}=e_{1} w_{1}+e_{2}\left(w_{2}+w_{2}^{*}\right)$ with $w_{2} \in \operatorname{col}\left(H^{+}\right), w_{1} \in \operatorname{col}\left(G^{+}\right), e_{1}, e_{2} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$and
$c_{4} e_{1}$ even. Combining these two results gives

$$
z=e_{1} w_{1}+\left(\begin{array}{ll}
d_{2} & e_{2}
\end{array}\right)\left(\binom{v_{2}}{w_{2}}+\binom{v_{2}}{w_{2}}^{*}\right)+d_{4} v_{4}
$$

with $c_{1} d_{4}$ and $c_{4} e_{1}$ even.
Lemma 1.5. Let H be a dimension group with an involution $*$, let $\operatorname{ker}(1+*)=$ $(1-*)(H)$, let $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$and let G, K be subgroups of $F=\operatorname{ker}(1-$ *) such that $G \cap K=(1+*) H$ and $G^{+}+K^{+}=F^{+}$. Assume that, whenever $a, b \in H^{+}$ with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Let $x_{1} \in \operatorname{col}\left(G^{+}\right), x_{2} \in \operatorname{col}\left(H^{+}\right), x_{4} \in \operatorname{col}\left(K^{+}\right)$and $a_{1}, a_{2}, a_{4} \in \operatorname{row}(\mathbb{Z})$ such that $a_{1} x_{1}+a_{2}\left(x_{2}+x_{2}^{*}\right)+a_{4} x_{4}=0$. Then there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$, $y_{4} \in \operatorname{col}\left(K^{+}\right)$and $b_{11}, b_{21}, b_{41}, b_{12}, b_{22}, b_{23}, b_{42}, b_{14}, b_{24}, b_{44} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that b_{14} and b_{41} are even while

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right)=\left(\begin{array}{llll}
b_{11} & b_{21} & b_{21} & b_{41} \\
b_{12} & b_{22} & b_{23} & b_{42} \\
b_{12} & b_{23} & b_{22} & b_{42} \\
b_{14} & b_{24} & b_{24} & b_{44}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*} \\
y_{4}
\end{array}\right) \text { and } \\
& \left(\begin{array}{llll}
a_{1} & a_{2} & a_{2} & a_{4}
\end{array}\right)\left(\begin{array}{llll}
b_{11} & b_{21} & b_{21} & b_{41} \\
b_{12} & b_{22} & b_{23} & b_{42} \\
b_{12} & b_{23} & b_{22} & b_{42} \\
b_{14} & b_{24} & b_{24} & b_{44}
\end{array}\right)=0
\end{aligned}
$$

Proof. By Lemma 1.3 applied to

$$
\left(\begin{array}{ll}
a_{1} & a_{4}
\end{array}\right)\binom{x_{1}}{x_{4}}+a_{2} x_{2}+a_{2} x_{2}^{*}=0
$$

there exist $y \in \operatorname{col}\left(F^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$and $b_{11}, b_{12}, b_{21}, b_{22}, b_{23} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$with

$$
\left.\left.\binom{x_{1}}{x_{4}}\right)=\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
x_{2} \\
b_{12}^{*} & b_{22} & b_{23} \\
x_{12} & b_{23} & b_{22}
\end{array}\right)\left(\begin{array}{c}
y \\
y_{2} \\
y_{2}^{*}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{llll}
\left(a_{1}\right. & a_{4}
\end{array}\right) a_{2} a_{2}\right)\left(\begin{array}{lll}
b_{11} & b_{21} & b_{21} \\
b_{12} & b_{22} & b_{23} \\
b_{12} & b_{23} & b_{22}
\end{array}\right)=0
$$

Splitting the first row according to the number of rows in x_{1} and x_{4}, reordering the rows and renaming, there exist $y \in \operatorname{col}\left(F^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$and $c_{11}, c_{12}, c_{21}, c_{22}, c_{23}$, $c_{14}, c_{24} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$with

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right)=\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22} \\
c_{14} & c_{24} & c_{24}
\end{array}\right)\left(\begin{array}{c}
y \\
y_{2} \\
y_{2}^{*}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{llll}
a_{1} & a_{2} & a_{2} & a_{4}
\end{array}\right)\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22} \\
c_{14} & c_{24} & c_{24}
\end{array}\right)=0
$$

From $x_{1}=c_{11} y+c_{21}\left(y_{2}+y_{2}^{*}\right)$ and $G \cap K=(1+*)(H)$ it follows that $c_{11} y \in$ $\operatorname{col}\left(G^{+}\right)$and similarly $c_{14} y \in \operatorname{col}\left(K^{+}\right)$. It therefore follows from Lemma 1.4 that
there exist $w_{1} \in \operatorname{col}\left(G^{+}\right), w_{2} \in \operatorname{col}\left(H^{+}\right), w_{4} \in \operatorname{col}\left(K^{+}\right)$and $d_{1}, d_{2}, d_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$ such that $y=d_{1} w_{1}+d_{2}\left(w_{2}+w_{2}^{*}\right)+d_{4} w_{4}$ while $c_{11} d_{4}$ and $c_{14} d_{1}$ are even. Thus

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right) & =\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22} \\
c_{14} & c_{24} & c_{24}
\end{array}\right)\left(\begin{array}{cccc}
d_{1} & \left(\begin{array}{ll}
0 & d_{2}
\end{array}\right) & \left(\begin{array}{lll}
0 & d_{2}
\end{array}\right) & d_{4} \\
0 & \left(\begin{array}{ll}
I & 0
\end{array}\right) & 0 & 0 \\
0 & 0 & \left(\begin{array}{lll}
I & 0
\end{array}\right) & 0
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\binom{y_{2}}{w_{2}} \\
\left(y_{2}\right. \\
w_{2}
\end{array}\right)^{*} \\
w_{4}
\end{array}\right) .
$$

with $c_{11} d_{4}$ and $c_{14} d_{1}$ even and

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & a_{2} & a_{4}
\end{array}\right)\left(\begin{array}{lll}
c_{11} & c_{21} & c_{21} \\
c_{12} & c_{22} & c_{23} \\
c_{12} & c_{23} & c_{22} \\
c_{14} & c_{24} & c_{24}
\end{array}\right)\left(\begin{array}{ccccc}
d_{1} & (0 & d_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & d_{2}
\end{array}\right) \quad d_{4},\left(\begin{array}{ccc}
0 & (I & 0
\end{array}\right)
$$

The following lemma is required in Corollary 1.8 and Theorem 2.3 I am grateful to Professor Ken Goodearl for pointing this out and for supplying the proof.

LEMMA 1.6. Let H be a dimension group with an involution $*$ such that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$. Then $F=\operatorname{ker}(1-*)$ is a dimension group.

Proof. The non-obvious condition is interpolation, which it suffices to check within F^{+}. So let $x_{1}, x_{2}, y_{1}, y_{2} \in F^{+}$with $x_{i} \leqslant y_{j}$ for all i, j. By interpolation in H there exists $z \in H^{+}$with $x_{i} \leqslant z \leqslant y_{j}$ for all i, j and then $x_{i} \leqslant z^{*} \leqslant y_{j}$. By interpolation again, there exists $w \in H^{+}$with $z, z^{*} \leqslant w \leqslant y_{1}, y_{2}$. Then, by assumption, there exists $c \in F^{+}$with $z \leqslant c \leqslant w$ and therefore $x_{i} \leqslant c \leqslant y_{j}$ for all i, j, as required.

It is shown in Theorem 8.4 of [1] that the classifying invariants from [1] and [2] for unital real approximately finite dimensional C^{*}-algebras are sequences of the form

$$
(G, v) \xrightarrow{1}(H, v) \xrightarrow{1+*}(K, 2 v),
$$

where H is a countable dimension group with order unit v and involution $*$ and G and K are subgroups of $\operatorname{Fix}(*)$ containing $(1+*)(H)$ such that $v \in G$. In the simplicial situation, where $H=\mathbb{Z}^{r} \times \mathbb{Z}^{2 s}$ with $*=1 \times f$ for $f(a, b)=(b, a)$, there exist u, v with $u+v=r$ such that $G=2 \mathbb{Z}^{u} \times \mathbb{Z}^{v} \times D_{c}$ and $K=\mathbb{Z}^{u} \times$ $2 \mathbb{Z}^{v} \times D_{c}$, where $D_{c}=\left\{(m, m): m \in \mathbb{Z}^{s}\right\}$. The sequences which arise in the range of the classifying invariant are the inductive limits of sequences of these special simplicial cases. The next result gives conditions on H ensuring that all
the sequences

$$
(G, v) \xrightarrow{1}(H, v) \xrightarrow{1+*}(K, 2 v)
$$

described above arise in this way. Note that when $*=1$ (so that the sequence corresponds to an algebra of type $r h$ by Theorem 7.9 of [1]), the result reduces to Theorem 9.2 of [1]. When $\operatorname{ker}(1-*)=(1+*) H$ (and therefore $G=K=$ $\operatorname{ker}(1-*)$), the sequence corresponds to an algebra of type c by Theorem 7.13 of [1] and the result reduces to Theorem 10.6 of [1].

THEOREM 1.7. Let H be a countable dimension group with an order unit v and an involution $*$, let $\operatorname{ker}(1+*)=(1-*)(H)$, let $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$and let G, K be subgroups of $\operatorname{ker}(1-*)$ with $v \in G, G \cap K=(1+*)(H)$ and $G^{+}+K^{+}=$ $\operatorname{ker}(1-*)^{+}$. Assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Then the sequence

$$
(G, v) \xrightarrow{1}(H, v) \xrightarrow{1+*}(K, 2 v)
$$

is in the range of the classifying invariant for unital real approximately finite dimensional C^{*}-algebras.

Proof. By Theorem 8.4 and Proposition 8.5 of [1] it suffices to show that if $x_{1} \in \operatorname{col}\left(G^{+}\right), x_{2} \in \operatorname{col}\left(H^{+}\right), x_{4} \in \operatorname{col}\left(K^{+}\right)$and $a_{1}, a_{2}, a_{3}, a_{4} \in \operatorname{row}(\mathbb{Z})$ such that $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2}^{*}+a_{4} x_{4}=0$ then there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right)$, $y_{4} \in \operatorname{col}\left(K^{+}\right)$and $b_{11}, b_{21}, b_{41}, b_{12}, b_{22}, b_{23}, b_{42}, b_{14}, b_{24}, b_{44} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that b_{14} and b_{41} are even while

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right)=\left(\begin{array}{llll}
b_{11} & b_{21} & b_{21} & b_{41} \\
b_{12} & b_{22} & b_{23} & b_{42} \\
b_{12} & b_{23} & b_{22} & b_{42} \\
b_{14} & b_{24} & b_{24} & b_{44}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*} \\
y_{4}
\end{array}\right) \text { and } \\
& \left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right)\left(\begin{array}{llll}
b_{11} & b_{21} & b_{21} & b_{41} \\
b_{12} & b_{22} & b_{23} & b_{42} \\
b_{12} & b_{23} & b_{22} & b_{42} \\
b_{14} & b_{24} & b_{24} & b_{44}
\end{array}\right)=0
\end{aligned}
$$

The condition $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{2}^{*}+a_{4} x_{4}=0$ implies $a_{1} x_{1}+a_{2} x_{2}^{*}+a_{3} x_{2}+a_{4} x_{4}=0$ and hence $2 a_{1} x_{1}+\left(a_{2}+a_{3}\right)\left(x_{2}+x_{2}^{*}\right)+2 a_{4} x_{4}=0$ and $\left(a_{2}-a_{3}\right)\left(x_{2}-x_{2}^{*}\right)=0$.

Applying Lemma 1.5 to the first of these produces a matrix

$$
C=\left(\begin{array}{llll}
c_{11} & c_{21} & c_{21} & c_{41} \\
c_{12} & c_{22} & c_{23} & c_{42} \\
c_{12} & c_{23} & c_{22} & c_{42} \\
c_{14} & c_{24} & c_{24} & c_{44}
\end{array}\right)
$$

and $z_{1} \in \operatorname{col}\left(G^{+}\right), z_{2} \in \operatorname{col}\left(H^{+}\right), z_{4} \in \operatorname{col}\left(K^{+}\right)$such that c_{14} and c_{41} are even,

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right)=C\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{2}^{*} \\
z_{4}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{llll}
2 a_{1} & a_{2}+a_{3} & a_{2}+a_{3} & 2 a_{4}
\end{array}\right) C=0
$$

From $\left(a_{2}-a_{3}\right)\left(x_{2}-x_{2}^{*}\right)=0$ it follows that $\left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right)\left(z_{2}-z_{2}^{*}\right)=0$ and therefore, by Lemma 1.2 , there exist $y_{1} \in \operatorname{col}\left(G^{+}\right), y_{2} \in \operatorname{col}\left(H^{+}\right), y_{4} \in \operatorname{col}\left(K^{+}\right)$ and $r_{1}, s_{4}, q_{1}, q_{2}, q_{3}, q_{4} \in \operatorname{mat}\left(\mathbb{Z}^{+}\right)$such that $\left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right)\left(q_{2}-q_{3}\right)=0$ and

$$
\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{2}^{*} \\
z_{4}
\end{array}\right)=D\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*} \\
y_{4}
\end{array}\right) \quad \text { where } D=\left(\begin{array}{cccc}
r_{1} & 0 & 0 & 0 \\
q_{1} & q_{2} & q_{3} & q_{4} \\
q_{1} & q_{3} & q_{2} & q_{4} \\
0 & 0 & 0 & s_{4}
\end{array}\right)
$$

The condition $\left(a_{2}-a_{3}\right)\left(c_{22}-c_{23}\right)\left(q_{2}-q_{3}\right)=0$ implies

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & a_{2}-a_{3} & a_{3}-a_{2} & 0
\end{array}\right) C D \\
& \quad=\left(\begin{array}{llll}
0 & a_{2}-a_{3} & a_{3}-a_{2} & 0
\end{array}\right)\left(\begin{array}{llll}
c_{11} & c_{21} & c_{21} & c_{41} \\
c_{12} & c_{22} & c_{23} & c_{42} \\
c_{12} & c_{23} & c_{22} & c_{42} \\
c_{14} & c_{24} & c_{24} & c_{44}
\end{array}\right)\left(\begin{array}{cccc}
r_{1} & 0 & 0 & 0 \\
q_{1} & q_{2} & q_{3} & q_{4} \\
q_{1} & q_{3} & q_{2} & q_{4} \\
0 & 0 & 0 & s_{4}
\end{array}\right)=0
\end{aligned}
$$

Combining this with

$$
\left(2 a_{1} \quad a_{2}+a_{3} \quad a_{2}+a_{3} \quad 2 a_{4}\right) C=0
$$

gives

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right) C D=0
$$

Also

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{*} \\
x_{4}
\end{array}\right)=B\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}^{*} \\
y_{4}
\end{array}\right)
$$

where $B=C D$ has the required form.
It is noted in [1] that the condition that whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$ may possibly be a consequence of the other conditions of Theorem 1.7 and it is shown there that this is indeed the case when H is simple.

Corollary 1.8. Let H be a simple countable dimension group with an order unit v and an involution $*$ satisfying $\operatorname{ker}(1+*)=(1-*)(H)$ and let G, K be subgroups of $\operatorname{ker}(1-*)$ with $G \cap K=(1+*)(H)$ and $G+K=\operatorname{ker}(1-*)$. Then the sequence

$$
(G, v) \xrightarrow{1}(H, v) \xrightarrow{1+*}(K, 2 v)
$$

is in the range of the classifying invariant for unital real approximately finite dimensional simple C^{*}-algebras.

Proof. It is shown in Lemma 10.7 of [1] and the following comment that a simple countable dimension group H with an involution $*$ satisfies $(1+*)\left(H^{+}\right)$ $=[(1+*) H]^{+}$and the condition that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Note that if H is simple then $F=\operatorname{ker}(1-*)$ is also simple, because the ideal in H generated by an ideal I in F is $J=\left\{h \in H:-x \leqslant h \leqslant x\right.$ for some $\left.x \in I^{+}\right\}$ and $J \cap F=I$. It therefore follows from Lemma 9.3 of [1] and Lemma 1.6 that the condition $G^{+}+K^{+}=\operatorname{Ker}(1-*)^{+}$can be weakened to $G+K=\operatorname{ker}(1-*)$.

The example on page 78 of [1] shows that the condition $\operatorname{ker}(1+*)=(1-$ $*)(H)$ cannot be omitted from the statement of Corollary 1.8

2. THE NON-UNITAL CASE

As in Theorem 13.13 of [1], the non-unital case can be deduced from the unital one. Let H be a dimension group with involution $*$ and let D be a generating interval in H^{+}. Define $H^{\mathrm{o}}=\mathbb{Z} \times H$ with the involution $(m, h)^{*}=\left(m, h^{*}\right)$ and the positive cone $H^{\mathrm{o}^{+}}=\{(m, h): m \geqslant 0$ and $m a+h \geqslant 0$ for some $a \in D\}$ and note from Proposition 12.6 of [1] that H^{0} is a dimension group, $(1,0)$ is an order unit for H° and that $D=\{h \in H: 0 \leqslant(0, h) \leqslant(1,0)\}$.

Lemma 2.1. Let H be a dimension group with involution $*$, let E be the kernel of $1+*: H \rightarrow H$ and let E^{o} be the kernel of $1+*: H^{\mathrm{o}} \rightarrow H^{\mathrm{o}}$.
(i) If $E=(1-*) H$, then $E^{0}=(1-*) H^{0}$.
(ii) If $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$then $(1+*)\left(H^{\mathrm{o}+}\right)=\left[(1+*) H^{\mathrm{o}}\right]^{+}$.

Proof. (i) We have:

$$
\begin{aligned}
E^{\mathrm{o}} & =\left\{(m, h):\left(2 m, h+h^{*}\right)=(0,0)\right\} \\
& =\{(0,(1-*) x): x \in H\}=\left\{(m, x)-(m, x)^{*}:(m, x) \in H^{\mathrm{o}}\right\}=(1-*) H^{\mathrm{o}} .
\end{aligned}
$$

(ii) Let $(1+*)\left(H^{+}\right)=[(1+*) H]^{+}$and let $\left(2 m, h+h^{*}\right) \in(1+*) H^{\mathrm{o}}$ with $2 m \geqslant 0$ and $2 m a+h+h^{*} \geqslant 0$ for some $a \in D$. Then $(m a+h)+(m a+h)^{*} \in[(1+$ *) $H]^{+}=(1+*)\left(H^{+}\right)$so $(m a+h)+(m a+h)^{*}=y+y^{*}$ for some $y \geqslant 0$. It follows from $m a+(y-m a) \geqslant 0$ that $(m, y-m a) \geqslant 0$. Therefore $\left(2 m, h+h^{*}\right)=(1+$ $*)(m, y-m a) \in(1+*)\left(H^{\mathrm{o}+}\right)$, which shows that $\left[(1+*) H^{\mathrm{o}}\right]^{+} \subseteq(1+*)\left(H^{\mathrm{o}+}\right)$. The reverse inclusion is clear.

Lemma 2.2. Let H be a dimension group with involution $*$ and assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, there exists $c=c^{*}$ with $a \leqslant c \leqslant b$. Then, whenever $(m, a),(n, b) \in H^{\mathrm{o}+}$ with $(m, a) \leqslant(n, b)$ and $(m, a)^{*} \leqslant(n, b)$, there exists $(p, e)=(p, e)^{*} \in H^{\mathrm{o}+}$ with $(m, a) \leqslant(p, e) \leqslant(n, b)$.

Proof. Let $(m, a),(n, b) \in H^{\mathrm{o}+}$ with $(m, a) \leqslant(n, b)$ and $(m, a)^{*} \leqslant(n, b)$, so $n-m \geqslant 0$ and there exist $c, c^{\prime} \in D$ with $(n-m) c+b-a \geqslant 0$ and $(n-m) c^{\prime}+$ $b-a^{*} \geqslant 0$. Let $d \in D$ be an upper bound for c and c^{\prime}. Then $(n-m) d+b-a \geqslant 0$ and $(n-m) d+b-a^{*} \geqslant 0$. Let $f=f^{*} \in H$ with $a+f \geqslant 0, a^{*}+f \geqslant 0$ and $(n-m) d+b+f \geqslant 0$ so that there exists $e^{\prime}=e^{*} \in H$ with $a+f \leqslant e^{\prime} \leqslant(n-$ $m) d+b+f$ and therefore $e=e^{\prime}-f$ with $e=e^{*}$ and $a \leqslant e \leqslant(n-m) d+b$. Then $(m, a) \leqslant(m, e) \leqslant(n, b)$.

The following extension of Theorem 13.13 of [1] now follows with an almost identical proof.

THEOREM 2.3. Let H be a countable dimension group with an involution $*$, let D be a generating interval in H^{+}, let $\operatorname{ker}(1+*)=(1-*)(H)$, let $(1+*)\left(H^{+}\right)=[(1+$ $*) H]^{+}$and let G, K be subgroups of $\operatorname{ker}(1-*)$ with $G \cap K=(1+*)(H), G^{+}+K^{+}=$ $\operatorname{ker}(1-*)^{+}$and each element of D bounded above by an element of $D \cap G$. Assume that, whenever $a, b \in H^{+}$with $a \leqslant b$ and $a^{*} \leqslant b$, then there exists $c=c^{*}$ with $a \leqslant c \leqslant b$.

Then the sequence

$$
(G, D \cap G) \xrightarrow{1}(H, D) \xrightarrow{1+*}(K, 2 D \cap K)
$$

is in the range of the classifying invariant for real approximately finite dimensional C^{*} algebras.

Proof. Let $G^{o}=\mathbb{Z} \times G$ and $K^{o}=2 \mathbb{Z} \times K$. Then G^{o} and K^{o} are subgroups of H^{o} such that $v=(1,0) \in G$. Using Lemma 1.6, the proof of Theorem 13.13 of [1] shows that $G^{\mathrm{o}+}+\mathrm{K}^{\mathrm{o}+}=F^{\mathrm{o}+}$, where F^{o} is the kernel of $1-*: H^{\mathrm{o}} \rightarrow H^{\mathrm{o}}$. Also

$$
G^{\mathrm{o}} \cap K^{\mathrm{o}}=\{(2 m, g): g \in G \cap K\}=\left\{(m, h)+(m, h)^{*}:(m, h) \in H^{\mathrm{o}}\right\}=(1+*) H^{\mathrm{o}}
$$

The conditions of Theorem 1.7 therefore apply to yield a unital algebra S corresponding to the diagram

$$
Y: \quad\left(G^{\mathrm{o}},(1,0)\right) \xrightarrow{1}\left(H^{\mathrm{o}},(1,0)\right) \xrightarrow{1+*}\left(K^{\mathrm{o}},(2,0)\right) .
$$

Let W be the diagram

$$
W: \quad(\mathbb{Z}, 1) \xrightarrow{2}(\mathbb{Z}, 2) \xrightarrow{2}(\mathbb{Z}, 4)
$$

and let t be the morphism from Y to W with $t_{1}(m, x)=m$ for all $(m, x) \in G^{0}$, $t_{2}(m, x)=2 m$ for all $(m, x) \in H^{\mathrm{o}}$ and $t_{3}(m, x)=2 m$ for all $(m, x) \in K^{\circ}$. As in [1] there exists an \mathbb{R}-algebra map $\psi: S \rightarrow \mathbb{H}$ giving rise to t. Let R be the ideal $\operatorname{ker}(\psi)$ of S, which is also a direct limit of finite dimensional real algebras, and note that if $S / R \cong \mathbb{C}$ then t_{2} factors as

$$
\left(H^{\mathrm{o}},(1,0)\right) \xrightarrow{r_{2}}\left(\mathbb{Z}^{2},(1,1)\right) \xrightarrow{(a, b) \mapsto a+b}(\mathbb{Z}, 2) .
$$

For $h \geqslant 0, t_{2}(0, h)=0$ and $r_{2}(0, h) \geqslant(0,0)$, so $r_{2}(0, h)=(0,0)$. Thus $r_{2}\left(H^{\mathrm{o}}\right)=$ $\{(m, m): m \in \mathbb{Z}\}$. However, since $K_{1}(R \otimes \mathbb{C})=0$, the map r_{2}, arising from the surjection from $S \otimes \mathbb{C}$ to \mathbb{C}^{2}, is surjective, giving a contradiction. Thus $S / R \cong \mathbb{R}$
or $S / R \cong \mathbb{H}$. Lemma 13.12 of [1] therefore applies to show that the diagram associated with R is

$$
\left(\operatorname{ker}\left(t_{1}\right), E_{1}\right) \xrightarrow{1}\left(\operatorname{ker}\left(t_{2}\right), E_{2}\right) \xrightarrow{1+*}\left(\operatorname{ker}\left(t_{3}\right), E_{3}\right)
$$

where $E_{1}=\left\{x \in \operatorname{ker}\left(t_{1}\right): 0 \leqslant x \leqslant(1,0)\right\}, E_{2}=\left\{x \in \operatorname{ker}\left(t_{2}\right): 0 \leqslant x \leqslant(1,0)\right\}$ and $E_{3}=\left\{x \in \operatorname{ker}\left(t_{3}\right): 0 \leqslant x \leqslant(2,0)\right\}$. As in [1] the diagram is isomorphic to

$$
(G, D \cap G) \xrightarrow{1}(H, D) \xrightarrow{1+*}(K, 2 D \cap K),
$$

as required.

Acknowledgements. I am very grateful to Professor Ken Goodearl for correcting some errors in an earlier version of this paper and for suggesting simpler proofs of Lemmas 1.2 and 1.4

REFERENCES

[1] K.R. Goodearl, D.E. Handelman, Classification of ring and C^{*}-algebra direct limits of finite-dimensional semisimple real algebras, Mem. Amer. Math. Soc. 69(1987), no. 372.
[2] P.J. STACEY, Real structure in direct limits of finite dimensional C*-algebras, J. London Math. Soc. (2) 35(1987), 339-352.

P.J. STACEY, Department of Mathematics and Statistics, La Trobe UniVersity, Victoria, 3086, Australia
E-mail address: P.Stacey@latrobe.edu.au

Received December 14, 2010.

