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INTRODUCTION

Let R be a direct limit of a countable sequence of finite dimensional semisim-
ple real algebras. In [1] and [2] such algebras are classified using the invariant

K0(R)
K0(σR)−→ K0(R⊗C) K0(τR)−→ K0(R⊗H),

together with order units in the unital case or generating intervals in the non-
unital one, where the groups are partially ordered, σR is the natural map from R
into R ⊗ C, τR is the natural map from R ⊗ C into R ⊗H and H is the algebra
of real quaternions. As a consequence, the invariant, together with the canon-
ical order units or generating intervals, is used to classify approximately finite
dimensional real C∗-algebras.

The diagrams arising in the unital classification are of the form

(G1, u1)
g1→ (G2, u2)

g2→ (G3, u3)

consisting of triples G1, G2, G3 of dimension groups with order units u1, u2, u3,
together with unit preserving ordered group homomorphisms g1, g2. Non-unital
direct limits are classified by a similar invariant using generating intervals rather
than order units. The memoir [1] contains many properties of the invariant in-
cluding a description of its range, using a complicated equational condition. In



328 P.J. STACEY

[1] the equational condition is simplified in two cases: where R is a direct limit
of direct sums of complex matrix algebras (with possibly real-linear connecting
maps) and where R is a direct limit of sums of real and quaternionic matrix al-
gebras. In this note we provide a simpler description of the range in the general
case, eliminating the equational condition and combining the two special cases
from [1].

1. THE UNITAL CASE

We start with a minor extension and a simple consequence of Lemma 10.2
of [1].

LEMMA 1.1. Let H be a dimension group with an involution ∗ and let G, K be
subgroups of ker(1− ∗) such that G+ + K+ = ker(1− ∗)+. Assume that, whenever
a, b ∈ H+ with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.

Given p1, p2, . . . pm ∈ row(Z) and x ∈ col(H+) with pi(x − x∗) = 0 for 1 6
i 6 m, there exist y1 ∈ col(G+), y2 ∈ col(H+), y4 ∈ col(K+) and q1, q2, q3, q4 ∈
mat(Z+) such that x = q1y1 + q2y2 + q3y∗2 + q4y4 and pi(q2− q3) = 0 for 1 6 i 6 m.

Proof. By Lemma 10.2 of [1] there exist y1 ∈ col(G+), y2 ∈ col(H+), y4 ∈
col(K+) and q1, q2, q3, q4 ∈ mat(Z+) such that x = q1y1 + q2y2 + q3y∗2 + q4y4 and
p1(q2 − q3) = 0.

Assume inductively that it has been shown that there exist z1 ∈ col(G+),
z2 ∈ col(H+), z4 ∈ col(K+) and r1, r2, r3, r4 ∈ mat(Z+) such that

x = r1z1 + r2z2 + r3z∗2 + r4z4

and pi(r2 − r3) = 0 for 1 6 i 6 n < m. Then

0 = pn+1(x− x∗) = pn+1((r2 − r3)(z2 − z∗2)).

So, applying Lemma 10.2 of [1], with p = pn+1(r2− r3), there exist Z1 ∈ col(G+),
Z2 ∈ col(H+), Z4 ∈ col(K+) and R1, R2, R3, R4 ∈ mat(Z+) such that

z2 = R1Z1 + R2Z2 + R3Z∗2 + R4Z4

and pn+1(r2 − r3)(R2 − R3) = 0. Then, putting y1 =
(

z1
Z1

)
, y2 = Z2, y4 =

(
z4
Z4

)
,

q1 = (r1, (r2 + r3)R1), q2 = r2R2 + r3R3, q3 = r2R3 + r3R2 and q4 = (r4, (r2 +
r3)R4),

x= r1z1+r2(R1Z1+R2y2+R3y∗2+R4Z4)+r3(R1Z1+R2y2+R3y∗2+R4Z4)
∗+r4z4

= r1z1+(r2+r3)R1Z1+(r2R2+r3R3)y2+(r2R3+r3R2)y∗2+r4z4+(r2+r3)R4Z4

=q1y1 + q2y2 + q3y∗2 + q4y4

with

pn+1(q2−q3)= pn+1((r2R2+r3R3)−(r2R3+r3R2))= pn+1(r2−r3)(R2−R3)=0
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and also
pi(q2 − q3) = pi(r2 − r3)(R2 − R3) = 0

for 1 6 i 6 n.

LEMMA 1.2. Let H be a dimension group with an involution ∗ and let G, K be
subgroups of ker(1− ∗) such that G+ + K+ = ker(1− ∗)+. Assume that, whenever
a, b ∈ H+ with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.

Given p ∈ row(Z), x1 ∈ col(G+), x2 ∈ col(H+) and x4 ∈ col(K+) with
p(x2 − x∗2) = 0, there exist y1 ∈ col(G+), y2 ∈ col(H+), y4 ∈ col(K+) and
r1, s4, q1, q2, q3, q4 ∈ mat(Z+) such that x1 = r1y1, x2 = q1y1 + q2y2 + q3y∗2 + q4y4,
x4 = s4y4 and p(q2 − q3) = 0.

Proof. By Lemma 10.2 of [1] there exist Y1 ∈ col(G+), y2 ∈ col(H+), Y4 ∈
col(K+) and Q1, q2, q3, Q4 ∈ mat(Z+) such that

x2 = Q1Y1 + q2y2 + q3y∗2 + Q4Y4 and p(q2 − q3) = 0.

The result then holds with

y1 =

(
x1
Y1

)
, y4 =

(
x4
Y4

)
,

r1 =
(

I 0
)

, s4 =
(

I 0
)

, q1 =
(
0 Q1

)
and q4 =

(
0 Q4

)
,

for suitably sized identity and zero matrices.

LEMMA 1.3. Let H be a dimension group with an involution ∗, let ker(1 + ∗) =
(1− ∗)(H), let (1 + ∗)(H+) = [(1 + ∗)H]+ and let F = ker(1− ∗). Assume that,
whenever a, b ∈ H+ with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.

Let x1 ∈ col(F+), x2 ∈ col(H+) and a1, a2, a3 ∈ row(Z) with

a1x1 + a2x2 + a3x∗2 = 0.

Then there exist y1∈col(F+), y2∈col(H+) and b11, b12, b21, b22, b23∈mat(Z+) withx1
x2
x∗2

 =

b11 b21 b21
b12 b22 b23
b12 b23 b22

y1
y2
y∗2

 and
(
a1 a2 a3

)b11 b21 b21
b12 b22 b23
b12 b23 b22

 = 0.

Proof. From a1x1 + a2x2 + a3x∗2 = 0 it follows that also a1x1 + a2x∗2 + a3x2 =
0 and therefore 2a1x1 + (a2 + a3)(x2 + x∗2) = 0 and (a2 − a3)(x2 − x∗2) = 0. The
first of these can be rewritten(

a1 a2 + a3
) [(x1

x2

)
+

(
x1
x2

)∗]
= 0.

Lemma 10.3 of [1] implies the applicability of Lemma 10.1 of [1], which yields
z2 ∈ col(H+) and q21, q22, q31, q32 ∈ mat(Z+) such that(

x1
x2

)
=

(
q21
q22

)
z2 +

(
q31
q32

)
z∗2 and

(
a1 a2 + a3

) ((q21
q22

)
+

(
q31
q32

))
= 0.
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From q21z2 + q31z∗2 = x1 = x∗1 = q21z∗2 + q31z2 it follows that (q21 − q31)(z2 −
z∗2) = 0. By Lemma 1.1 with G = F and K = 0 it follows that there exist Z1 ∈
col(F+), Z2 ∈ col(H+) and r1, r2, r3 ∈ mat(Z+) with z2 = r1Z1 + r2Z2 + r3Z∗2 and
(q21 − q31)(r2 − r3) = 0.

Let c11 = (q21 + q31)r1, c12 = (q22 + q32)r1, c21 = q21r2 + q31r3, c22 = q22r2 +
q32r3 and c23 = q22r3 + q32r2. Using the fact that

q21r2 + q31r3 = q31r2 + q21r3

it follows that x1
x2
x∗2

 =

c11 c21 c21
c12 c22 c23
c12 c23 c22

Z1
Z2
Z∗2

 = C

Z1
Z2
Z∗2

 and

(
2a1 a2 + a3 a2 + a3

)c11 c21 c21
c12 c22 c23
c12 c23 c22

 = 0.

The condition (a2 − a3)(x2 − x∗2) = 0 can be rewritten as

0 = (a2 − a3)(c22 − c23)(Z2 − Z∗2 ).

Applying Lemma 1.2 with G = F and K = 0 gives y1 ∈ col(F+), y2 ∈
col(H+) and s1, s2, t1, t2, t3 ∈ mat(Z+) such that Z1 = s1y1 + s2y2 + s2y∗2 , Z2 =
t1y1 + t2y2 + t3y∗2 and (a2 − a3)(c22 − c23)(t2 − t3) = 0. Let

D =

s1 s2 s2
t1 t2 t3
t1 t3 t2

 .

Thenx1
x2
x∗2

 = CD

y1
y2
y∗2

 and

(
0 a2 − a3 a3 − a2

)
C =

(
0 (a2 − a3)(c22 − c23) (a3 − a2)(c22 − c23)

)
,

so
(
0 a2 − a3 a3 − a2

)
CD = 0. Combining this with the earlier equation(

2a1 a2 + a3 a2 + a3
)

C = 0

gives
(
a1 a2 a3

)
CD = 0, as required.

The next two results are variants of Lemma 9.1 of [1]. The first result is a
variant of condition (III) in the proof of that lemma.

LEMMA 1.4. Let H be a dimension group with an involution ∗, let ker(1 + ∗) =
(1−∗)(H), let (1+ ∗)(H+) = [(1+ ∗)H]+ and let G, K be subgroups of F = ker(1−
∗) such that G∩K = (1+ ∗)H and G++K+ = F+. Assume that, whenever a, b ∈ H+

with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.



THE INVARIANT FOR DIRECT LIMITS 331

Let z ∈ col(F+) and c1, c4 ∈ mat(Z+) such that c1z ∈ col(G+) and c4z ∈
col(K+). Then there exist w1 ∈ col(G+), w2 ∈ col(H+), w4 ∈ col(K+) and d1, d2, d4
∈ mat(Z+) such that z = d1w1 + d2(w2 + w∗2) + d4w4 while c1d4 and c4d1 are even.

Proof. Firstly it will be shown by induction on the number of rows in c4
that, when z1 ∈ col(G+) with c4z1 ∈ col(K+), then there exist w1 ∈ col(G+),
w2 ∈ col(H+) and d1, d2 ∈ mat(Z+) such that z1 = d1w1 + d2(w2 + w∗2) while
c4d1 is even. To start the induction, following Lemma 9.1 of [1], first let c4 ∈
row(Z+) and z1 ∈ col(G+) with c4z1 ∈ K+. Then c4z1 ∈ G+ ∩K+ = (1+ ∗)(H+)
and so c4z1 = z2 + z∗2 for some z2 ∈ H+. Applying Lemma 1.3 with x1 = z1,
x2 = z2, a1 = c4 and a2 = a3 = −1, there exist y1 ∈ col(F+), y2 ∈ col(H+) and
b11, b21, b12, b22, b23 ∈ mat(Z+) withz1

z2
z∗2

 =

b11 b21 b21
b12 b22 b23
b12 b23 b22

y1
y2
y∗2

 and
(
c4 −1 −1

)b11 b21 b21
b12 b22 b23
b12 b23 b22

 = 0.

Then c4b11 is even. Let y1 = w1 + w4 where w1 ∈ col(G+) and w4 ∈ col(K+).
Then z1 = b11w1 + b11w4 + b21(y2 + y∗2) where b11w4 = z1 − b11w1 − b21(y2 +
y∗2) ∈ col(G+)∩ col(K+), so that b11w4 = v+ v∗ for some v ∈ col(H+). Therefore

z1 = b11w1 +
(
b21 I

) [(y2
v

)
+

(
y2
v

)∗]
with c4b11 even.

To implement the inductive step, again follow Lemma 9.1 of [1] by letting
z1 ∈ col(G+) with c4z1 ∈ col(K+) and c4 =

( p4
q4

)
where p4 ∈ row(Z+), p4z1 ∈

K+ and q4z1 ∈ col(K+). By the inductive hypothesis, there exist u1 ∈ col(G+),
u2 ∈ col(H+) and e1, e2 ∈ mat(Z+) such that z1 = e1u1 + e2(u2 + u∗2) while q4e1
is even. Then p4e1 ∈ row(Z+) and u1 ∈ col(G+) with p4e1u1 = p4z1 − p4e2(u2 +
u∗2) ∈ K+ so, by the first part of the proof, there exist v1 ∈ col(G+), v2 ∈ col(H+)
and f1, f2 ∈ mat(Z+) such that u1 = f1v1 + f2(v2 + v∗2) with p4e1 f1 even. Then

z1 = e1u1 + e2(u2 + u∗2) = e1 f1v1 +
(
e1 f2 e2

) ((v2
u2

)
+

(
v2
u2

)∗)
with q4e1, p4e1 f1 and hence c4e1 f1 even.

By symmetry it now follows that when z4 ∈ col(K+) with c1z4 ∈ col(G+),
then there exist w2 ∈ col(H+), w4 ∈ col(K+) and d2, d4 ∈ mat(Z+) such that
z4 = d2(w2 + w∗2) + d4w4 while c1d4 is even. These two results can be combined
to prove the lemma by letting z ∈ col(F+) = z1 + z4, where z1 ∈ col(G+) and
z4 ∈ col(K+) and noting that c1z4 = c1z− c1z1 ∈ col(G+). Applying the second
case gives z4 = d2(v2 + v∗2) + d4v4 with v2 ∈ col(H+), v4 ∈ col(K+) and d2, d4 ∈
mat(Z+) with c1d4 even. Then z = z1 + d2(v2 + v∗2) + d4v4 where z1 ∈ col(G+)
with c4z1 = c4z − c4d2(v2 + v∗2) − c4d4v4 ∈ col(K+) so that, by the first case,
z1 = e1w1 + e2(w2 + w∗2) with w2 ∈ col(H+), w1 ∈ col(G+), e1, e2 ∈ mat(Z+) and
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c4e1 even. Combining these two results gives

z = e1w1 +
(
d2 e2

) ((v2
w2

)
+

(
v2
w2

)∗)
+ d4v4

with c1d4 and c4e1 even.

LEMMA 1.5. Let H be a dimension group with an involution ∗, let ker(1 + ∗) =
(1−∗)(H), let (1+ ∗)(H+) = [(1+ ∗)H]+ and let G, K be subgroups of F = ker(1−
∗) such that G∩K = (1+ ∗)H and G++K+ = F+. Assume that, whenever a, b ∈ H+

with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.
Let x1 ∈ col(G+), x2 ∈ col(H+), x4 ∈ col(K+) and a1, a2, a4 ∈ row(Z) such

that a1x1 + a2(x2 + x∗2) + a4x4 = 0. Then there exist y1 ∈ col(G+), y2 ∈ col(H+),
y4 ∈ col(K+) and b11, b21, b41, b12, b22, b23, b42, b14, b24, b44 ∈ mat(Z+) such that b14
and b41 are even while

x1
x2
x∗2
x4

 =


b11 b21 b21 b41
b12 b22 b23 b42
b12 b23 b22 b42
b14 b24 b24 b44




y1
y2
y∗2
y4

 and

(
a1 a2 a2 a4

)
b11 b21 b21 b41
b12 b22 b23 b42
b12 b23 b22 b42
b14 b24 b24 b44

 = 0.

Proof. By Lemma 1.3 applied to(
a1 a4

) (x1
x4

)
+ a2x2 + a2x∗2 = 0

there exist y ∈ col(F+), y2 ∈ col(H+) and b11, b12, b21, b22, b23 ∈ mat(Z+) with
(

x1
x4

)
x2
x∗2

=
b11 b21 b21

b12 b22 b23
b12 b23 b22

 y
y2
y∗2

 and
((

a1 a4
)

a2 a2
)b11 b21 b21

b12 b22 b23
b12 b23 b22

=0.

Splitting the first row according to the number of rows in x1 and x4, reordering the
rows and renaming, there exist y ∈ col(F+), y2 ∈ col(H+) and c11, c12, c21, c22, c23,
c14, c24 ∈ mat(Z+) with

x1
x2
x∗2
x4

=


c11 c21 c21
c12 c22 c23
c12 c23 c22
c14 c24 c24


 y

y2
y∗2

 and
(
a1 a2 a2 a4

)
c11 c21 c21
c12 c22 c23
c12 c23 c22
c14 c24 c24

=0.

From x1 = c11y + c21(y2 + y∗2) and G ∩ K = (1 + ∗)(H) it follows that c11y ∈
col(G+) and similarly c14y ∈ col(K+). It therefore follows from Lemma 1.4 that
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there exist w1 ∈ col(G+), w2 ∈ col(H+), w4 ∈ col(K+) and d1, d2, d4 ∈ mat(Z+)
such that y = d1w1 + d2(w2 + w∗2) + d4w4 while c11d4 and c14d1 are even. Thus

x1
x2
x∗2
x4

=


c11 c21 c21
c12 c22 c23
c12 c23 c22
c14 c24 c24


d1 ( 0 d2 ) ( 0 d2 ) d4

0 ( I 0 ) 0 0
0 0 ( I 0 ) 0




w1( y2
w2

)
( y2

w2

)∗
w4



=


c11d1 c11 ( 0 d2 ) + c21 ( I 0 ) c11 ( 0 d2 ) + c21 ( I 0 ) c11d4
c12d1 c12 ( 0 d2 ) + c22 ( I 0 ) c12 ( 0 d2 ) + c23 ( I 0 ) c12d4
c12d1 c12 ( 0 d2 ) + c23 ( I 0 ) c12 ( 0 d2 ) + c22 ( I 0 ) c12d4
c14d1 c14 ( 0 d2 ) + c24 ( I 0 ) c14 ( 0 d2 ) + c24 ( I 0 ) c14d4




w1( y2
w2

)
( y2

w2

)∗
w4


with c11d4 and c14d1 even and

(
a1 a2 a2 a4

)
c11 c21 c21
c12 c22 c23
c12 c23 c22
c14 c24 c24


d1

(
0 d2

) (
0 d2

)
d4

0
(

I 0
)

0 0
0 0

(
I 0

)
0

 = 0.

The following lemma is required in Corollary 1.8 and Theorem 2.3. I am
grateful to Professor Ken Goodearl for pointing this out and for supplying the
proof.

LEMMA 1.6. Let H be a dimension group with an involution ∗ such that, whenever
a, b ∈ H+ with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b. Then
F = ker(1− ∗) is a dimension group.

Proof. The non-obvious condition is interpolation, which it suffices to check
within F+. So let x1, x2, y1, y2 ∈ F+ with xi 6 yj for all i, j. By interpolation
in H there exists z ∈ H+ with xi 6 z 6 yj for all i, j and then xi 6 z∗ 6 yj.
By interpolation again, there exists w ∈ H+ with z, z∗ 6 w 6 y1, y2. Then, by
assumption, there exists c ∈ F+ with z 6 c 6 w and therefore xi 6 c 6 yj for all
i, j, as required.

It is shown in Theorem 8.4 of [1] that the classifying invariants from [1] and
[2] for unital real approximately finite dimensional C∗-algebras are sequences of
the form

(G, ν)
1−→ (H, ν)

1+∗−→ (K, 2ν),

where H is a countable dimension group with order unit ν and involution ∗ and
G and K are subgroups of Fix(∗) containing (1 + ∗)(H) such that ν ∈ G. In the
simplicial situation, where H = Zr × Z2s with ∗ = 1 × f for f (a, b) = (b, a),
there exist u, v with u + v = r such that G = 2Zu × Zv × Dc and K = Zu ×
2Zv × Dc, where Dc = {(m, m) : m ∈ Zs}. The sequences which arise in the
range of the classifying invariant are the inductive limits of sequences of these
special simplicial cases. The next result gives conditions on H ensuring that all
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the sequences

(G, ν)
1−→ (H, ν)

1+∗−→ (K, 2ν)

described above arise in this way. Note that when ∗ = 1 (so that the sequence
corresponds to an algebra of type rh by Theorem 7.9 of [1]), the result reduces
to Theorem 9.2 of [1]. When ker(1 − ∗) = (1 + ∗)H (and therefore G = K =
ker(1− ∗)), the sequence corresponds to an algebra of type c by Theorem 7.13 of
[1] and the result reduces to Theorem 10.6 of [1].

THEOREM 1.7. Let H be a countable dimension group with an order unit ν and
an involution ∗, let ker(1+ ∗) = (1− ∗)(H), let (1+ ∗)(H+) = [(1+ ∗)H]+ and let
G, K be subgroups of ker(1− ∗) with ν ∈ G, G ∩ K = (1 + ∗)(H) and G+ + K+ =
ker(1− ∗)+. Assume that, whenever a, b ∈ H+ with a 6 b and a∗ 6 b, then there
exists c = c∗ with a 6 c 6 b.

Then the sequence

(G, ν)
1−→ (H, ν)

1+∗−→ (K, 2ν)

is in the range of the classifying invariant for unital real approximately finite dimensional
C∗-algebras.

Proof. By Theorem 8.4 and Proposition 8.5 of [1] it suffices to show that if
x1 ∈ col(G+), x2 ∈ col(H+), x4 ∈ col(K+) and a1, a2, a3, a4 ∈ row(Z) such that
a1x1 + a2x2 + a3x∗2 + a4x4 = 0 then there exist y1 ∈ col(G+), y2 ∈ col(H+),
y4 ∈ col(K+) and b11, b21, b41, b12, b22, b23, b42, b14, b24, b44 ∈ mat(Z+) such that b14
and b41 are even while

x1
x2
x∗2
x4

 =


b11 b21 b21 b41
b12 b22 b23 b42
b12 b23 b22 b42
b14 b24 b24 b44




y1
y2
y∗2
y4

 and

(
a1 a2 a3 a4

)
b11 b21 b21 b41
b12 b22 b23 b42
b12 b23 b22 b42
b14 b24 b24 b44

 = 0.

The condition a1x1 + a2x2 + a3x∗2 + a4x4 = 0 implies a1x1 + a2x∗2 + a3x2 + a4x4 = 0
and hence 2a1x1 + (a2 + a3)(x2 + x∗2) + 2a4x4 = 0 and (a2 − a3)(x2 − x∗2) = 0.

Applying Lemma 1.5 to the first of these produces a matrix

C =


c11 c21 c21 c41
c12 c22 c23 c42
c12 c23 c22 c42
c14 c24 c24 c44
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and z1 ∈ col(G+), z2 ∈ col(H+), z4 ∈ col(K+) such that c14 and c41 are even,
x1
x2
x∗2
x4

 = C


z1
z2
z∗2
z4

 and
(
2a1 a2 + a3 a2 + a3 2a4

)
C = 0.

From (a2 − a3)(x2 − x∗2) = 0 it follows that (a2 − a3)(c22 − c23)(z2 − z∗2) = 0 and
therefore, by Lemma 1.2, there exist y1 ∈ col(G+), y2 ∈ col(H+), y4 ∈ col(K+)
and r1, s4, q1, q2, q3, q4 ∈ mat(Z+) such that (a2 − a3)(c22 − c23)(q2 − q3) = 0 and

z1
z2
z∗2
z4

 = D


y1
y2
y∗2
y4

 where D =


r1 0 0 0
q1 q2 q3 q4
q1 q3 q2 q4
0 0 0 s4

 .

The condition (a2 − a3)(c22 − c23)(q2 − q3) = 0 implies(
0 a2 − a3 a3 − a2 0

)
CD

=
(
0 a2 − a3 a3 − a2 0

)
c11 c21 c21 c41
c12 c22 c23 c42
c12 c23 c22 c42
c14 c24 c24 c44




r1 0 0 0
q1 q2 q3 q4
q1 q3 q2 q4
0 0 0 s4

 = 0.

Combining this with (
2a1 a2 + a3 a2 + a3 2a4

)
C = 0

gives (
a1 a2 a3 a4

)
CD = 0.

Also 
x1
x2
x∗2
x4

 = B


y1
y2
y∗2
y4


where B = CD has the required form.

It is noted in [1] that the condition that whenever a, b ∈ H+ with a 6 b and
a∗ 6 b, then there exists c = c∗ with a 6 c 6 b may possibly be a consequence of
the other conditions of Theorem 1.7 and it is shown there that this is indeed the
case when H is simple.

COROLLARY 1.8. Let H be a simple countable dimension group with an order unit
ν and an involution ∗ satisfying ker(1 + ∗) = (1− ∗)(H) and let G, K be subgroups of
ker(1− ∗) with G ∩ K = (1 + ∗)(H) and G + K = ker(1− ∗). Then the sequence

(G, ν)
1−→ (H, ν)

1+∗−→ (K, 2ν)
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is in the range of the classifying invariant for unital real approximately finite dimensional
simple C∗-algebras.

Proof. It is shown in Lemma 10.7 of [1] and the following comment that a
simple countable dimension group H with an involution ∗ satisfies (1 + ∗)(H+)
= [(1+ ∗)H]+ and the condition that, whenever a, b ∈ H+ with a 6 b and a∗ 6 b,
then there exists c = c∗ with a 6 c 6 b.

Note that if H is simple then F = ker(1−∗) is also simple, because the ideal
in H generated by an ideal I in F is J = {h ∈ H : −x 6 h 6 x for some x ∈ I+}
and J ∩ F = I. It therefore follows from Lemma 9.3 of [1] and Lemma 1.6 that the
condition G+ + K+ = Ker(1− ∗)+ can be weakened to G + K = ker(1− ∗).

The example on page 78 of [1] shows that the condition ker(1 + ∗) = (1−
∗)(H) cannot be omitted from the statement of Corollary 1.8.

2. THE NON-UNITAL CASE

As in Theorem 13.13 of [1], the non-unital case can be deduced from the uni-
tal one. Let H be a dimension group with involution ∗ and let D be a generating
interval in H+. Define Ho = Z× H with the involution (m, h)∗ = (m, h∗) and the
positive cone Ho+ = {(m, h) : m > 0 and ma + h > 0 for some a ∈ D} and note
from Proposition 12.6 of [1] that Ho is a dimension group, (1, 0) is an order unit
for Ho and that D = {h ∈ H : 0 6 (0, h) 6 (1, 0)}.

LEMMA 2.1. Let H be a dimension group with involution ∗, let E be the kernel of
1 + ∗ : H → H and let Eo be the kernel of 1 + ∗ : Ho → Ho.

(i) If E = (1− ∗)H, then Eo = (1− ∗)H0.
(ii) If (1 + ∗)(H+) = [(1 + ∗)H]+ then (1 + ∗)(Ho+) = [(1 + ∗)Ho]+.

Proof. (i) We have:

Eo = {(m, h) : (2m, h + h∗) = (0, 0)}
= {(0, (1− ∗)x) : x ∈ H} = {(m, x)− (m, x)∗ : (m, x) ∈ Ho} = (1− ∗)Ho.

(ii) Let (1 + ∗)(H+) = [(1 + ∗)H]+ and let (2m, h + h∗) ∈ (1 + ∗)Ho with
2m > 0 and 2ma + h + h∗ > 0 for some a ∈ D. Then (ma + h) + (ma + h)∗ ∈ [(1+
∗)H]+ = (1+ ∗)(H+) so (ma+ h)+ (ma+ h)∗ = y+ y∗ for some y > 0. It follows
from ma + (y − ma) > 0 that (m, y − ma) > 0. Therefore (2m, h + h∗) = (1 +
∗)(m, y−ma) ∈ (1 + ∗)(Ho+), which shows that [(1 + ∗)Ho]+ ⊆ (1 + ∗)(Ho+).
The reverse inclusion is clear.

LEMMA 2.2. Let H be a dimension group with involution ∗ and assume that,
whenever a, b ∈ H+ with a 6 b and a∗ 6 b, there exists c = c∗ with a 6 c 6 b. Then,
whenever (m, a), (n, b) ∈ Ho+ with (m, a) 6 (n, b) and (m, a)∗ 6 (n, b), there exists
(p, e) = (p, e)∗ ∈ Ho+ with (m, a) 6 (p, e) 6 (n, b).
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Proof. Let (m, a), (n, b) ∈ Ho+ with (m, a) 6 (n, b) and (m, a)∗ 6 (n, b), so
n− m > 0 and there exist c, c′ ∈ D with (n− m)c + b− a > 0 and (n− m)c′ +
b− a∗ > 0. Let d ∈ D be an upper bound for c and c′. Then (n−m)d + b− a > 0
and (n − m)d + b − a∗ > 0. Let f = f ∗ ∈ H with a + f > 0, a∗ + f > 0 and
(n − m)d + b + f > 0 so that there exists e′ = e′∗ ∈ H with a + f 6 e′ 6 (n −
m)d + b + f and therefore e = e′ − f with e = e∗ and a 6 e 6 (n−m)d + b . Then
(m, a) 6 (m, e) 6 (n, b).

The following extension of Theorem 13.13 of [1] now follows with an almost
identical proof.

THEOREM 2.3. Let H be a countable dimension group with an involution ∗, let D
be a generating interval in H+, let ker(1+ ∗) = (1−∗)(H), let (1+ ∗)(H+) = [(1+
∗)H]+ and let G, K be subgroups of ker(1−∗) with G∩K = (1+ ∗)(H), G+ +K+ =
ker(1−∗)+ and each element of D bounded above by an element of D∩G. Assume that,
whenever a, b ∈ H+ with a 6 b and a∗ 6 b, then there exists c = c∗ with a 6 c 6 b.

Then the sequence

(G, D ∩ G)
1−→ (H, D)

1+∗−→ (K, 2D ∩ K)

is in the range of the classifying invariant for real approximately finite dimensional C∗-
algebras.

Proof. Let Go = Z× G and Ko = 2Z× K. Then Go and Ko are subgroups of
Ho such that ν = (1, 0) ∈ G. Using Lemma 1.6, the proof of Theorem 13.13 of [1]
shows that Go+ + Ko+ = Fo+, where Fo is the kernel of 1− ∗ : Ho → Ho. Also

Go ∩ Ko={(2m, g) : g ∈ G ∩ K}={(m, h) + (m, h)∗ : (m, h) ∈ Ho}=(1 + ∗)Ho.

The conditions of Theorem 1.7 therefore apply to yield a unital algebra S corre-
sponding to the diagram

Y : (Go, (1, 0)) 1−→ (Ho, (1, 0)) 1+∗−→ (Ko, (2, 0)).

Let W be the diagram

W : (Z, 1) 2−→ (Z, 2) 2−→ (Z, 4)

and let t be the morphism from Y to W with t1(m, x) = m for all (m, x) ∈ Go,
t2(m, x) = 2m for all (m, x) ∈ Ho and t3(m, x) = 2m for all (m, x) ∈ Ko. As in [1]
there exists an R-algebra map ψ : S→ H giving rise to t. Let R be the ideal ker(ψ)
of S, which is also a direct limit of finite dimensional real algebras, and note that
if S/R ∼= C then t2 factors as

(Ho, (1, 0))
r2−→ (Z2, (1, 1))

(a,b) 7→a+b−→ (Z, 2).

For h > 0, t2(0, h) = 0 and r2(0, h) > (0, 0), so r2(0, h) = (0, 0). Thus r2(Ho) =
{(m, m) : m ∈ Z}. However, since K1(R⊗C) = 0, the map r2, arising from the
surjection from S⊗C to C2, is surjective, giving a contradiction. Thus S/R ∼= R
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or S/R ∼= H. Lemma 13.12 of [1] therefore applies to show that the diagram
associated with R is

(ker(t1), E1)
1−→ (ker(t2), E2)

1+∗−→ (ker(t3), E3)

where E1 = {x ∈ ker(t1) : 0 6 x 6 (1, 0)}, E2 = {x ∈ ker(t2) : 0 6 x 6 (1, 0)}
and E3 = {x ∈ ker(t3) : 0 6 x 6 (2, 0)}. As in [1] the diagram is isomorphic to

(G, D ∩ G)
1−→ (H, D)

1+∗−→ (K, 2D ∩ K),

as required.
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