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ABSTRACT. We obtain an estimate of Voiculescu’s (modified) free entropy di-
mension for generators of a II1-factor M with a subfactor N containing an
abelian subalgebra A of finite multiplicity. It implies in particular that the
interpolated free group subfactors of finite Jones index do not have abelian
subalgebras of finite multiplicity or Cartan subalgebras.
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1. INTRODUCTION

Cartan subalgebras arise naturally in the classical group measure space con-
struction. Thus, if α is a free action of a discrete countable group Γ on a measure
space (X, µ), then the crossed product von Neumann algebra L∞(X, µ)×α Γ con-
tains a copy of L∞(X, µ) as a Cartan subalgebra. More generally, a Cartan sub-
algebra of a von Neumann algebra P is a maximal abelian ∗-subalgebra of P
whose normalizer generates P (regular MASA) and which is the range of a nor-
mal conditional expectation ([1], [4]). D. Voiculescu defined ([15], [16]) an original
concept of (modified) free entropy dimension δ0 and proved ([16]) that δ0 of any
finite system of generators of a von Neumann algebra which has a regular diffuse
hyperfinite ∗-subalgebra (regular DHSA) is 6 1. This answered in the negative
the longstanding open question of whether every separable II1-factor contains
a Cartan subalgebra since the free group factors L(Fn) (von Neumann algebras
generated by the left regular representations λ : Fn → B(l2(Fn)), 2 6 n 6 ∞)
have systems of generators with δ0 > 1. Voiculescu’s result about the absence
of Cartan subalgebras in free group factors was extended by L. Ge ([5]) and K.
Dykema ([3]) who showed that these factors do not have abelian subalgebras of
multiplicity one and of finite multiplicity, respectively. We mention that if A is a
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Cartan subalgebra in a II1-factor N , then (A ∪ JAJ)′′ is a MASA in B(L2(N , τ))
([4], [10]), hence A is in particular an abelian subalgebra of multiplicity one.

The interpolated free group factors L(Ft) (1 < t 6 ∞) were introduced
independently by Dykema ([3]) and F. Rădulescu ([11]) as a continuation of the
discrete series L(Fn), 2 6 n 6 ∞. We prove (Corollary 3.6) that the subfactors of
finite Jones index in the interpolated free group factors do not have abelian sub-
algebras of finite multiplicity either. The result is a consequence of the estimate
of (modified) free entropy dimension (Theorem 3.5) δ0(x1, . . . , xm) 6 2r + 2v + 3,
where x1, . . . , xm are self-adjoint generators of the II1-factor M, r is the integer
part of the Jones index of N inM and v is the multiplicity of an abelian subalge-
bra A in N .

Schreier’s theorem describes all subgroups of finite index k in the free group
Fn: any such subgroup is isomorphic to the free group F1+k(n−1). A von Neu-
mann algebra analogue of the fact that F1+k(n−1) can be embedded with finite
index k in Fn was proved by Rădulescu ([11]): L(F1+λ−1(t−1)) can be embedded
in L(Ft) with finite index λ−1 ∀ 1 < t 6 ∞ ∀ λ−1 ∈ {4 cos2 π

k : k > 3}. On the
other hand, at the von Neumann algebra level, with L(Fn) instead of Fn, it is no
longer known whether Schreier’s theorem is still true. However, two properties
are preserved when passing to free group subfactors of finite index: Haagerup
approximation property ([7]) and primeness ([12]) i.e., the indecomposability as
tensor product of type II1-factors. Our result about the absence of abelian subal-
gebras of finite multiplicity (and thus, of Cartan subalgebras) is a third property
that seems to support the Schreier conjecture for free group subfactors.

We recall next some results from Voiculescu’s free probability theory ([14],
[15], [16]) for the reader’s convenience. IfM is a II1-factor with its unique faithful
normalized trace τ then ‖x‖s = τ((x∗x)s/2)1/s (1 < s < ∞) denotes the s-norm
of x ∈ M, L2(M, τ) denotes the completion of M with respect to the 2-norm,
andM⊂ B(L2(M, τ)) is the standard representation ofM. For an integer c > 1
letMc(C) andMsa

c (C) be the set of all c× c complex matrices and respectively,
of all c× c complex self-adjoint matrices. Let further Uc(C) be the unitary group
of Mc(C), τc be the unique normalized trace on Mc(C), and ‖ · ‖e =

√
c‖ · ‖2

be the euclidian norm on Mc(C). The free entropy of x1, . . . , xm ∈ Msa in the
presence of xm+1, . . . , xm+n ∈ Msa is defined in terms of sets of matricial mi-
crostates ΓR((xi)16i6m : (xm+j)16j6n; p, c, ε) ⊂ (Msa

c (C))m. The set ΓR of ma-
tricial microstates corresponding to integers c, p > 1 and to ε > 0 consists in
m-tuples (Ai)16i6m of c× c self-adjoint matrices such that there exists an n-tuple
(Am+j)16j6n ∈ (Msa

c (C))n with the properties

|τ(xi1 . . . xil )− τc(Ai1 . . . Ail )| < ε, ‖Ak‖ 6 R

for all 1 6 i1, . . . , il 6 m + n, 1 6 l 6 p, 1 6 k 6 m + n. One defines then
successively:
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χR((xi)16i6m : (xm+j)16j6n; p, c, ε)(1.1)

= log volmc2(ΓR((xi)16i6m : (xm+j)16j6n; p, c, ε)),

χR((xi)16i6m : (xm+j)16j6n; p, ε)(1.2)

= lim sup
c→∞

( 1
c2 χR((xi)16i6m : (xm+j)16j6n; p, c, ε) +

m
2

log c
)

,

χR((xi)16i6m : (xm+j)16j6n) = inf
p,ε

χR((xi)16i6m : (xm+j)16j6n; p, ε),(1.3)

χ((xi)16i6m : (xm+j)16j6n) = sup
R

χR((xi)16i6m : (xm+j)16j6n)(1.4)

(we denoted by volmc2(·) the Lebesgue measure on (Msa
c (C))m ' Rmc2

). The re-
sulting quantity χ((xi)16i6m : (xm+j)16j6n) is the free entropy of (xi)16i6m in the
presence of (xm+j)16j6n or if n = 0, the free entropy χ(x1, . . . , xm) of (xi)16i6m.
The free entropy of (xi)16i6m in the presence of (xm+j)16j6n is equal to the free
entropy of (xi)16i6m if {xm+1, . . . , xm+n} ⊂ {x1, . . . , xm}′′. Also, the free entropy
of a single self-adjoint element x is (where µ denotes the distribution of x):

χ(x) =
3
4
+

1
2

log 2π +
∫ ∫

log |s− t|dµ(s)dµ(t).

An element x ∈ M is a semicircular element if it is self-adjoint and if its distribu-
tion is given by the semicircle law:

τ(xk) =
2
π

1∫
−1

tk
√

1− t2dt ∀k ∈ N.

A family (Mi)i∈I of unital ∗-subalgebras ofM is a free family if τ(xk) = 0, xk ∈
Mik∀1 6 k 6 p, i1, . . . , ip ∈ I, i1 6= i2 6= · · · 6= ip, p ∈ N imply τ(x1, . . . , xp) = 0.
A family (Ai)i∈I of subsets Ai ⊂ M is free if the family (∗-alg({1} ∪ Ai))i∈I
is free. A free set (si)16i6m ⊂ M consisting of semicircular elements is called
a semicircular system. If (xi)16i6m is free then χ(x1, . . . , xm) = χ(x1) + · · · +
χ(xm) hence a finite semicircular system has finite free entropy. The modified free
entropy dimension and the free entropy dimension of an m-tuple of self-adjoint
elements (xi)16i6m ⊂M are

δ0((xi)16i6m) = m + lim sup
ω→0

χ((xi + ωsi)16i6m : (si)16i6m)

| log ω| and

δ((xi)16i6m) = m + lim sup
ω→0

χ((xi + ωsi)16i6m)

| log ω|
respectively, where (xi)16i6m and the semicircular system (si)16i6m are free. If
x1, . . . , xm are free, then

δ0((xi)16i6m) = δ((xi)16i6m) =
m

∑
i=1

δ(xi).
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Moreover, for a single self-adjoint element x ∈ M one has

δ(x) = 1− ∑
s∈R

(µ({s}))2,

therefore δ(x) = 1 if the distribution of x has no atoms.

2. ESTIMATE OF FREE ENTROPY

We obtain an estimate of the free entropy χ(x1, . . . , xm) for self-adjoint ele-
ments x1, . . . , xm which can be approximated in the ‖ · ‖2-norm by certain non-
commutative polynomials of degree 1 in some of their variables. The proof of
Lemma 2.1 is based on the observation that in this case the c × c matricial mi-
crostates of x1, . . . , xm are concentrated in some neighborhood of a linear sub-
space inMsa

c (C).

LEMMA 2.1. Let x1, . . . , xm be self-adjoint elements that generate a II1-factor
(M, τ). Assume that there exist self-adjoint elements m(l)

j , zk ∈ M (for 1 6 j 6 r + 1,
1 6 l 6 2, 1 6 k 6 2v), mutually orthogonal projections pq ∈ M (for 1 6 q 6 u), non-

commutative polynomials Φ
(l)
ji ((pq)q, (zk)k) =

2v
∑

k=1

u
∑

q,s=1
µ
(i,j,k,l)
q,s pqzk ps (where µ

(i,j,k,l)
q,s

are scalars), and 0 < ω < 1
3 such that∥∥∥xi −

1
2

2

∑
l=1

r+1

∑
j=1

(m(l)
j Φ

(l)
ji ((pq)q, (zk)k) + Φ

(l)
ji ((pq)q, (zk)k)

∗m(l)
j )
∥∥∥

2
< ω

for all 1 6 i 6 m. Then

(2.1) χ(x1, . . . , xm) 6 C(m, r, v, K) + (m− 2r− 2v− 3) log ω,

where C(m, r, v, K) is a constant depending only on m, r, v, and

K = 1 + max
i,j,l
{‖Φ(l)

ji ((pq)q, (zk)k)‖2, ‖xi‖, ‖m
(l)
j ‖}.

Proof. For R, 1
ε > 0 sufficiently large and integer p > 1 consider (A1, . . . , Am,

(M(l)
j )j,l , (Pq)q, (Zk)k), an arbitrary element of the set of matricial microstates

ΓR(x1, . . . , xm, (m(l)
j )j,l , (pq)q, (zk)k; p, c, ε). One can assume (see [16]) that ‖Ai‖,

‖M(l)
j ‖, ‖Pq‖ 6 K. If p is large and ε > 0 is small enough, then∥∥∥Ai −

1
2

2

∑
l=1

r+1

∑
j=1

(M(l)
j Φ

(l)
ji ((Pq)q, (Zk)k) + Φ

(l)
ji ((Pq)q, (Zk)k)

∗M(l)
j )
∥∥∥

2
< ω(2.2)

for all 1 6 i 6 m and ‖Φ(l)
ji ((Pq)q, (Zk)k)‖2 < K for all i, j, l. Lemma 4.3 in [15]

implies that for any δ > 0 there exist p′, c′ ∈ N, ε1 > 0 such that if c > c′ and if
(P1, . . . , Pu) ∈ ΓR((pq)q; p′, c, ε1), then there exist mutually orthogonal projections
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Q1, . . . , Qu ∈ Msa
c (C) such that rank(Qq) = bτ(pq)cc and ‖Pq − Qq‖2 < δ∀1 6

q 6 u. If δ > 0 is sufficiently small one has then for all c > c′ and for all 1 6 i 6 m,∥∥∥Ai −
1
2

2

∑
l=1

r+1

∑
j=1

(M(l)
j Φ

(l)
ji ((Qq)q, (Zk)k) + Φ

(l)
ji ((Qq)q, (Zk)k)

∗M(l)
j )
∥∥∥

2
< ω(2.3)

and ‖Φ(l)
ji ((Qq)q, (Zk)k)‖2 < K for all i, j, l. Let S1, . . . , Su ∈ Msa

c (C) be mutually
orthogonal projections, fixed, with each projection Sq of rank bτ(pq)cc. There
exists then U ∈ Uc(C) such that Qq = U∗SqU for all 1 6 q 6 u and one obtains∥∥∥UAiU∗−

1
2

2

∑
l=1

r+1

∑
j=1

(B(l)
j Φ

(l)
ji ((Sq)q, (Tk)k)+Φ

(l)
ji ((Sq)q, (Tk)k)

∗B(l)
j )
∥∥∥

2
<ω(2.4)

for all 1 6 i 6 m, where we denoted B(l)
j = UM(l)

j U∗, Tk = UZkU∗. Let
{Ua}a∈A(c) be a minimal γ-net in Uc(C) with respect to the ‖ · ‖-norm. Ac-

cording to a result of S.J. Szarek ([13]), |A(c)| 6 (C
γ )

c2
for some universal con-

stant C. Consider also a minimal θ-net {Vb}b∈B(c,K) in {B ∈ Msa
c (C) : ‖B‖ 6

K}, with respect to the same norm. It is easily seen that Szarek’s result implies
|B(c, K)| 6 (CK

θ )c2+c. Since ‖UAiU∗ −Ua AiU∗a ‖2 < 2Kγ for some a ∈ A(c) and

‖B(l)
j −Vb(j,l)‖ < θ for some b(j, l) ∈ B(c, K), we have∥∥∥Ua AiU∗a−

1
2

2

∑
l=1

r+1

∑
j=1

(Vb(j,l)Φ
(l)
ji ((Sq)q, (Tk)k)+Φ

(l)
ji ((Sq)q, (Tk)k)

∗Vb(j,l))
∥∥∥

2
(2.5)

6 ‖UAiU∗−Ua AiU∗a ‖2+
∥∥∥UAiU∗−

1
2

2

∑
l=1

r+1

∑
j=1

(B(l)
j Φ

(l)
ji ((Sq)q, (Tk)k)

+Φ
(l)
ji ((Sq)q, (Tk)k)

∗B(l)
j )
∥∥∥

2
+

2

∑
l=1

r+1

∑
j=1
‖B(l)

j −Vb(j,l)‖·‖Φ
(l)
ji ((Sq)q, (Tk)k)‖2

< 2Kγ + ω + 2(r + 1)Kθ = 3ω ∀1 6 i 6 m.

Choose γ= ω
2K , θ= ω

2(r+1)K , and define the function F = (Fi((Tk)k))i : (Msa
c (C))2v

→ (Msa
c (C))m by

Fi((Tk)k)=
1
2

2

∑
l=1

r+1

∑
j=1

U∗a (Vb(j,l)Φ
(l)
ji ((Sq)q, (Tk)k)+Φ

(l)
ji ((Sq)q, (Tk)k)

∗Vb(j,l))Ua(2.6)

∀1 6 i 6 m.

It follows from (2.5) that the distance in the euclidian norm from the microstate
(A1, . . . , Am) to the image of F is less than or equal to 3ω

√
mc. The polynomials

Φ
(l)
ji are linear in (Tk)k, hence the image of F is a linear subspace in (Msa

c (C))m,

of dimension dF 6 2vc2. Denote by LF(ω, c) the intersection of this subspace
with the ball of euclidian radius (3ω + K)

√
mc and by BF(ω, c) the cartesian
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product of LF(ω, c) with the ball of (euclidian) radius 3ω
√

mc in the orthogo-
nal complement of the image of F. The set of matricial microstates ΓR(x1, . . . , xm :
(m(l)

j )j,l , (pq)q, (zk)k; p, c, ε) is contained in
⋃
F

BF(ω, c), hence

volmc2(ΓR(x1, . . . , xm : (m(l)
j )j,l , (pq)q, (zk)k; p, c, ε))(2.7)

6 ∑
F

volmc2(BF(ω, c))

= ∑
F

voldF ((3ω + K)
√

mc) · volmc2−dF
(3ω
√

mc)

= ∑
F

(πmc)dF/2(3ω + K)dF

Γ(1 + (dF/2))
· (πmc)(mc2−dF)/2(3ω)mc2−dF

Γ(1 + (mc2 − dF)/2)

6
(2CK

ω

)c2

·
[(2(r + 1)CK2

ω

)c2+c]2(r+1)

· (πmc)mc2/2(2K)2vc2
(3ω)(m−2v)c2

2mc2

Γ(1 + (mc2/2))
.

After taking the limit as c, p, 1
ε → ∞ in the resulting upper bound for

χR(x1, . . . , xm : (m(l)
j )j,l , (pq)q, (zk)k; p, c, ε),

eliminating R as in the definition of free entropy, and recalling that {x1, . . . , xm}
is a system of generators, one obtains

χ(x1, . . . , xm) = χ(x1, . . . , xm : (m(l)
j )j,l , (pq)q, (zk)k)(2.8)

6 C(m, r, v, K) + (m− 2r− 2v− 3) log ω.

3. INFINITE MULTIPLICITY

Let P be a von Neumann algebra. If Q ⊂ P is a subalgebra, then the nor-
malizer of Q in P is by definition the set NP (Q) = {u ∈ P : uu∗ = u∗u =
1, uQu∗ = Q}.

DEFINITION 3.1 ([1], [4]). A Cartan subalgebra of a von Neumann algebra
P is a maximal abelian ∗-subalgebra (MASA) A ⊂ P such that:

(i) A is the range of a normal conditional expectation;
(ii) the normalizer NP (A) of A in P generates P .

IfN is a type II1-factor, then the representationN ⊂ B(L2(N , τ)) (τ denotes
the unique normalized trace onN ) is the standard form ofN . Let J : L2(N , τ)→
L2(N , τ) be the modular conjugacy operator. We recall the following theorem
due to J. Feldman and C.C. Moore:
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THEOREM 3.2 ([4], [10]). Let N be a type II1-factor. If A is a Cartan subalgebra
of N , then the algebra (A∪ JAJ)′′ is maximal abelian in B(L2(N , τ)).

Being a MASA, the algebra (A∪ JAJ)′′ has a cyclic vector ξ ∈ L2(N , τ) i.e.,
sp‖·‖2(A∪ JAJ)′′ξ = L2(N , τ). With the usual identification of JAJ L2(N , τ) with
L2(N , τ)A, this means that sp‖·‖2AξA = L2(N , τ) that is, A has finite multiplic-
ity 1 in N .

DEFINITION 3.3 ([3]). An abelian subalgebra A of a type II1-factor N has
finite multiplicity 6 v < ∞ if there exist v vectors ξ1, . . . , ξv ∈ L2(N , τ) such that

sp‖·‖2(Aξ1A+ · · ·+AξvA) = L2(N , τ)

or equivalently, if AL2(N , τ)A is generated as anA-A-bimodule by v vectors from
L2(N , τ). If AL2(N , τ)A is not a finitely generated A-A-bimodule, we say that A
has infinite multiplicity.

The multiplicity of A in N does not increase after compressing with a pro-
jection p ∈ A:

LEMMA 3.4 ([3]). IfA ⊂ N has finite multiplicity 6 v and p ∈ A is an arbitrary
projection, then Ap = pA ⊂ pN p = Np has also finite multiplicity 6 v.

THEOREM 3.5. Let (M, τ) be a II1-factor generated by the self-adjoint elements
x1, . . . , xm. If N ⊂ M is a subfactor with the integer part of the Jones index [M : N ]
equal to r and if A ⊂ N is an abelian subalgebra of multiplicity 6 v, then

δ0(x1, . . . , xm) 6 2r + 2v + 3.

Proof. We can assume from the beginning that m > 2r + 2v + 3 since
δ0(x1, . . . , xm) 6 m is always true ([16]). There exists a Pimsner–Popa basis ([9])
m1, . . . , mr+1 ∈ M such that

x =
r+1

∑
j=1

mjEN (m∗j x) ∀x ∈ M,

where EN : M → N is the conditional expectation from M onto N . Denote
the embedding N ⊂ L2(N , τ) by x 7→ x̂ and let J : L2(N , τ) → L2(N , τ) be
the modular conjugacy operator defined by J(x̂) = x̂ ∗. Let ξ1, . . . , ξv ∈ L2(N , τ)
such that

Aξ1A+ · · ·+AξvA

is a dense subset of L2(N , τ). Eventually after replacing ξi by 1
2 (ξi + Jξi) +

1
2
√
−1

(ξi − Jξi)
√
−1 and regrouping, we can assume that there exist η1, . . . , η2v ∈

L2(N , τ)sa := {ξ ∈ L2(N , τ) : Jξ = ξ} such that Aη1A + · · · + Aη2vA is
dense in L2(N , τ). Let x1, . . . , xm be self-adjoint elements ofM. Every element
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EN (m∗j xi) ∈ N can be approximated arbitrarily well in the ‖ · ‖2-norm by ele-
ments of the form

2v

∑
k=1

t

∑
p=1

a(i,j)p,k ηkb(i,j)p,k

for some a(i,j)p,k , b(i,j)p,k ∈ A. Since A is abelian, there exist an integer u and projec-

tions p1, . . . , pu of sum 1 such that every a(i,j)p,k and b(i,j)p,k can be approximated suf-
ficiently well in the uniform norm, by linear combinations of these projections.
Moreover, N̂ sa is dense in L2(N , τ)sa so one can find z1, . . . , z2v self-adjoint ele-
ments of N and scalars µ

(i,j,k)
q,s ∈ C such that

Ψji((pq)q, (zk)k) =
2v

∑
k=1

u

∑
q,s=1

µ
(i,j,k)
q,s pqzk ps

is sufficiently close to EN (m∗j xi) in the ‖ · ‖2-norm, for all indices i, j. In particular,
one can arrange for the norms ‖Ψji((pq)q, (zk)k)‖2 to be all uniformly bounded by
a constant D depending only on the norms ‖m∗j xi‖. Therefore, every element xi

can be approximated arbitrarily well in the ‖ · ‖2-norm, by elements of the form

r+1

∑
j=1

mjΨji((pq)q, (zk)k).

Denote m(1)
j = 1

2 (mj + m∗j ) and m(2)
j = 1

2
√
−1

(mj − m∗j ). It follows that every
element xi can be approximated arbitrarily well in the ‖ · ‖2-norm, by elements of
the form

2

∑
l=1

r+1

∑
j=1

m(l)
j Φ

(l)
ji ((pq)q, (zk)k),

where Φ
(1)
ji ((pq)q, (zk)k) = Ψji((pq)q, (zk)k) = −

√
−1Φ

(2)
ji ((pq)q, (zk)k). Since

xi = x∗i ∀1 6 i 6 m, given ω > 0, every element xi can ultimately be approx-
imated in the ‖ · ‖2-norm as∥∥∥xi −

1
2

2

∑
l=1

r+1

∑
j=1

(m(l)
j Φ

(l)
ji ((pq)q, (zk)k) + Φ

(l)
ji ((pq)q, (zk)k)

∗m(l)
j )
∥∥∥

2
< ω.

If s1, . . . , sm is a semicircular system free from x1, . . . , xm then ([16])

χ((xi + ωsi)16i6m : (si)16i6m)(3.1)

= χ((xi + ωsi)16i6m : (si)16i6m, (m(l)
j )j,l , (pq)q, (zk)k)

6 χ((xi + ωsi)16i6m : (m(l)
j )j,l , (pq)q, (zk)k)
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since (m(l)
j )j,l , (pq)q, (zk)k ⊂ {xi + ωsi, si : 1 6 i 6 m}′′. Note that

∥∥∥xi+ωsi−
1
2

2

∑
l=1

r+1

∑
j=1

(m(l)
j Φ

(l)
ji ((pq)q, (zk)k)+Φ

(l)
ji ((pq)q, (zk)k)

∗m(l)
j )
∥∥∥

2
<2ω(3.2)

for all 1 6 i 6 m, hence the estimate of free entropy from Lemma 2.1 implies

χ((xi + ωsi)16i6m : (si)16i6m) 6 C(m, r, v, K) + (m− 2r− 2v− 3) log 2ω,

therefore

δ0(x1, . . . , xm) = m + lim sup
ω→0

χ((xi + ωsi)16i6m : (si)16i6m)

| log ω|(3.3)

6 m + lim sup
ω→0

C(m, r, v, K) + (m− 2r− 2v− 3) log 2ω

| log ω|
= m− (m− 2r− 2v− 3) = 2r + 2v + 3.

COROLLARY 3.6. The subfactors N of finite index in the interpolated free group
factors L(Ft), 1 < t 6 ∞, do not contain abelian subalgebras of finite multiplicity.

Proof. Consider first the case 1 < t < ∞ and suppose that N has an abelian
subalgebra A of finite multiplicity 6 v. For every projection p ∈ A, pA is an
abelian subalgebra of multiplicity 6 v in pN p (Lemma 3.4). Moreover ([8]),
[L(Ft)p : pN p] = [L(Ft) : N ] < ∞. Eventually after replacing A by a MASA in
N that contains A (and thus, is of finite multiplicity 6 v in N ), we can assume
thatA is a MASA inN , hence has no minimal projections. Therefore, there exists
a projection p ∈ A such that m = 1 + t−1

τ(p)2 is a conveniently large integer (i.e.,
m > 2r + 2v + 3). Theorem 3.5 implies that the (modified) free entropy dimen-
sion of any finite system of generators of L(Ft)p ' L(Fm) (compression formula
in [2], [11]) is 6 2r + 2v + 3, and this is in contradiction with the fact that L(Fm)
is generated by a semicircular system with δ0 = m ([15], [16]).

Suppose now t = ∞ and let x1, x2, . . . be an infinite semicircular system that
generates L(F∞). Making use of inequality (2.8), one obtains:

χ(x1, . . . , xm : (m(l)
j )j,l , (pq)q, (zk)k) < χ(x1, . . . , xm),

for some suitable elements. Let En, n > 1, be the conditional expectation from
L(F∞) onto {x1, . . . , xn}′′. The convergence in distribution ([15], [16]) implies the
existence of a integer n > m such that

(3.4) χ(x1, . . . , xm : (En(m
(l)
j ))j,l , (En(pq))q, (En(zk))k) < χ(x1, . . . , xm).
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One obtains then a contradiction:

χ(x1, . . . , xn) = χ(x1, . . . , xn : (En(m
(l)
j ))j,l , (En(pq))q, (En(zk))k)(3.5)

6 χ(x1, . . . , xm : (En(m
(l)
j ))j,l , (En(pq))q, (En(zk))k)

+ χ(xm+1, . . . , xn) < χ(x1, . . . , xm)

+ χ(xm+1, . . . , xn) = χ(x1, . . . , xn).

COROLLARY 3.7. The interpolated free group subfactors (of finite index) do not
contain Cartan subalgebras.

Proof. With the result of Feldman and Moore (Theorem 3.2), every Cartan
subalgebra is in particular an abelian subalgebra of multiplicity 1, the statement
follows immediately from Corollary 3.6.

Acknowledgements. The absence of abelian subalgebras of finite multiplicity in free
group subfactors of finite index was presented at the EU Conference on C∗-algebras and
Non Commutative Geometry, Copenhagen, 1998. The author expresses his gratitude to the
organizers of that conference.
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