THE RANGE OF THE INVARIANT FOR RING AND C*-ALGEBRA DIRECT LIMITS OF FINITE-DIMENSIONAL SEMISIMPLE REAL ALGEBRAS

P.J. STACEY

Communicated by Kenneth R. Davidson

ABSTRACT. A description is given of the diagrams which arise as classifying invariants for ring and C^* -algebra direct limits of countable sequences of finite-dimensional semisimple real algebras.

KEYWORDS: Real C*-algebra, approximately finite-dimensional, direct limit, range, invariant.

MSC (2010): 46L35, 46L05, 46L80, 19K14, 16S99.

INTRODUCTION

Let *R* be a direct limit of a countable sequence of finite dimensional semisimple real algebras. In [1] and [2] such algebras are classified using the invariant

$$K_0(R) \xrightarrow{K_0(\sigma_R)} K_0(R \otimes \mathbb{C}) \xrightarrow{K_0(\tau_R)} K_0(R \otimes \mathbb{H}),$$

together with order units in the unital case or generating intervals in the nonunital one, where the groups are partially ordered, σ_R is the natural map from Rinto $R \otimes \mathbb{C}$, τ_R is the natural map from $R \otimes \mathbb{C}$ into $R \otimes \mathbb{H}$ and \mathbb{H} is the algebra of real quaternions. As a consequence, the invariant, together with the canonical order units or generating intervals, is used to classify approximately finite dimensional real C^* -algebras.

The diagrams arising in the unital classification are of the form

$$(G_1, u_1) \stackrel{g_1}{\rightarrow} (G_2, u_2) \stackrel{g_2}{\rightarrow} (G_3, u_3)$$

consisting of triples G_1, G_2, G_3 of dimension groups with order units u_1, u_2, u_3 , together with unit preserving ordered group homomorphisms g_1, g_2 . Non-unital direct limits are classified by a similar invariant using generating intervals rather than order units. The memoir [1] contains many properties of the invariant including a description of its range, using a complicated equational condition. In

[1] the equational condition is simplified in two cases: where *R* is a direct limit of direct sums of complex matrix algebras (with possibly real-linear connecting maps) and where *R* is a direct limit of sums of real and quaternionic matrix algebras. In this note we provide a simpler description of the range in the general case, eliminating the equational condition and combining the two special cases from [1].

1. THE UNITAL CASE

We start with a minor extension and a simple consequence of Lemma 10.2 of [1].

LEMMA 1.1. Let *H* be a dimension group with an involution * and let *G*, *K* be subgroups of ker(1 - *) such that $G^+ + K^+ = \text{ker}(1 - *)^+$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Given $p_1, p_2, ..., p_m \in row(\mathbb{Z})$ and $x \in col(H^+)$ with $p_i(x - x^*) = 0$ for $1 \leq i \leq m$, there exist $y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $y_4 \in col(K^+)$ and $q_1, q_2, q_3, q_4 \in rot(\mathbb{Z}^+)$ such that $x = q_1y_1 + q_2y_2 + q_3y_2^* + q_4y_4$ and $p_i(q_2 - q_3) = 0$ for $1 \leq i \leq m$.

Proof. By Lemma 10.2 of [1] there exist $y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $y_4 \in col(K^+)$ and $q_1, q_2, q_3, q_4 \in mat(\mathbb{Z}^+)$ such that $x = q_1y_1 + q_2y_2 + q_3y_2^* + q_4y_4$ and $p_1(q_2 - q_3) = 0$.

Assume inductively that it has been shown that there exist $z_1 \in col(G^+)$, $z_2 \in col(H^+)$, $z_4 \in col(K^+)$ and $r_1, r_2, r_3, r_4 \in mat(\mathbb{Z}^+)$ such that

$$x = r_1 z_1 + r_2 z_2 + r_3 z_2^* + r_4 z_4$$

and $p_i(r_2 - r_3) = 0$ for $1 \le i \le n < m$. Then

$$0 = p_{n+1}(x - x^*) = p_{n+1}((r_2 - r_3)(z_2 - z_2^*)).$$

So, applying Lemma 10.2 of [1], with $p = p_{n+1}(r_2 - r_3)$, there exist $Z_1 \in col(G^+)$, $Z_2 \in col(H^+)$, $Z_4 \in col(K^+)$ and $R_1, R_2, R_3, R_4 \in mat(\mathbb{Z}^+)$ such that

$$z_2 = R_1 Z_1 + R_2 Z_2 + R_3 Z_2^* + R_4 Z_4$$

and $p_{n+1}(r_2 - r_3)(R_2 - R_3) = 0$. Then, putting $y_1 = \begin{pmatrix} z_1 \\ Z_1 \end{pmatrix}$, $y_2 = Z_2$, $y_4 = \begin{pmatrix} z_4 \\ Z_4 \end{pmatrix}$, $q_1 = (r_1, (r_2 + r_3)R_1)$, $q_2 = r_2R_2 + r_3R_3$, $q_3 = r_2R_3 + r_3R_2$ and $q_4 = (r_4, (r_2 + r_3)R_4)$,

$$x = r_1 z_1 + r_2 (R_1 Z_1 + R_2 y_2 + R_3 y_2^* + R_4 Z_4) + r_3 (R_1 Z_1 + R_2 y_2 + R_3 y_2^* + R_4 Z_4)^* + r_4 z_4$$

= $r_1 z_1 + (r_2 + r_3) R_1 Z_1 + (r_2 R_2 + r_3 R_3) y_2 + (r_2 R_3 + r_3 R_2) y_2^* + r_4 z_4 + (r_2 + r_3) R_4 Z_4$
= $q_1 y_1 + q_2 y_2 + q_3 y_2^* + q_4 y_4$

with

$$p_{n+1}(q_2-q_3) = p_{n+1}((r_2R_2+r_3R_3) - (r_2R_3+r_3R_2)) = p_{n+1}(r_2-r_3)(R_2-R_3) = 0$$

and also

$$p_i(q_2 - q_3) = p_i(r_2 - r_3)(R_2 - R_3) = 0$$

for $1 \leq i \leq n$.

LEMMA 1.2. Let *H* be a dimension group with an involution * and let *G*, *K* be subgroups of ker(1 - *) such that $G^+ + K^+ = \text{ker}(1 - *)^+$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Given $p \in \operatorname{row}(\mathbb{Z})$, $x_1 \in \operatorname{col}(G^+)$, $x_2 \in \operatorname{col}(H^+)$ and $x_4 \in \operatorname{col}(K^+)$ with $p(x_2 - x_2^*) = 0$, there exist $y_1 \in \operatorname{col}(G^+)$, $y_2 \in \operatorname{col}(H^+)$, $y_4 \in \operatorname{col}(K^+)$ and $r_1, s_4, q_1, q_2, q_3, q_4 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $x_1 = r_1y_1$, $x_2 = q_1y_1 + q_2y_2 + q_3y_2^* + q_4y_4$, $x_4 = s_4y_4$ and $p(q_2 - q_3) = 0$.

Proof. By Lemma 10.2 of [1] there exist $Y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $Y_4 \in col(K^+)$ and $Q_1, q_2, q_3, Q_4 \in mat(\mathbb{Z}^+)$ such that

$$x_2 = Q_1Y_1 + q_2y_2 + q_3y_2^* + Q_4Y_4$$
 and $p(q_2 - q_3) = 0.$

The result then holds with

$$y_1 = \begin{pmatrix} x_1 \\ Y_1 \end{pmatrix}, \quad y_4 = \begin{pmatrix} x_4 \\ Y_4 \end{pmatrix},$$

 $r_1 = \begin{pmatrix} I & 0 \end{pmatrix}, \quad s_4 = \begin{pmatrix} I & 0 \end{pmatrix}, \quad q_1 = \begin{pmatrix} 0 & Q_1 \end{pmatrix} \text{ and } q_4 = \begin{pmatrix} 0 & Q_4 \end{pmatrix},$

for suitably sized identity and zero matrices.

LEMMA 1.3. Let *H* be a dimension group with an involution *, let $\ker(1 + *) = (1 - *)(H)$, let $(1 + *)(H^+) = [(1 + *)H]^+$ and let $F = \ker(1 - *)$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$. Let $x_1 \in \operatorname{col}(F^+)$, $x_2 \in \operatorname{col}(H^+)$ and $a_1, a_2, a_3 \in \operatorname{row}(\mathbb{Z})$ with

$$a_1x_1 + a_2x_2 + a_3x_2^* = 0.$$

Then there exist $y_1 \in col(F^+)$, $y_2 \in col(H^+)$ *and* b_{11} , b_{12} , b_{21} , b_{22} , $b_{23} \in mat(\mathbb{Z}^+)$ *with*

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \end{pmatrix} = \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \end{pmatrix} \quad and \quad (a_1 \quad a_2 \quad a_3) \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} = 0.$$

Proof. From $a_1x_1 + a_2x_2 + a_3x_2^* = 0$ it follows that also $a_1x_1 + a_2x_2^* + a_3x_2 = 0$ and therefore $2a_1x_1 + (a_2 + a_3)(x_2 + x_2^*) = 0$ and $(a_2 - a_3)(x_2 - x_2^*) = 0$. The first of these can be rewritten

$$\begin{pmatrix} a_1 & a_2 + a_3 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^* \end{bmatrix} = 0.$$

Lemma 10.3 of [1] implies the applicability of Lemma 10.1 of [1], which yields $z_2 \in \operatorname{col}(H^+)$ and $q_{21}, q_{22}, q_{31}, q_{32} \in \operatorname{mat}(\mathbb{Z}^+)$ such that

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} q_{21} \\ q_{22} \end{pmatrix} z_2 + \begin{pmatrix} q_{31} \\ q_{32} \end{pmatrix} z_2^* \text{ and } (a_1 \quad a_2 + a_3) \left(\begin{pmatrix} q_{21} \\ q_{22} \end{pmatrix} + \begin{pmatrix} q_{31} \\ q_{32} \end{pmatrix} \right) = 0.$$

From $q_{21}z_2 + q_{31}z_2^* = x_1 = x_1^* = q_{21}z_2^* + q_{31}z_2$ it follows that $(q_{21} - q_{31})(z_2 - z_2^*) = 0$. By Lemma 1.1 with G = F and K = 0 it follows that there exist $Z_1 \in col(F^+)$, $Z_2 \in col(H^+)$ and $r_1, r_2, r_3 \in mat(\mathbb{Z}^+)$ with $z_2 = r_1Z_1 + r_2Z_2 + r_3Z_2^*$ and $(q_{21} - q_{31})(r_2 - r_3) = 0$.

Let $c_{11} = (q_{21} + q_{31})r_1$, $c_{12} = (q_{22} + q_{32})r_1$, $c_{21} = q_{21}r_2 + q_{31}r_3$, $c_{22} = q_{22}r_2 + q_{32}r_3$ and $c_{23} = q_{22}r_3 + q_{32}r_2$. Using the fact that

$$q_{21}r_2 + q_{31}r_3 = q_{31}r_2 + q_{21}r_3$$

it follows that

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_2^* \end{pmatrix} = C \begin{pmatrix} Z_1 \\ Z_2 \\ Z_2^* \end{pmatrix} \text{ and }$$

$$(2a_1 \quad a_2 + a_3 \quad a_2 + a_3) \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \end{pmatrix} = 0.$$

The condition $(a_2 - a_3)(x_2 - x_2^*) = 0$ can be rewritten as

$$0 = (a_2 - a_3)(c_{22} - c_{23})(Z_2 - Z_2^*).$$

Applying Lemma 1.2 with G = F and K = 0 gives $y_1 \in col(F^+)$, $y_2 \in col(H^+)$ and $s_1, s_2, t_1, t_2, t_3 \in mat(\mathbb{Z}^+)$ such that $Z_1 = s_1y_1 + s_2y_2 + s_2y_2^*$, $Z_2 = t_1y_1 + t_2y_2 + t_3y_2^*$ and $(a_2 - a_3)(c_{22} - c_{23})(t_2 - t_3) = 0$. Let

$$D = \begin{pmatrix} s_1 & s_2 & s_2 \\ t_1 & t_2 & t_3 \\ t_1 & t_3 & t_2 \end{pmatrix}.$$

Then

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \end{pmatrix} = CD \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \end{pmatrix} \text{ and} (0 \quad a_2 - a_3 \quad a_3 - a_2) C = (0 \quad (a_2 - a_3)(c_{22} - c_{23}) \quad (a_3 - a_2)(c_{22} - c_{23})),$$

so $\begin{pmatrix} 0 & a_2 - a_3 & a_3 - a_2 \end{pmatrix}$ *CD* = 0. Combining this with the earlier equation

$$(2a_1 \quad a_2 + a_3 \quad a_2 + a_3) C = 0$$

gives $\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$ *CD* = 0, as required.

The next two results are variants of Lemma 9.1 of [1]. The first result is a variant of condition (III) in the proof of that lemma.

LEMMA 1.4. Let *H* be a dimension group with an involution *, let $\ker(1 + *) = (1 - *)(H)$, let $(1 + *)(H^+) = [(1 + *)H]^+$ and let *G*, *K* be subgroups of $F = \ker(1 - *)$ such that $G \cap K = (1 + *)H$ and $G^+ + K^+ = F^+$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Let $z \in \operatorname{col}(F^+)$ and $c_1, c_4 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $c_1 z \in \operatorname{col}(G^+)$ and $c_4 z \in \operatorname{col}(K^+)$. Then there exist $w_1 \in \operatorname{col}(G^+)$, $w_2 \in \operatorname{col}(H^+)$, $w_4 \in \operatorname{col}(K^+)$ and $d_1, d_2, d_4 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $z = d_1 w_1 + d_2 (w_2 + w_2^*) + d_4 w_4$ while $c_1 d_4$ and $c_4 d_1$ are even.

Proof. Firstly it will be shown by induction on the number of rows in c_4 that, when $z_1 \in \operatorname{col}(G^+)$ with $c_4z_1 \in \operatorname{col}(K^+)$, then there exist $w_1 \in \operatorname{col}(G^+)$, $w_2 \in \operatorname{col}(H^+)$ and $d_1, d_2 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $z_1 = d_1w_1 + d_2(w_2 + w_2^*)$ while c_4d_1 is even. To start the induction, following Lemma 9.1 of [1], first let $c_4 \in \operatorname{row}(\mathbb{Z}^+)$ and $z_1 \in \operatorname{col}(G^+)$ with $c_4z_1 \in K^+$. Then $c_4z_1 \in G^+ \cap K^+ = (1+*)(H^+)$ and so $c_4z_1 = z_2 + z_2^*$ for some $z_2 \in H^+$. Applying Lemma 1.3 with $x_1 = z_1$, $x_2 = z_2$, $a_1 = c_4$ and $a_2 = a_3 = -1$, there exist $y_1 \in \operatorname{col}(F^+)$, $y_2 \in \operatorname{col}(H^+)$ and $b_{11}, b_{21}, b_{12}, b_{22}, b_{23} \in \operatorname{mat}(\mathbb{Z}^+)$ with

$$\begin{pmatrix} z_1 \\ z_2 \\ z_2^* \end{pmatrix} = \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \end{pmatrix} \quad \text{and} \quad (c_4 - 1 - 1) \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} = 0.$$

Then c_4b_{11} is even. Let $y_1 = w_1 + w_4$ where $w_1 \in col(G^+)$ and $w_4 \in col(K^+)$. Then $z_1 = b_{11}w_1 + b_{11}w_4 + b_{21}(y_2 + y_2^*)$ where $b_{11}w_4 = z_1 - b_{11}w_1 - b_{21}(y_2 + y_2^*) \in col(G^+) \cap col(K^+)$, so that $b_{11}w_4 = v + v^*$ for some $v \in col(H^+)$. Therefore

$$z_1 = b_{11}w_1 + \begin{pmatrix} b_{21} & I \end{pmatrix} \left[\begin{pmatrix} y_2 \\ v \end{pmatrix} + \begin{pmatrix} y_2 \\ v \end{pmatrix}^* \right]$$

with $c_4 b_{11}$ even.

To implement the inductive step, again follow Lemma 9.1 of [1] by letting $z_1 \in \operatorname{col}(G^+)$ with $c_4z_1 \in \operatorname{col}(K^+)$ and $c_4 = \binom{p_4}{q_4}$ where $p_4 \in \operatorname{row}(\mathbb{Z}^+)$, $p_4z_1 \in K^+$ and $q_4z_1 \in \operatorname{col}(K^+)$. By the inductive hypothesis, there exist $u_1 \in \operatorname{col}(G^+)$, $u_2 \in \operatorname{col}(H^+)$ and $e_1, e_2 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $z_1 = e_1u_1 + e_2(u_2 + u_2^*)$ while q_4e_1 is even. Then $p_4e_1 \in \operatorname{row}(\mathbb{Z}^+)$ and $u_1 \in \operatorname{col}(G^+)$ with $p_4e_1u_1 = p_4z_1 - p_4e_2(u_2 + u_2^*) \in K^+$ so, by the first part of the proof, there exist $v_1 \in \operatorname{col}(G^+)$, $v_2 \in \operatorname{col}(H^+)$ and $f_1, f_2 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $u_1 = f_1v_1 + f_2(v_2 + v_2^*)$ with $p_4e_1f_1$ even. Then

$$z_1 = e_1 u_1 + e_2 (u_2 + u_2^*) = e_1 f_1 v_1 + (e_1 f_2 \quad e_2) \left(\begin{pmatrix} v_2 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_2 \\ u_2 \end{pmatrix}^* \right)$$

with q_4e_1 , $p_4e_1f_1$ and hence $c_4e_1f_1$ even.

By symmetry it now follows that when $z_4 \in \operatorname{col}(K^+)$ with $c_1z_4 \in \operatorname{col}(G^+)$, then there exist $w_2 \in \operatorname{col}(H^+)$, $w_4 \in \operatorname{col}(K^+)$ and $d_2, d_4 \in \operatorname{mat}(\mathbb{Z}^+)$ such that $z_4 = d_2(w_2 + w_2^*) + d_4w_4$ while c_1d_4 is even. These two results can be combined to prove the lemma by letting $z \in \operatorname{col}(F^+) = z_1 + z_4$, where $z_1 \in \operatorname{col}(G^+)$ and $z_4 \in \operatorname{col}(K^+)$ and noting that $c_1z_4 = c_1z - c_1z_1 \in \operatorname{col}(G^+)$. Applying the second case gives $z_4 = d_2(v_2 + v_2^*) + d_4v_4$ with $v_2 \in \operatorname{col}(H^+)$, $v_4 \in \operatorname{col}(K^+)$ and $d_2, d_4 \in$ $\operatorname{mat}(\mathbb{Z}^+)$ with c_1d_4 even. Then $z = z_1 + d_2(v_2 + v_2^*) + d_4v_4$ where $z_1 \in \operatorname{col}(G^+)$ with $c_4z_1 = c_4z - c_4d_2(v_2 + v_2^*) - c_4d_4v_4 \in \operatorname{col}(K^+)$ so that, by the first case, $z_1 = e_1w_1 + e_2(w_2 + w_2^*)$ with $w_2 \in \operatorname{col}(H^+)$, $w_1 \in \operatorname{col}(G^+)$, $e_1, e_2 \in \operatorname{mat}(\mathbb{Z}^+)$ and c_4e_1 even. Combining these two results gives

$$z = e_1 w_1 + \begin{pmatrix} d_2 & e_2 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} v_2 \\ w_2 \end{pmatrix} + \begin{pmatrix} v_2 \\ w_2 \end{pmatrix}^* \end{pmatrix} + d_4 v_4$$

with c_1d_4 and c_4e_1 even.

LEMMA 1.5. Let *H* be a dimension group with an involution *, let $\ker(1 + *) = (1 - *)(H)$, let $(1 + *)(H^+) = [(1 + *)H]^+$ and let *G*, *K* be subgroups of $F = \ker(1 - *)$ such that $G \cap K = (1 + *)H$ and $G^+ + K^+ = F^+$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Let $x_1 \in col(G^+)$, $x_2 \in col(H^+)$, $x_4 \in col(K^+)$ and $a_1, a_2, a_4 \in row(\mathbb{Z})$ such that $a_1x_1 + a_2(x_2 + x_2^*) + a_4x_4 = 0$. Then there exist $y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $y_4 \in col(K^+)$ and $b_{11}, b_{21}, b_{41}, b_{12}, b_{22}, b_{23}, b_{42}, b_{14}, b_{24}, b_{44} \in mat(\mathbb{Z}^+)$ such that b_{14} and b_{41} are even while

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{21} & b_{21} & b_{41} \\ b_{12} & b_{22} & b_{23} & b_{42} \\ b_{12} & b_{23} & b_{22} & b_{42} \\ b_{14} & b_{24} & b_{24} & b_{44} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \\ y_4 \end{pmatrix} and (a_1 \quad a_2 \quad a_2 \quad a_4) \begin{pmatrix} b_{11} & b_{21} & b_{21} & b_{41} \\ b_{12} & b_{22} & b_{23} & b_{42} \\ b_{12} & b_{23} & b_{22} & b_{42} \\ b_{14} & b_{24} & b_{24} & b_{44} \end{pmatrix} = 0.$$

Proof. By Lemma 1.3 applied to

$$\begin{pmatrix} a_1 & a_4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} + a_2 x_2 + a_2 x_2^* = 0$$

there exist $y \in col(F^+)$, $y_2 \in col(H^+)$ and $b_{11}, b_{12}, b_{21}, b_{22}, b_{23} \in mat(\mathbb{Z}^+)$ with

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} \\ x_2 \\ x_2^* \\ x_2^* \end{pmatrix} = \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} \begin{pmatrix} y \\ y_2 \\ y_2^* \end{pmatrix} \quad \text{and} \quad ((a_1 & a_4) & a_2 & a_2) \begin{pmatrix} b_{11} & b_{21} & b_{21} \\ b_{12} & b_{22} & b_{23} \\ b_{12} & b_{23} & b_{22} \end{pmatrix} = 0.$$

Splitting the first row according to the number of rows in x_1 and x_4 , reordering the rows and renaming, there exist $y \in col(F^+)$, $y_2 \in col(H^+)$ and c_{11} , c_{12} , c_{21} , c_{22} , c_{23} , c_{14} , $c_{24} \in mat(\mathbb{Z}^+)$ with

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4^* \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \\ c_{14} & c_{24} & c_{24} \end{pmatrix} \begin{pmatrix} y \\ y_2 \\ y_2^* \end{pmatrix} \quad \text{and} \quad (a_1 \quad a_2 \quad a_2 \quad a_4) \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \\ c_{14} & c_{24} & c_{24} \end{pmatrix} = 0.$$

From $x_1 = c_{11}y + c_{21}(y_2 + y_2^*)$ and $G \cap K = (1 + *)(H)$ it follows that $c_{11}y \in col(G^+)$ and similarly $c_{14}y \in col(K^+)$. It therefore follows from Lemma 1.4 that

there exist $w_1 \in col(G^+)$, $w_2 \in col(H^+)$, $w_4 \in col(K^+)$ and $d_1, d_2, d_4 \in mat(\mathbb{Z}^+)$ such that $y = d_1w_1 + d_2(w_2 + w_2^*) + d_4w_4$ while $c_{11}d_4$ and $c_{14}d_1$ are even. Thus

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \\ c_{14} & c_{24} & c_{24} \end{pmatrix} \begin{pmatrix} d_1 & (0 \ d_2) & (0 \ d_2) & d_4 \\ 0 & (I \ 0) & 0 & 0 \\ 0 & 0 & (I \ 0) & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ (y_2 \\ w_2) \\ (w_2 \\ w_4 \end{pmatrix}$$
$$= \begin{pmatrix} c_{11}d_1 & c_{11} (0 \ d_2) + c_{21} (I \ 0) & c_{11} (0 \ d_2) + c_{21} (I \ 0) & c_{11} d_4 \\ c_{12}d_1 & c_{12} (0 \ d_2) + c_{22} (I \ 0) & c_{12} (0 \ d_2) + c_{22} (I \ 0) & c_{12} d_4 \\ c_{12}d_1 & c_{12} (0 \ d_2) + c_{23} (I \ 0) & c_{12} (0 \ d_2) + c_{22} (I \ 0) & c_{12} d_4 \\ c_{14}d_1 & c_{14} (0 \ d_2) + c_{24} (I \ 0) & c_{14} (0 \ d_2) + c_{24} (I \ 0) & c_{14} d_4 \end{pmatrix} \begin{pmatrix} w_1 \\ (y_2 \\ w_2 \\ w_4 \end{pmatrix}$$

with $c_{11}d_4$ and $c_{14}d_1$ even and

$$\begin{pmatrix} a_1 & a_2 & a_2 \end{pmatrix} \begin{pmatrix} c_{11} & c_{21} & c_{21} \\ c_{12} & c_{22} & c_{23} \\ c_{12} & c_{23} & c_{22} \\ c_{14} & c_{24} & c_{24} \end{pmatrix} \begin{pmatrix} d_1 & (0 & d_2) & (0 & d_2) & d_4 \\ 0 & (I & 0) & 0 & 0 \\ 0 & 0 & (I & 0) & 0 \end{pmatrix} = 0.$$

The following lemma is required in Corollary 1.8 and Theorem 2.3. I am grateful to Professor Ken Goodearl for pointing this out and for supplying the proof.

LEMMA 1.6. Let *H* be a dimension group with an involution * such that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$. Then F = ker(1 - *) is a dimension group.

Proof. The non-obvious condition is interpolation, which it suffices to check within F^+ . So let $x_1, x_2, y_1, y_2 \in F^+$ with $x_i \leq y_j$ for all i, j. By interpolation in H there exists $z \in H^+$ with $x_i \leq z \leq y_j$ for all i, j and then $x_i \leq z^* \leq y_j$. By interpolation again, there exists $w \in H^+$ with $z, z^* \leq w \leq y_1, y_2$. Then, by assumption, there exists $c \in F^+$ with $z \leq c \leq w$ and therefore $x_i \leq c \leq y_j$ for all i, j as required.

It is shown in Theorem 8.4 of [1] that the classifying invariants from [1] and [2] for unital real approximately finite dimensional C^* -algebras are sequences of the form

$$(G,\nu) \xrightarrow{1} (H,\nu) \xrightarrow{1+*} (K,2\nu),$$

where *H* is a countable dimension group with order unit ν and involution * and *G* and *K* are subgroups of Fix(*) containing (1 + *)(H) such that $\nu \in G$. In the simplicial situation, where $H = \mathbb{Z}^r \times \mathbb{Z}^{2s}$ with $* = 1 \times f$ for f(a, b) = (b, a), there exist u, v with u + v = r such that $G = 2\mathbb{Z}^u \times \mathbb{Z}^v \times D_c$ and $K = \mathbb{Z}^u \times 2\mathbb{Z}^v \times D_c$, where $D_c = \{(m, m) : m \in \mathbb{Z}^s\}$. The sequences which arise in the range of the classifying invariant are the inductive limits of sequences of these special simplicial cases. The next result gives conditions on *H* ensuring that all

the sequences

$$(G,\nu) \xrightarrow{1} (H,\nu) \xrightarrow{1+*} (K,2\nu)$$

described above arise in this way. Note that when * = 1 (so that the sequence corresponds to an algebra of type *rh* by Theorem 7.9 of [1]), the result reduces to Theorem 9.2 of [1]. When ker(1 - *) = (1 + *)H (and therefore G = K = ker(1 - *)), the sequence corresponds to an algebra of type *c* by Theorem 7.13 of [1] and the result reduces to Theorem 10.6 of [1].

THEOREM 1.7. Let *H* be a countable dimension group with an order unit v and an involution *, let ker(1 + *) = (1 - *)(H), let $(1 + *)(H^+) = [(1 + *)H]^+$ and let *G*, *K* be subgroups of ker(1 - *) with $v \in G$, $G \cap K = (1 + *)(H)$ and $G^+ + K^+ =$ ker $(1 - *)^+$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Then the sequence

$$(G,\nu) \xrightarrow{1} (H,\nu) \xrightarrow{1+*} (K,2\nu)$$

is in the range of the classifying invariant for unital real approximately finite dimensional C^* -algebras.

Proof. By Theorem 8.4 and Proposition 8.5 of [1] it suffices to show that if $x_1 \in col(G^+)$, $x_2 \in col(H^+)$, $x_4 \in col(K^+)$ and $a_1, a_2, a_3, a_4 \in row(\mathbb{Z})$ such that $a_1x_1 + a_2x_2 + a_3x_2^* + a_4x_4 = 0$ then there exist $y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $y_4 \in col(K^+)$ and $b_{11}, b_{21}, b_{41}, b_{12}, b_{22}, b_{23}, b_{42}, b_{14}, b_{24}, b_{44} \in mat(\mathbb{Z}^+)$ such that b_{14} and b_{41} are even while

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{21} & b_{21} & b_{41} \\ b_{12} & b_{22} & b_{23} & b_{42} \\ b_{12} & b_{23} & b_{22} & b_{42} \\ b_{14} & b_{24} & b_{24} & b_{44} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \\ y_4 \end{pmatrix} \text{ and }$$

$$(a_1 \quad a_2 \quad a_3 \quad a_4) \begin{pmatrix} b_{11} & b_{21} & b_{21} & b_{41} \\ b_{12} & b_{22} & b_{23} & b_{42} \\ b_{12} & b_{23} & b_{22} & b_{42} \\ b_{14} & b_{24} & b_{24} & b_{44} \end{pmatrix} = 0$$

The condition $a_1x_1 + a_2x_2 + a_3x_2^* + a_4x_4 = 0$ implies $a_1x_1 + a_2x_2^* + a_3x_2 + a_4x_4 = 0$ and hence $2a_1x_1 + (a_2 + a_3)(x_2 + x_2^*) + 2a_4x_4 = 0$ and $(a_2 - a_3)(x_2 - x_2^*) = 0$. Applying Lemma 1.5 to the first of these produces a matrix

$$C = \begin{pmatrix} c_{11} & c_{21} & c_{21} & c_{41} \\ c_{12} & c_{22} & c_{23} & c_{42} \\ c_{12} & c_{23} & c_{22} & c_{42} \\ c_{14} & c_{24} & c_{24} & c_{44} \end{pmatrix}$$

334

and $z_1 \in \operatorname{col}(G^+)$, $z_2 \in \operatorname{col}(H^+)$, $z_4 \in \operatorname{col}(K^+)$ such that c_{14} and c_{41} are even,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4 \end{pmatrix} = C \begin{pmatrix} z_1 \\ z_2 \\ z_2^* \\ z_4 \end{pmatrix} \quad \text{and} \quad (2a_1 \quad a_2 + a_3 \quad a_2 + a_3 \quad 2a_4) C = 0.$$

From $(a_2 - a_3)(x_2 - x_2^*) = 0$ it follows that $(a_2 - a_3)(c_{22} - c_{23})(z_2 - z_2^*) = 0$ and therefore, by Lemma 1.2, there exist $y_1 \in col(G^+)$, $y_2 \in col(H^+)$, $y_4 \in col(K^+)$ and $r_1, s_4, q_1, q_2, q_3, q_4 \in mat(\mathbb{Z}^+)$ such that $(a_2 - a_3)(c_{22} - c_{23})(q_2 - q_3) = 0$ and

$$\begin{pmatrix} z_1 \\ z_2 \\ z_2^* \\ z_4 \end{pmatrix} = D \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \\ y_4 \end{pmatrix} \quad \text{where } D = \begin{pmatrix} r_1 & 0 & 0 & 0 \\ q_1 & q_2 & q_3 & q_4 \\ q_1 & q_3 & q_2 & q_4 \\ 0 & 0 & 0 & s_4 \end{pmatrix}.$$

The condition $(a_2 - a_3)(c_{22} - c_{23})(q_2 - q_3) = 0$ implies

$$(0 \quad a_2 - a_3 \quad a_3 - a_2 \quad 0) CD$$

$$= \begin{pmatrix} 0 & a_2 - a_3 & a_3 - a_2 & 0 \end{pmatrix} \begin{pmatrix} c_{11} & c_{21} & c_{21} & c_{41} \\ c_{12} & c_{22} & c_{23} & c_{42} \\ c_{12} & c_{23} & c_{22} & c_{42} \\ c_{14} & c_{24} & c_{24} & c_{44} \end{pmatrix} \begin{pmatrix} r_1 & 0 & 0 & 0 \\ q_1 & q_2 & q_3 & q_4 \\ q_1 & q_3 & q_2 & q_4 \\ 0 & 0 & 0 & s_4 \end{pmatrix} = 0.$$

Combining this with

$$(2a_1 \quad a_2 + a_3 \quad a_2 + a_3 \quad 2a_4) C = 0$$

gives

$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix} CD = 0.$$

Also

$$\begin{pmatrix} x_1 \\ x_2 \\ x_2^* \\ x_4 \end{pmatrix} = B \begin{pmatrix} y_1 \\ y_2 \\ y_2^* \\ y_4 \end{pmatrix}$$

where B = CD has the required form.

It is noted in [1] that the condition that whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$ may possibly be a consequence of the other conditions of Theorem 1.7 and it is shown there that this is indeed the case when *H* is simple.

COROLLARY 1.8. Let *H* be a simple countable dimension group with an order unit v and an involution * satisfying ker(1 + *) = (1 - *)(H) and let *G*, *K* be subgroups of ker(1 - *) with $G \cap K = (1 + *)(H)$ and G + K = ker(1 - *). Then the sequence

$$(G,\nu) \xrightarrow{1} (H,\nu) \xrightarrow{1+*} (K,2\nu)$$

is in the range of the classifying invariant for unital real approximately finite dimensional simple C**-algebras.*

Proof. It is shown in Lemma 10.7 of [1] and the following comment that a simple countable dimension group *H* with an involution * satisfies $(1 + *)(H^+) = [(1 + *)H]^+$ and the condition that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Note that if *H* is simple then F = ker(1 - *) is also simple, because the ideal in *H* generated by an ideal *I* in *F* is $J = \{h \in H : -x \leq h \leq x \text{ for some } x \in I^+\}$ and $J \cap F = I$. It therefore follows from Lemma 9.3 of [1] and Lemma 1.6 that the condition $G^+ + K^+ = \text{Ker}(1 - *)^+$ can be weakened to G + K = ker(1 - *).

The example on page 78 of [1] shows that the condition ker(1 + *) = (1 - *)(H) cannot be omitted from the statement of Corollary 1.8.

2. THE NON-UNITAL CASE

As in Theorem 13.13 of [1], the non-unital case can be deduced from the unital one. Let *H* be a dimension group with involution * and let *D* be a generating interval in H^+ . Define $H^\circ = \mathbb{Z} \times H$ with the involution $(m, h)^* = (m, h^*)$ and the positive cone $H^{\circ+} = \{(m, h) : m \ge 0 \text{ and } ma + h \ge 0 \text{ for some } a \in D\}$ and note from Proposition 12.6 of [1] that H° is a dimension group, (1,0) is an order unit for H° and that $D = \{h \in H : 0 \le (0, h) \le (1, 0)\}$.

LEMMA 2.1. Let *H* be a dimension group with involution *, let *E* be the kernel of $1 + * : H \to H$ and let E° be the kernel of $1 + * : H^{\circ} \to H^{\circ}$.

(i) If E = (1 - *)H, then $E^{o} = (1 - *)H^{0}$.

(ii) If $(1+*)(H^+) = [(1+*)H]^+$ then $(1+*)(H^{o+}) = [(1+*)H^o]^+$.

Proof. (i) We have:

$$\begin{split} E^{o} &= \{(m,h): (2m,h+h^{*}) = (0,0)\} \\ &= \{(0,(1-*)x): x \in H\} = \{(m,x) - (m,x)^{*}: (m,x) \in H^{o}\} = (1-*)H^{o}. \end{split}$$

(ii) Let $(1 + *)(H^+) = [(1 + *)H]^+$ and let $(2m, h + h^*) \in (1 + *)H^0$ with $2m \ge 0$ and $2ma + h + h^* \ge 0$ for some $a \in D$. Then $(ma + h) + (ma + h)^* \in [(1 + *)H]^+ = (1 + *)(H^+)$ so $(ma + h) + (ma + h)^* = y + y^*$ for some $y \ge 0$. It follows from $ma + (y - ma) \ge 0$ that $(m, y - ma) \ge 0$. Therefore $(2m, h + h^*) = (1 + *)(m, y - ma) \in (1 + *)(H^{0+})$, which shows that $[(1 + *)H^0]^+ \subseteq (1 + *)(H^{0+})$. The reverse inclusion is clear.

LEMMA 2.2. Let *H* be a dimension group with involution * and assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, there exists $c = c^*$ with $a \leq c \leq b$. Then, whenever $(m, a), (n, b) \in H^{o+}$ with $(m, a) \leq (n, b)$ and $(m, a)^* \leq (n, b)$, there exists $(p, e) = (p, e)^* \in H^{o+}$ with $(m, a) \leq (p, e) \leq (n, b)$. *Proof.* Let (m, a), $(n, b) \in H^{o+}$ with $(m, a) \leq (n, b)$ and $(m, a)^* \leq (n, b)$, so $n - m \ge 0$ and there exist $c, c' \in D$ with $(n - m)c + b - a \ge 0$ and $(n - m)c' + b - a^* \ge 0$. Let $d \in D$ be an upper bound for c and c'. Then $(n - m)d + b - a \ge 0$ and $(n - m)d + b - a^* \ge 0$. Let $f = f^* \in H$ with $a + f \ge 0$, $a^* + f \ge 0$ and $(n - m)d + b + f \ge 0$ so that there exists $e' = e'^* \in H$ with $a + f \le e' \le (n - m)d + b + f$ and therefore e = e' - f with $e = e^*$ and $a \le e \le (n - m)d + b$. Then $(m, a) \le (m, e) \le (n, b)$. ■

The following extension of Theorem 13.13 of [1] now follows with an almost identical proof.

THEOREM 2.3. Let H be a countable dimension group with an involution *, let D be a generating interval in H^+ , let $\ker(1+*) = (1-*)(H)$, let $(1+*)(H^+) = [(1+*)H]^+$ and let G, K be subgroups of $\ker(1-*)$ with $G \cap K = (1+*)(H)$, $G^+ + K^+ = \ker(1-*)^+$ and each element of D bounded above by an element of $D \cap G$. Assume that, whenever $a, b \in H^+$ with $a \leq b$ and $a^* \leq b$, then there exists $c = c^*$ with $a \leq c \leq b$.

Then the sequence

$$(G, D \cap G) \xrightarrow{1} (H, D) \xrightarrow{1+*} (K, 2D \cap K)$$

is in the range of the classifying invariant for real approximately finite dimensional C^{*}*- algebras.*

Proof. Let $G^{\circ} = \mathbb{Z} \times G$ and $K^{\circ} = 2\mathbb{Z} \times K$. Then G° and K° are subgroups of H° such that $\nu = (1,0) \in G$. Using Lemma 1.6, the proof of Theorem 13.13 of [1] shows that $G^{\circ+} + K^{\circ+} = F^{\circ+}$, where F° is the kernel of $1 - * : H^{\circ} \to H^{\circ}$. Also

$$G^{o} \cap K^{o} = \{(2m,g) : g \in G \cap K\} = \{(m,h) + (m,h)^{*} : (m,h) \in H^{o}\} = (1+*)H^{o}.$$

The conditions of Theorem 1.7 therefore apply to yield a unital algebra *S* corresponding to the diagram

$$Y: \quad (G^{\mathsf{o}}, (1,0)) \stackrel{1}{\longrightarrow} (H^{\mathsf{o}}, (1,0)) \stackrel{1+*}{\longrightarrow} (K^{\mathsf{o}}, (2,0)).$$

Let *W* be the diagram

$$W: \quad (\mathbb{Z},1) \xrightarrow{2} (\mathbb{Z},2) \xrightarrow{2} (\mathbb{Z},4)$$

and let *t* be the morphism from *Y* to *W* with $t_1(m, x) = m$ for all $(m, x) \in G^\circ$, $t_2(m, x) = 2m$ for all $(m, x) \in H^\circ$ and $t_3(m, x) = 2m$ for all $(m, x) \in K^\circ$. As in [1] there exists an \mathbb{R} -algebra map $\psi : S \to \mathbb{H}$ giving rise to *t*. Let *R* be the ideal ker (ψ) of *S*, which is also a direct limit of finite dimensional real algebras, and note that if $S/R \cong \mathbb{C}$ then t_2 factors as

$$(H^{\mathbf{o}},(1,0)) \xrightarrow{r_2} (\mathbb{Z}^2,(1,1)) \xrightarrow{(a,b)\mapsto a+b} (\mathbb{Z},2)$$

For $h \ge 0$, $t_2(0,h) = 0$ and $r_2(0,h) \ge (0,0)$, so $r_2(0,h) = (0,0)$. Thus $r_2(H^o) = \{(m,m) : m \in \mathbb{Z}\}$. However, since $K_1(R \otimes \mathbb{C}) = 0$, the map r_2 , arising from the surjection from $S \otimes \mathbb{C}$ to \mathbb{C}^2 , is surjective, giving a contradiction. Thus $S/R \cong \mathbb{R}$

or $S/R \cong \mathbb{H}$. Lemma 13.12 of [1] therefore applies to show that the diagram associated with *R* is

$$(\ker(t_1), E_1) \xrightarrow{1} (\ker(t_2), E_2) \xrightarrow{1+*} (\ker(t_3), E_3)$$

where $E_1 = \{x \in \ker(t_1) : 0 \le x \le (1,0)\}$, $E_2 = \{x \in \ker(t_2) : 0 \le x \le (1,0)\}$ and $E_3 = \{x \in \ker(t_3) : 0 \le x \le (2,0)\}$. As in [1] the diagram is isomorphic to

$$(G, D \cap G) \xrightarrow{1} (H, D) \xrightarrow{1+*} (K, 2D \cap K),$$

as required.

Acknowledgements. I am very grateful to Professor Ken Goodearl for correcting some errors in an earlier version of this paper and for suggesting simpler proofs of Lemmas 1.2 and 1.4.

REFERENCES

- K.R. GOODEARL, D.E. HANDELMAN, Classification of ring and C*-algebra direct limits of finite-dimensional semisimple real algebras, *Mem. Amer. Math. Soc.* 69(1987), no. 372.
- [2] P.J. STACEY, Real structure in direct limits of finite dimensional C*-algebras, J. London Math. Soc. (2) 35(1987), 339–352.

P.J. STACEY, DEPARTMENT OF MATHEMATICS AND STATISTICS, LA TROBE UNI-VERSITY, VICTORIA, 3086, AUSTRALIA *E-mail address*: P.Stacey@latrobe.edu.au

Received December 14, 2010.