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ABSTRACT. To every bounded linear operator A between Hilbert spaces H
and K three cardinals ιr(A), ιi(A) and ιf(A) and a binary number ιb(A) are
assigned in terms of which the descriptions of the norm closures of the orbits
{GAL−1 : L ∈ G1, G ∈ G2} are given for G1 and G2 (chosen independently)
being the trivial group, the unitary group or the group of all invertible opera-
tors onH and K, respectively.
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1. INTRODUCTION

For a Hilbert space H, denote by G(H) and U (H) the group of all isomor-
phisms (i.e. linear homeomorphisms) of H and the unitary group of H, respec-
tively. Additionally, let IH be the identity operator onH. For study of the geome-
try of the Banach space B(H,K) of all bounded linear operators from the Hilbert
space H into a Hilbert space K the natural action (G(H)× G(K))× B(H,K) 3
((L, G), X) 7→ GXL−1 ∈ B(H,K) of the group G(H)× G(K) plays an important
role. Especially the literature concerning the orbits (and their closures) under this
action of closed range operators is still growing up (see e.g. [2] and references
there). This includes the theory of Fredholm and semi-Fredholm operators, for
which the index "ind” is naturally defined and well behaves. However, most of
results on closed range operators are settled in a separable (infinite-dimensional)
Hilbert space. Also hardly ever operators with nonclosed ranges are considered
when speaking about indices or orbits under the group action. The aim of the
paper is to fill this lack and give a full answer (see Theorem 3.9) to the following
problem:

Given an operator A ∈ B(H,K), describe the closure of the orbit of A
under the natural action of G(H)× G(K).
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We shall also solve analogous problems for the group orbits with respect to the
following subgroups of G(H)×G(K) (under the same action): G(H)× {IK} and
{IH} × G(K) (Theorem 6.6), U (H)× U (K) (Proposition 3.15), U (H)× {IH} and
{IH} × U (K) (Theorem 6.1; note that the orbits of A with respect to the groups
G(H)×U (K), U (H)×G(K) and G(H)×G(K) coincide, which follows e.g. from
Theorem 3.1 of [4]; see Proposition 3.2 below). The main results on these are
settled in any Hilbert spaces (without restriction on dimensions) and deal with
an arbitrary bounded operator.

In comparison to the characterization of the members of the orbit of an op-
erator under the action of G(H)× G(K) which highly depends on the geometry
of the range of the operator (see Theorem 3.4 of [4] or Proposition 3.2 in Section 3
below), the description of the closure of this orbit is given only in terms of four in-
dices (that is, cardinal numbers), which seems to be surprising. Among many ap-
plications one may find: generalizations of results of Izumino and Kato [9] on the
closure of G(H) and of Mbekhta [11] on the boundaries of sets of semi-Fredholm
operators of arbitrarily fixed index, an extension of the notion of the index “ind”
and characterization of all closed two-sided ideals of B(H) for nonseparableH.

NOTATION. In this paper H and K denote (complex) Hilbert spaces. B(H,K) is
the Banach space of all bounded operators fromH into K; G(H,K) and U (H,K)
are, respectively, the set of all isomorphisms and unitary operators from H onto
K. When K = H, we write B(H), G(H) and U (H) instead of B(H,H), G(H,H)
and U (H,H). Additionally, B+(H) stands for the set of all nonnegative (bounded)
operators on H. Whenever V is a closed subspace of H, H	 V and PV ∈ B(H)
denote the orthogonal complement of V inH and the orthogonal projection onto
V. IH is the identity operator on H and dimH is the dimension of H as a
Hilbert space (i.e. dimH is the cardinality of any orthonormal basis of H). For
A ∈ B(H,K), N(A), R(A) and R(A) denote the kernel, the range and the closure
of the range of A. The polar decomposition of A has the form A = Q|A| where
|A| :=

√
A∗A and Q is a partial isometry such that N(Q) = N(A). Whenever

we speak about convergence, closures, open sets, etc., in B(H,K), all they are
understood in the norm topology. By B(R+) we denote the σ-algebra of all Borel
subsets of R+ := [0,+∞).

2. OPERATOR RANGES

In this part we recall the characterization of operator ranges and we define
two auxiliary indices of such spaces which will find an application in the sequel.

Whenever E is a pre-Hilbert space, E stands for its completion. A pre-
Hilbert space E is said to be an operator range if and only if there is a Hilbert
spaceH and a bounded operator T : H → E such that R(T) = E .
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WheneverH1,H2, . . . is a sequence of mutually orthogonal closed subspaces
of a Hilbert space H, let us denote by S(H1,H2, . . .) the linear subspace of H
consisting of all vectors x ∈ H of the form x =

∞
∑

n=1
xn where xn ∈ Hn and

∞
∑

n=1
4n‖xn‖2 < +∞.

A fundamental result on operator ranges is the following

THEOREM 2.1. For a pre-Hilbert space E the following conditions are equivalent:
(i) E is an operator range;

(ii) there is a sequence H1,H2, . . . of mutually orthogonal closed subspaces of E such
that E = S(H1,H2, . . .).

For a proof, see e.g. [4].

DEFINITION 2.2. Let E be a pre-Hilbert space. The cardinal

IC(E) = min{dim(E 	V) : V is a complete subspace of E}

is called the index of incompleteness of E . The binary index of E , in symbol b(E), is
defined as follows: b(E) = 1 if and only if E contains a (necessarily complete)
subspace isomorphic to E ; otherwise b(E) = 0.

The following result shows how useful are the indices just defined. Its proof
is left as an exercise (the points (iv) and (v) of it follow from Theorem 2.1).

PROPOSITION 2.3. Let E be a pre-Hilbert space.
(i) E is complete if and only if IC(E) = 0. If E is incomplete, IC(E) is infinite.

(ii) If IC(E) < dim E , then b(E) = 1.
(iii) If b(E) = 1, there is a complete subspace V of E such that dim V = dim E and

dim(E 	V) = IC(E).
(iv) If E is a range space, then for each β < dim E there is a complete subspace of E of

dimension β.
(v) If E is a range space and b(E) = 0, then dim E is an (infinite) limit cardinal of

countable cofinality.

It is clear that if E and E ′ are two linearly isometric pre-Hilbert spaces, then
IC(E) = IC(E ′) and b(E) = b(E ′). This property combined with a well-known
fact that the ranges of a bounded operator and its adjoint operator are linearly
isometric yields

PROPOSITION 2.4. If A is a bounded operator between two Hilbert spaces, then
IC(R(A)) = IC(R(A∗)) and b(R(A)) = b(R(A∗)).

With the use of Theorem 3.3 of [4] on linearly isometric operator ranges we
now give formulas for both the indices IC(E) and b(E) in case E is an operator
range.
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PROPOSITION 2.5. Let E be an infinite-dimensional operator range and spaces
H1,H2, . . . be as in point (ii) of Theorem 2.1; that is, E = S(H1,H2, . . .).

(i) There is N > 1 such that IC(E) =
∞
∑

n=N
dimHn. More precisely,

IC(E) = min
{ ∞

∑
n=m

dimHn : m > 1
}

.

(ii) b(E) = 1 if and only if dimHj = dim E for some j > 1.

Proof. Let V be a complete subspace of E . Note that the assertions of both
the points (i) and (ii) follow from the following property:

(2.1) there is U ∈ U (E ) and N > 1 such that U(E) = E and U(V) ⊂
N⊕

n=1

Hn,

which we now prove. Let E ′ = E ∩ (E 	V). Observe that E ′ is an operator range
(one does not need Corollary 2 of Theorem 2.2 of [4] to see this) and therefore E ′ =
S(H′1,H′2, . . .) for suitable spaces H′1,H′2, . . . But then E = S(V,H′1,H′2, . . .) =
S(H1,H2, . . .) and it follows from the proof of Theorem 3.3 of [4] that there are U
and N satisfying (2.1).

3. TWO-SIDED ACTIONS

DEFINITION 3.1. LetH andK be Hilbert spaces and G1 and G2 be subgroups
of G(H) and G(K) respectively. For A ∈ B(H,K) let O G2

G1
(A) be the orbit of

A with respect to the left action of G1 × G2 on B(H,K) given by (G1 × G2) ×
B(H,K) 3 ((G1, G2), X) 7→ G2XG−1

1 ∈ B(H,K); that is, O G2
G1
(A) = {G2 AG−1

1 :

Gj ∈ Gj}. The closure in B(H,K) of this orbit is denoted by O G2
G1
(A).

When Gj coincides with the whole group of invertible operators or with

the unitary group, then Gj in the notation O G2
G1

will be replaced by the letter G
or U, respectively. When Gj is the trivial group (consisting only of the identity
operator), Gj is omitted in this notation.

NOTATION. For A ∈ B(H,K) let Υ(A) consist of all closed linear subspaces V of
H for which there is a positive constant c such that ‖Ax‖ > c‖x‖ for any x ∈ V.
Observe that A(V) is closed in K for every V ∈ Υ(A). Additionally, to simplify
further arguments, for each V ∈ Υ(A) we use the following notation: ξA(V) =
(dim(H	V), dim V, dim(K	 A(V)). Put Λ(A) = {ξA(V) : V ∈ Υ(A)}. Notice
that Υ(A) = Υ(|A|).

For the completeness of the lecture, we begin with recalling the characteri-
zation of members of suitable orbits.
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PROPOSITION 3.2. Let A ∈ B(H,K). Let NA be the set of all B ∈ B(H,K)
such that dimN(B) = dimN(A) and dimN(B∗) = dimN(A∗).

(i) O G
G(A) consists of all B ∈ NA such that the ranges of A and B are isomorphic.

(ii)O U
U(A) is the set of all B ∈ NA such that AA∗ and BB∗ are unitarily equivalent.

(iii) O G(A) consists of all B ∈ NA such that R(B) = R(A).
(iv) O U(A) is the set of all B ∈ NA such that BB∗ = AA∗.
(v) O G

U(A) = O U
G(A) = O G

G(A), O G(A) = {B∗ : B ∈ O G(A∗)} and O U(A)
= {B∗ : B ∈ O U(A∗)}.

Proof. The point (iii) is Corollary 1 of Theorem 2.1 of [4]; (i) and the first
assertion of (v) is proved also in [4], see Theorem 3.4 there and its proof. To show
the sufficiency of the conditions of (iv), observe that if QA and QB are the partial
isometries appearing in the polar decompositions of A and B ∈ NA, respectively,
then Q∗AQB|R(B∗) is extendable to a unitary U ∈ U (H) which automatically sat-
isfies B = AU. Finally, notice that (ii) simply follows from (iv) and the remainder
of (v) is immediate.

In Lemma 3.5(iii) we shall show, independently of the foregoing result, that
O G

G(A) = O U
G(A) = O G

U(A) for each A.
The proof of the following easy result is omitted.

LEMMA 3.3. If A ∈ B(H,K), W is a closed subspace of H such that W ∩
N(A) = {0}, then dim(W 	 V) = dim(A(W) 	 A(V)) for any space V ∈ Υ(A)
contained in W.

The next two results are our main tools.

PROPOSITION 3.4. For every A ∈ B(H,K) and each ε > 0 there is V ∈ Υ(A)
such that |A|(V) = V and ‖A− APV‖ 6 ε.

Proof. Let E : B(R+) → B(H) be the spectral measure of |A|. It suffices to
put P = E([ε,+∞)) and V = R(P).

A part of the point (i) of the following result is certainly known in perturba-
tion theory. However, its short proof is used to establish the remainder of (i) and
therefore below we give full details.

LEMMA 3.5. Let A ∈ B(H,K).
(i) If A1, A2, . . . ∈ B(H,K) converge to A, then

Υ(A) ⊂
∞⋃

n=1

∞⋂
k=1

Υ(Ak) and Λ(A) ⊂
∞⋃

n=1

∞⋂
k=1

Λ(Ak).

What is more, for each V ∈ Υ(A) there is N > 1 and a sequence (Zn)∞
n=N ⊂ U (K) such

that V ∈ Υ(An), Zn(A(V)) = An(V) (n > N) and ZnPA(V) → PA(V) (n→ ∞).
(ii) Λ(GAL−1) = Λ(A) for each G ∈ G(K) and L ∈ G(H).
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(iii) O G
G(A) = O U

G(A) = O G
U(A) and O G

G(A) coincides with the set of all C ∈
B(H,K) such that Λ(C) ⊂ Λ(A).

Proof. (i) Suppose V ∈ Υ(A). Let P : K → A(V) be the orthogonal projec-
tion. Then we have PAn|V → A|V ∈ G(V, A(V)) and thus PAn|V ∈ G(V, A(V))
as well for n > N. This implies that V ∈ Υ(An),

(3.1) An(V) ∈ Υ(P) and P(An(V)) = A(V)

and N(P) + An(V) is closed. So, (α, β, γn) := ξAn(V) ∈ Λ(An) for n > N. Now
let Fn denote the orthogonal complement (in K) of N(P) + An(V). We see that
γn = dim(K 	 An(V)) = dim(N(P) ⊕ Fn) = dim(N(P) ⊕ P(Fn)) = dim(K 	
P(An(V))) = dim(K	 A(V)) which shows that

(3.2) dim(K	 An(V)) = dim(K	 A(V)) (n > N)

and ξA(V) ∈ Λ(An). From now on, n > N. Let Pn be the orthogonal projection
of K onto An(V). Since Pn AnPV = AnPV → APV (n → ∞) and simultaneously
lim

n→∞
Pn(An − A)PV = 0, we get lim

n→∞
Pn APV = APV . Since A|V ∈ G(V, A(V)),

the last formula is equivalent to

(3.3) PnPA(V) → PA(V) (n→ ∞).

Put Tn = Pn|A(V) ∈ B(A(V), An(V)). A straightforward calculation shows that
T∗n = PA(V)|An(V) (we compute T∗n as the adjoint of a member ofB(A(V), An(V))).
By (3.1), T∗n ∈ G(An(V), A(V)) and hence Tn ∈ G(A(V), An(V)). Let Tn =
Qn|Tn| be the polar decomposition of Tn; that is, Qn ∈ U (A(V), An(V)) and
|Tn| ∈ B+(A(V)). Now by (3.2), there is a unitary operator Zn on K which ex-
tends Qn. It remains to prove that

(3.4) lim
n→∞

ZnPA(V) = PA(V).

It follows from (3.3) that lim
n→∞

PA(V)PnPA(V) = PA(V). We conclude from this that

lim
n→∞

T∗n Tn = IA(V) and thus lim
n→∞

|Tn| = IA(V) and |Tn|−1 → IA(V) (n → ∞) as

well. So,

ZnPA(V) = QnPA(V) = Tn|Tn|−1PA(V) = (PnPA(V))|Tn|−1PA(V)

which tends to PA(V) as n→ ∞. This finishes the proof of (i).
The point (ii) is immediate. To prove (iii), suppose Λ(C) ⊂ Λ(A). For each

ε > 0 we shall find U ∈ U (K) and G ∈ G(H) such that

(3.5) ‖C−UAG−1‖ 6 ε.

By Proposition 3.4, there is V ∈ Υ(C) such that

(3.6) ‖C− CPV‖ 6
1
2

ε.

But then ξC(V) ∈ Λ(C) ⊂ Λ(A), so we may find W ∈ Υ(A) such that ξA(W) =
ξC(V). We conclude from this that there are unitary operators U0 onH and U on
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K with U0(W) = V and U(A(W)) = C(V). For n > 1 define Gn ∈ G(H) by Gn =
(C|V)−1UA on W and Gn = nU0 on H	W. Observe that UAG−1

n = C on V and
‖UAG−1

n |H	V‖ 6 (1/n)‖A‖. These properties combined with (3.6) yield (3.5)
with G = GN for some N > 1. This shows that C ∈ O U

G(A) provided Λ(C) ⊂
Λ(A). But the inclusionO U

G(A) ⊂ O G
G(A) is immediate and the implication “C ∈

O G
G(A) =⇒ Λ(C) ⊂ Λ(A)” follows from (i) and (ii). So, O U

G(A) = O G
G(A).

Finally, if C ∈ O G
G(A), then C∗ ∈ O G

G(A∗) and therefore C∗ ∈ O U
G(A∗) which

yields C ∈ O G
U(A).

Now for an operator A ∈ B(H,K) we define the following indices:
(I1) range index of A: ιr(A) = dimR(A) (cardinal);
(I2) initial index of A: ιi(A) = dimN(A) + IC(R(A)) (cardinal);
(I3) final index of A: ιf(A) = dim(K	R(A)) + IC(R(A)) (cardinal);
(I4) binary index of A: ιb(A) = b(R(A)) (0 or 1).

For example, note that:
(P1) if A is a closed range operator, then ιi(A) and ιf(A) are the well-known

indices: nullity and defect (respectively), compare e.g. [2];
(P2) ιi(A∗) = ιf(A) = ιi(|A∗|) = ιf(|A∗|), ιf(A∗) = ιi(A) = ιi(|A|) = ιf(|A|),

ιr(A∗) = ιr(A) = ιr(|A|) = ιr(|A∗|) and ιb(A∗) = ιb(A) = ιb(|A|) = ιb(|A∗|)
(see Proposition 2.4);

(P3) ιi(A) + ιr(A) = dimH, ιf(A) + ιr(A) = dimK (to see this, consider sepa-
rately the cases when ιr(A) is finite or not);

(P4) if K andH are separable and R(A) is nonclosed, ιi(A) = ιf(A) = ℵ0.
Using only these four indices we shall characterize all operators belonging

to O G
G(A) (see Theorem 3.9). To do this, we need

LEMMA 3.6. For A ∈ B(H,K), Λ(A) consists precisely of all the triples of the
form (ιi(A) + ν, µ, ιf(A) + ν) where µ and ν are cardinal numbers satisfying the condi-
tions:

(i) µ + ν = ιr(A);
(ii) if ιb(A) = 0, then µ < ιr(A).

Proof. Suppose V ∈ Υ(A) and let (α, β, α′) = ξA(V) and µ = dim V. Let
W be the orthogonal complement (in H) of the (closed) subspace N(A) + V and
put ν = dim W. Then A restricted to V + W is a (continuous) monomorphism
onto R(A) and A(V) is closed in R(A). By Lemma 3.3, ν = dim(R(A)	 A(V)),
which gives µ + ν = ιr(A) and ν > IC(R(A)). Now Proposition 2.3(i) yields that
ν = IC(R(A)) + ν and thus α = ιi(A) + ν and α′ = ιf(A) + ν. Condition (ii)
follows from the definition of ιb(A) and the relation µ = dim A(V).

Now assume that µ and ν satisfy (i)–(ii). If µ < ιr(A), then ν is uniquely
determined by (i), ν = ν + IC(R(A)) (because ν = ιr(A) if ιr(A) is infinite and
otherwise IC(R(A)) = 0) and there is a complete subspace E of R(A) with

(3.7) dim E = µ
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(cf. Proposition 2.3(iv)). Then automatically

(3.8) ν + IC(R(A)) = dim(R(A)	 E).

If µ = ιr(A), then ιb(A) = 1 and (by Proposition 2.3(iii)) there is a complete
subspace W of R(A) such that dim W = µ and dim(R(A) 	W) = IC(R(A)).
Thanks to (i) we may find a closed subspace F of W such that dim(W 	 F) = µ
and ν = dim F. Now putting E = W 	 F ⊂ R(A), we see that relations (3.7) and
(3.8) are fulfilled.

To end the proof, let V = A−1(E)∩R(A∗). Note that V ∈ Υ(A) and A(V) =
E. By (3.8) and Lemma 3.3, ν + IC(R(A)) = dim(R(A∗)	 V) and thus (ιi(A) +
ν, µ, ιf(A) + ν) = ξA(V) ∈ Λ(A).

The next result is simply deduced from the previous one.

COROLLARY 3.7. Let A ∈ B(H,K).
(i) If ιr(A) is finite, then Λ(A) = {(dimH− j, j, dimK − j) : j = 0, . . . , ιr(A)}

where m− j = m when m is infinite and j is finite.
(ii) If ιb(A) = 0, then Λ(A) = {(dimH, β, dimK) : 0 6 β < ιr(A)}.

(iii) If ιr(A) is infinite and ιb(A) = 1, then

Λ(A) = {(dimH, β, dimK) : 0 6 β < ιr(A)}
∪ {(ιi(A) + α, ιr(A), ιf(A) + α) : 0 6 α 6 ιr(A)}.

Now the points (i) and (iii) of Lemma 3.5 combined with Corollary 3.7 yield

THEOREM 3.8. Every operator A ∈ B(H,K) with ιb(A) = 1 has a neighbour-
hood X such that A ∈ O G

G(T) for all T ∈ X .

Proof. Notice that (ιi(A), ιr(A), ιf(A)) ∈ Λ(A) and argue by contradiction:
suppose there is a sequence of bounded operators A1, A2, . . . which converge
to A and are such that A /∈ O G

G(An) for each n. But then Lemma 3.5(i) gives
(ιi(A), ιr(A), ιf(A)) ∈ Λ(An) for large n and therefore Λ(A) ⊂ Λ(An) for this n
(by the formula for Λ(X) given in Corollary 3.7). This contradicts the point (iii)
of Lemma 3.5.

The main result of the paper is the following consequence of Corollary 3.7
and Lemma 3.5(iii). Its proof is omitted.

THEOREM 3.9. For A ∈ B(H,K), O G
G(A) consists precisely of those operators

C ∈ B(H,K) which satisfy the following three conditions:
(i) ιr(C) 6 ιr(A);

(ii) if ιb(A) = 0 and ιb(C) = 1, then ιr(C) < ιr(A);
(iii) there is a cardinal α for which ιi(C) = ιi(A) + α and ιf(C) = ιf(A) + α. What

is more, if

(3.9) ιi(C) = dimH and ιf(C) = dimK,

then (iii) is fulfilled for any A ∈ B(H,K).
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REMARK 3.10. The description of O G
G(A) may be given in terms of only

three indices: both the indices ιr and ιb may be “included” in one index ιR defined
by the rule: ιR(X) is equal to ιr(X) if and only if ιb(X) = 0, otherwise ιR(X) is the
direct successor of ιr(X) (in other words, ιR(X) is the least cardinal α such that
R(X) contains no complete subspace of dimension α). Using Proposition 2.3(v),
one may show that for A, B ∈ B(H,K) the points (i) and (ii) of Theorem 3.9 are
fulfilled if and only if ιR(B) 6 ιR(A). So, O G

G(A) may be described by means of
ιR, ιi and ιf. However, it seems to us that the index ιR is rather unnatural, because
ιR(X) may be uncountable even if X acts on a separable Hilbert space.

Moreover, using (P3), it may be shown that when dimH 6= dimK, the
condition (iii) of Theorem 3.9 may be simplified to “ιm(C) > ιm(A)” where
ιm(X) = min(ιi(X), ιf(X)) for X ∈ B(H,K). So, one needs only two indices
(ιr and ιm) for the description of O G

G provided H and K have different dimen-
sions. The case when dimH = dimK may simply be reduced to the one when
K = H. This case will be investigated in Section 5.

COROLLARY 3.11. For A, B ∈ B(H,K), O G
G(A) = O G

G(B) if and only if
ιr(A) = ιr(B), ιi(A) = ιi(B), ιf(A) = ιf(B) and ιb(A) = ιb(B).

COROLLARY 3.12. Let A ∈ B(H).
(i) If A is a finite rank operator, O G

G(A) = {B ∈ B(H) : ιr(B) 6 ιr(A)}.
(ii) If A is compact and of infinite rank,O G

G(A) coincides with the class of all compact
operators onH.

(iii) SupposeH is infinite-dimensional and separable. Then:
(a) if A is noncompact and nonsemi-Fredholm,O G

G(A) coincides with the class
of all nonsemi-Fredholm operators onH;

(b) if A is semi-Fredholm, O G
G(A) consists of all nonsemi-Fredholm operators

on H and of precisely those semi-Fredholm operators B ∈ B(H) for which ind(B) =
ind(A) and min(ιi(B), ιf(B)) > min(ιi(A), ιf(A)).

From Corollary 3.12 and Theorem 3.8 one may conclude the classical the-
orem that in a separable Hilbert space all semi-Fredholm operators of the same
(arbitrarily fixed) index form a connected open set (which in fact is the interior of
the closure of the orbitOG

G of a one semi-Fredholm operator which is a monomor-
phism or an epimorphism). It may also be easily infered that all of these open sets
have the same boundary, which was first shown by Mbekhta [11]. For details and
generalization see Section 5.

Since OG
G(IH) = G(H), we obtain the following generalization of the result

of Izumino and Kato [9].

COROLLARY 3.13. The norm closure of the group of all invertible operators on a
Hilbert spaceH is the set of all A ∈ B(H) such that ιi(A) = ιf(A).

Our last purpose of this section is to describe O U
U(A). We shall do this

with the use of the closures OU (A∗A) and OU (AA∗) of the orbits OU (A∗A)
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and OU (AA∗) where OU (X) = {UXU−1 : U ∈ U (H)} for X ∈ B(H). The
characterization of the members ofOU (X) for a normal operator X was a subject
of studies of Hadwin [6], [7], Gellar and Page [5], Sherman [12] and others, and
reads as follows (see [5] or Theorem 1.1 in [12]; the reader interested in the closure
of the similarity orbit of a normal operator is referred to [3] or [8]).

THEOREM 3.14. Let N be a normal bounded operator on H and let E : B(C) →
B(H) be its spectral measure.

(i) OU (N) consists of precisely those bounded operators on H which are normal
and whose spectral measure F satisfies the condition ιr(F(U)) = ιr(E(U)) for any open
subset U of C.

(ii) If H is separable, OU (N) consists of all normal operators M ∈ B(H) such that
σ(M) = σ(N) and dimN(M− λI) = dimN(N − λI) for any λ ∈ C.

The above result may be used to simplify the conditions appearing in the
following

PROPOSITION 3.15. Let A ∈ B(H,K).
(i) If ιi(A) 6 ιf(A), then

O U
U(A) = {B ∈ B(H,K) : B∗B ∈ OU (A∗A) and ιf(B) = ιf(A)}.

(ii) If ιi(A) > ιf(A), then

O U
U(A) = {B ∈ B(H,K) : BB∗ ∈ OU (AA∗) and ιi(B) = ιi(A)}.

Proof. (i) If B = lim
n→∞

Vn AU−1
n with unitary Un’s and Vn’s, then B∗B =

lim
n→∞

Un A∗AU−1
n and A ∈ O U

U(B) which gives O G
G(B) = O G

G(A). Thus we infer

from Corollary 3.11 that

(3.10) ιf(B) = ιf(A).

Conversely, suppose (3.10) holds and B∗B = lim
n→∞

Un A∗AU−1
n for some Un ∈

U (H). Then

(3.11) Un|A|U−1
n → |B| (n→ ∞)

as well. This implies that O G
G(|B|) = O G

G(|A|) and hence ιf(|B|) = ιf(|A|) (cf.
Corollary 3.11). This connection combined with (P2) gives

(3.12) ιi(B) = ιi(A).

Fix ε > 0 and take, using Proposition 3.4, W ∈ Υ(B) such that |B|(W) = W and

(3.13) ‖B− BPW‖ <
ε

4
.

Since W ∈ Υ(|B|), from (3.11) and point (i) of Lemma 3.5 it follows that W ∈
Υ(|A|U−1

n ) = Υ(AU−1
n ) for all but finitely many n’s. Passing to a subsequence,

we may assume that this is true for all n’s. Put Wn = Un|A|U−1
n (W). Again by
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Lemma 3.5(i), there is a sequence of unitary operators Z1, Z2, . . . on H such that
Zn(W) = Wn and lim

n→∞
ZnPW = PW . We infer from this that

lim
n→∞

Zn|B|PW = |B|PW

and therefore

(3.14) Z−1
n Un|A|U−1

n PW → |B|PW (n→ ∞)

(because ‖Z−1
n Un|A|U−1

n PW − |B|PW‖ = ‖Un|A|U−1
n PW − Zn|B|PW‖).

Further, let B = Q|B| be the polar decomposition of B. Since ιf(A) > ιi(A),
there is a cardinal α for which ιf(A) = ιi(A) + α. We claim that there is an isom-
etry V ∈ B(H,K) such that V|W = Q|W and dim(K 	 R(V)) = α. Indeed,
since W is a complete subspace of R(|B|), dim(R(|B|) 	W) > IC(R(|B|)) =
IC(R(B)) and hence there are orthogonal closed subspaces E and F ofH such that
R(|B|)	W = E⊕ F and dim E = IC(R(B)). Then K 	 Q(W) = [(K 	 R(B))⊕
Q(E)] ⊕ Q(F) and dim[(K 	 R(B)) ⊕ Q(E)] = dim(K 	 R(B)) + IC(R(B)) =
ιf(B) = ιi(B) + α, thanks to (3.10) and (3.12). Similarly,H	W = (N(B)⊕ E)⊕ F
and dim(N(B)⊕ E) = ιi(B). This means that we may find suitable V in a way
such that it extends Q|W⊕F.

Now observe that ιf(VZ−1
n Un|A|U−1

n ) = α + ιf(|A|) = ιf(A) = ιf(AU−1
n )

and (VZ−1
n Un|A|U−1

n )∗(VZ−1
n Un|A|U−1

n ) = (AU−1
n )∗(AU−1

n ). From Theorem 6.1
(see Section 6) it follows that VZ−1

n Un|A|U−1
n ∈ O U(AU−1

n ) and thus there is
Vn ∈ U (K) for which

(3.15) ‖Vn AU−1
n −VZ−1

n Un|A|U−1
n ‖ <

ε

4
.

Further, note that ‖Vn AU−1
n (IH − PW)‖ = ‖Un|A|U−1

n (IH − PW)‖ → ‖ |B|(IH −
PW)‖ < ε/4 (by (3.11) and (3.13)) and therefore for large n’s one has ‖(Vn AU−1

n
−B)(IH − PW)‖ 6 ε/2. While, on the other hand, first making use of (3.15) and
next of (3.14),

‖(Vn AU−1
n − B)PW‖ 6 ‖(Vn AU−1

n −VZ−1
n Un|A|U−1

n )PW‖

+ ‖VZ−1
n Un|A|U−1

n PW −QPW |B| ‖

6
ε

4
+ ‖VZ−1

n Un|A|U−1
n PW −VPW |B| ‖ →

ε

4
(n→ ∞)

which clearly shows that for some large n we have ‖Vn AU−1
n − B‖ 6 ε.

To prove (ii), pass to adjoints and apply (i) (using (P2)).

4. APPLICATION: IDEALS OF B(H)

With the use of Theorem 3.9, we may easily point out all closed two-sided
ideals of B(H) for nonseparable Hilbert space H. For each infinite cardinal α 6
dimH let Jα be the set of all operators A ∈ B(H) such that ιr(A) < α or ιr(A) = α
and ιb(A) = 0 (notice that Jℵ0 consists precisely of all compact operators). Our
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aim is to show that Jα’s are the only nontrivial ideals in B(H) (for a different proof
of this well-known fact see e.g. [10] or Theorem 17.5 in [1]).

LEMMA 4.1. For arbitrary A ∈ B(H) the following conditions are equivalent:
(i) ιb(A) = 0;

(ii) A is the limit of a sequence (An)∞
n=1 of operators such that ιr(An) < ιr(A) for

each n.

Proof. From Proposition 3.4 we conclude that (i) implies (ii). The inverse
implication follows from Lemma 3.5(i) and Corollary 3.7.

THEOREM 4.2. Let H be a nonseparable Hilbert space. For each infinite α 6
dimH, Jα is a closed two-sided ideal in B(H), Jα 6= Jα′ if α 6= α′ and every nonzero
proper closed two-sided ideal in B(H) coincides with some Jα.

Proof. It may easily be infered from Lemma 4.1 that Jα is a closed two-sided
ideal. It is also immediate that Jα uniquely determines α. Let J be a nonzero
proper closed two-sided ideal of B(H). Observe that J ⊂ JdimH. (Indeed, other-
wise there would be A ∈ J and V ∈ Υ(A) such that dim V = dimH. But then
IH would belong to J since I = XAY for suitable X, Y ∈ B(H).) Let α > ℵ0 be
the least cardinal for which J ⊂ Jα. We shall show that J = Jα. To do this, thanks
to Lemma 4.1 it is enough to prove that C ∈ J provided ιr(C) < α. A standard
argument shows that a nonzero ideal contains all finite rank operators. So, we
may assume that ιr(C) is infinite. Since J 6⊂ Jβ with β = ιr(C), there is A ∈ J such
that ιr(A) > ιr(C) or ιr(A) = ιr(C) and ιb(A) = 1. But then, by Theorem 3.9,
C ∈ O G

G(A) ⊂ J (note that (3.9) is fulfilled for C since ιr(C) < dimH).

5. INDICES ind AND ιm

In this section H denotes an infinite-dimensional Hilbert space. Our aim
is to define ind(A) for certain operators A ∈ B(H) in a way such that this new
index extends the well-known one (denoted in the same way) for semi-Fredholm
operators.

Let D be the class of all pairs (α, β) of cardinals such that either α = β < ℵ0
or α and β are different. For (α, β) ∈ D we define α − β as a cardinal or the
negative of a cardinal in a very natural way:

(i) if α and β are finite, α − β is the difference of α and β treated as natural
numbers,

(ii) if α > β and α is infinite, α− β := α,
(iii) if α < β and β is infinite, α− β := −β.

Additionally, for simplicity, let us agree with the following notation:

|α| = | − α| := α

for every cardinal α.
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Now for any A ∈ B(H) such that (ιi(A), ιf(A)) ∈ D let ind(A) = ιi(A)−
ιf(A). Notice that when ιi(A) = ιf(A) > ℵ0, ind(A) is undefined.

For every γ such that |γ| 6 dimH denote by Indγ(H) the set of all opera-
tors A ∈ B(H) for which ind(A) is defined and ind(A) = γ, and let Indγ(H)
be the closure of Indγ(H). Finally, let Uind(H) stand for the set of all oper-
ators for which ind is undefined. Recall also (see Remark 3.10) that ιm(A) =
min(ιi(A), ιf(A)).

We leave this as a simple exercise that ιb(A) = 1 for A ∈ B(H) \Uind(H).
The following is a reformulation of Theorem 3.9:

COROLLARY 5.1. Let A ∈ B(H).
(i) If A ∈ Uind(H), O G

G(A) is the set of all B ∈ Uind(H) such that the following
two conditions are fulfilled:

(a) ιr(B) 6 ιr(A); and ιr(B) < ιr(A) provided ιb(A) = 0 and ιb(B) = 1;
(b) ιm(B) > ιm(A).

(ii) If A /∈ Uind(H) and γ := ind(A), O G
G(A) is the set of all B ∈ Indγ(H)

for which ιr(B) 6 ιr(A) and ιm(B) > ιm(A) and of all C ∈ Uind(H) such that
ιr(C) 6 ιr(A) and ιm(C) > |γ|.

The main result of the section is

THEOREM 5.2. For every γ with |γ| 6 dimH the set Indγ(H) is connected and
open in B(H) and it coincides with the interior of its closure. The boundary of Indγ(H)
is connected as well and consists precisely of all A ∈ Uind(H) such that ιm(A) > |γ|.

Proof. Let us first show that

(5.1) Indγ(H) = Indγ(H) ∪ {A ∈ Uind(H) : ιm(A) > |γ|}.

Let Z be a closed range operator which is a monomorphism or an epimorphism
and for which ind(Z) = γ. Notice that ιr(Z) = dimH, ιm(Z) = 0 and O G

G(Z) ⊂
Indγ(H). What is more, we infer from Corollary 5.1 that O G

G(Z) coincides with
the right hand side expression of (5.1). This shows that (5.1) holds and that
Indγ(H) is connected (sinceO G

G(Z) is connected, by the connectedness of G(H)).
Further, by (5.1), Indγ(H) ∩ Indk(H) = {B ∈ Uind(H) : ιm(B) > |γ|} for

each integer k 6= γ and thus the last set is contained in the boundary of Indγ(H).
So, it remains to show that Indγ(H) is open and its boundary is connected.

Fix A ∈ Indγ(H). Since ιb(A) = 1, by Theorem 3.8 there is a neighbourhood
X of A such that

(5.2) A ∈ O G
G(X)

for any X ∈ X . Note that Uind(H) is closed (by (5.1): Uind(H) = Ind0(H) ∩
Ind1(H)) and therefore we may assume that X is disjoint from Uind(H). But
then, thanks to (5.2) and Corollary 5.1, ind(A) = ind(X) for X ∈ X and hence
X ⊂ Indγ(H).
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Finally, to show that the boundary of Indγ(H) is connected, take a closed
range operator T ∈ Uind(H) such that ιr(T) = dimH and ιm(T) = max(ℵ0, |γ|)
and observe, applying again Corollary 5.1, that the boundary coincides with
O G

G(T).

The above result shows that Uind(H) is closed, nowhere dense and con-
nected. Notice also that Indγ(H) consists of closed range operators if and only
if γ ∈ Z ∪ {−ℵ0,ℵ0}. So, in case of a nonseparable Hilbert space H we may
define a semi-Fredholm operator on H as a bounded operator A /∈ Uind(H) such
that ind(A) ∈ Z ∪ {−ℵ0,ℵ0}. Under such a definition, semi-Fredholm operators
automatically have closed ranges. Observe also that in a separable Hilbert space
the class Uind coincides with the class of all non-semi-Fredholm operators. So,
Theorem 5.2 generalizes the result of Mbekhta [11].

With the use of Corollary 5.1 we are also able to show

PROPOSITION 5.3. For each γ with |γ| 6 dimH and a positive cardinal m the
set Indm

γ (H) of all A ∈ Indγ(H) for which ιm(A) < m is open and dense in Indγ(H).

Proof. First of all note that if m > max(ℵ0, |γ|), then Indm
γ (H) = Indγ(H).

So, we may assume that

(5.3) m < max(ℵ0, |γ|).

Let Z be as in the proof of Theorem 5.2. Observe that O G
G(Z) ⊂ Indm

γ (H) and
therefore the last set is dense in Indγ(H). What is more, thanks to (5.3), there
exists a closed range operator Zm ∈ B(H) ∩ Indγ(H) such that ιm(Zm) = m and
ιr(Zm) = dimH. Now by Corollary 5.1, Indm

γ (H) = Indγ(H) \ O G
G(Zm) which

finishes the proof.

COROLLARY 5.4. The closure of O G
G(A) has nonempty interior if and only if A

or A∗ is surjective.

Proof. The sufficiency is clear (O G
G(A) is open provided A or A∗ is sur-

jective). To see the necessity, first note that the nonemptiness of the interior of
O G

G(A) implies that A /∈ Uind(H), and it suffices to show that m := ιm(A) = 0
(this condition is equivalent to the surjectivity of A or A∗). Suppose, for the con-
trary that m > 0. ThenO G

G(A) ⊂ Indγ(H) \ Indm
γ (H) where γ = ind(A). Now it

follows from Proposition 5.3 that OG
G(A) is nowhere dense. A contradiction.

REMARK 5.5. The index ind may clearly be defined by the same formula in
spaces B(H,K). All the results of the section have their (natural) counterparts in
such spaces when dimH = dimK > ℵ0, that is, when (dimH, dimK) /∈ D. In
the opposite, when (dimH, dimK) ∈ D, one may easily prove (using (P3)) that
(ιi(X), ιf(X)) ∈ D and ind(X) = dimH− dimK for every X ∈ B(H,K). So, the
restriction (in this section) of our investigations to operators acting on a single
Hilbert space was reasonable and justified.
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6. ONE-SIDED ACTIONS

THEOREM 6.1. Let A ∈ B(H,K).
(i) O U(A) is the set of all B ∈ B(H,K) such that

(6.1) B∗B = A∗A and ιf(B) = ιf(A).

(ii) O U(A) = {B ∈ B(H,K) : BB∗ = AA∗ and ιi(B) = ιi(A)}.
Proof. (i) First of all, note that B ∈ O U(A) if and only if A ∈ O U(B). So,

thanks to Corollary 3.11, ιf(B) = ιf(A) for B ∈ O U(A). It is also clear that B∗B =
A∗A for such B.

Conversely, take B satisfying (6.1) and put D = |A| (= |B|). Fix ε > 0 and
take a subspace V ∈ Υ(D) contained in R(D) such that

(6.2) ‖D− DPV‖ 6 ε

(cf. Proposition 3.4). Since D(V) is a complete subspace of R(D), dim(R(D) 	
D(V)) > IC(R(D)) and thus there are mutually orthogonal closed subspaces E
and F of H such that R(D)	 D(V) = E⊕ F and dim E = IC(R(D)). Recall that
IC(R(A)) = IC(R(D)) = IC(R(B)). Let A = QAD and B = QBD be the polar
decompositions of A and B, respectively. Observe that QA(D(V) ⊕ E ⊕ F) =
A(V) ⊕ QA(E) ⊕ QA(F) and hence dim(K 	 A(V)) = dim F + ιf(A). For the
same reason, dim(K 	 B(V)) = dim F + ιf(B). So, by (6.1), there is a unitary
operator U0 of K 	 A(V) onto K 	 B(V). Now it suffices to define U ∈ U (K)
by: U = QB(QA|D(V))

−1 on A(V) and U = U0 on the orthogonal complement of
A(V). Finally we have UA|V = B|V and therefore ‖UA− B‖ 6 2ε (by (6.2)).

In order to prove (ii), pass to adjoint operators and apply (i).

COROLLARY 6.2. Let H be a separable Hilbert space and let A ∈ B(H) be such
that R(A) is nonclosed. Then O U(A) = {B ∈ B(H) : B∗B = A∗A} and O U(A) =
{B ∈ B(H) : BB∗ = AA∗}.

The case of the closures of orbits OG and OG is much more complicated.
For the purpose of their descriptions, let us define L+(A) for A ∈ B+(H) as the
set of all B ∈ B+(H) such that B 6 cA for some scalar c > 0, and let L+(A) be
the closure of L+(A). By Theorem 2.1 of [4], for an operator B ∈ B+(H),

(6.3) B ∈ L+(A) if and only if R(
√

B) ⊂ R(
√

A),

if and only if
√

B =
√

AT for some T ∈ B(H). Observe that the last condition
gives B =

√
ATT∗

√
A. Conversely, if B =

√
AC
√

A for some C ∈ B+(H),
then B 6 ‖C‖A, that is, B ∈ L+(A). Thus we have obtained that, whenever
A, B ∈ B+(H):

(6.4) B ∈ L+(A) if and only if ∃C ∈ B+(H) : B =
√

AC
√

A.

It is clear that L+(A) is a cone (i.e. tB + sC ∈ L+(A) whenever B, C ∈ L+(A)
and t, s > 0). Other properties of L+(A) are established in the following
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PROPOSITION 6.3. Let A ∈ B+(H).
(i) B ∈ L+(A) =⇒ R(B) ⊂ R(A).

(ii) B ∈ L+(A) =⇒ L+(B) ⊂ L+(A).
(iii) Let B ∈ B+(H) and E : B(R+) → B(H) be the spectral measure of B. Then

B ∈ L+(A) if and only if E([(1/n),+∞)) ∈ L+(A) for each n > 1.
(iv) Let P be an orthogonal projection. P ∈ L+(A) if and only if there is a sequence

P1, P2, . . . of orthogonal projections which converge to P and whose ranges are contained
in the range of

√
A.

(v) If B ∈ B+(H) is compact and R(B) ⊂ R(A), then B ∈ L+(A).

Proof. The point (i) follows from (6.4) and the connection R(A) = R(
√

A).
(ii) Suppose B = lim

n→∞
Bn with Bn ∈ L+(A). Then

√
B = lim

n→∞

√
Bn. Now if

C ∈ L+(B), C =
√

BD
√

B for some D∈B+(H) (by (6.4)). So, C= lim
n→∞

√
BnD
√

Bn.

But (again by (6.4))
√

BnD
√

Bn ∈ L+(Bn) ⊂ L+(A). This shows that L+(B) ⊂
L+(A) and we are done.

(iii) Let Pn = E([(1/n),+∞)). Note that BPn 6 B, BPn → B (n → ∞) and
(1/n)Pn 6 BPn 6 ‖B‖Pn. So, it suffices to apply (ii).

(iv) The sufficiency follows from (6.3). To prove the necessity, take a se-
quence A1, A2, . . . ∈ L+(A) convergent to P. Let V = R(P) ∈ Υ(P) and let N > 1
and ZN , ZN+1, . . . be as in Lemma 3.5(i) for K := H and A := P. We may assume
that N = 1. Put Pn = PAn(V). Observe that R(Pn) ⊂ R(

√
A) (since An ∈ L+(A)

and thanks to (6.3)). Finally, Pn = ZnPZ−1
n (because Zn(V) = An(V)) and there-

fore lim
n→∞

Pn = lim
n→∞

(ZnP)(ZnP)∗ = P · P∗ = P.

(v) Thanks to (iii), it suffices to show that every finite rank orthogonal pro-
jection whose image is contained in R(A) is a member of L+(A) which we leave
as a simple exercise.

COROLLARY 6.4. For a compact operator A ∈ B+(H), L+(A) consists of all
compact operators B ∈ B+(H) such that R(B) ⊂ R(A).

EXAMPLE 6.5. Let (H, 〈·,−〉) be infinite-dimensional and separable, and
(en)∞

n=1 be an orthonormal basis ofH. Put

A : H⊕H 3 (x, y) 7→
(

x,
∞

∑
n=1

〈y, en〉
2n en

)
∈ H⊕H,

V = {(x, y) ∈ H ⊕ H : x = 0} and U : H ⊕H 3 (x, y) 7→ (y, x) ∈ H ⊕ H.
Observe that A ∈ B+(H⊕H), V ⊂ R(A) = H⊕H, U ∈ U (H⊕H) and U(V) ⊂
R(A). However, PV /∈ L+(A). The example shows that if A is noncompact and
the range of A is nonclosed, the description of L+(A) is not so easy as stated in
Corollary 6.4. This issue will be investigated elsewhere.

As the next result shows, the cones L+(AA∗) and L+(A∗A) play an impor-
tant role in the description of O G(A) and O G(A).
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THEOREM 6.6. Let A ∈ B(H,K).
(i)O G(A) consists of precisely those B ∈ B(H,K) such that BB∗ ∈ L+(AA∗) and

(6.5) ιi(B) = ιi(A) + ιi(B∗|R(A)).

(ii)O G(A) consists of precisely those B ∈ B(H,K) such that B∗B ∈ L+(A∗A) and
ιf(B) = ιf(A) + ιi(B|R(A∗)).

Proof. Since (ii) may be infered from (i) by passing to adjoints, we only need
to show (i).

First suppose that B ∈ O G(A). This means that B = lim
n→∞

AGn for some

Gn ∈ G(H) and thus BB∗ = lim
n→∞

|A∗|QGnG∗nQ∗|A∗| where Q is the partial isom-

etry appearing in the polar decomposition of A. So, it follows from (6.4) that
BB∗ ∈ L+(AA∗). What is more, this implies that R(B) ⊂ R(A). For simplic-
ity, put K0 = R(A) and think of A and B as members of B(H,K0). Under
such a consideration, B ∈ O G

G(A) and hence Theorem 3.9 implies that ιi(B) =
ιi(A) + α and ιf(B) = ιf(A) + α for some cardinal α where all the indices which
appear in both the equations are computed in the space B(H,K0). Notice that
then ιf(A) = IC(R(A)), so ιf(B) = IC(R(A)) + α and (by Proposition 2.3(i))
ιi(B) = ιi(A) + IC(R(A)) + α = ιi(A) + ιf(B). It suffices to observe that (still in
the space B(H,K0)) ιf(B) = dim(R(A)	R(B)) + IC(R(B)) = ιi(B∗|R(A)) which
finally gives (6.5).

Now suppose that BB∗ ∈ L+(AA∗) and (6.5) is satisfied. As in the first part
of the proof, notice that then R(B) ⊂ R(A) and thus ιi(B∗|R(A)) = dim(R(A)	
R(B)) + IC(R(B)). So, (6.5) is equivalent to

(6.6) ιi(B) = ιi(A) + IC(R(B)) + dim(R(A)	R(B)).

Fix ε > 0 and take V ∈ Υ(|B∗|) such that |B∗|(V) = V and ‖ |B∗| − |B∗|PV‖ 6 ε.
Since V is a complete subspace of R(|B∗|) = R(B), we see that dim(R(B)	V) >
IC(R(B)) and thus

(6.7) dim(R(B)	V) = dim(R(B)	V) + IC(R(B)).

Let B = Q|B| be the polar decomposition of B. Then also B = |B∗|Q. Put W =
Q−1(V) ∩R(B∗). Note that W ∈ Υ(B), QPW = PV Q,

(6.8) B(W) = V and ‖B− BPW‖ < ε.

Further, since BB∗ ∈ L+(AA∗), by (6.4), there is a sequence T1, T2, . . . of bounded
nonnegative operators on K such that BB∗ = lim

n→∞
|A∗|Tn|A∗|. We conclude from

the relations V ∈ Υ(|B∗|) and |B∗|(V) = V that V ∈ Υ(BB∗) as well and therefore,
thanks to Lemma 3.5(i), after omitting finitely many entries of (|A∗|Tn|A∗|)∞

n=1,
there is a sequence (Zn)∞

n=1 of unitary operators on K such that

(6.9) Zn(V) = Vn for each n
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where Vn := |A∗|Tn|A∗|(V) is a closed subspace of K, and

(6.10) ZnPV → PV (n→ ∞).

What is more, since we might restrict our argument (when taking Zn) to R(A)
(and work in B(H,R(A)) and U (R(A))), we may also assume that

(6.11) Zn(R(A)) = R(A) for every n.

Observe that Vn ⊂ R(|A∗|) = R(A) and thus Wn ∈ Υ(A) where Wn := A−1(Vn)∩
R(A∗) and

(6.12) dim(R(A)	Vn) = dim(R(A)	Vn) + IC(R(A))

(compare with the proof of (6.7)). We have:

(6.13) A(Wn) = Vn

and, by (6.9),

(6.14) dim Wn = dim Vn = dim Zn(V) = dim V = dim W.

Now Lemma 3.3 (applied twice) combined with (6.13), (6.12), (6.11), (6.9), (6.7)
(twice) and (6.6) yields

dim(H	Wn) = dimN(A) + dim(R(A∗)	Wn) = dimN(A) + dim(R(A)	Vn)

= dimN(A) + IC(R(A)) + dim(Zn(R(A))	 Zn(V))

= ιi(A) + dim(R(A)	V)

= ιi(A) + dim(R(A)	R(B)) + dim(R(B)	V)

= ιi(A) + dim(R(A)	R(B)) + IC(R(B)) + dim(R(B)	V)

= ιi(B) + dim(R(B)	V)

= dimN(B) + IC(R(B)) + dim(R(B)	V)

= dimN(B) + dim(R(B)	V) = dimN(B) + dim(R(B∗)	W)

= dim(H	W).

The above connection and (6.14) imply there is Un ∈ U (H) for which Un(W) =
Wn. Now define Gn ∈ G(H) by:

Gn|W = (A|Wn)
−1ZnB|W ∈ G(W, Wn)

(use (6.8), (6.9) and (6.13) to see that Gn|W is well defined) and

Gn|H	W = (1/n)Un|H	W ∈ G(H	W,H	Wn).

We claim that

(6.15) AGn → BPW (n→ ∞).
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Indeed, lim
n→∞

AGn(IH − PW) = lim
n→∞

(1/n)AUn|H	W = 0 = BPW(IH − PW) and,

thanks to (6.8) and (6.10),

lim
n→∞

AGnPW = lim
n→∞

ZnBPW = lim
n→∞

ZnPV BPW = PV BPW = BPW .

Finally, we infer from (6.8) and (6.15) that ‖AGn − B‖ 6 ε for some n, which
finishes the proof.

The next result has its natural counterpart for the closures of O G.

COROLLARY 6.7. Let A, B ∈ B(H,K) be arbitrary.
(i) O G(A) = O G(B) if and only if L+(AA∗) = L+(BB∗) and ιi(B) = ιi(A).

(ii) Suppose A is compact. Then:
(a) O G(A) consists precisely of all compact operators C ∈ B(H,K) with

R(C) ⊂ R(A);
(b) O G(A) = O G(B) if and only if B is compact and R(B) = R(A).

Proof. The point (i) follows from Theorem 6.6 and the fact that R(B) = R(A)
and ιi(B∗|R(B)) = IC(R(B)) provided L+(BB∗) = L+(AA∗).

To see (ii), it suffices to apply Corollary 6.4 after observing that when A
and B are compact and R(B) ⊂ R(A), then (6.5) is fulfilled (consider separately
the cases when ιr(A) is finite; H is separable and R(A) is nonclosed; and H is
nonseparable).
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