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ABSTRACT. In this paper we completely describe additive surjective continu-
ous maps in the algebra of all bounded linear operators acting on a complex
separable infinite-dimensional Hilbert space, preserving the operators of fi-
nite ascent, the operators of finite descent, Drazin invertible operators, upper
semi-Browder operators, lower semi-Browder operators or Browder operators
in both directions.
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1. INTRODUCTION

Let X be a complex Banach space and H a separable complex infinite di-
mensional Hilbert space. The algebra of all bounded linear operators acting on X
is denoted by L(X).

In the last decades there has been a remarkable interest in the so-called lin-
ear preserver problems which concern the characterization of linear, or additive,
maps on Banach algebras that leave invariant a certain subset. One of the most fa-
mous problems in this direction is Kaplansky’s problem asking whether bijective
unital linear maps, between semi-simple Banach algebras, preserving invertibil-
ity in both directions are Jordan isomorphisms, see [1], [2], [9], [10], [11], [18],
[25], [27].

Most of the linear preserver problems were solved in the finite dimensional
context, and extended later to the infinite dimensional one. We refer the inter-
ested reader to [2], [6], [26] for the invertibility preservers, and [23] for the idem-
potents preservers.

Recently, in [15], [16], [17], the authors studied linear maps on L(H) pre-
serving generalized invertible operators, semi-Fredholm operators or Fredholm
operators in both direction. Observe that the problem makes sense only in the
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infinite dimensional case. In fact, every complex matrix is Fredholm and gener-
alized invertible, and consequently, every map preserves such subsets. Also, it
should be mentioned that these subsets are invariant under finite rank perturba-
tions. This constrains to search information on these maps in the Calkin algebra.
More precisely, it is shown that such maps preserve the ideal of compact opera-
tors in both direction and their induced maps on the Calkin algebra are Jordan
automorphism.

In the present paper, we consider another linear preserver problem that is
trivial in the finite dimension case, but the related subsets are not stable under
finite rank perturbations. In this new context, a new approach is developed and
a complete description of additive preserver maps is provided.

For an operator T ∈ L(X), write T′ for its adjoint, N(T) for its kernel and
R(T) for its range. The ascent a(T) and descent d(T) of T ∈ L(X) are defined by

a(T)=min{n>0 : N(Tn)=N(Tn+1)}, d(T)=min{n>0 : R(Tn)=R(Tn+1)},
where the minimum over the empty set is taken to be infinite, see [19], [28].

An operator T ∈ L(X) is said to have a Drazin inverse, or to be Drazin in-
vertible, if there exists S ∈ L(X) and a non-negative integer n such that

(1.1) STS = S, TS = ST and Tn+1S = Tn.

Note that if T possesses a Drazin inverse, then it is unique and the smallest non-
negative integer n in (1.1) is denoted by i(T). It is well known that T is Drazin
invertible if and only if it has finite ascent and descent, and in this case a(T) =
d(T) = i(T).

Recall also that an operator T ∈ L(X) is called upper (respectively lower)
semi-Fredholm if R(T) is closed and dim N(T) (respectively codim R(T)) is finite.
The set of such operators is denoted by F+(X) (respectively F−(X)). The class of
Fredholm operators is defined by F (X) := F+(X) ∩ F−(X). Let us introduce the
following subsets:

(i) A(X) := {T ∈ L(X) : a(T) < ∞} the set of finite ascent operators,
(ii) D(X) := {T ∈ L(X) : d(T) < ∞} the set of finite descent operators,

(iii) Dr(X) := A(X) ∩D(X) the set of Drazin invertible operators,
(iv) B+(X) := F+(X) ∩A(X) the set of upper semi-Browder operators,
(v) B−(X) := F−(X) ∩D(X) the set of lower semi-Browder operators,

(vi) B(X) := B+(X) ∩ B−(X) the set of Browder operators.
We refer to [19] for more information about semi-Fredholm, Fredholm, semi-
Browder and Browder operators.

Let S denote any of the subsets (i)–(vi). A surjective additive map Φ :
L(X)→ L(X) is said to preserve S in both directions if T ∈ S ⇔ Φ(T) ∈ S .

The main results of this paper are the following two theorems, which char-
acterize all surjective additive continuous maps that preserve the finiteness of as-
cent, finiteness of descent, upper semi-Browder operators, lower semi-Browder
operators, Drazin invertible operators or Browder operators.
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THEOREM A. Let H be a separable infinite-dimensional Hilbert space, let Φ :
L(H) → L(H) be a surjective additive continuous map. Then the following assertions
are equivalent:

(i) Φ preserves in both directions A;
(ii) Φ preserves in both directions D;

(iii) Φ preserves in both directions B+;
(iv) Φ preserves in both directions B−;
(v) there exists an invertible bounded linear, or conjugate linear, operator A : H → H

and a non-zero complex number c such that Φ(S) = cASA−1 for all S ∈ L(H).

THEOREM B. Let H be a separable infinite-dimensional Hilbert space, let Φ :
L(H) → L(H) be a surjective additive continuous map. Then the following assertions
are equivalent :

(i) Φ preserves in both directions Dr;
(ii) Φ preserves in both directions B;

(iii) there exists an invertible bounded linear, or conjugate linear, operator A : H → H
and a non-zero complex number c such that either Φ(S) = cASA−1 for all S ∈ L(H),
or Φ(S) = cAS∗A−1 for all S ∈ L(H).

The paper is organized as follows. In Section 2 we establish some useful re-
sults on the perturbation of the ascent which are needed for the proof of our main
results in Section 3. We give necessary and sufficient conditions for an operator
T ∈ L(X) with finite ascent, x ∈ X and f ∈ X′ when T + x ⊗ f has infinite as-
cent. It is shown also that for each non-zero F ∈ L(H), there exists an invertible
operator T such that a(T + F) = ∞, and when dim R(T) > 2, then we can assume
in addition that a(T− F) = ∞. We provide also an interesting characterization of
upper semi-Browder operators via the ascent. Analogous results for the descent
are also derived.

In Section 3 we prove the main results of the paper: Theorems A and B.

2. ASCENT AND RANK ONE PERTURBATION

Recall that the hyper-range and the hyper-kernel of an operator T ∈ L(X) are
respectively the subspacesR∞(T) :=

⋂
n

R(Tn) and N∞(T) :=
⋃
n

N(Tn).

Let z ∈ X and let f be in the topological dual space X′ of X. We denote, as
usual, by z⊗ f the rank one operator given by (z⊗ f )(x) = 〈x, f 〉z for all x ∈ X.
Note that every rank one operator in L(X) can be written in this form.

THEOREM 2.1. Let T ∈ L(X) be an operator with finite ascent p. Then T|R∞(T)
is bijective. Moreover, if z ∈ X and f ∈ X′, then T + z⊗ f has infinite ascent if and
only if the following assertions hold:

(i) z = a + z0 where a ∈ N(Tp) and z0 ∈ R∞(T);
(ii) 〈z1, f 〉 = −1 and 〈zi, f 〉 = 0 for all i > 2, where zi = (T|R∞(T))−iz0;
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(iii) 〈Tia, f 〉 = 0 for all i > 0.
Moreover, in this case {zi}i>0 is a linearly independent set.

Before presenting the proof of Theorem 2.1, we establish the following two
lemmas.

LEMMA 2.2. Let T ∈ L(X) be an operator of finite ascent p, F = z ⊗ f where
z ∈ X and f ∈ X′, and let n be an integer such that p < n < a(T + F). Then
there exist linearly independent vectors xi, 0 6 i 6 n, and an integer j 6 p such that
(T + F)x0 = 0, (T + F)xi = xi−1 for 1 6 i 6 n and 〈xi, f 〉 = δij for 0 6 i 6 n.

Proof. Note that since a(T + F) > n, there exist linearly independent vectors
ui, 0 6 i 6 n, satisfying (T + F)u0 = 0 and (T + F)ui = ui−1 for 1 6 i 6 n. Let
j be the smallest integer such that 〈uj, f 〉 6= 0. Such a j exists and j 6 p, since
otherwise

Tp+1up = Tpup−1 = · · · = Tu0 = 0,

a contradiction with the assumption a(T) = p. Let ci = 〈ui, f 〉, 0 6 i 6 n.
Without loss of generality we can suppose that cj = 1. Set αn = 1. Consider the
complex numbers αn−1, αn−2, . . . , αj defined inductively by

αn−1 = −αncj+1 · · · αk = −
n−k

∑
r=1

αk+rcj+r · · · αj = −
n−j

∑
r=1

αj+rcj+r.

This means that we have
n−k

∑
r=0

αk+rcj+r = 0 (j 6 k 6 n− 1).

Let xn = un +
n−1
∑

s=j
αsus and

xi = (T + F)n−ixn = ui +
n−1

∑
s=j

αsus−n+i for 0 6 i 6 n− 1,

where we set formally us = 0 for s < 0. Clearly, the vectors xi, 0 6 i 6 n, are
linearly independent. We have 〈xi, f 〉 = 0 for all i < j and 〈xj, f 〉 = 〈uj, f 〉 = 1.
For j + 1 6 i 6 n we have

〈xi, f 〉 = ci +
n−1

∑
s=j

αs〈us−n+i, f 〉 = ci +
n−1

∑
s=j+n−i

αscs−n+i =
n

∑
s=j+n−i

αscs−n+i

=
i−j

∑
r=0

αr+j+n−icr+j =
n−k

∑
r=0

αr+kcr+j = 0

(for r = s− j− n + i and k = j + n− i). This completes the proof.

LEMMA 2.3. Let T ∈ L(X) be an operator with finite ascent p. If x ∈ X satisfies
Tx ∈ R∞(T) and x ∈ R(Tp), then x ∈ R∞(T).
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Proof. Let u ∈ X satisfy Tpu = x. Let n be an integer such that n > p. Since
Tx ∈ R(Tn), there exists y ∈ X with Tny = Tx, and so Tp+1(u− Tn−p−1y) = 0.
This implies that x − Tn−1y = Tp(u − Tn−p−1y) = 0 because a(T) = p, and
consequently x = Tn−1y ∈ R(Tn−1). The integer n was arbitrary, therefore x ∈
R∞(T).

Proof of Theorem 2.1. Since a(T) = p < ∞, we have N(T) ∩ R(Tp) = {0}.
Hence, the restriction of T to R∞(T) is injective. We show that TR∞(T) =
R∞(T). Let x ∈ R∞(T). Then there exists a vector u ∈ X such that Tp+1u = x.
Let v=Tpu. So Tv= x. By Lemma 2.3, v∈R∞(T). Hence, T|R∞(T) is invertible.

Suppose that z ∈ X and f ∈ X′ satisfy (i)–(iii). Write S = T + z ⊗ f . For
i ∈ N, let zi = (T|R∞(T))−iz0. Then Tzi = zi−1 for all i > 1.

We have Sz1 = Tz1 + (z ⊗ f )z1 = z0 − z = −a. By induction we can
prove easily that Si+1z1 = −Sia = −Tia. In particular, Sp+1z1 = −Tpa = 0. So
z1 ∈ N(Sp+1). For i > 2, we have Szi = Tzi + (z⊗ f )zi = zi−1. So a(S) = ∞.

Suppose that S = T + z ⊗ f has infinite ascent, and consider an arbitrary
integer k > p. For n = 2p + k, Lemma 2.2 ensures the existence of a sequence
{xi}n

i=0 of linearly independent vectors and an integer j 6 p such that (T + z⊗
f )x0 = 0, (T + z ⊗ f )xi = xi−1 for 1 6 i 6 n, and 〈xi, f 〉 = δij for 0 6 i 6 n.
Therefore, Txi = xi−1 for all i 6= j and 1 6 i 6 n, and

Txj + z = Sxj = xj−1 ∈ N(T j),(2.1)

where we set formally xi = 0 for i < 0. We have Txj = Tn−j+1xn ∈ R(Tn−j+1).
Hence z = xj−1 − Txj ∈ N(Tp) + R(Tn−j+1) ⊂ N(Tp) + R(Tp). Since N(Tp) ∩
R(Tp) = {0}, this decomposition is unique and independent of n. Hence z =
a + z0 where a = xj−1 ∈ N(Tp) and z0 = −Txj ∈ R∞(T).

For i > 0 we have 〈Tia, f 〉 = 〈Tixj−1, f 〉 = 〈xj−i−1, f 〉 = 0. Since Txj =
−z0 ∈ R∞(T) and xj ∈ R(Tp), by Lemma 2.3 we have xj ∈ R∞(T). Similarly,
xk+p, . . . , xj ∈ R∞(T). Hence 〈(T|R∞(T))−1z0, f 〉 = 〈−xj, f 〉 = −1. Similarly
〈(T|R∞(T))−kz0, f 〉 = 〈−xk+j−1, f 〉 = 0.

Suppose on the contrary that the vectors zi, i > 1, are linearly dependent.

Let m ∈ N and
m
∑

i=1
βizi = 0 for some nontrivial complex coefficients βi. Let s be

the smallest integer such that βs 6= 0. Then

0 = Ts−1
m

∑
i=1

βizi =
m

∑
i=s

βizi−s+1.

So βs =
〈 m

∑
i=s

βizi−s+1, f
〉
= 0, a contradiction. Finally, since T|R∞(T) is invertible,

we get that {zi}i>0 = T|R∞(T){zi}i>1 is linearly independent.
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For subspaces M and M′ of X we write M e
= M′ if there exist finite dimen-

sional subspaces L and L′ such that M ⊆ M′ + L′ and M′ ⊆ M + L. One can
easily verify that if T ∈ L(X) is surjective and M e

= X, then TM e
= X.

LEMMA 2.4. Let T ∈ B(X) be an operator with finite descent p, and let S =
T + z⊗ f where z ∈ X and f ∈ X′. If d(S) = ∞ then a(S′) = ∞.

Proof. Suppose on the contrary that S′ has finite ascent q. It follows in par-
ticular that R(Sq+1) = R(Sq). Let M = R(Tp) and M′ = R(Sp). Then TM = M,
and since Sp − Tp is a finite rank operator, we obtain that M e

= M′. Hence, if we
let Y = N(T − S) = N( f ), we get that M e

= T(M ∩ M′ ∩ Y) = S(M ∩ M′ ∩ Y)
because M e

= M ∩M′ ∩ Y and TM = M. Define a new norm on M′ by ‖x‖1 =
inf{‖y‖ : Spy = x}. Clearly, equipped with this norm, M′ is a Banach space
isometrically isomorphic to X/N(Sp) and S|M′ is a lower semi-Fredholm op-
erator. So for each n, R(Sn|M′) = R(Sn+p) is closed in (M′, ‖ · ‖1). Therefore,
S−pSn M′ = R(Sn) + N(Sp) is closed in X. Finally, since R(Sq) ⊂ R(Sq+1), we ob-
tain that R(Sq) ⊂ R(Sq+1) +N(Sp), and so R(Sq+p) ⊂ R(Sq+p+1), a contradiction
with the assumption that d(S) = ∞.

Analogously, for the descent, we have the following characterization:

THEOREM 2.5. Let T ∈ L(X) be an operator with finite descent d(T) = q < ∞,
let z ∈ X and f ∈ X′. Then T + z⊗ f has infinite descent if and only if there exists a
sequence of linearly independent forms { fi}i>0 in X′ such that :

(i) f = g + f0 where g ∈ N(T′q) and T′ fi+1 = fi for all i > 0;
(ii) 〈z, f1〉 = −1 and 〈z, fi〉 = 0 for all i > 2;

(iii) 〈Tiz, g〉 = 0 for all i > 0.

Proof. Suppose that d(T + z ⊗ f ) = ∞. Then a(T′) 6 q < ∞ and, by
Lemma 2.4, a(T′ + f ⊗ Jz) = ∞ where J : X → X′′ denotes the canonical em-
bedding. Hence, from Theorem 2.1, it follows that there exist a linearly indepen-
dent sequence { fi}i>1 in X′ and g ∈ N(T′q) such that f = g + f0, T′ fi+1 = fi
for all i > 0. Furthermore, the assertions (ii) and (iii) in Theorem 2.1 imply that
〈z, f1〉 = 〈 f1, Jz〉 = −1, 〈z, fi〉 = 0 for all i > 2 and 〈Tiz, g〉 = 〈T′ig, Jz〉 = 0 for all
i > 0.

Conversely, let z ∈ X and f ∈ X′ satisfy (i)–(iii). Then f and Jz satisfy the
conditions of Theorem 2.1 for T′. Hence a(T′ + f ⊗ Jz) = ∞, and so d(T + z⊗
f ) = ∞.

As an immediate consequence of Theorems 2.1 and 2.5, we derive the fol-
lowing corollary.

COROLLARY 2.6. Let T be a bounded operator on X. Then:
(i) if a(T) and dimR∞(T) are both finite, then so is a(T + F) for all rank one

operators F ∈ L(X);
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(ii) if d(T) and dimR∞(T′) are both finite, then so is d(T + F) for all rank one
operators F ∈ L(X).

Notice that for T ∈ L(X) of finite ascent and F ∈ L(X) of rank one, The-
orem 2.1 ensures that either T + F or T − F has finite ascent. In the following
proposition we give an estimate of the ascent of such perturbations.

PROPOSITION 2.7. Let T ∈ L(X) be an operator of ascent p. Then for every rank
one operator F ∈ L(X), either a(T + F) 6 2p or a(T − F) 6 2p.

Proof. Suppose on the contrary that a(T + F) > 2p + 1 and a(T − F) >
2p + 1, and write F = z ⊗ f with x ∈ X, f ∈ X′. Then, by Lemma 2.2, there
exist two sequences {xk}

2p
k=0 and {yk}

2p
k=0 of a linearly independent vectors and

an integers i, j 6 p such that
(T + F)x0 = (T − F)y0 = 0;
(T + F)xk = xk−1 and (T − F)yk = yk−1 for 1 6 k 6 2p;
〈xk, f 〉 = δki and 〈yk, f 〉 = δkj for 0 6 k 6 2p.

We may assume that j 6 i. Let z = x2p + y2p−i+j. Then it follows that

T2p−iz = T2p−ix2p + T2p−iy2p−i+j

= (T + F)2p−ix2p + (T − F)2p−iy2p−i+j = xi + yj.

Now, T2p−i+1z = Txi + Tyj = (T + F)xi + (T − F)yj = xi−1 + yj−1, and hence
T2pz = x0 + yj−i, where we set ys = 0 for s < 0. Thus, T2p+1z = 0, and since
a(T) = p, we obtain that T2p−iz = xi + yj = 0. This leads to a contradiction
because 〈xi + yj, f 〉 = 〈xi, f 〉+ 〈yj, f 〉 = 2.

REMARK 2.8. Notice that this inequality is optimal. Indeed, if we define

T =

( 0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

)
and F =

( 0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

)
,

then we get easily that a(T) = 2 and a(T + F) = a(T − F) = 4.

The following result [8] will be used in the sequel.

PROPOSITION 2.9. Let T ∈ L(X) satisfy min{dim N(T), codim R(T)} < ∞.
Then

a(T) < ∞⇒ codim R(T) > dim N(T)

and
d(T) < ∞⇒ codim R(T) 6 dim N(T).

Moreover, if dim N(T) = codim R(T) < ∞ then a(T) = d(T).

COROLLARY 2.10. Let Λ denote any of the subsets B+(X), B−(X) and B(X). If
T ∈ Λ then for every rank one operator F, either T + F ∈ Λ or T− F ∈ Λ.
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Proof. Let T ∈ Λ. It follows that both T + F and T − F are semi-Fredholm,
and ind(T + F) = ind(T − F) = ind(T).

(i) If Λ = B+(X) then Proposition 2.7 implies that either T + F ∈ B+(X) or
T − F ∈ B+(X).

(ii) The case when Λ = B−(X) follows by duality from (i).
(iii) Let Λ = B(X). By (i), either a(T + F) < ∞ or a(T − F) < ∞. Without loss

of generality we may assume that a(T + F) < ∞. Moreover, T + F is Fredholm
and ind(T + F) = 0. By the previous proposition, a(T + F) = d(T + F) < ∞, and
consequently T + F ∈ B(X).

PROPOSITION 2.11. If T ∈ L(X) is Drazin invertible, then for every rank one
operator F, either T + F is Drazin invertible or T − F is Drazin invertible.

Proof. Let p = a(T) = d(T). Then R(Tk) is closed for all k > p, and
R(T′p) = R(T′p+1). Hence it follows by Proposition 2.7 that either a(T + F) 6 2p
or a(T − F) 6 2p, and either a(T′ + F′) 6 2p or a(T′ − F′) 6 2p. Moreover,
since R(T + F)2p e

= R(T2p), we obtain that R(T + F)2p is closed, and so either
d(T + F) 6 2p or d(T − F) 6 2p.

Now, suppose that neither T + F nor T − F is Drazin invertible. It follows
that either a(T + F) = d(T − F) = ∞ or a(T − F) = d(T + F) = ∞. Assume
that a(T + F) = d(T − F) = ∞. Write F = z⊗ f with z ∈ X and f ∈ X′. Write
z = a + z0 and − f = g + f0 as in Theorems 2.1 and 2.5. We have

−1 = 〈z, f1〉 = 〈a, f1〉+ 〈z0, f1〉 = 〈a, T
′p fp+1〉+ 〈Tz1, f1〉

= 〈Tpa, fp+1〉+ 〈z1, f0〉 = 〈z1,−g〉+ 〈z1,− f 〉
= 〈Tpzp+1,−g〉+ 1 = 1,

the desired contradiction.
The case a(T − F) = d(T + F) = ∞ can be treated similarly.

Throughout the sequel, H will denote a separable infinite-dimensional com-
plex Hilbert space.

PROPOSITION 2.12. Let T be a bounded operator on H. Then the following asser-
tions are equivalent :

(i) T is upper (respectively lower) semi-Browder;
(ii) for every S ∈ L(H) there exists ε0 > 0 such that T + εS has finite ascent (respec-

tively descent) for all ε < ε0.

Proof. (i)⇒ (ii) follows from the openness of the sets B+(H) and B−(H).
(ii) ⇒ (i) Suppose that for every S ∈ L(H), there exists ε0 > 0 such that

a(T + εS) < ∞ for all ε < ε0 and that T /∈ B+(H). It follows that a(T) is finite and
T is not upper semi-Fredholm. So either dim N(T) = ∞ or R(T) is not closed. In
both cases, for every finite-codimensional subspace H0 ⊂ H the restriction T|H0
is not bounded below. So for each ε > 0 there exists x ∈ H0 such that ‖x‖ = 1 and
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‖Tx‖ < ε. Hence, we can find inductively an orthonormal system xn,k, n, k ∈ N,
such that ‖Txn,k‖ < 4−n2−k. Let M = Span{xn,k : n, k ∈ N}. Define S ∈ B(H) by
S|M⊥ = 0, and{

Sxn,1 = −2nTxn,1 for all n > 0;
Sxn,k = −2nTxn,k + 2−(n+k)xn,k−1 for all n > 0 and k > 2.

Since ∑
n,k
‖Sxn,k‖ 6 2 ∑

n,k
2−(n+k) < ∞, the operator S is bounded. Moreover, for

each n ∈ N we have (T + 2−nS)xn,1 = 0 and (T + 2−nS)xn,k = 2−k4−nxn,k−1 for
all k > 2. Hence a(T + 2−nS) = ∞ for each n, the desired contradiction.

Suppose now that for each S ∈ L(H) there exists ε0 > 0 such that d(T +
εS) < ∞ for all ε < ε0. By duality, we conclude that T∗ ∈ B+(H). Thus, T ∈
B−(H).

Let T ∈ L(H) be a semi-Fredholm operator. By Proposition 2.9, T is upper
(respectively lower) semi-Browder if and only if T has finite ascent (respectively
descent), i.e.

(2.2) B+(H) = F±(H) ∩A(H) and B−(H) = F±(H) ∩D(H).

As an immediate consequence of Proposition 2.12 we derive the following
result:

COROLLARY 2.13. Let T be a bounded operator on H. Then following assertions
are equivalent:

(i) T is a Browder operator;
(ii) for every S ∈ L(H) there exists ε0 > 0 such that T + εS is Drazin invertible for

all ε < ε0.

For a subset Γ ⊆ L(H), we write Int(Γ) for its interior.

COROLLARY 2.14. The following assertions hold:
(i) Int(A(H)) = B+(H);

(ii) Int(D(H)) = B−(H);
(iii) Int(Dr(H)) = B(H).

Proof. (i) Since B+(H) is an open subset contained in A(H), it suffices to
show that Int(A(H)) ⊆ B+(H). Let T /∈ B+(H). Then, using Proposition 2.12,
there exists S ∈ L(H) and a sequence (εn) that converges to zero and for which
a(T + εnS) = ∞. This implies that T /∈ Int(A(H)).

(ii) and (iii) can be proved in a similar way.

The following theorem, which is interesting in itself, will play a crucial role
in the next section.

THEOREM 2.15. Let T ∈ L(H) be a non-zero operator. The following assertions
hold:
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(i) there exists an invertible operator S ∈ L(H) such that a(S + T) = ∞;
(ii) if dim R(T) > 2 then there exists an invertible operator S ∈ L(H) such that

a(S + T) = a(S− T) = ∞.

The following lemma is a special case of Theorem 2.15, and it will be re-
quired for proving that theorem.

LEMMA 2.16. Let T ∈ L(H) be a non-zero operator such that dim N(T) = ∞.
The following assertions hold:

(i) there exists an invertible operator S ∈ L(H) such that a(S + T) = ∞;
(ii) if dim R(T) > 2 then there exists an invertible operator S ∈ L(H) such that

a(S + T) = a(S− T) = ∞.

Proof. (i) Note that T is not a scalar multiple of the identity. Consider an
x0 ∈ H such that x0 and Tx0 are linearly independent. Since N(T) is infinite-
dimensional, then so is {x0, Tx0}⊥ ∩N(T), and consequently it contains an or-
thonormal subset {xi : i > 1} with an infinite-dimensional orthogonal comple-
ment. Let H0 = Span{xi : i > 0} and H1 = Span({Tx0} ∪ {xi : i > 0}). Consider
an operator S ∈ L(H) such that S : H⊥0 → H⊥1 is invertible, Sx0 = −Tx0 and
Sxi = xi−1 for all i > 1. Then S is invertible. Moreover, (S + T)i(xi) = x0 ∈
N(S + T) for all i > 0, and therefore a(S + T) = ∞.

(ii) Suppose that dim R(T) > 2. Find vectors x0, u0 such that {Tx0, Tu0}
are linearly independent. Perturbing x0, u0 by suitable elements of N(T) we may
assume that the vectors {x0, y0, Tx0, Ty0} are linearly independent. Then there
exists an orthonormal subset

{xi, yi : i > 1} ⊆ {x0, y0, Tx0, Ty0}⊥ ∩N(T)

with an infinite-dimensional orthogonal complement. Let H0 = Span{xi, yi : i >
0} and H1 = Span({Tx0, Ty0} ∪ {xi, yi : i > 0}), and consider an operator S ∈
L(H) such that S : H⊥0 → H⊥1 is invertible, Sx0 = Tx0, Sy0 = −Ty0, Sxi = xi−1
and Syi = yi−1 for i > 1. It follows that S is invertible and that (S − T)x0 =
(S + T)y0 = 0, (S + T)i(xi) = x0 and (S− T)iyi = y0 for all i > 0. This shows
that both S + T and S− T are of infinite ascent.

LEMMA 2.17. Let H be an infinite-dimensional Hilbert space, and let T = cI + F
where c is a non-zero complex number and F ∈ L(H) is a finite rank operator. Then
there exists an invertible operator S ∈ B(H) such that a(S + T) = a(S− T) = ∞.

Proof. Find infinite-dimensional subspaces H1, H2 ⊂ N(F) such that H1 ⊥
H2. Define S ∈ B(H) by S|(H1 ⊕ H2)

⊥ = I, S|H1 = −cIH1 + (c/2)B1 and
S|H2 = cIH2 + (c/2)B2, where B1, B2 are backward shifts in H1 and H2, respec-
tively. Then S|(H1⊕H2) : H1⊕H2 → H1⊕H2 is invertible, and so S is invertible.
Furthermore, (S + T)H1 ⊂ H1, (S + T)|H1 = (c/2)B1. So a(S + T) = ∞ and sim-
ilarly, a(S− T) = ∞.
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Proof of Theorem 2.15. We may assume that dim N(T) < ∞ and T is not of
the form T = cI + F with c 6= 0 and dim R(F) < ∞. This means that for each
subspace M ⊂ H of finite codimension there exists w ∈ M ∩ T−1M such that
the vectors w, Tw are linearly independent. Without loss of generality we may
assume that ‖ T ‖6 1/2. Note that dim R(T) > 2.

We claim that there exists a sequence {xi}i>0 such that {xi, Txi} is linearly
independent and

{xi+1, Txi+1} ⊥ {xk, Txk : k = 0, · · · , i} for all i > 0.

Find x0 such that {x0, Tx0} is linearly independent. Let H0 = {x0, Tx0}⊥, then
there exists x1 ∈ H0 ∩ T−1H0 such that {x1, Tx1} is linearly independent. By
repeating the same argument, we construct the sequence {xi}i>0. Further, we
can assume the orthogonal complement of Span{Txi, xi : i > 0} is infinite-
dimensional, because otherwise we can replace {xi}i>0 by {x2i}i>0. Let {yi}i>0
be an orthonormal basis of the orthogonal complement of Span{xi, Txi : i > 0}.

For each i > 0, let wi ∈ Span{xi, Txi} be such that ‖ wi ‖= 1 and wi ⊥ xi,
then Txi = αixi + βiwi for some complex αi, βi with | αi |6 1/2 and 0 <| βi |6
1/2. Consider the bounded operator S given by

Sx0 = −Tx0 and Sx1 = Tx1,
Sw0 = y0 and Sw1 = y1,
Sxi = xi−2 − (−1)iTxi for all i > 2,
Syi = yi+2 and Swi+2 = wi+2 for all i > 0.

Let L1 = Span{Tx0, Tx1, yi, wi+2 : i > 0} and L2 = Span{xi : i > 0}. We claim
that S is invertible. In fact, one can easily show that S is injective and L1 ⊆ R(S).
Hence, it remains only to show that PS|L2 is onto, where P is the projection on
L2 relatively to the decomposition H = L1 ⊕ L2. Write PS|L2 = V1 + V2 where
V1x0 = V1x1 = 0, V1xi+2 = xi and V2xi = (−1)i+1αixi for all i > 2. Since
the surjectivity modulus of V1 equals 1 and ‖ V2 ‖6 1/2, V1 + V2 is surjective,
see [19]. Finally, because (S + T)x0 = (S − T)x1 = 0, (S + T)ix2i = x0 and
(S− T)ix2i+1 = x1 for all i > 0, we get that S + T and S− T are both of infinite
ascent.

3. PROOF OF MAIN RESULTS

In this section we prove the main results of the paper : Theorems A and B.
First we characterize additive mappings preserving either the class of upper

semi-Browder operators or the class of Browder operators. Since the proofs are
parallel we will do it simultaneously. The full Theorems A and B will be proved
at the end of the section.
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Throughout this section, H will denote an infinite-dimensional separable
complex Hilbert spaces. Let Φ : L(H) → L(H) be a surjective continuous map
which is additive (i.e., Φ(T1 + T2) = Φ(T1) + Φ(T2) for all T1, T2 ∈ L(H)).

LEMMA 3.1. Let Φ : L(H) → L(H) be a surjective additive continuous map,
and let Λ denote any one of the sets B or B+. If φ preserves Λ in both directions then Φ
is injective and preserves the set of rank one operators in both directions.

Proof. Suppose on the contrary that there exists F 6= 0 such that Φ(F) =
0. Then, by Theorem 2.15, there exists an invertible operator S ∈ L(H) such
that a(S + F) = ∞. Hence, S + F /∈ Λ and Φ(S + F) = Φ(S) ∈ Λ, the desired
contradiction.

Now, let T ∈ L(H) be such that dim R(T) > 2. Then, again by Theo-
rem 2.15, there exists an invertible operator R ∈ L(H) such that a(R + T) =
a(R− T) = ∞. It follows, in particular, that R + T and R− T do not belong to Λ,
and hence so do not Φ(R + T) and Φ(R− T). Consequently, by Corollary 2.10,
dim R(Φ(T)) > 2. Since Φ is bijective and Φ−1 satisfies the same properties as Φ,
we obtain that Φ preserves the set of rank one operators in both directions. This
completes the proof.

Let τ be a field automorphism of C. An additive map A : H → H will be
called τ-semi linear if A(λx) = τ(λ)Ax holds for all λ ∈ C and x ∈ H. Notice
that if A is bounded, then so is τ, and consequently, τ is either the identity or the
complex conjugation, see [13].

Moreover, in this case, the adjoint operator A′ : H′ → H′ defined by the
equation 〈x, A′y′〉 = τ(〈Ax, y′〉) for all x ∈ H, y′ ∈ H′, is again τ-semi linear.

Note that we do not identify H with its dual H′. Let J : H → H′ be the
natural conjugate linear mapping defined by 〈u, Jx〉 = 〈u, x〉 (x, u ∈ H).

For A ∈ L(H), let A∗ : H → H be the Hilbert space adjoint. We have
A∗ = J−1 A′ J.

LEMMA 3.2. Let Φ : L(H) → L(H) be a surjective additive continuous map,
and let Λ denote any of the sets B and B+. If Φ preserves Λ in both directions, then:

either there exist continuous bijective mappings A, B : H → H, either both linear
or both conjugate linear, such that

Φ(F) = AFB for all finite rank operators F ∈ L(H),(3.1)

or there exist continuous bijective mappings C, D : H → H, either both linear or
both conjugate linear, such that

Φ(F) = CF∗D for all finite rank operators F ∈ L(H).(3.2)

Proof. From the previous Lemma 3.1 and Theorem 3.3 of [21], there exists a
ring automorphism τ of C, and either τ-semi linear bijective maps A : H → H
and E : H′ → H′, such that

Φ(x⊗ f ) = Ax⊗ E f for all x ∈ H and f ∈ H′,(3.3)
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or τ-semi linear bijective maps R : H → H′ and G : H′ → H such that

Φ(x⊗ f ) = G f ⊗ Rx for all x ∈ H and f ∈ H′.(3.4)

Since Φ is continuous, then so are τ, A, E, R and G.
In the first case set B = E′. It is easy to verify that Φ(F) = AFB for all rank

one operators and, by additivity of Φ, for all finite rank operators F ∈ L(H).
In the second case set C = GJ and D = J−1R′. Again it is easy to verify that

Φ(F) = CF∗D for all finite rank operators F ∈ L(H).

If we replace Φ by Ψ : L(H) → L(H) defined by Ψ(T) = A−1Φ(T)A in
the first case (by Ψ(T) = C−1Φ(T)C in the second case, respectively), we can
assume that A (respectively C) is the identity mapping. Note that in this case B
(respectively D) is a linear mapping.

For T ∈ L(H), we write

M(T) := {x ∈ H : there exists y ∈ H such that a(T + x⊗ y) = ∞}.

Note that if T is invertible, then by Theorem 2.1 we have M(T) = {z : z /∈
Span{T−iz : i > 1}}, and in this case Tnz ∈ M(T), for all n ∈ Z, whenever
z ∈ M(T).

LEMMA 3.3. Let T ∈ L(H) be an operator of finite ascent. Then
(i) M(T) ⊆ R∞(T) +N∞(T),

(ii) ifR∞(T) is closed then M(T) = M(T|R∞(T)) +N∞(T) = M(T) +N∞(T).

Proof. (i) follows immediately from Theorem 2.1.
(ii) Suppose thatR∞(T) is closed, and let To be the restriction of T toR∞(T).

It follows easily from Theorem 2.1 that M(T) ⊆ M(To) +N∞(T). Let z ∈ M(To)
and a ∈ N∞(T). Then we get that T−1

o z ∈ R∞(T) \ Span{T−i
o z : i > 2}. But,

since T has finite ascent,R∞(T) ∩N∞(T) = {0}, and consequently

T−1
o z /∈ Span{T−i

o z : i > 2}+ Span{Tia : i > 0}.

Thus there exists y ∈ H such that 〈T−i
o z, y〉 = −1 and 〈T−i

o z, y〉 = 〈T ja, y〉 = 0
for all i > 2 and j > 0. This shows that z + a ∈ M(T), and so M(T) = M(To) +
N∞(T). The second equality follows from the first.

LEMMA 3.4. Let H = H1 ⊕ H2 and T = T1 ⊕ T2 where T1 ∈ L(H1) and
T2 ∈ L(H2) are two invertible operators. Then

(M(T1) + H2) ∪ (H1 + M(T2)) ⊆ M(T).

Proof. Let z = z1 + z2 where z1 ∈ H1 and z2 ∈ H2. If z /∈ M(T) then
T−1

1 z1 + T−1
2 z2 belongs to

Span{T−iz : i > 2} ⊆ Span{T−i
1 z1 : i > 2} ⊕ Span{T−i

2 z2 : i > 2}.

Hence, z1 /∈ M(T1) and z2 /∈ M(T2), as desired.
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Recall that an operator U ∈ L(H) is called a bilateral shift of multiplicity p
if there are pairwise orthogonal subspaces Hn, n ∈ Z, of dimension p such that
H =

⊕
n

Hn and U maps isometrically Hn onto Hn+1 for all n ∈ Z. By a bilateral

shift we mean the bilateral shift of multiplicity 1.
Let T be the unit circle of C and L2(T) be the Hilbert space of square inte-

grable functions with respect to the normalized measure µ on T. For f ∈ L2(T),
it follows by the Szegö–Kolmogorov theorem, see [20], that

(3.5) inf
p∈A

∫
T

| f − p f |2dµ = exp
( ∫
T

log(| f |)dµ
)

where A denotes the set of all polynomials in z vanishing at the origin.
Let Uz denote the bilateral shift defined by Uz( f ) = z f for all f ∈ L2(T).

Note that U−1
z = Uz, and using (3.5) one can easily get that

(3.6) {zn : n∈Z}⊆M(U−1
z )=M(Uz)=

{
f ∈L2(T) :

∫
T

log(| f |)dµ>−∞
}
 L2(T).

LEMMA 3.5. Let H = L2(T)⊕ L2(T) and U = Uz ⊕Uz. The following asser-
tions hold:

(i) if f /∈ M(Uz) then f ⊕ f /∈ M(U);
(ii) H = M(U) + M(U);

(iii) if f + M(U) ⊆ M(U) then f = 0.

Proof. (i) We have f ∈ Span{U−i
z f : i > 1}. Hence f ⊕ f ∈ Span{U−i

z f ⊕
U−i

z f : i > 1}, and so f ⊕ f /∈ M(U).
(ii) Let f = g ⊕ h where g, h ∈ L2(T), and let A = {z ∈ T : |g(z)| > 1}.

Define

g1(z)=

{
g(z)/2 if z ∈ A,
1 + g(z)/2 if z ∈ T \ A,

and g2(z)=

{
g(z)/2 if z ∈ A,
−1 + g(z)/2 if z ∈ T \ A.

Clearly, g1 and g2 belong to M(Uz) and g = g1 + g2. Hence, by Lemma 3.4 we
obtain that g⊕ h = g1 ⊕ h + g2 ⊕ 0 ∈ M(U).

(iii) Suppose that f = g ⊕ h and g 6= 0. Then there is ε > 0 such that
B = {z ∈ T : |g(z)| > ε} has a positive measure. Consider

k(z) =

{
0 if z ∈ B,
1 + g(z) if z ∈ T \ B.

By the equality (3.6), it follows that k /∈ M(Uz), and so k⊕ k /∈ M(U). On the other
hand, k− g ∈ M(Uz), and Lemma 3.4 implies that k⊕ k− g⊕ h = (k− g)⊕ (k−
h) ∈ M(U). Consequently, k ⊕ k = f + k ⊕ k − g⊕ h ∈ M(U), a contradiction.
Similarly we show that h = 0.

Clearly the assertions (ii) and (iii) of the previous lemma are true for any
bilateral shift operator of multiplicity 2.
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LEMMA 3.6. Let Φ : L(H) → L(H) be a surjective additive map that preserves
either B+(H), or B(H), in both directions, and let S ∈ L(H) be an invertible operator.
The following assertions hold:

(i) if there exists an invertible operator B ∈ L(H) for which Φ(F) = FB for all finite
rank operators F ∈ L(H), then M(Φ(S)) = M(S);

(ii) if there exists an invertible operator D ∈ L(H) for which Φ(F) = F∗D for all
finite rank operators F ∈ L(H), then M(Φ(S)) = M(S∗).

Proof. First observe that if T ∈ B(H), then for every rank one operator F,
T + F ∈ B(H) if and only if T + F ∈ B+(H) if and only if a(T + F) is finite.

(i) A vector x ∈ H belongs to M(S) if and only if there exists y ∈ H such
that a(S + x⊗ y) = ∞, which is equivalent to a(Φ(S) + x⊗ B∗y) = ∞. Since B is
invertible, this is equivalent to x ∈ M(Φ(S)).

(ii) Let x, y ∈ H. Then

a(Φ(S) + x⊗ y) = ∞⇔ a(Φ(S + D∗−1y⊗ x)) = ∞

⇔ a(S + D∗−1y⊗ x) = ∞

⇔ a(S∗ + x⊗ D∗−1y) = ∞

and so M(Φ(S)) = M(S∗).

LEMMA 3.7. Let Φ : L(H) → L(H) be a surjective additive map that preserves
either B+(H) or B(H) in both directions. If Φ(F) = FB (respectively Φ(F) = F∗D)
for all finite rank operators F, then Φ(U) is invertible whenever U is a bilateral shift of
multiplicity 2.

Proof. Let H1, H2 be an infinite dimensional subspaces of H such that H =
H1 ⊕ H2, and let U1 ∈ L(H1) and U2 ∈ L(H2) be two bilateral shifts such that
U = U1 ⊕U2.

Suppose that Φ(F) = FB for all finite rank operators F. It follows that T =
Φ(U) has finite ascent p, and M(T) ⊂ R∞(T) ⊕N(Tp) by Lemma 3.3. Hence,
using Lemmas 3.5(ii), we get that

H = (M(U) + M(U)) = M(T) + M(T) ⊆ R∞(T)⊕N(Tp).

Consequently, R∞(T) = R(Tp) is closed (see Theorem 5.10 of [28]). Let z1 ∈ H1
and z2 ∈ H2 be such that z1 + z2 ∈ N∞(T). Then, by Lemma 3.3, z1 + z2 +
M(T) ⊆ M(T), and so z1 + z2 + M(U) ⊆ M(U). Therefore, by Lemma 3.5(ii), we
obtain that z1 = z2 = 0. This shows that T is invertible.

If Φ(F) = F∗D for all finite rank operators F, then using the fact that
M(T) = M(U∗) = M(U), we obtain in the same way that T is invertible.

Let S ∈ L(H). We associate for each x ∈ M(S) the following subsets

Mx(S) := {y ∈ H : a(S + x⊗ y) = ∞} and

Lx(S) := {y ∈ H : y + Mx(S) = Mx(S)}.
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Notice that if S is invertible, then it follows by Theorem 2.1 that y ∈ Mx(S)
if and only if y ∈ Span{T−ix : i > 2}⊥ and 〈T−1x, y〉 = −1; consequently
Lx(T) = Span{T−ix : i > 1}⊥.

REMARK 3.8. Let Φ : L(H) → L(H) be a surjective additive map that pre-
serves B+(H), or B(H), in both directions, and let S ∈ L(H) be an invertible
operator. By the proof of Lemma 3.6, we have:

(i) if B ∈ L(H) is invertible and Φ(F) = FB for all finite rank operators F,
then Mx(Φ(S)) = B∗Mx(S) and Lx(Φ(S)) = B∗Lx(S);

(ii) if D ∈ L(H) is invertible and Φ(F) = F∗D for all finite rank operators F,
then Mx(Φ(S)) = D∗Mx(S∗) and Lx(Φ(S)) = D∗Lx(S∗).

LEMMA 3.9. Let H = H1 ⊕ H2 and U = U1 ⊕ U2 where U1 ∈ L(H1) and
U2 ∈ L(H2) are two bilateral shifts, and let Φ : L(H)→ L(H) be a surjective additive
continuous map that preserves B+(H), or B(H), in both directions.

(i) If Φ(F) = FB for all finite rank operators F, then Φ(U)B−1Hi = Hi, for i = 1, 2,
and U commutes with Φ(U)B−1.

(ii) If Φ(F) = F∗D for all finite rank operators F, then Φ(U)D−1Hi = Hi, for
i = 1, 2, and U∗ commutes with Φ(U)D−1.

Proof. By Lemma 3.7, it follows that T = Φ(U) is invertible. Let {xk}k∈Z and
{yk}k∈Z be respectively orthonormal bases in H1 and H2 such that U1xk = xk+1
and U2yk = yk+1 for all k ∈ Z.

(i) For z ∈ M(U), we have, via Remarks 3.8(i),

y ∈ Span{T−iz : i > 1} ⇔ 〈y, v〉 = 0 for all v ∈ Lz(T)

⇔ 〈y, B∗u〉 = 0 for all u ∈ Lz(U)

⇔ 〈By, u〉 = 0 for all u ∈ Lz(U)

⇔ By ∈ Span{U−iz : i > 1}.

This shows that

(3.7) B Span{T−iz : i > 1} = Span{U−iz : i > 1} for all z ∈ M(U).

On the other hand, for each k ∈ Z, Lemma 3.4 implies that xk ∈ M(U), and
consequently, it follows by (3.7) that BT−1xk ∈ H1. Therefore, BT−1H1 ⊆ H1.
Similarly, we obtain that BT−1H2 ⊆ H2, and hence Φ(U)B−1Hi = Hi, for i = 1, 2,
because Φ(U)B−1 is invertible. On the other hand, it follows from (3.7) that every
closed subspace invariant for U−1

1 is also invariant for BT−1. Moreover, since
U−1

1 is a reflexive operator, we get that the restriction of BT−1 to H1 is a SOT-
limit of polynomials of U−1

1 , see [5], and consequently it commutes with U−1
1 .

Analogously, we show that the restriction of BT−1 to H2 commutes with U−1
2 .

(ii) In similar way, we establish, using Remark 3.8(ii), that

(3.8) D(Span{T−iz : i > 1}) = Span{Uiz : i > 1} for all z ∈ M(U),



ADDITIVE PRESERVERS OF THE ASCENT AND DESCENT AND RELATED SUBSETS 79

and that DT−1 leaves invariant H1 and H2. Moreover, since U1 is a reflexive
operator, then using (3.8), we obtain that U1 commutes with the restriction of
DT−1 to H1. This completes the proof.

LEMMA 3.10. Let Φ : L(H) → L(H) be a surjective additive continuous map
that preserves B+(H), or B(H), in both directions. Then:

(i) if Φ(F) = FB for all finite rank operator F, then there exists a linear functional φ
such that Φ(S) = SB + ϕ(S)B for all S ∈ L(H);

(ii) if Φ(F) = F∗D for all finite rank operator F, then there exists a conjugate linear
functional ψ such that Φ(S) = S∗D + ψ(S)D for all S ∈ L(H).

Proof. Let H1 and H2 be two closed subspaces satisfying H = H1 ⊕ H2.
Consider also an arbitrary bilateral shifts operators U1 ∈ L(H1) and U2 ∈ L(H2)
and an orthonormal basis {xk}k∈Z and {yk}k∈Z of H1 and H2, respectively, such
that U1xk = xk+1 and U2yk = yk+1 for all k ∈ Z. Then U = U1 ⊕U2 is a bilateral
shift of multiplicity 2.

(i) For k ∈ Z and F = (yk− xk)⊗ (xk−1− yk−1), it follows that U + F is again
a bilateral shift of multiplicity 2. Hence, using Lemma 3.9, we get that U and
U + F commute respectively with Φ(U)B−1 and Φ(U + F)B−1 = Φ(U)B−1 + F,
and consequently (U − TB−1)F = F(U − TB−1) where T = Φ(U). Hence, for
all k ∈ Z, there exists a complex number ck such that (U − TB−1)(yk − xk) =
ck(yk − xk). On the other hand,

ck+1(yk+1 − xk+1) = (U − TB−1)(yk+1 − xk+1) = U(U − TB−1)(yk − xk)

= ckU(yk − xk) = ck(yk+1 − xk+1).

Let c = ck for k ∈ Z. Then it follows by Lemma 3.9 that (U − TB−1)xk = cxk
and (U − TB−1)yk = cyk for all k ∈ Z. This shows that Φ(U) = UB− cB, and
since the complex number c is uniquely determined, we set ϕ(U) = −c. Let
Ũ = U1 ⊕ (−U2). Then

Φ(U1⊕ 0)=
1
2
(Φ(U)+Φ(Ũ))=(U1⊕ 0)B+

ϕ(U)+ϕ(Ũ)

2
B=(U1⊕ 0)B+ϕ(U1⊕ 0)B,

where we set ϕ(U1 ⊕ 0) = 2−1(ϕ(U) + ϕ(Ũ)). Moreover, since every operator
S ∈ L(H1) can be written as a sum of finite number of bilateral shifts, we obtain
that

Φ(S⊕ 0) = (S⊕ 0)B + ϕ(S⊕ 0)B(3.9)

for some ϕ(S⊕ 0) ∈ C.
Let S ∈ B(H) be an arbitrary operator. Let H = L1 ⊕ L2 ⊕ L3, where L1, L2,

L3 are infinite dimensional subspaces, and write

S =

S11 S12 S13
S21 S22 S23
S31 S32 S33

 =

S11 S12 0
S21 S22 0
0 0 0

+

0 0 0
0 0 S23
0 S32 S33

+

 0 0 S13
0 0 0

S31 0 0

 .
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Now using (3.9) for each of these summands, we get that Φ(S) = SB + ϕ(S)B for
some ϕ(S) ∈ C. Clearly ϕ is a linear functional.

(ii) Consider the operator F defined in (i). It follows by Lemma 3.9 that
U∗ and (U + F)∗ commute respectively with Φ(U)D−1 and Φ(U + F)D−1, and
hence (Φ(U)D−1−U∗)F∗ = F∗(Φ(U)D−1−U∗). This implies that there exists a
complex number ψ(U) for which Φ(U) = U∗D + ψ(U)D. Arguing as above, we
obtain that Φ(S) = S∗D + ψ(S)D for all S ∈ L(H), and ψ is a conjugate linear
form.

LEMMA 3.11. Let Φ : L(H) → L(H) be a surjective additive continuous map,
and Λ denote any of the sets B+ and B. Suppose that Φ preserves Λ, in both directions.
Then:

(i) if Φ(F) = FB for all finite rank operator F, then there exists a non-zero c ∈ C
such that Φ(S) = cS for all S ∈ L(H);

(ii) if Λ = B and Φ(F) = F∗D for all finite rank operator F, then there exists a
non-zero c ∈ C such that Φ(S) = cS∗ for all S ∈ L(H);

(iii) if Λ = B+ then Φ can not take the form Φ(F) = F∗D for all finite rank operator F.

Proof. (i) By Lemma 3.10, Φ(S) = SB + ϕ(S)B for all S ∈ L(H). Let Q ∈
L(H) be a quasinilpotent operator. Then Q, and hence Φ(Q), does not belong to
Λ. If ϕ(Q) 6= 0, we get that Φ(Q) = (Q− ϕ(Q)I)B is invertible and so belongs to
Λ, a contradiction. Thus, ϕ(Q) = 0. On the other hand, since every operator can
be written as a finite sum of quasi-nilpotent operators, see [22], we obtain that
ϕ = 0. Now, let us show that there exists a c ∈ C such that B = cI. Suppose
on the contrary that there exist two linearly independent vectors {u, v} such that
Bu = v. Let {xi, yi : i > 1} be an orthonormal basis of H0 = {u, v}⊥, and consider
the operator T ∈ L(H) given by{

Txi = xi−1 and Tyi−1 = yi for all i > 2,
Tx1 = v, Tu = y1 and Tv = 0.

It follows that R(T) = H0⊕ Span{v} and N(T) = Span{v}. Hence, T, and so TB,
is Fredholm of index zero, and since Tixi = v ∈ N(T) for all i > 1, T has infinite
ascent. Consequently, T /∈ Λ. But, since

R(TB) ∩N(TB) = R(T) ∩ Span{u} = {0},

we have a(TB) = 1, and therefore TB ∈ Λ, a contradiction.
To prove (ii) and (iii), suppose that Φ(F) = F∗D for all finite rank operators

F. Then, by Lemma 3.10, Φ(S) = S∗D + ψ(S)D for all S ∈ L(H), and the same
argument used in (i) shows that ψ = 0. If D is not of the form cI, where c ∈ C,
then by considering the operator T introduced in (i), we obtain that T∗ /∈ Λ and
Φ(T∗) = TD ∈ Λ, a contradiction.

Finally, assume that Λ = B+. Let U ∈ L(H) be the backward shift. It
follows that U /∈ B+(H), and Φ(U) = cU∗ ∈ B+(H), a contradiction.
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Proof of Theorem A. The implications (i)⇒ (iii) and (ii)⇒ (iv) follow imme-
diately from Proposition 2.12. Moreover, (v) implies the assertions (i) and (ii), and
hence it remains to establish the implications (iii)⇒ (v) and (iv)⇒ (v). Suppose
that Φ preserves B+. Then Φ can not take the form (3.2). Indeed, otherwise the
maps Φ1(·) = C−1Φ(·)C would preserve B+ and satisfy Φ1(F) = F∗DC for all fi-
nite rank one operators F, which contradicts Lemma 3.11(iii). Hence, Φ takes the
form (3.1). Clearly, the map Φ2(·) = A−1Φ(·)A preserves B+, and Φ2(F) = FBA
for all F of finite rank. Hence, by Lemma 3.11(i), there is a nonzero complex c
such that Φ2(S) = cS, and so Φ(S) = cASA−1, for all S ∈ L(H).

The implication (iv)⇒ (v) follows from (iii)⇒ (v) by considering the map
Ψ(T) = Φ(T∗)∗ for T ∈ L(H).

Proof of Theorem B. The implication (i) ⇒ (ii) follows from Corollary 2.13,
see also Corollary 2.14(iii). The implication (iii) ⇒ (i) is obvious. If we suppose
(ii), then arguing as in the proof of Theorem A, we get by Lemmas 3.2 and 3.11
that Φ possesses one of the two forms given in (iii).

Recall that a complex λ ∈ C is a pole of the resolvent of T ∈ L(H) of order
n > 0 if and only if T − λ is Drazin invertible of index n, which is equivalent to
n = a(T − λ) = d(T − λ), see [19], [28]. For T ∈ L(H), we denote by P(T) the
set of all the poles of its resolvent.

COROLLARY 3.12. Let Φ : L(H) → L(H) be a surjective additive continuous
map. Then P(Φ(T)) = P(T) for all T ∈ L(H) if and only if there exists an invertible
bounded linear, or conjugate linear, operator A : H → H such that either Φ(S) =
ASA−1 for all S ∈ L(H), or Φ(S) = AS∗A−1 for all S ∈ L(H).

Proof. Clearly, Φ preserves in both directions Dr, and so it takes one of the
two forms in Theorem B(iii). To show that the constant c = 1, consider an arbi-
trary quasinilpotent operator Q ∈ L(H) with infinite ascent, and let T = Q + I.
It follows that

C \ {1} = P(T) = P(Φ(T)) = cP(T) = C \ {c}.

Hence, c = 1.

We end this section by the following remarks:

REMARK 3.13. In [4], the author asked which additive maps preserve the
Drazin invertible operators. Theorem B presents a complete answer to this ques-
tion.

REMARK 3.14. In [3], the authors considered additive maps Φ such that
a(Φ(T)) = a(T) for all T or d(Φ(T)) = d(T) for all T. Clearly, such maps pre-
serve injective operators or surjective operators, and their forms are determined
in [24].

An additive map Φ between two algebras is called unital if Φ(1) = 1.
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REMARK 3.15. Let R be any one of the subsets {A,D,Dr,B+,B−,B}, and
define the corresponding spectrum by

σR(T) := {λ ∈ C : T − λ /∈ R}.

Using Theorems A and B, the form of unital continuous additive maps Φ :
L(H)→ L(H) such that σR(Φ(T)) = σR(T) can be easily determined.

REMARK 3.16. Theorems A and B can be without any change formulated
for additive mappings Φ : L(H)→ L(K) preserving any of the classes A, D, Dr,
B+, B−, B, where H, K are separable infinite-dimensional Hilbert spaces.
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