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ABSTRACT. Using recent characterizations of the compactness of composi-
tion operators on the Hardy–Orlicz and Bergman–Orlicz spaces on the ball
[3], [4], we first show that a composition operator which is compact on ev-
ery Hardy–Orlicz (or Bergman–Orlicz) space has to be compact on H∞. Then,
although it is well-known that a map whose range is contained in some nice
Korányi approach region induces a compact composition operator on Hp(BN)

or on Ap
α(BN), we prove that, for each Korányi region Γ, there exists a map

φ : BN → Γ such that Cφ is not compact on Hψ(BN), when ψ grows fast. Fi-
nally, we extend (and simplify the proof of) a result by K. Zhu for the classical
weighted Bergman spaces, by showing that, under reasonable conditions, a
composition operator Cφ is compact on the weighted Bergman–Orlicz space

Aψ
α (BN), if and only if

lim
|z|→1

ψ−1(1/(1− |φ(z)|)N(α))

ψ−1(1/(1− |z|)N(α))
= 0.

In particular, we deduce that the compactness of composition operators on
Aψ

α (BN) does not depend on α anymore when the Orlicz function ψ grows
fast.
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1. INTRODUCTION

Let BN =
{

z = (z1, . . . zN) ∈ CN ,
N
∑

i=1
|zi|2 < 1

}
denote the open unit ball

of CN . Given a holomorphic map φ : BN → BN , the composition operator Cφ
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of symbol φ is defined by Cφ( f ) = f ◦ φ, for f holomorphic on BN . Composi-
tion operators have been extensively studied on common Banach spaces of ana-
lytic functions, in particular on the Hardy spaces Hp(BN) and on the Bergman
spaces Ap(BN), 1 6 p < ∞. The continuity and compactness of these operators
have been characterized in terms of Carleson measures [6]. In dimension one, the
boundedness of Cφ for any φ : D → D is a consequence of the Littlewood subor-
dination principle [17]. In CN , N > 1, it is well-known that there exists some map
φ : BN → BN such that the associated composition operator is not bounded on
Hp(BN). Whatever the dimension, it appears that both boundedness and com-
pactness of Cφ on Hp(BN) (respectively Ap(BN)) are independent of p. On the
other hand, every composition operator is obviously bounded on H∞ and it is not
difficult to check that Cφ is compact on H∞ if and only if ‖φ‖∞ < 1. Thus there is
a “break” between H∞ and Hp(BN) (respectively Ap(BN)), for the compactness
in dimension one, and even for the boundedness, when N > 1.

These observations first motivated P. Lefèvre, D. Li, H. Queffélec and
L. Rodríguez-Piazza to study composition operators on Hardy–Orlicz spaces
Hψ(D) (respectively Bergman–Orlicz spaces Aψ(D)) of the disc [8], [9], [10], [11],
and then the author of [3], [4] to look at these questions in CN . These spaces
both provide an intermediate scale of spaces between H∞ and Hp(BN) (respec-
tively Ap(BN)) and generalize the latter. In particular, in [11], the authors were
interested in the question of whether there are Hardy–Orlicz spaces on which the
compactness of Cφ is equivalent to that on H∞. In fact, they answer this ques-
tion in the negative, by proving Theorem 4.1 of [11], that, for every Hardy–Orlicz
space Hψ(D), one can construct a surjective map φ : D → D which induces a
compact composition operator Cφ on Hψ(D). This result extends that obtained
by B. MacCluer and J. Shapiro for Hp(D) ([14], Example 3.12). The same prob-
lem in the Bergman–Orlicz case has not yet been completely solved. In several
variables, the situation is much more surprizing, as we show in [3], [4] that there
exist some Hardy–Orlicz and Bergman–Orlicz spaces, “close” enough to H∞, on
which every composition operator is bounded.

In this paper, we are mainly interested in the possibility to extend some
known results about the compactness of composition operators on the classical
Hardy or Bergman spaces, to the corresponding Orlicz spaces. We think that this
study may outline some interesting phenomena and precise the link between the
behavior of Cφ and that of φ.

First of all, we come back to the “break” between H∞ and Hp, 1 6 p < ∞,
for the compactness of Cφ. There is no difference between being compact for Cφ

on one Hp(BN) and on every Hp(BN), while this property clearly depends on
the Orlicz function ψ in Hψ(BN). Therefore, we can wonder if the above question
answered by [11] was the good one; indeed, the study of Cφ on Hardy–Orlicz
spaces arises the following question: what can we say about a composition oper-
ator which is compact on every Hardy–Orlicz space? It turns out that such an op-
erator has to be compact on H∞, which seems to us to be a positive result, because
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it somehow confirms that the Hardy–Orlicz spaces cover well the “gap” between
every Hp and H∞. This result also stands when we replace Hardy–Orlicz spaces
by Bergman–Orlicz spaces.

Moreover, on the Hardy or Bergman spaces, the compactness (and bound-
edness) of composition operators is often handled in terms of geometric con-
ditions, emphasizing the importance of the manner in which the symbol φ ap-
proaches the boundary of BN . To be precise, let us denote by Γ(ζ, a) ⊂ BN , for
ζ ∈ SN and a > 1, the Korányi approach region

Γ(ζ, a) =
{

z ∈ BN , |1− 〈z, ζ〉| < a
2
(1− |z|2)

}
.

It is known ([13]) that if φ takes the unit ball into a Korányi region Γ(ζ, a) with a
small enough angular opening a, then Cφ is compact on Hp(BN) and on Ap

α(BN).
When N = 1, the Korányi regions are just non-tangential approach regions. In
this paper, we show that this result does not hold for Hardy–Orlicz spaces on BN
in general; for Bergman–Orlicz spaces, we obtain such a result in dimension one
only.

In [14], the authors related the compactness of the composition operator Cφ

on Hp(D) or Ap
α(D) to the existence of angular derivative for φ at the boundary.

We say that the angular derivative of φ exists at a point ζ ∈ T if there exists ω ∈ T
such that

φ(z)−ω

z− ζ

has a finite limit as ζ tends non-tangentially to ζ through D. Julia–Caratheodory’s
theorem then asserts that the non-existence of an angular derivative for φ at some
ζ ∈ T is equivalent to

(1.1) lim
z→ζ

1− |z|
1− |φ(z)| = 0.

Shapiro and Taylor [18] pointed out that if Cφ is to be compact on Hp(D), then
φ cannot have an angular derivative at even a single point in T, which may be
written:

(1.2) lim
|z|→1

1− |z|
1− |φ(z)| = 0.

In [14], it is proved that (1.2) is not sufficient for the compactness of Cφ on the
Hardy spaces of the unit disc in general, yet it is when φ is univalent. However,
this condition is necessary and sufficient for Cφ to be compact on every weighted
Bergman spaces of the disc. The last main goal of this paper is to extend some of
these results to Hardy–Orlicz and Bergman–Orlicz spaces of the unit ball.

In several variables, we can also define the angular derivative of φ : BN →
BN at a point in SN (see Definition 2.80 of [6]) and Julia–Caratheodory’s theo-
rem also holds in BN ([6], Theorem 2.81 or [16], Theorem 8.5.6). Here, as we
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already said, the situation is complicated by the fact that some composition op-
erators are not bounded on Hardy or Bergman spaces, and the fact that even the
boundedness of Cφ on Ap

α(BN) depends on α. In [19], K. Zhu proves that Cφ is
compact on Ap

α(BN) if and only if a condition similar to Condition (1.2) is sat-
isfied, whenever Cφ is bounded on some Ap

β(BN), for some −1 < β < α. This
assumption is somehow justified by the above observation and by Section 6 of
[14], in which the authors show that, for any α > −1 and any 0 < p < ∞, there
exists φ : BN → BN with no angular derivative at any point of SN , such that Cφ is
bounded on Ap

α(BN) but not compact. There even exists such a map φ such that
Cφ is not bounded on Ap

α(BN). In the present paper, we generalize Zhu’s result
to the weighted Bergman–Orlicz spaces on the ball, by using recent characteri-
zations of the boundedness and compactness of composition operators on these
spaces [3]. We show that, if Cφ is bounded on some Aψ

β (BN), −1 < β < α, then it

is compact on Aψ
α (BN) if and only if

(1.3) lim
|z|→1

ψ−1(1/(1− |φ(z)|)N(α))

ψ−1(1/(1− |z|)N(α))
= 0,

where N(α) = N + α + 1, under a mild and usual regularity condition on the
Orlicz function ψ. Our proof is quite simple, while that of K. Zhu uses a Schur test
in H2(BN) and the fact that the compactness of composition operators on Hp(BN)
does not depend on p. Combining this result with the automatic boundedness of
every composition operator on Aψ

α (BN) when ψ satisfies the ∆2-condition ([3],
Theorem 3.7), we get that the compactness on such Aψ

α (BN) does not depend on
α anymore. To be precise, Cφ is compact on Aψ

α (BN) if and only if

lim
|z|→1

ψ−1(1/(1− |φ(z)|))
ψ−1(1/(1− |z|)) = 0,

whenever ψ satisfies the ∆2-condition.
We have to mention that condition (1.3) is, in any case, necessary. Moreover,

the authors of [8] obtained such a result in dimension one, as announced in [12].
Their proof uses the characterization of the compactness of composition opera-
tors in terms of the Nevanlinna counting function and, for this reason, is more
complicated.

We organize our paper as follows: a first preliminary part is devoted to the
definitions and the statements of the already known results we need. The main
part contains the proofs of the three most important results mentionned above.

NOTATIONS. Throughout this paper, we will denote by dσN the normalized
rotation-invariant positive Borel measure on the unit sphere SN = ∂BN , and by
dvα = cα(1− |z|2)αdv, α > −1, the normalized weighted Lebesgue measure on
the ball.
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Given two points z, w ∈ CN , the euclidean inner product of z and w will

be denoted by 〈z, w〉, that is 〈z, w〉 =
N
∑

i=1
ziwi; the notation | · | will stand for the

associated norm, as well as for the modulus of a complex number.
If α > −1 is a real number, we will denote by N(α) the quantity N + α + 1.

2. PRELIMINARIES

2.1. HARDY–ORLICZ AND BERGMAN–ORLICZ SPACES. DEFINITIONS. A strictly
convex function ψ : R+ → R+ is called an Orlicz function if ψ(0) = 0, ψ is continu-
ous at 0 and ψ(x)/x −−−−→

x→+∞
+∞. If (Ω,P) is a probability space, the Orlicz space

Lψ(Ω) associated with the Orlicz function ψ on (Ω,P) is the set of all (equiva-
lence classes of) measurable functions f on Ω such that there exists some C > 0,
such that

∫
Ω

ψ(| f |/C)dP is finite. Lψ(Ω) is a vector space, which can be normed

with the so-called Luxemburg norm defined by

‖ f ‖ψ = inf
{

C > 0,
∫
Ω

ψ(| f |/C)dP 6 1
}

.

It is well-known that (Lψ(Ω), ‖ · ‖ψ) is a Banach space (see [15]).
Taking Ω = SN and dP = dσN , the Hardy–Orlicz space Hψ(BN) on BN

is the Banach space of analytic functions f : BN → C such that ‖ f ‖Hψ :=
sup

0<r<1
‖ fr‖ψ < ∞, where fr ∈ Lψ(SN) is defined by fr(z) = f (rz). Every function

f ∈ Hψ(BN) admits a radial boundary limit f ∗ such that ‖ f ∗‖ψ = sup
0<r<1

‖ fr‖ψ <

∞ ([4], Section 1.3). For simplicity, we will denote by ‖ · ‖ψ the norm on Hψ(BN),
emphasizing that Hψ(BN) can be seen as a subspace of Lψ(SN).

With Ω = BN and dP = dvα, α > −1, the weighted Bergman–Orlicz space
Aψ

α (BN) is Lψ(BN)∩H(BN), where H(BN) stands for the vector space of analytic
functions on the unit ball. Aψ

α (BN) is a Banach space.
From the definitions, it is easy to verify that the following inclusions hold:

H∞ ⊂ Hψ(BN) ⊂ H1(BN) and H∞ ⊂ Aψ
α (BN) ⊂ A1

α(BN)

for every Orlicz function ψ. Moreover, if ψ(x) = xp, for some 1 < p < ∞ and for
every x > 0, then Hψ(BN) = Hp(BN) and Aψ

α (BN) = Ap
α(BN).

2.2. FOUR CLASSES OF ORLICZ FUNCTIONS. Let ψ be an Orlicz function. In or-
der to distinguish the Orlicz spaces and to get a significant scale of intermediate
spaces between L∞ and Lp(Ω), we define four classes of Orlicz functions. The
first two conditions are regularity conditions.

(1) We say that ψ satisfies the ∇0-condition if it satisfies one of the following
two equivalent conditions:
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(i) For any B > 1, there exists some constant CB > 1, such that

ψ(Bx)
ψ(x)

6
ψ(CBBy)

ψ(y)

for any x 6 y large enough;
(ii) For any B > 1, for any n > 0, there exists Cn,B > 0 such that

ψ(Bx)n

ψ(x)n 6
ψ(Cn,By)

ψ(By)

for any x 6 y large enough.

Let us notice that (ii)⇒ (i) is obvious since ψ is non-decreasing, while an
easy induction allows to prove (i)⇒ (ii); the details are left to the reader.

If the constant CB in (i) can be chosen independently of B, then ψ satisfies
the uniform ∇0-condition.

(2) The∇2-class consists of those Orlicz functions ψ such that there exist some
β > 1 and some x0 > 0, such that ψ(βx) > 2βψ(x), for x > x0.

(3) The third condition is a condition of moderate growth: ψ satisfies the ∆2-
condition if there exist x0 > 0 and a constant K > 1, such that ψ(2x) 6 Kψ(x) for
any x > x0.

(4) The fourth condition is a condition of fast growth: ψ satisfies the ∆2-condi-
tion if it satisfies one of the following equivalent conditions:

(i) There exist C > 0 and x0 > 0, such that ψ(x)2 6 ψ(Cx) for every x > x0;
(ii) There exist b > 1, C > 0 and x0 > 0 such that ψ(x)b 6 ψ(Cx), for every

x > x0;
(iii) For every b > 1, there exist Cb > 0 and x0,b > 0 such that ψ(x)b 6 ψ(Cbx),

for every x > x0,b.

Finally, we mention that these conditions are not independent (see Proposi-
tion 4.7 of [8]):

PROPOSITION 2.1. Let ψ be an Orlicz function.
(i) If ψ satisfies the uniform ∇0-condition, then it satisfies the ∇2-condition;

(ii) If ψ satisfies the ∆2-condition, then it satisfies the uniform ∇0-condition.

For any 1 < p < ∞, every function x 7−→ xp is an Orlicz function which
satisfies the uniform∇0-condition (so the∇2 and∇0-conditions too) and the ∆2-
condition. At the opposite side, for any a > 0 and b > 1, x 7−→ eaxb − 1 belongs to
the ∆2-class (and then to the uniform∇0-class), but not to the ∆2-one. In addition,
the Orlicz functions which can be written x → exp(a(ln(x + 1))b)− 1 for a > 0
and b > 1, satisfy the ∇2 and ∇0-conditions, but do not belong to the ∆2-class.

For a complete study of Orlicz spaces, we refer to [7] and [15]. We can also
find precise and useful information in [8], such as other classes of Orlicz functions
and their links with each other.
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2.3. BACKGROUND RESULTS. All the results of the present paper are based on
characterizations of the boundedness and compactness of composition operators
on the Hardy–Orlicz and Bergman–Orlicz spaces [3], [4]. As I already said, these
characterizations essentially depend on the manner in which the Orlicz function
grows.

The characterizations of the boundedness and compactness of Cφ involve
adapted Carleson measures, and then geometric notions. For ζ ∈ SN and 0 <
h < 1, let us denote by S(ζ, h) and S(ζ, h) the non-isotropic “balls”, respectively
in BN and BN , defined by

S(ζ, h) = {z ∈ BN , |1− 〈z, ζ〉| < h} and S(ζ, h) = {z ∈ BN , |1− 〈z, ζ〉| < h}.

We say that a finite positive Borel measure µ on BN is a ψ-Carleson measure,
ψ an Orlicz function, if

µ(S(ζ, h)) = Oh→0

( 1
ψ(Aψ−1(1/hN))

)
,

uniformly in ζ ∈ SN and for some constant A > 0. µ is a vanishing ψ-Carleson
measure if the above condition is satisfied for every A > 0 and with the big-Oh
condition replaced by a little-oh condition.

A finite positive Borel measure µ on BN is a (ψ, α)-Bergman–Carleson mea-
sure if

µ(S(ζ, h)) = Oh→0

( 1
ψ(Aψ−1(1/hN(α)))

)
,

uniformly in ζ ∈ SN and for some constant A > 0. µ is a vanishing (ψ, α)-
Bergman–Carleson measure if the above condition is satisfied for every A > 0
and with the big-Oh condition replaced by a little-oh condition.

When ψ satisfies the ∆2-condition, a (vanishing) ψ-Carleson measure (re-
spectively (vanishing) (ψ, α)-Bergman–Carleson measure) is a (vanishing) Car-
leson measure (respectively (vanishing) Bergman–Carleson measure) (see Sec-
tions 3 of [3], [4]).

REMARK 2.2. (i) Note that, by the convexity of ψ, µ is a ψ-Carleson measure
(respectively vanishing ψ-Carleson measure) if, for some A > 0 (respectively for
every A > 0),

µ(S(ζ, h)) 6
1

ψ(Aψ−1(1/hN))
,

uniformly in ζ ∈ SN and for all h small enough. For the vanishing ψ-Carleson
measure, this is also due to arbitrary A > 0. Of course, a similar observation
holds for (vanishing) (ψ, α)-Bergman–Carleson measure.

(ii) Let us mention that the non-isotropics “balls” S(ζ, h) can be replaced by
the usual Carleson boxes W(ζ, h) (see e.g. [16] for the definition); for convenience,
we will just work with non-isotropic “balls”.
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For φ : BN → BN , we denote by µφ the pull-back measure of σN by the
boundary limit φ∗ of φ, and by µφ,α that of dvα by φ. To be precise, for any
E ⊂ BN (respectively E ⊂ BN),

µφ(E) = σN((φ
∗)−1(E)) (respectively µφ,α(E) = vα(φ

−1(E))).

RESULTS FOR HARDY–ORLICZ SPACES. (see Section 3 of [4]):
The main theorem is the following:

THEOREM 2.3. Let ψ be an Orlicz function which satisfies the ∇2-condition and
let φ : BN → BN be holomorphic.

(i) If ψ satisfies the uniform ∇0-condition, then Cφ is bounded from Hψ(BN) into
itself if and only if µφ is a ψ-Carleson measure.

(ii) If ψ satisfies the∇0-condition, then Cφ is compact from Hψ(BN) into itself if and
only if µφ is a vanishing ψ-Carleson measure.

(iii) If ψ satisfies the ∆2-condition, then Cφ is bounded (respectively compact) from
Hψ(BN) into itself if and only if µφ is a Carleson measure (respectively a vanishing
Carleson measure).

(iv) If ψ satisfies the ∆2-condition, then Cφ is bounded on Hψ(BN).

The first two points are contained in Theorem 3.2 of [4]; according to Theo-
rem 3.35 of [6], the third point means that, if ψ satisfies the ∆2-condition, then Cφ

is bounded (respectively compact) on Hψ(BN) if and only if it is on Hp(BN) (see
Corollary 3.4 of [4]). The last point is Theorem 3.7 of [4].

Due to the non-separability of small Hardy–Orlicz spaces, Theorem 3.2 of
[4] is not a direct consequence of Carleson-type embedding theorems obtained in
Section 2 of [4]. However, if we follow the proofs of these embedding theorems
directly for composition operators, by working on spheres of radius 0 < r < 1,
then we get the following characterizations of both boundedness and compact-
ness of composition operators ([2], Theorem 3.30):

THEOREM 2.4. Let ψ be an Orlicz function satisfying the ∇2-condition and let
φ : BN → BN be holomorphic.

(i) If ψ satisfies the uniform ∇0-condition, then Cφ is bounded on Hψ(BN) if and
only if there exists some A > 0 such that

(2.1) sup
0<r<1

µφr (S(ζ, h)) = Oh→0

( 1
ψ(Aψ−1(1/hN))

)
uniformly in ζ ∈ SN .

(ii) If ψ satisfies the ∇0-condition, then Cφ is compact on Hψ(BN) if and only if, for
every A > 0,

(2.2) sup
0<r<1

µφr (S(ζ, h)) = oh→0

( 1
ψ(Aψ−1(1/hN))

)
uniformly in ζ ∈ SN .
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In the further, we will see how these two characterizations are useful de-
pending on the situations.

RESULTS FOR BERGMAN–ORLICZ SPACES. (see Section 3 of [3]):
The main result is similar to that stated in the previous paragraph:

THEOREM 2.5. Let ψ be an Orlicz function, let α > −1 and let φ : BN → BN be
holomorphic.

(i) If ψ satisfies the uniform ∇0-condition, then Cφ is bounded from Aψ
α (BN) into

itself if and only if µφ,α is a (ψ, α)-Bergman–Carleson measure.
(ii) If ψ satisfies the∇0-condition, then Cφ is compact from Aψ

α (BN) into itself if and
only if µφ,α is a vanishing (ψ, α)-Bergman–Carleson measure.

(iii) If ψ satisfies the ∆2-condition, then Cφ is bounded (respectively compact) from
Aψ

α (BN) into itself if and only if µφ,α is a Bergman–Carleson measure (respectively a
vanishing Bergman–Carleson measure).

(iv) If ψ satisfies the ∆2-condition, then Cφ is bounded on Aψ
α (BN).

According to Theorem 3.37 of [6], the third point means that, if ψ satisfies
the ∆2-condition, then Cφ is bounded (respectively compact) on Aψ

α (BN), if and
only if Cφ is bounded (respectively compact) on Ap

α(BN).

3. MAIN RESULTS

3.1. COMPACTNESS OF Cφ ON ALL HARDY–ORLICZ OR BERGMAN–ORLICZ

SPACES. The following theorem completes both Theorem 2.3 and Theorem 2.5.

THEOREM 3.1. Let φ : BN → BN be a holomorphic map. The following assertions
are equivalent:

(i) Cφ is compact on Hψ(BN), for every Orlicz function ψ;
(ii) for some α > −1, Cφ is compact on Aψ

α (BN), for every Orlicz function ψ;
(iii) Cφ is compact on H∞(BN);
(iv) ‖φ‖∞ < 1.

Proof. It is well-known that Cφ is compact on H∞(BN) if and only if ‖φ‖∞ <
1. Using the fact ([3], Proposition 2.8 and [4], Proposition 2.11) that a composition
operator is compact on Hψ(BN) (respectively Aψ

α (BN)) if and only if for every
bounded sequence ( fn)n ⊂ Hψ(BN), ‖ fn‖ψ 6 1, (respectively ( fn)n ⊂ Aψ

α (BN),
‖ fn‖Aψ

α
6 1) which tends to 0 uniformly on every compact subset of BN , ‖ fn ◦

φ‖Hψ −−−→
n→∞

0 (respectively ‖ fn ◦ φ‖Aψ
α
−−−→
n→∞

0), it is not difficult to show that if

‖φ‖∞ < 1, then Cφ is compact on Hψ(BN) (respectively Aψ
α (BN).)

It remains to prove (i)⇒ (iv) and (ii)⇒ (iv). We first deal with the proof of
(i)⇒ (iv). We will use the necessary part of the second point of Theorem 2.4. Let



472 STÉPHANE CHARPENTIER

us assume that φ induces a compact composition operator on every Hardy–Orlicz
space. According to (2.2), this means that

sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h))) = oh→0

( 1
ψ(Aψ−1(1/hN))

)
,

for every A > 0 and every Orlicz function ψ, which is equivalent to

(3.1) sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h))) 6
1

ψ(Aψ−1(1/hN))
,

for every A > 0, for every Orlicz function ψ and for h sufficiently small, according
to Remark 2.2. We intend to show that

sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h))) = 0,

for all 0 < h 6 h0 and some h0 ∈ (0, 1). By contradiction, we suppose that

sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h))) 6= 0

for every h > 0, since

h 7−→ sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h)))

is a non-decreasing function on (0, 1). A straightforward computation shows that
inequality (3.1) is satisfied for every A > 0, for every Orlicz function ψ and for h
small enough, if and only if we have, by putting x = 1/h,

(3.2)
ψ−1(xN)

ψ−1(1/sup0<r<1 supζ∈SN
(µφr (S(ζ, 1/x))))

6
1
A

,

for every A > 0, for every Orlicz function ψ and for x large enough. The following
lemma ensures that this cannot occur:

LEMMA 3.2. Let f , g : [0,+∞[→ [0,+∞[ be two increasing functions which
tend to +∞ at +∞. There exist δ > 0 and a continuous increasing concave function
ν : [0,+∞[→ [0,+∞[, with lim

x→+∞
ν(x) = +∞, such that ν( f (x))/ν(g(x)) > δ > 0,

for every x large enough.

We assume for a while that this lemma has been proved, and we finish the
proof of Theorem 3.1. With the notations of the lemma, we put

f (x) = xN and g(x)= 1
sup

0<r<1
sup

ζ∈SN

(µφr (S(ζ,1/x))) .

It is clear that lim
x→+∞

f (x) = +∞; since Cφ is supposed to be compact on every

Hψ(BN), it is in particular bounded on Hp(BN) ([4], Corollary 3.5), then we have
g(x) −−−−→

x→+∞
+∞ (Theorem 2.3(iii)). Now, the above lemma provides a constant
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δ > 0 and a continuous increasing concave function ν, tending to infinity at infin-
ity, such that

ν(xN)

ν
(

1
sup

ζ∈SN

(µφ(S(ζ,1/x)))

) > δ > 0,

for every x large enough. It is not difficult to check that ν can be constructed such
that ψ = ν−1 is an Orlicz function, i.e. such that x/ν(x) −−−−→

x→+∞
+∞ (that is what

we do in the proof of Lemma 3.2 below). Therefore, we get a contradiction with
condition (3.2), so we must have

sup
0<r<1

sup
ζ∈SN

(µφr (S(ζ, h))) = 0,

for every h > 0 small enough. It follows that there exists some 0 < r0 < 1 such
that

(3.3) sup
0<r<1

µφr (C(r0, 1)) = 0,

where C(r0, 1) = {z ∈ BN , r0 < |z| < 1}. We are going to show that

φ−1(C(r0, 1)) = ∅,

which would give the result. Let 0 < r < 1 and let us look at the set

φ−1
r (C(r0, 1)) ∩ SN = {ζ ∈ SN , φr(ζ) ∈ C(r0, 1)}.

Condition (3.3) implies

σN(φ
−1
r (C(r0, 1)) ∩ SN) = 0.

Since φr is continuous on BN , φ−1
r (C(r0, 1)) ∩ SN must be an open subset of SN

and then must be empty. So we proved that, for any r ∈ (0, 1),

{ζ ∈ SN , φr(ζ) ∈ C(r0, 1)} = φ−1(C(r0, 1)) ∩ rSN = ∅,

where rSN = {z ∈ BN , |z| = r}, hence

φ−1(C(r0, 1)) =
⋃

0<r<1

(φ−1(C(r0, 1)) ∩ rSN) = ∅.

The proof in the Bergman–Orlicz case is much easier. Proceeding as above
and using the necessary part of the second point of Theorem 2.5, we get that
condition µφ(C(r0, 1)) = 0 must hold, for some 0 < r0 < 1. By continuity of the
map φ on BN , φ−1(C(r0, 1)) cannot be but empty.

To be complete, we have to prove Lemma 3.2:

Proof of Lemma 3.2. The proof is constructive. Let f and g be as in the state-
ment of the lemma. We are going to build by induction a sequence (an)n which
will be of interest in the construction of the desired function ν. We put a0 = 0,
a1 = 1, and we deduce an+2 from an and an+1 in the following way: we define

bn+2 = sup{g(x), f (x) 6 an+1} and an+2 = max{bn+2, an+1 + (an+1 − an)}.
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We observe that:

(i) if f (x) 6 an+1, then g(x) 6 an+2;
(ii) an+2 − an+1 > an+1 − an > 1.

We now construct the concave function ν as a continuous affine one, whose de-
rivative is equal to εn = 1/

√
n(an+1 − an) on the interval (an, an+1), and with

ν(0) = 0. Of course ν is increasing and then maps [0,+∞[ into itself. Since εn is
decreasing, because of (ii) above, ν is concave. In order to check that ν tends to
infinity at infinity, we compute ν(an):

ν(an+1) = ν(an) + εn(an+1 − an) = ν(an) +
1√
n

.

Therefore ν(an+1)=
n+1
∑

k=1
1/
√

k which shows that lim
x→+∞

ν(x)=+∞, since an → +∞.

We now check that (ν ◦ f (x))/(ν ◦ g(x)) is bounded below by some con-
stant δ > 0, when x is large enough. Let x ∈ [0,+∞[, and let n be an integer such
that an 6 f (x) 6 an+1; we have ν( f (x)) > ν(an). Using the first property of the
sequence (an)n above, we get ν(g(x)) 6 ν(an+2). This yields, for n > 1,

ν( f (x))
ν(g(x))

>
ν(an)

ν(an+2)
=

∑n
k=1 1/

√
k

∑n+2
k=1 1/

√
k
> δ > 0,

hence the proof of Lemma 3.2.

The proof of Theorem 3.1 follows.

3.2. KORÁNYI REGIONS AND COMPACTNESS OF Cφ ON THE HARDY–ORLICZ AND

BERGMAN–ORLICZ SPACES. For ζ ∈ SN and a > 1, we recall that the Korányi
approach region Γ(ζ, a) of angular opening a is defined by

Γ(ζ, a) =
{

z ∈ BN , |1− 〈z, ζ〉| < a
2
(1− |z|2)

}
.

Theorem 6.4 of [6] and the third part of Theorem 2.3 yields the following
result:

THEOREM 3.3. Let ψ be an Orlicz function satisfying the ∆2 ∩ ∇2-condition.
Let also φ : BN → BN be holomorphic. We assume that N > 1 and we fix bN =
(cos(π/(2N)))−1.

(i) If φ(BN) ⊂ Γ(ζ, bN), then Cφ is bounded on Hψ(BN).
(ii) If φ(BN) ⊂ Γ(ζ, b), for some ζ ∈ SN and for some 1 < b < bN , then Cφ is

compact on Hψ(BN).
(iii) Both of the above results are sharp in the following sense: given c > bN , there

exists φ with φ(BN) ⊂ Γ(ζ, c), for some ζ ∈ SN , and Cφ not bounded on Hψ(BN);
there also exists some φ with φ(BN) ⊂ Γ(ζ, bN), for some ζ ∈ SN , and Cφ not compact
on Hψ(BN).
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REMARK 3.4. (i) If N = 1, the first two points of the previous theorem are
true if we put b1 = +∞ and Γ(ζ,+∞) = D. Indeed, the first point is nothing
but the continuity of every composition operator on the disc, and the second one
is contained in Proposition 3.25 of [6] which says that, whenever φ(D) is con-
tained in some nontangential approach region in D, then Cφ is Hilbert–Schmidt
in H2(D), hence compact on every Hp(D), 1 6 p < ∞.

(ii) Following the proof of Theorem 3.3 of [5], it is not difficult to show that the
boundedness or compactness of Cφ on Hψ(BN) implies that on Aψ

α (BN), for any
α > −1, as soon as the Orlicz function ψ satisfies the ∆2-condition. Thus, the first
two points of the previous theorem also holds for Bergman–Orlicz spaces.

The following result shows that Theorem 3.3 does not hold as soon as the
Orlicz function grows fast.

THEOREM 3.5. Let ψ be an Orlicz function satisfying the ∆2-condition. Then, for
every ζ ∈ SN and every b > 1, there exists a holomorphic self-map φ taking BN into
Γ(ζ, b), such that Cφ is not compact on Hψ(BN).

REMARK 3.6. Observe that there is no assumption on N.

Proof of Theorem 3.5. The proof will use the necessary part of the second
point of Theorem 2.3. First of all, we recall that ∆2-condition implies∇2-condition
(see Subsection 2.2). We denote by e1 the vector (1, 0, . . . , 0) in CN . It is clearly
sufficient to prove the theorem for ζ = e1. For any b > 1, we set

(3.4) β =
2 cos−1(1/b)

π

in (0, 1). We need a lemma whose proof is included in that of Theorem 6.4 of [6]:

LEMMA 3.7. Let b > 1 and let β be defined by (3.4). There exists a holomorphic
map φ : BN → BN , with φ(BN) ⊂ Γ(e1, b), such that

(3.5) σNφ−1(S(e1, h)) > Ch1/β,

for some constant C > 0 depending only on φ and b.

Proof. Without going into details, we briefly give the ideas of the proof. It
uses the deep Alexandrov’s result which gives the existence of non-constant inner
functions in BN [1]. Therefore, we consider a function φ which can be written

φ = (κ ◦ ϕ, 0′),

where 0′ is the (n− 1)-tuple (0, . . . , 0), ϕ is an inner function with ϕ(0) = 0, and
where κ is a biholomorphic map from D onto the non-tangential approach region
Γ(1, b) in the disc, defined by

Γ(1, b) =
{

z ∈ D, |1− z| < b
2
(1− |z|2)

}
.



476 STÉPHANE CHARPENTIER

One can show that the lower-estimate (3.5) holds for this map φ, using the fact
that inner functions ϕ which vanishes at 0 are measure preserving maps of SN
into T (see p. 405 of [16]) in the following sense:

σN((ϕ∗)−1(E)) = σ1(E),

for any Borel set E in T.

Let φ be as in the statement of the theorem. According to the necessary part
of the second point of Theorem 2.3, the previous lemma ensures that, if we show
that for any Orlicz function ψ satisfying the ∆2-condition, for any β ∈ (0, 1), there
exists some A > 0 such that

(3.6)
1

ψ(Aψ−1(1/hN))
6 h1/β,

for every h small enough, then Cφ would not be compact on Hψ(BN). Now, if we
set y = ψ−1(1/hN), then an easy computation implies that (3.6) is equivalent to
ψ(y)1/Nβ 6 ψ(Cy) for some constant C > 0. We conclude the proof by noticing
that this latter condition is trivial if 0 < 1/Nβ 6 1, while it is nothing but ∆2-
condition if 1/Nβ > 1 (see Subsection 2.2).

REMARK 3.8. (i) Note that the 0 < 1/Nβ 6 1-setting, at the end of the previ-
ous proof, allows to extend the compactness part of the third point of Theorem 3.3
to any Orlicz functions satisfying the ∇2 ∩∇0-condition. Anyway, this is a par-
ticular case of Corollary 3.5 of [4] which asserts that the compactness of Cφ on
Hψ(BN) implies that on Hp(BN) for such ψ.

(ii) When N = 1, the proof of Lemma 3.7 can be simplified: first, because
the existence of a non-constant inner function in the unit disc is trivial, and then
because it clearly suffices to take ϕ(z) = z, what just turns the proof of Lemma 3.7
into considering a biholomorphic map κ from D onto a non-tangential approach
region.

The previous remark leads us to say some words about weighted Bergman–
Orlicz spaces in dimension one. Indeed, we can adapt the proof of Lemma 3.7 to
get the following result.

LEMMA 3.9. Let α > −1, let b > 1 and let β be defined by (3.4). There exists a
holomorphic map φ : D→ D, φ(D) ⊂ Γ(1, b), such that

(3.7) vα(φ
−1(S(1, h))) > Ch(2+α)/β,

for some constant C > 0 depending only on α, φ and b.

For the seek of completeness, we prefer to give some details of the proof
of this lemma, in order to point out the slightly difference with that of Theo-
rem 6.4, 3) of [6].
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Proof. We consider a biholomorphic map κ from D onto

Γ(1, b) =
{

z ∈ D, |1− z| < b
2
(1− |z|2)

}
,

for some b > 1. As it is explained in the proof of Theorem 6.4, 3) of [6], if β ∈ (0, 1)
is defined by (3.4), then the function g(z) := (1− κ(z))/((1− z)β) is continuous
and non-zero in D ∩ V, where V is a closed disc (with non-empty interior) cen-
tered at 1, and κ−1(S(1, h)) ⊂ D∩V, for h > 0 sufficiently small. Then, for such h,
we follow the computation at the end of the proof of Theorem 6.4, 3) of [6] to get

κ−1(S(1, h)) ⊃ S(1, C̃h1/β),

for some constant C̃ > 0, depending only on κ and b. Therefore,

vα(κ
−1(S(1, h))) > Ch(2+α)/β,

where C > 0 depends on α, κ and b.

Now, it is sufficient to argue as at the end of the proof of Theorem 3.5 to get:

PROPOSITION 3.10. Let α > −1, let b > 1, let ζ ∈ S1 and let ψ be an Orlicz
function satisfying the ∆2-condition. There exists a holomorphic map φ : D → D, with
range contained in the non-tangential approach region Γ(ζ, b) such that the induced
composition operator Cφ is not compact on Aψ

α (D).

The proof of the previous proposition does not work directly when N > 1,
because we do not know if there exists a non-constant inner function which is
measure-preserving from BN to D in the following sense:

vα(φ
−1(E)) = Aα(E),

for any E ⊂ D, where Aα is the weighted area measure in D.

3.3. ANOTHER CHARACTERIZATION OF THE COMPACTNESS OF Cφ ON WEIGHTED

BERGMAN–ORLICZ SPACES. The following result generalizes that obtained in
[19] for classical Bergman spaces:

THEOREM 3.11. Let α > −1, let φ : BN → BN be holomorphic and let ψ be an
Orlicz function which satisfies the ∇0-condition. We assume that Cφ is bounded from
Aψ

β (BN) into itself for some −1 < β < α. Then Cφ is compact from Aψ
α (BN) into itself

if and only if

(3.8) lim
|z|→1

ψ−1(1/(1− |φ(z)|)N(α))

ψ−1(1/(1− |z|)N(α))
= 0.

Proof. The proof of the necessary part is the same as that of Theorem 5.7
of [8], using Proposition 1.10 of [3]. We deal with the proof of the sufficiency of
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(3.8). Without loss of generality, we assume that φ(0) = 0. According to (2.2), it
is sufficient to show that for every B > 0, there exists h0 ∈ (0, 1), such that

(3.9) ψ−1
( 1

µφ,α(S(ξ, h))

)
> Bψ−1

( 1
hN(α)

)
,

uniformly in ξ ∈ SN , and for any 0 < h < h0. Let α and β be as in the statement
of the theorem. We have

µφ,α(S(ξ, h)) =
∫

φ−1(S(ξ,h))

(1− |z|2)αdv(z)

6 2α−β sup
z∈φ−1(S(ξ,h))

(1− |z|)α−β
∫

φ−1(S(ξ,h))

(1− |z|2)βdv(z)

= 2α−β sup
z∈φ−1(S(ξ,h))

(1− |z|)α−βµφ,β(S(ξ, h))

6 2α−β sup
z∈φ−1(S(ξ,h))

(1− |z|)α−β 1
ψ(Cβψ−1(1/hN(β)))

,(3.10)

where the last inequality stands for some constant Cβ > 1 and for h small enough,

since Cφ is supposed to be bounded on Aψ
β (BN).

Now, since α− β > 0, the hypothesis (3.8) is equivalent to the fact that, for
any A > 0,

(1− |z|)α−β 6
1

(ψ(Aψ−1(1/(1− |φ(z)|)N(α))))(α−β)/N(α)
,

whenever |z| is close enough to 1. Moreover, observe that if z ∈ φ−1(S(ξ, h)),
then

1− |z| 6 1− |φ(z)| 6 |1− 〈φ(z), ξ〉| < h

so that, for any A > 0,

sup
z∈φ−1(S(ξ,h))

(1− |z|)α−β 6
1

(ψ(Aψ−1(1/hN(α))))(α−β)/N(α)
,

for any h > 0 small enough, using the fact that ψ is a non-decreasing function
and that α− β > 0. Thus, it follows from (3.10) that

µφ,α(S(ξ, h)) 6 2α−β 1
(ψ(Aψ−1(1/hN(α))))(α−β)/N(α)

1
ψ(Cβψ−1(1/hN(β)))

,

for any A > 0 and h small enough. Using (3.9), the last inequality ensures that Cφ

will be compact on Aψ
α (BN) if, for any B > 0, there exists a constant A > 0 such

that

(3.11) ψ−1((ψ(Aψ−1(1/hN(α))))(α−β)/N(α) ·ψ(Cβψ−1(1/hN(β))))>Bψ−1(1/hN(α)),
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for h small enough. Putting x = ψ−1(1/hN(α)), (3.11) is equivalent to

ψ(Bx) 6 ψ(Ax)(α−β)/N(α) · ψ(Cβψ−1((ψ(x))N(β)/N(α)),

which is in turn satisfied, using the convexity of ψ and Cβ > 1, if

ψ(Bx)N(α) 6 ψ(Ax)α−β · ψ(x)N(β),

for x large enough. Let us notice that this last inequality is equivalent to

ψ(Bx)N(β)/(α−β)

ψ(x)N(β)/(α−β)
6

ψ(Ax)
ψ(Bx)

,

for x large enough. Since ψ satisfies the ∇0-condition (see Subsection 2.2), the
proof is complete.

REMARK 3.12. We mention that the proof of the necessary part of the pre-
vious theorem does not use the boundedness of Cφ on some “smaller” weighted
Bergman–Orlicz space. Also, it is not necessary to assume that ψ satisfies the
∇0-condition.

Since every composition operator is bounded on every Aψ
α (BN) as soon as

ψ satisfies the ∆2-conditon, we have the following corollary:

COROLLARY 3.13. Let α > −1, let ψ be an Orlicz function satisfying the ∆2-
condition and let φ : BN → BN be holomorphic. Then Cφ is compact on Aψ

α (BN) if and
only if

lim
|z|→1

ψ−1(1/(1− |φ(z)|))
ψ−1(1/(1− |z|)) = 0.

Proof. It is sufficient to remark that we have

lim
|z|→1

ψ−1(1/(1− |φ(z)|)N(α))

ψ−1(1/(1− |z|)N(α))
= 0 ⇐⇒ lim

|z|→1

ψ−1(1/(1− |φ(z)|))
ψ−1(1/(1− |z|)) = 0,

since ψ satisfies the ∆2-condition. Indeed, it is easy to deduce from the third point
of the definition of the ∆2-condition that, if a > 1, then ψ−1(xa) 6 Cψ−1(x) for
some constant C > 0 (which may depend on a) and for x large enough.

This corollary highlights an important difference with the classical weighted
Bergman case: when ψ satisfies the ∆2-condition, the compactness (as well as
the boundedness, Theorem 2.5) of composition operators on Aψ

α (BN) does not
depend on α > −1.

Yet, this independency does not stand for α = −1, i.e. for the Hardy–Orlicz
spaces; indeed, it was shown ([8], Theorem 5.8) that there exists some Orlicz func-
tion ψ which satisfies the ∆2-condition (to be precise, ψ(x) = ex2 − 1) such that
there exists a holomorphic self-map of D inducing a compact operator on Aψ

α (D),
but not compact on Hψ(D).
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Nevertheless, the same proof as that of the necessary part of Theorem 3.11
for the Hardy–Orlicz spaces yields:

PROPOSITION 3.14. Let φ : BN → BN be holomorphic and let ψ be an Orlicz
function. If Cφ is compact on Hψ(BN), then

lim
|z|→1

ψ−1(1/(1− |φ(z)|))
ψ−1(1/(1− |z|)) = 0.
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