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ABSTRACT. We show that every Finsler module over a C*-algebra has a quasi-
representation into the Banach space B(.s#, #) of all bounded linear opera-
tors between some Hilbert spaces .7 and .#". We define the notion of com-
pletely positive p-morphism and establish a Stinespring type theorem in the
framework of Finsler modules over C*-algebras. We also investigate the non-
degeneracy and the irreducibility of quasi-representations.
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1. INTRODUCTION

The notation of Finsler module is an interesting generalization of that of
Hilbert C*-module. It is a useful tool in the operator theory and the theory of op-
erator algebras and may be served as a noncommutative version of the concept
of Banach bundle, which is an essential concept in the Finsler geometry. In 1995
Phillips and Weaver [11] showed that if a C*-algebra &7 has no nonzero commu-
tative ideal, then any Finsler .&/-module must be a Hilbert C*-module. If < is
the commutative C*-algebra Cy(X) of all continuous complex-valued functions
vanishing at infinity on a locally compact Hausdorff space X, then any Finsler
/-module is isomorphic to the module of continuous sections of a bundle of Ba-
nach spaces over X. The concept of a p-morphism between Finsler modules was
introduced in [1].

The Gelfand-Naimark-Segal (GNS) representation theorem is one of the
most useful theorems, which is applied in operator algebras and mathematical
physics. That provides a procedure to construct representations of C*-algebras.
A generalization of GNS construction to a topological *-algebra established by
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Borchers, Uhlmann and Powers leading to unbounded *-representations of *-
algebras; see [12]. Another is a generalization of a positive linear functional to a
completely positive map studied by Stinespring [14], see also [6].

Let o7 be a C*-algebra and let &7 ™ denote the positive cone of all positive el-
ements of &7. We define a Finsler «/-module to be a right .%/-module & equipped
with amap p : & — &/t (denoted by p,, if there is an ambiguity) satisfying the
following conditions:

(i) The map || - || : x — ||p(x)|| makes & into a Banach space.
(ii) p(xa)? = a*p(x)%a, foralla € o/ and x € &.

A Finsler module & over a C*-algebra . is said to be full if the linear span
of {p(x)?: x € &} is dense in .«7. For example, if & is a (full) Hilbert C*-module
over & (see [7]), then & together with p(x) = (x,x)1/? is a (full) Finsler module
over </, since

p(xa)? = (xa,xa) = a*(x,x)a = a*p(x)?a.

In particular, every C*-algebra & is a full Finsler module over & under the map-
ping p(x) = (x*x)!/2.

Our goal is to extend the notion of a representation of a Hilbert C*-module
to the framework of Finsler «7-modules. We show that every Finsler </-module
has a quasi-representation into the Banach space B(.7, ") of all bounded lin-
ear operators between some Hilbert spaces .7# and .%#". We define the notion of
completely positive ¢-morphism and establish a Stinespring type theorem in the
framework of Finsler modules over C*-algebras. We also introduce the notions
of the nondegeneracy and the irreducibility of quasi-representations and study
some interrelations between them.

2. QUASI-REPRESENTATIONS OF FINSLER MODULES

We start our work by giving the definition of a ¢-morphism of a Finsler
module.

DEFINITION 2.1. Suppose that (&,p,,/) and (#,p4) are Finsler modules
over C*-algebras </ and %, respectively, and ¢ : &/ — £ is a *-homomorphism
of C*-algebras. A (not necessarily linear) map ¢ : & — .% is said to be a ¢-
morphism of Finsler modules if the following conditions are satisfied:

() 02 (P (x)) = ¢(por (x));

(ii) & (xa) = @(x)¢(a);
forall x € & and a € &. In the case of Hilbert C*-modules, ¢ is assumed to be
linear and then condition (ii) is deduced from (i).

Now we introduce the notion of a quasi-representation of a Finsler module.
Due to B(.2#, %) is a Hilbert C*-module over B(7#) via (T,S) = T*S, we can
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endow B(.%, %) a Finsler structure by
(2.1) po(T) = (T*T)"/2.

DEFINITION 2.2. Let (&,p) be a Finsler module over a C*-algebra «/. A
map @ : & — B(H, %), where ¢ : o/ — B(.5¢) is a representation of <7 is called
a quasi-representation of & if po(P(x)) = ¢(p(x)) forall x € &.

We are going to show that for every Finsler «7-module there is a quasi-
representation into B(.%, %) for some Hilbert spaces /¢ and %/, see also [9].

THEOREM 2.3. Suppose & is a Finsler </ -module with the associated map p :
& — /T, Then there is a quasi-representation @ : & — B(, %) for some Hilbert
spaces  and K .

Proof. By the Gelfand-Naimark theorem for C*-algebras, there is a repre-
sentation ¢ : o/ — B(.#) for some Hilbert space .. We want to construct a
Hilbert space .%". Put

Ko :=span{¢(a)f :a € o, f : & — A is a map with a finite support}
and define on %) an inner product by

(p@)f, @(b)g) =Y (p(a)f(x), p(b)g(x)).

XeE

Note that if (Y | ¢(a;)fi, Y01 ¢(a;) fi) = 0, then

Y (X 0@ fix), ooy o) fi(x)) = 0.

Xe&

n n
Thus Y. ¢(a;)fi(x) = 0 for each x € &, whence Y ¢(a;)f; = 0.
i=1 i=1
Let us consider the closure % of % to get a Hilbert space, which is de-
noted by #". Forany y € & and h € J#, the map hy : & — J defined by

e

has a finite support. For x € &, define @ (x) : 5 — # by ®(x)h = ¢(p(x))hx.
We show that @(x) € B(.#, %"). Clearly ®(x) is linear. Also @(x) is bounded,
1@ ()h||? = (@ (x)h, D(x)h) = (9(p(x))hx, ¢ (p(x))hx)
= 2 (@) (y), (o (x)hx(y)) = (@(p(x))h, ¢(p(x))h)

yes
< lo(p()) 121112,
whence || (x) || < [l¢(o(x))]|
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Further,

= {9(p(x))h, @(p())') = {p(p(x)*), 1),
forall h,h' € s and x € &. Hence ®(x)*®(x) = ¢(p(x)?). Hence

(22) (@(x) @(x))"* = p(p(x)).
It follows from (2.1) and equality (2.2) that po(®(x)) = ¢(p(x)). 1

REMARK 2.4. If @ is surjective and B(¢, ¢') is a full Finsler B(.7#")-module,
then by Theorem 3.4(iv) of [1], ¢ is surjective.

In the next section the notion of completely positive g-morphism is intro-
duced and a construction of Stinespring’s theorem for Finsler modules is given.

3. A STINESPRING TYPE THEOREM FOR FINSLER MODULES

The Stinespring theorem was first introduced in the work of Stinespring
in 1995 that described the structure of completely positive maps of a C*-algebra
into the C*-algebra of all bounded linear operators on a Hilbert space; see [14].
Recently Asadi [3] proved this theorem for Hilbert C*-modules. Further, Bhat
et al. [4] improved the result of [3] with omitting a technical condition. In this
section we intend to establish a Stinespring type theorem in the framework of
Finsler modules over C*-algebras.

Let (&,p.7) be a Finsler module over a C*-algebra «/. A map ¢ : & —
B(, %) is called completely positive if there is a completely positive map ¢ :
o/ — B() such that (i) and (ii) of Definition 2.1 hold with p» = po.

THEOREM 3.1. Let (&,p) be a Finsler module over a unital C*-algebra <7, let
J, X be Hilbert spaces and let @ : & — B(, ) be a completely positive map
associated to a completely positive map ¢ : o/ — B(). Then there exist Hilbert spaces
A, A" and isometries V 1 A — A, W : K — K, a x-homomorphism 0 : o/ —
B(#") and a 0-morphism ¥ : & — B(H#', %) such that ¢(a) = V*0(a)V,P(x) =
W*¥(x)V forallx € &anda € <.

Proof. By Theorem 4.1 of [10] there exist a Hilbert space ¢ = & ® J¢,
a representation 6 : &/ — B(%”) and an isometry V : J# — J#’ defined by
V(h) = 1 ® h such that ¢(a) =V*0(a)V. We may consider a minimal Stinespring
representation for 6, where .7 is the closed linear span of {6(a)Vh : ac/, he #'}.
Now, we put %’ to be the closed linear span of {®(x)h : x € &,h €
'} and define the mapping ¥ : & — B(#',.%"),x — ¥(x), where ¥(x) :
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span{0(a)Vh,a € o/,h € #} — A is defined by ‘I’(x)(‘zle(ai)VhO _
1=

n
Y @(Xﬂi)hi forx € &,a;, € o, h; € H.
i=1
The map ¥ (x) is well-defined and bounded, since

frea (o) |
| émal)hl g i/ji:l@(xaj) P (xa )i )
- i,]il«p(a}k)(P(x)*@(x)q)(ai)hi,hj> = idij1<<p(a;f)(p(p(x)z)sv(mhwhj>
:z-,ji_l&o(a;‘p() hi hj) = ”f_fv*"(ﬂ}‘f?() ) Vhis )
) i,jige(p(x)zw(ai)m9<a]~>Vh ) < loteP) | Eote

< lo(IR] Eeteavi = 1=i?| }f:lem

The mapping ¥ is a -morphism, since foralla,b € o/ and h, g €

(F(x)"¥ (x)(0(a
= (¥(x)

= (@(x)p(a)h, @(x)p(b

= (p(p(x)*)g

= (V*0(b*p(x

)Vh),0(b)Vg)

(9(ﬂ)Vh) ( )(6(b)Vg)) = (P(xa)h, d(xb)g)
(b)g) = (@(x)"@(x)9(a)h, ¢(b)g)

(ﬂ)h 90( )g) = (g(bp(x)*a)h,g)

)?a)Vh,g) = (8(p(x)*)8(a) VI, 6(b) V),

whence ¥ (x)*¥(x) = 6(p(x)?). Moreover

¥ (x)0(a)(0(b)Vh)="¥(x)(6(ab)Vh)=D(x(ab))h=>((xa)b)h="(xa)(6(b)Vh),

so that ¥(x)0(a) = ¥(xa).

Since ¥’ C . we can consider a map W as the orthogonal projection of %
onto #’. Hence W* : ¥’ — ¢ is the inclusion map, whence for any k' € ¢~
we have WW* (k') = W(K') = K/, thatis WIW* = [ 4.

Finally we observe that W*¥ (x)Vh = ¥ (x)Vh = ¥(x)(0(1)Vh) = @(x)h,
thatis W*¥(x)V = &(x). 1
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4. NONDEGENERATE AND IRREDUCIBLE QUASI-REPRESENTATIONS

In this section we define the notions of nondegenerate and irreducible quasi-
representations of Finsler modules and describe relations between the nondegen-
eracy and the irreduciblity, see [2]. Throughout this section we assume that the
quasi-representations satisfy condition (ii) of Definition 2.1.

DEFINITION 4.1. Let @ : & — B(J,. %) be a quasi-representation of a
Finsler module & over a C*-algebra «/. The map @ is said to be nondegenerate if
Q&) H = A and @(&)*# = H (or equivalently, if there exist §{ € ,5 €
K such that ¢(£)¢ = 0 and ¢(&)*y = 0, then { = 1 = 0). Recall that a
representation ¢ : &/ — B(¢) of a C*-algebra </ is nondegenerate if (&7 )% =
J (or equivalently, if there exists { € . such that ¢(«7)¢ = 0, then ¢ = 0), see

Definition A.1. of [13].

THEOREM 4.2. If @ : & — B(H, X') is a nondegenerate quasi-representation,
then ¢ : of — B(J€) is a nondegenerate representation. If & is full and ¢ is nondegen-
erate, then @ is also nondegenerate.

Proof. Suppose that @ is nondegenerate and ¢ (/)¢ = 0. It follows from the
Hewitt—Cohen factorization theorem that (&) = ¢(£)¢ = P (&) p( )¢ = 0.
We conclude that { = 0. Thus ¢ is nondegenerate.

Suppose that ¢(&£)¢ = 0 for some { € . Then for any x € & we have

[e(x)E|I? = (@(x) @ (x)g,¢) = <Z)(P(X)2)§,§> = [lg(p(x))|[> = 0. Since & is a

full Finsler «7-module, a = nl1_r>n Zn Ainp(x;,)? for some k, € N, x;, € & and
®i=1

Ain € C. Hence l

kn kl’l
p(a)d = lim 3 Aiug(p(xi))?¢ = lim Y Apug(p(xin)) @(o(xin))E =0,
i=1 i=1

whence ¢ =0. 1

REMARK 4.3. The second result of Theorem 4.2 may fail, if the condition of
being full is dropped. To see this take &/ to be a nondegenerate von Neumann
algebra acting on a Hilbert space, which has a nontrivial central projection P.
Hence the identity map ¢ : &/ — B() is assumed to be nondegenerate.

Put & = &/P = {aP : a € &/} as a Finsler &/-module equipped with
p(aP) = |aP|. Clearly </ P is not full. The identity map ¢ : &/ P — B(¢) satisfies
the following:

(i) po®(aP) = po(aP) = |aP| = ¢(|aP|) = ¢p(aP), where py is defined as
in (2.1).
(if) @(aPb) = ©(aP)p(b) forallb € .
Hence @ is a quasi-representation of &, which is not nondegenerate, since

O(6)H = dP(H) = P(d H) C P(H) =P(H) £ H.
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In the following corollary we investigate a condition under which the rep-
resentation ¢ and the quasi-representation @ are nondegenerate.

COROLLARY 4.4. If p(p(x)) = Ly, then both @ and ¢ are nondegenerate.

Proof. Suppose ®(&)¢ = 0 for some § € #. Then for all x € & we have
[@(x)E]? = (P(x)*@(x)E, &) = (9(p(x)*)E, &) = [E]|* = 0, so that & = 0. The

nondegeneracy of ¢ follows from Theorem 4.2. 1

DEFINITION 4.5. Let @ : & — B(5#,") be a quasi-representation of a
Finsler module & over a C*-algebra </ and let %, %" be closed subspaces of
' and A, respectively. A pair of subspaces (%, #") is said to be ®-invariant
if o(&)# C ' and ®(&)* ¢’ C #. The quasi-representation @ is said to
be irreducible if (0,0) and (.7, ") are the only ®-invariant pairs. Recall that a
representation ¢ : &/ — B(J¢) of a C*-algebra </ is irreducible if 0 and /# are
only closed subspaces of .7# which are g-invariant, i.e. are invariant for ¢(</).

THEOREM 4.6. Suppose that the quasi-representation ¢ : & — B(, %) con-
structed in Theorem 2.3 is irreducible. Then sois ¢ : o/ — B(J). If & is full and ¢ is
irreducible, then ® is irreducible.

Proof. Suppose that @ is irreducible and a closed subspace % of ¢ is ¢-
invariant. Consider .#” = ®(&).# . Clearly ®(&).# C #"'. Due to ¢(/).# C
2 we observe that ¢(p(x)2)# C ¢, whence ®(x)*®(x).# C ¥ forallx € &.
Now let x # y. In the notation of Theorem 2.3 we have

(@(x)*D(y)h,0') = (D(y)h, D(x)H') = (p(p(y))hy, ¢(o(x))Hy)
ng y)hy(2), ¢(p(x))hy(2)) = 0,

forall h,h' € . Puth’ = ®(x)*®(y)h to get (P (x)*P(y)h, P(x)*P(y)h) = 0.
So that @(x)*®(y)h = 0. Therefore ®(x)*®(y).# = 0.# C . It follows that
DQ(E)*P(E)# C O(E)*®(E)# C . Since @ is irreducible, we conclude that
(o, #")=1(0,0)0r (X, ") = (#,#"), hence either ¥ = 0 or # = . This
implies that ¢ is irreducible.

Now assume that ¢ is irreducible. It follows from Remark 4.1.4 of [8] that ¢
is nondegenerate. By Theorem 4.2, ¢ is nondegenerate.

Consider (¢, #") as a @-invariant pair of subspaces. Any a € &/ can be

kn
represented as a4 = h_r)n y /’\1-’,110(x1-,n)2 for some k, € N, x;, € £ and A;,, € C.
0=l
Hence

kn ky
p(a) A = Jim Y Ninglp(xipn))*t = lim Y A ®@(xip)* @(xi ) C X,
i=1 -1

Hence either # = 0or % = 7.
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If # = 0then ®(&)*#’ C # =0, and for every ¢’ € ¢’ we have 0 =
(D(x)*E,E) = (&, P(x)E) for x € &and & € A, so that %' | &(E) A = A
Since #’ C ', we have ¥’ = 0.

If # = #, then &' = ®O(&)H = O(&) ¢ C X' Hence X' = .
Therefore @ is irreducible. 1

REMARK 4.7. The result may fail, if the condition of being full is dropped.
The closed subspace P(.7#) in Remark 4.3 when ¢ : &/ — B(.%) is irreducible
provides a counterexample.

Next we present some conditions under which the quasi-representation ¢
is nondegenerate and irreducible.

COROLLARY 4.8. Let & be a full Finsler </-module and let ¢ : of — B() be
irreducible. Then the quasi-representation ¢ : & — B(H, #") is nondegenerate and
irreducible.

Proof. Since ¢ is irreducible, it is nondegenerate. Since & is full, by Theo-
rem 4.2, @ is nondegenerate and by Theorem 4.6, @ is irreducible. &

THEOREM 4.9. Let & be a full Finsler o/ -module. Then & (&) is a subset of the
space K (., ") of all compact operators from A into A if and only if (<) C

Proof. Suppose ¢(</) C K(2). Applying the Hewitt—-Cohen factorization
theorem we have @(&) = ¢(8) = (&) () CK(#, #7).
Conversely, suppose that &(&) C K(#, 7). Since & is full we have

kn k”
q)( ) = lim 2/\171([) (xi,n))z = Jg%ozAi,n(p(xi,n)*(p(xi,n) € K(%>/
i=1

n—oo !

where 4 = lim Z Ainp(x;)? for somek, €N, x;, € &and A;,, € C. ¥

n—oo

In the next two examples we illustrate the considered situations in the no-
tation of Theorem 2.3.

EXAMPLE 4.10. By Theorem 1.10.2 of [5] the identity map ¢ : K(#) —
B(#) is irreducible. It is known that the C*-algebra K () is a full Finsler mod-
ule over K(s#) with p(T) = |T|. Hence the quasi-representation ¢ : K(7) —
B(s#, %) is nondegenerate and irreducible.

EXAMPLE 4.11. Consider ¢ = I : B(#°) — B(¢). Then ¢(B()) =
{T € B(o#) : ¢(S)T = Te(S), forallS € B(x#)} = {T € B(#) : ST =
TS, forall S € B(.##)} = CI. Hence ¢ is irreducible. Also B(.7#) is a full Finsler
B(2#)-module, so that the quasi-representation @ : B(.#) — B(J¢, %) is non-
degenerate and irreducible.



QUASI-REPRESENTATIONS OF FINSLER MODULES OVER C*-ALGEBRAS 189

Acknowledgements. The authors would like to sincerely thank Professor M. Joita for
some useful comments improving the paper.

REFERENCES

[1] M. AMYARI, A. NIKNAM, On homomorphisms of Finsler modules, Internat. Math. ].
3(2003), 277-281.

[2] Lj. ARAMBASIC, Irreducible representations of Hilbert C*-modules, Math. Proc. R. Ir.
Acad. 105A(2005), 11-24.

[3] M.B. AsADI, Stinespring’s theorem for Hilbert C*-modules, ]. Operator Theory
62(2008), 235-238.

[4] B.V.R. BHAT, G. RAMESH, K. SUMSH, Stinespring’s theorem for maps on Hilbert
C*-modules, |. Operator Theory, to appear.

[5] K.R. DAVIDSON, C*-Algebra by Example, Fields Inst. Monographs, vol. 6, Amer. Math.
Soc., Providence. RI 1996.

[6] M. JOITA, Strict completely positive maps between locally C*-algebras and represen-
tations on Hilbert modules, J. London Math. Soc. (2) 66(2002), 421-432.

[7] V.M. MANUILOV, E.V. TROITSKY, Hilbert C*-Modules, Transl. Math. Monogr., vol.
226, Amer. Math. Soc., Providence, RI 2005.

[8] G.J. MURPHY, C*-Algebras and Operator Theory, Academic press, New York 1990.

[9] G.J. MURPHY, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh
Math. Soc. 40(1997), 367-374.

[10] V. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv.
Math., vol. 78, Cambridge Univ. Press, Cambridge 2002.

[11] N.C. PHILLIPS, N. WEAVER, Modules with norms which take values in a C*-algebra,
Pacific ]. Math. 185(1998), 163-181.

[12] R.T. POWERS, Self-adjoint algebras of unbounded operators, Commun. Math. Phys.
21(1971), 85-124.

[13] M. SKEIDE, Generalised matrix C*-algebras and representation of Hilbert modules,
Math. Proc. R. Ir. Acad. 100A(2000), 11-38.

[14] W.F. STINESPRING, Positive functions on C*-algebras, Proc. Amer. Math. Sci. 6(1955),
211-216.



190 MARYAM AMYARI, MAHNAZ CHAKOSHI, AND MOHAMMAD SAL MOSLEHIAN

MARYAM AMYARI, DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, Is-
LAMIC AZAD UNIVERSITY, MASHHAD 91735, IRAN
E-mail address: amyari@mshdiau.ac.ir and maryam_amyari@yahoo.com

MAHNAZ CHAKOSHI, DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH,
IsLAMIC AZAD UNIVERSITY, MASHHAD 91735, IRAN
E-mail address: m-chakoshi@mshdiau.ac.ir

MOHAMMAD SAL MOSLEHIAN, DEPARTMENT OF PURE MATHEMATICS, CEN-
TER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI
UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN

E-mail address: moslehian@ferdowsi.um.ac.ir and moslehian@member.ams.org

Received May 20, 2011.



