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ABSTRACT. We investigate the stability of nuclearity related properties in the
category of operator systems. In the finite dimensional case, exactness and
the lifting property are shown to be dual pairs. Moreover, the lifting prop-
erty is preserved under coproducts or quotients by null subspaces. We extend
some results of A.G. Robertson and R.R. Smith on k-lifting property. Applica-
tions concern Kirchberg’s conjecture and the Smith-Ward problem, which are
shown to be equivalent with certain nuclearity type properties of low dimen-
sional operator systems.
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INTRODUCTION

The study of tensor products and therefore the behavior of objects under the
tensorial operations is fundamental in operator theory. Exactness, local liftability,
approximation property and weak expectation are some structural properties of
C∗-algebras which are known to be deeply connected with the tensor product.
The operator space versions and non-selfadjoint analogues of these properties
have been worked out in the last decade (see Section 15,16,17 of [39] and [3]).
After being abstractly characterized by Choi and Effros, operator systems played
an important role in the understanding of tensor products of C∗-algebras, nucle-
arity, injectivity, etc. (see [6], [8], [29], e.g.). Some special tensor products of two
operator systems are also used in quantum mechanics ([41], e.g.). However a
systematic study of tensor products on this category along with the characteriza-
tion of nuclearity properties waited till [21] and [22] (see also [17]). This series
of papers raised several questions; namely, the stability of these properties under
certain operations which is the main subject of the present paper. More precisely
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we try to illuminate the behavior of the nuclearity properties under basic alge-
braic constructions such as quotients, coproducts, duality, tensors etc.

We start with a brief introduction to operator systems together with their
abstract characterization. We also include some special C∗-covers generated by
an operator system and we continue with the basic duality results in this category.
In Section 2 we recall basic facts on the quotient theory of operator systems. This
especially allows us to utilize exactness in this category.

Section 3 includes a brief overview on the tensor products of operator sys-
tems. After giving the axiomatic definition we recall basic facts on the minimal
(min), the maximal (max), the (maximal) commuting (c), enveloping left (el) and
enveloping right (er) tensor products. The set of tensor products admits a natu-
ral partial order and the primary tensor products we have considered exhibit the
following relations:

min 6 el, er 6 c 6 max .

Nuclearity forms the integral part of Section 4. Given two operator system
tensor products α 6 β, an operator system S is said to be (α, β)-nuclear if S ⊗α

T = S ⊗β T for every operator system T . One of the main goals of [22] (see
also [17]) is to characterize the nuclearity properties among the primary tensor
products above which forms the following equivalences:

(min, max)-nuclearity = completely positive factorization property (CPFP),
(min, el)-nuclearity = exactness,
(min, er)-nuclearity = (operator system) local lifting property (osLLP),
(el, c)-nuclearity = double commutant expectation property (DCEP),
(el, max)-nuclearity = weak expectation property (WEP).

We remark that WEP and DCEP coincide for C∗-algebras. Also, again for
C∗-algebras, Kirchberg’s local lifting property (LLP) and osLLP coincide. For
finite dimensional operator systems we simply use the term “lifting property”.

We consider Sections 1, 2, 3 and 4 as the basic part of the paper. Since many
of the constructions in later sections are applicable to the Kirchberg conjecture
we put the related discussion in Section 5. Recall that the Kirchberg conjecture is
equivalent to an outstanding problem in von Neumann algebra theory, namely
Connes’ embedding problem, and it states that every C∗-algebra that has LLP
has WEP. Since these properties extend to general operator systems it is natural
to approach this conjecture from an operator system perspective. In [22] it was
shown that the Kirchberg conjecture has an affirmative answer if and only if every
finite dimensional operator system with the lifting property has DCEP. One of
our main goals in Section 5 is to obtain an even simpler form of this. Let C∗(Fn)
represent the full C∗-algebra of the free group Fn on n generators (equipped with
the discrete topology). We define

Sn = span{g1, . . . , gn, e, g∗1 , . . . , g∗n} ⊂ C∗(Fn)
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where the gi’s are the unitary generators of C∗(Fn). One can consider Sn as the
universal operator system generated by n contractions as it is the unique operator
system with the following property: whenever y1, . . . , yn are contractive elements
of an operator system T then there is a unique unital and completely positive
(ucp) map ϕ : Sn → T satisfying ϕ(gi) = yi for i = 1, . . . , n. As pointed out in
[22], Sn has the lifting property for every n. One of our main results in Section 5 is
the operator system analogue of Kirchberg’s WEP characterization ([24], see also
Theorem 15.5 of [39]):

THEOREM 0.1. A unital C∗-algebraA has WEP is and only if we have the canon-
ical complete order isomorphism A⊗min S2 = A⊗max S2.

Turning back to the Kirchberg conjecture we obtain the following five di-
mensional operator system variant.

THEOREM 0.2. The following are equivalent:
(i) The Kirchberg conjecture has an affirmative answer.

(ii) S2 has DCEP.
(iii) S2 ⊗min S2 = S2 ⊗c S2.

When E and F are Banach spaces then the natural algebraic inclusion of the
minimal Banach space tensor product E⊗̂F into B(E∗, F) is an isometry. More-
over, when E is finite dimensional this inclusion is bijective. A similar property
holds in the operator system setting: if dim(S) is finite then

(S ⊗min T )+ ←→ CP(Sd, T),

that is, there is a bijective correspondence between the positive elements of S ⊗min
T and the completely positive maps from Sd to T . (See the Preliminaries for the
dual matrix order structure.) This correspondence yields a representation of the
minimal tensor product and it is the main subject of Section 6. Depending on
this, we prove, in the finite dimensional case, that exactness and the lifting prop-
erty are dual pairs, that is, an operator system S is exact if and only if the dual
operator system Sd has the lifting property (and vice versa). In addition to this,
in contrast to C∗-algebra ideal quotients, we show that the lifting property is pre-
served under quotients by null-subspaces, that is, if S has the lifting property and
J ⊂ S is null-subspace then the quotient operator system S/J has again the lift-
ing property. Finally we improve a result in [25] by showing that the Kirchberg
conjecture has an affirmative answer if and only if there is a three dimensional
operator system S such that the universal C∗-algebra C∗u(S) has WEP.

In Section 7 we adapt some of the results of Ozawa and Pisier in the operator
space setting to operator systems. We primarily show that B = B(H) and K =
K(H), the ideal of compact operators, where H = l2, are universal objects for the
verification of exactness and the lifting property. More precisely we prove that an
operator system S is exact if and only if the induced map

(S⊗̂minB)/(S⊗̄K) = S⊗̂min(B/K)
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is a complete order isomorphism. (Here ⊗̂min represents the completed minimal
tensor product and ⊗̄ is the closure of the algebraic tensor product.) Likewise a
finite dimensional operator system S has the lifting property if and only if every
ucp map ϕ : S → B/K has a ucp lift on B.

The amalgamated sum of two operator systems over the unit introduced in
[23] (or coproduct of two operator systems in the language of [13]) seem to be
another natural structure to seek the stability of several nuclearity properties. In
Section 8 we first describe the coproduct of two operator systems in terms of op-
erator system quotients and then we show that the lifting property is preserved
under this operation. The stability of the double commutant expectation prop-
erty, with some additional assumptions, seems to be a hard problem. We show
that an affirmative answer to such a question is directly related to the Kirchberg
conjecture. More precisely if S = span{1, z, z∗} ⊂ C(T), where z is the coordi-
nate function on the unit circle T, then the Kirchberg conjecture is equivalent to
the statement that the five dimensional operator system S ⊕1 S , the coproduct of
S with itself, has the double commutant expectation property.

In [45], Xhabli introduces the k-minimal and k-maximal structure on an op-
erator system S . After recalling the universal properties of these constructions
we studied the nuclearity within this context. In particular, we show that if an
operator system is equipped with the k-minimal structure it has exactness and,
in the finite dimensional case, the k-maximal structure automatically implies the
lifting property. This allow us to extend a classical result as follows: every finite
dimensional operator system has the property that if ϕ : S → A/I is a k-positive
map, whereA is a C∗-algebra and I is an ideal inA, then ϕ has a k-positive lifting
on A, moreover, if ϕ is unital then the lift map can be chosen unital too. (If ini-
tially ϕ is assumed to be a ucp map then we retrieve the result of A.G. Robertson
and R.R. Smith in [40].)

A
q

��

S
k−pos. ϕ

//

k−pos. ϕ̃

77

A/I

From the nuclearity point of view matrix algebras are the best understood
objects: In addition to being nuclear, for an arbitrary C∗-algebra, completely pos-
itive factorization property through matrix algebras is equivalent to nuclearity
(see [8] e.g.). However, the quotients of the matrix algebras by some special ker-
nels, or certain operator subsystems of these algebras under duality raise several
difficult problems. In Section 10 we first recall some of the quotient and dual-
ity results given in [12]. We simplify some of the proofs and discuss the Kirch-
berg conjecture in this setting. Consider the five dimensional operator subsystem
R = span{I, E12, E21, E34, E43} ⊂ M4. Let J3 be the 3× 3 diagonal matrices with
0-trace. Then J3 ⊂ M3 is a null-subspace and we let M3/J3 be the operator system
quotient. Then one of our main results is:
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THEOREM 0.3. The following are equivalent:
(i) The Kirchberg conjecture has an affirmative answer.

(ii) The dual operator systemRd has DCEP.
(ii’)Rd ⊗minRd = Rd ⊗cRd.
(iii) M3/J3 has DCEP.

(iii’) (M3/J3)⊗min (M3/J3) = (M3/J3)⊗c (M3/J3).

While the equivalence of (i) and (iii’) improves a result in [12], we see that
the Kirchberg conjecture is a quotient and duality problem in matrix algebras.
We also look at the triple Kirchberg conjecture (Conjecture 10.15). We show that
if S2⊗min S2 has the DCEP then this is sufficient to conclude that the triple Kirch-
berg conjecture has an affirmative answer.

The Smith–Ward problem (SWP), which is a question regarding the preser-
vation of matricial numerical range of an operator under compact perturbation,
goes back to 1980. In Section 11 we abstractly characterize this problem. More
precisely, we see that SWP is a general three dimensional operator system prob-
lem rather than a proper compact perturbation of an operator in the Calkin alge-
bra. The following is our main result in Section 11:

THEOREM 0.4. The following are equivalent:
(i) SWP has an affirmative answer.

(ii) Every three dimensional operator system has the lifting property.
(iii) Every three dimensional operator system is exact.

This version allows us to combine this problem with the Kirchberg conjec-
ture (KC). In fact, if we assume both SWP and KC then this would imply that ev-
ery three dimensional operator system is C∗-nuclear. On the other hand the latter
condition implies SWP. This lower dimensional operator system problem seems
to be very hard. Even for an operator system of the form S = span{1, z, z∗} ⊂
C(X), where X is a compact subset of the unit disk {z : |z| 6 1} and z is the
coordinate function, we do not know whether S is C∗-nuclear.

1. PRELIMINARIES

In this section we establish the terminology and state the definitions and
basic results that shall be used throughout the paper. By a ∗-vector space we mean
a complex vector space V together with a conjugate linear map ∗ : V → V that
is involutive (i.e. (v∗)∗ = v for all v in V) and conjugate linear (i.e. (αv + w)∗ =
αv∗ + w∗ for all scalar α and v, w ∈ V). An element v ∈ V is called hermitian
(or selfadjoint) if v = v∗. We let Vh denote the set of all hermitian elements of
V. By Mn,k(V) we mean n× k matrices whose entries are elements of V, that is,
Mn,k(V) = {(vij)i,j : vij ∈ V for i = 1, . . . , n and j = 1, . . . , m} and we use the
notation Mn(V) for Mn,n(V). Note that Mn(V) is again a ∗-vector space with
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(vij)
∗ = (v∗ji). We let Mn,k denote the n × k matrices with complex entries and

set Mn = Mn,n. If A = (aij) is in Mm,n and X = (vij) is in Mn,k(V) then the
multiplication AX is an element of Mm,k(V) whose ijth entry is equal to ∑

r
airvrj

for i = 1, . . . , m and j = 1, . . . , k. We define a right multiplication with appropriate
size of matrices in a similar way.

If V is a ∗-vector space then by a matrix ordering (or a matricial order) on V we
mean a collection {Cn}∞

n=1 where each Cn is a cone in Mn(V)h and the following
axioms are satisfied:

(i) Cn is strict, that is, Cn ∩ (−Cn) = {0} for every n.
(i) {Cn} is compatible, that is, A∗Cn A ⊆ Cm for every A in Mn,m and for every

n, m.

The ∗-vector space V together with the matricial order structure {Cn} is
called a matrix ordered ∗-vector space. An element in Cn is called a positive element
of Mn(V). There is a natural (partial) order structure on Mn(V)h given by A 6 B
if B− A is in Cn. We finally remark that we often use the notation Mn(V)+ for Cn.
Perhaps the most important examples of these spaces are ∗-closed subspaces of a
B(H), bounded linear operators on a Hilbert space H, together with the induced
matricial positive cone structure. More precisely, if V is such a subspace then
Mn(V) is again a ∗-closed subspace of Mn(B(H)) which can be identified with
B(H⊕ · · · ⊕ H), bounded operators on direct sum of n copies of H. By using this
identification we will set Cn = Mn(V)∩Mn(B(H))+, where Mn(B(H))+ denotes
the positive elements of Mn(B(H)). It is elementary to verify that the collection
{Cn} forms a matrix ordering on the ∗-vector space V.

An element e of a matrix ordered ∗-vector space V is called an order unit if
for every selfadjoint element v of V there is a positive real number α such that
αe + v > 0. Note that e must be a positive element. We say that e is a matrix order
unit if the corresponding n× n matrix given by

en =

 e 0
. . .

0 e


is an order unit in Mn(V) for every n. We say that e is an Archimedean matrix order
unit if it is a matrix order unit and satisfies the following: for any v in V if εe + v
is positive for every ε > 0 then v is positive. A matrix ordered ∗-vector space
V (with cone structure {Cn}) and Archimedean matrix order unit e is called an
(abstract) operator system. We often drop the term “Archimedean matrix order”
and simply use “unit” for e. We sometimes use the notation (V, {Cn}, e) for an
operator system however to avoid excessive syntax we simply prefer to use S (or
T , R). The cone of positive elements of S , i.e. C1, is denoted by S+ and for the
upper levels we use Mn(S)+ rather than Cn. Sometimes we use eS for the unit.
A subspace V of B(H) (or in general a unital C∗-algebra A) that contains the
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unit I and is closed under ∗ (i.e. a unital selfadjoint subspace) is called a concrete
operator system. Note that V together with the induced matrix order structure,
i.e. Cn = Mn(V) ∩ Mn(B(H))+ for every n, and I forms an (abstract) operator
system. In the next paragraph we work on the morphisms of operator systems
and see that abstract and concrete operator systems are “essentially” same.

Let S and T be two operator systems and ϕ : S → T be a linear map. We
say that ϕ is unital if ϕ(eS ) = eT . ϕ is called positive if it maps positive elements
of S to positive elements of T , that is, ϕ(S+) ⊂ T +, and completely positive if
its nth-amplification ϕn : Mn(S) → Mn(T ) given by (sij) 7→ (ϕ(sij)) is positive
for every n, in other words, ϕn(Mn(S)+) ⊂ Mn(T )+ for all n. The term unital
and completely positive will abbreviated as ucp. ϕ will be called a complete order
embedding if it is an injective ucp map such that whenever (ϕ(sij)) is positive in
Mn(T ) then (sij) is positive in Mn(S). Two operator system S and T are called
unitally completely order isomorphic if there is a bijective map ϕ : S → T that is
unital and a complete order isomorphism. A subspace S0 of operator system
S which is unital and selfadjoint is again an operator system together with the
induced matrix order structure. In this case we say that S0 is an operator subsystem
of S . Note that the inclusion S0 ↪→ S is a unital complete order embedding. O
stands for the category whose objects are the operator systems and morphisms
are the ucp maps. We are now ready to state the celebrated theorem of Choi and
Effros [6].

THEOREM 1.1. Up to a unital complete order isomorphism all the abstract and
concrete operator systems coincide. That is, if S is an operator system then there is a
Hilbert space H and a unital ∗-linear map ϕ : S → B(H) which is a complete order
embedding.

Of course, in the above theorem B(H) can be replaced with a unital C∗-
algebra. A subspace X of a C∗-algebra A together with the induced matrix norm
structure is called a concrete operator space. We refer the reader to [35] for an in-
troductory exposition of these objects along with their abstract characterization
due to Ruan. If S is an operator system then a concrete representation of S into a
B(H) endows S with an operator space structure. It follows that this structure is
independent of the particular representation and, moreover, it can be intrinsically
given as

‖(sij)‖n = inf

{
α > 0 :

(
αen (sij)
(s∗ji) αen

)
is in M2n(S)+

}
.

This is known as the canonical operator space structure of S . We also assume some
familiarity with the injectivity in the category of operator systems. We refer to
Chapter 15 of [35] for an excellent survey, however for an immediate use in the
sequel we remark that every injective operator system is completely order iso-
morphic to a C∗-algebra ([35], Theorem 15.2). We also need the fact that if S is
an operator system then its injective envelope I(S) is “rigid” in the sense that the
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only ucp map ϕ : I(S)→ I(S) with the property that ϕ(s) = s for every s in S is
the identity ([35], Theorem 15.7).

1.1. SOME SPECIAL C∗-COVERS. A C∗-cover (A, i) of an operator system S is a
C∗-algebra A with a unital complete order embedding i : S ↪→ A such that i(S)
generates A as a C∗-algebra, that is, A is the smallest C∗-algebra containing i(S).
We occasionally identify S with i(S) and consider S as an operator subsystem
of A. Every operator system S has two special C∗-covers namely the universal
and the enveloping C∗-algebras denoted by C∗u(S) and C∗e (S), respectively. The
universal C∗-algebra satisfies the following universal “maximality” property: ev-
ery ucp map ϕ : S → A, where A is a C∗-algebra extends uniquely to a unital
∗-homomorphism π : C∗u(S) → A. If ϕ : S → T is a ucp map then the uni-
tal ∗-homomorphism π : C∗u(S) → C∗u(T ) associated with ϕ is constructed by
enlarging the range space by C∗u(T ) first. We also remark that if S ⊂ T then
C∗u(S) ⊂ C∗u(T ), in other words, the C∗-algebra generated by S in C∗u(T ) coin-
cides with the universal C∗-algebra of S . This special C∗-cover is used extensively
in [21], [22] and [27]. As it connects operator systems to C∗-algebras it has fun-
damental role in the tensor theory of operator systems and, in particular, in the
present paper.

The enveloping C∗-algebra C∗e (S) of S is defined as the C∗-algebra gener-
ated by S in its injective envelope I(S). It has the following universal “mini-
mality” property: for any C∗-cover i : S ↪→ A there is a unique unital ∗-homo-
morphism π : A → C∗e (S) such that π(i(s)) = s for every s in S (we assume
S ⊂ C∗e (S)). The enveloping C∗-algebra of an operator system is rigid in the
sense that if ϕ : C∗e (S) → T is a ucp map such that ϕ|S is a complete order em-
bedding then ϕ is a complete order embedding. We refer to [15] for the proof of
these results and further properties of enveloping C∗-algebras.

1.2. DUALITY. Duality, especially on the finite dimensional operator systems, is
a strong tool in the study of the stability of various nuclearity properties and in
this subsection we review basic properties on this topic. If S is an operator sys-
tem then the Banach dual Sd has a natural matrix ordered ∗-vector space struc-
ture. For f in Sd, the involution is given by f ∗(s) = f (s∗). The matricial order
structure is described as follows: ( fij) ∈ Mn(Sd) is positive if the map S 3 s 7→
( fij(s)) ∈ Mn is completely positive. Throughout the paper Sd will always rep-
resent this matrix ordered vector space. The bidual Banach space Sdd has also a
natural matricial order structure arising from the fact that it is the dual of Sd. The
following is perhaps well known, see [21], e.g.:

THEOREM 1.2. Sdd is an operator system with unit ê, the canonical image of e in
Sdd. Moreover, the canonical embedding of S into Sdd is a complete order embedding.

A state f on S is said to be faithful if s > 0 and f (s) = 0 implies that s = 0,
in other words, f maps non-zero positive elements to positive scalars. When S is
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a finite dimensional operator system then it possesses a faithful state which is an
Archimedean matrix order unit for the dual structure ([6], Section 4):

THEOREM 1.3 (Choi-Effros). Suppose S is a finite dimensional operator system.
Then there are faithful states on S and each faithful state is an Archimedean order unit
for the matrix ordered space Sd.

Consequently, the dual of a finite dimensional operator system is again an
operator system when we fix a faithful state. Also note that when we pass to the
second dual, ê ∈ Sdd is a faithful state on Sd. The following will be useful in later
sections:

LEMMA 1.4. Let S and T be two operator systems and ϕ : S → T be a linear
map. Then ϕ is k-positive if and only if ϕd : T d → Sd is k-positive.

Proof. First suppose that ϕ is k-positive. Let (gij) be in Mk(T d)+. We need
to show that (ϕd(gij)) is in Mk(Sd)+, that is, the map

S 3 s 7→ (ϕd(gij(s))) = (gij(ϕ(s))) ∈ Mk

is completely positive. By using a result of Choi, see Theorem 6.1 of [35] e.g., it
is enough to show that this map is k-positive. So let (slm) be positive in Mk(S).
Since ϕ is k-positive we have that (ϕ(slm)) is positive in Mn(T ). Now using the
definition of positivity of (gij) we have that (gij(ϕ(slm))) is positive in Mk(Mk).
Conversely, suppose that ϕd is k-positive. By using the above argument, we have
that ϕdd : Sdd → T dd is k-positive. Since S ⊂ Sdd and T ⊂ T dd completely
order isomorphically we have that ϕ = ϕdd|S is k-positive.

2. OPERATOR SYSTEM QUOTIENTS

In this section we recall some basic results about operator system quotients
introduced in Sections 3, 4 of [22]. This quotient theory is also studied and used
extensively in [12] and some of them are included in the sequel. We exhibit some
relations between the quotient theory and duality for finite dimensional operator
systems. We establish some universal objects, namely the coproducts of operator
systems, by using the quotient theory in a later section.

A subspace J of an operator system S is called a kernel if it is the kernel of
some ucp map defined from S into an operator system T . Note that a kernel J has
to be a ∗-closed, non-unital subspace of S , however, these properties, in general,
do not characterize a kernel. The following is Proposition 3.2 of [22].

PROPOSITION 2.1. Let J be a subspace of S . Then the following are equivalent:
(i) J is a kernel.

(ii) J is the kernel of a cp map defined from S into an operator system T .
(iii) J is the kernel of a positive map defined from S into an operator system T .
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(iv) There is a collection of states fα such that J =
⋂
α

ker( fα).

The algebraic quotient S/J has a natural involution given by (s + J)∗ =
s∗ + J. To define the matricial order structure we first consider the following
cones:

Dn = {(sij + J)n
i,j=1 : (sij) ∈ Mn(S)+}.

It is elementary to show that {Dn}∞
n=1 forms a strict, compatible order structure.

Moreover, e + J is a matrix order unit. However, it fails to be Archimedean, that
is, if (s + J) + ε(e + J) is in D1 for every ε > 0, then s + J may not be in D1. To
solve this problem we use the Archimedeanization process introduced in [37].
More precisely, we enlarge the cones in such a way that they still form a strict
compatible matricial order structure and e + J is an Archimedean matrix order
unit. Consider

Cn = {(sij + J)n
i,j=1 : (sij) + ε(e + J)n ∈ Dn for every ε > 0}.

The ∗-vector space S/J together with the matricial order structure {Cn}∞
n=1 and

unit e + J form an operator system. We refer to Section 3 of [22] for the proof
of this result. The operator system S/J is called the quotient operator system. A
kernel J is called proximinal if D1 = C1 and completely proximinal if Dn = Cn for
every n. We remark that the proximinality in this context is different than the
norm-proximinality in the Banach or operator space quotients.

One of the fundamental properties of an operator system quotient S/J is its
relation with morphisms. If ϕ : S → T is a ucp map with J ⊆ ker(ϕ) then the
associated map ϕ : S/J → T is again a ucp map. Conversely, if ψ : S/J → T is
a ucp map then there exists a unique ucp map φ : S → T with, necessarily, J ⊆
ker(φ) such that φ = q ◦ ψ where q is the quotient map from S onto S/J. We also
remark that if one considers completely positive maps and drop the condition on
the unitality then both of these universal properties still hold.

We remark that if one starts with a ∗-closed, non-unital subspace J of an
operator system S then on the algebraic quotient S/J the involution is still well-
defined. We can still define Dn in similar fashion and it is elementary to show that
{Dn} is a compatible matricial cone structure. It is possible that {Dn} is strict as
well. However, in order to obtain the Archimedeanization property of e + J we
again need to enlarge the cones and define {Cn} in a similar way. Now it can
be shown that C1 is strict, that is, C1 ∩ (−C1) = {0}, if and only if J is a kernel.
Consequently starting with a kernel is essential in the operator system quotient.
(See Section 3 of [22] for an extended discussion on this topic).

REMARK 2.2. Let A be a unital C∗-algebra and I be an ideal in A. (It is easy
to see that I is a kernel, in fact it is the kernel of the quotient map A → A/I).
Then the C∗-algebraic quotient of A by I is unitally completely order isomorphic
to the operator system quotient A/I. Moreover, I is proximinal.
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Proximinality is a useful tool and we want to consider some special cases in
which the kernels are automatically proximinal. The first part of the following is
essentially Lemma 4.3. of [22].

LEMMA 2.3. Let y be a selfadjoint element of an operator system S which is neither
positive nor negative. Then span{y} is a kernel in S . Moreover, span{y} is proximinal.

Proof. The first part of the proof can be found in Lemma 4.3 of [22]. To
prove the second part we first consider the case where y is such an element in a
unital C∗-algebra A. Let J = span{y} and let x + J > 0 in A/J. Clearly we may
assume that x = x∗. We have that for each ε > 0 there is an element in J, say
αεy such that x + αεy + εe is positive in A. Note that αε must be a real number.
Let Xε = {α : x + αy + εe ∈ A+} then Xε is a non-empty subset of R such that
for any 0 < ε1 6 ε2 we have Xε1 ⊆ Xε2 . Moreover since A+ is closed in A, each
of Xε is closed. We will show that X1 is bounded. Let y = y1 − y2 be the Jordan
decomposition of y, that is, y1 and y2 are positives such that y1y2 = 0. Let α be
in X1. Now multiplying both sides of x + αy1 − αy2 + e > 0 by y2 from right and
left we get y2xy2 + y2

2 > αy3
2. Since y2 is non-zero this inequality puts an upper

bound on α. Similarly multiplying both side by y1 we obtain a lower bound for α.
Consequently {Xε}0<ε61 is a decreasing net of compact sets in R and hence has
a non-empty intersection. Let α0 be an element that belongs to the intersection.
Since x + α0y + ε > 0 for every ε > 0 we have that x + α0y > 0. This proves the
particular case we assumed. Now suppose y is such an element in S . Let A be a
C∗-algebra containing S as an operator subsystem. We have that J = span{y} is
a proximinal kernel in A. Let q be the quotient map from A onto A/J and let q0
be the restriction of q on S . Clearly q0 is ucp with kernel J. So q0 : S/J → A/J
is ucp. Now let s + J be positive in S/J. So it is positive in A/J. By the above
part there is an element a in A+ such that a + J = s + J. Since J is contained in S
clearly a must be an element of S . So the proof is done.

A finite dimensional ∗-closed subspace J of an operator system S which
contains no positive other than 0 is called a null subspace. Supposing y is a self-
adjoint element of S which is neither positive nor negative then span{y} is a one
dimensional null subspace, e.g. Another important example of null subspaces are
kernels of faithful states on finite dimensional operator systems.

PROPOSITION 2.4. Suppose J is a null subspace of S . Then J is a completely
proximinal kernel. If S is finite dimensional, say dim(S) = n, then J is contained in an
n− 1 dimensional null subspace.

Proof. We first show that J is a proximinal kernel. We will argue by in-
duction on the dimension of J. When J is one dimensional Lemma 2.3 does the
job. Suppose every k dimensional null subspace of the operator system S is a
proximinal kernel and let J be an k + 1 dimensional null subspace. It is elemen-
tary to see that J = span{y1, . . . , yk, yk+1} where each of yi is selfadjoint. Let
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J0 = span{y1, . . . , yk} which is a null subspace and consequently a proximinal
kernel by the induction assumption. We claim that yk+1 + J0 is a selfadjoint ele-
ment in S/J0 which is neither positive nor negative. Clearly it is selfadjoint. Sup-
pose it is positive, so there is a positive element x in S such that x+ J0 = yk+1 + J0.
This clearly forces x to be in J so it is necessarily 0 and thus yk+1 is in J0 which
is a contradiction. Similarly yk+1 cannot be negative. Again by using Lemma 2.3
span{yk+1 + J0} is a proximinal kernel in S/J0. Now consider the sequence of
the quotients maps

S q0−−−−−→ S/J0
q1−−−−−→ (S/J0)/span{yk+1 + J0}.

Clearly the kernel of q1 ◦ q0 is J and since the first and the second quotients are
proximinal it is easy to show that J is proximinal. To see that J is a completely
proximinality we can simply consider the identification

Mn(S/J) = Mn(S)/Mn(J).

Note that Mn(J) is still a null subspace on Mn(S).
Now we will show that if dim(S) = n then J is contained in an n − 1 di-

mensional null subspace. Let w be a faithful state on S/J. Clearly kernel of w is
a null subspace and so proximinal by the above part. Now

S q−−−→ S/J w−−−→ C

is a sequence of ucp maps with n− 1 dimensional kernel in S which contains J. It
is null subspace since a non-zero positive will map a non-zero positive by q first
and a non-zero positive real number by w.

As we pointed out earlier, the kernel of a faithful state on a finite dimen-
sional operator system is a null subspace. This led us to construct a very special
basis for the operator system as well as its dual.

LEMMA 2.5. Suppose S is an n dimensional operator system and δ a faithful state
on S . Then the kernel of δ, which is an n−1 dimensional null subspace, can be written
as a linear combination of self-adjoint elements {s2, . . . , sn}. Consequently we have

S = span{e= s1, s2, . . . , sn}.

Moreover if Sd = span{δ= δ1, δ2, . . . ., δn} written in the dual basis form (i.e. δi(sj) =
δij) then δ2, . . . , δn are self-adjoint elements of the dual operator system such that their
span is a null subspace.

Proof. It is elementary to see that the kernel of δ can be written as a linear
combination of selfadjoints. In fact we can start with a selfadjoint element s2. If
s is an element in the kernel which is not in the span of s2 then one of s + s∗ or
(s− s∗)i does not belong to span of s2. So this way we obtain s3. We can apply
this procedure successively and form such a basis. Clearly if we set s1 = e then
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we obtain a basis for S . To see that δi is self-adjoint consider an element ∑ αjsj.
Then

δ∗i

(
∑ αjsj

)
= δi

(
∑(αjsj)∗

)
= δi

(
∑ αjsj

)
= αi

coincides with δi(∑ αjsj). Finally since ê, the canonical image of e in the bidual op-
erator system, is a faithful state on the dual operator system Sd its kernel, namely
the linear span of {δ2, . . . , δn}, is a null subspace. This finishes the proof.

Let Jn be the subspace of Mn containing all diagonal matrices with 0 trace.
Then Jn is an n− 1 dimensional null subspace of Mn and consequently a kernel.
Note that it is contained in the subspace which includes all the matrices with 0
trace, an n2 − 1 dimensional null subspace of Mn. In [12] it has been explicitly
shown that Jn is a kernel. We will turn back to this in later sections. Another
interesting example is the following: Consider J = span{g1, . . . , gn, g∗1 , . . . , g∗n} ⊂
C∗(Fn). Then J is a null subspace and hence a kernel in C∗(Fn).

A surjective completely positive map ϕ : S → T is called a quotient map if
the induced map ϕ : S/ker(ϕ) → T , which is bijective and completely positive,
is a complete order isomorphism. Note that if ϕ is unital the induced map is also
unital. We also remark that compositions of quotient maps are again quotient
maps. We frequently use the following property of a quotient map: If (tij) is
positive in Mk(T ) then for every ε > 0 there is a positive element (sε

ij) in Mk(S)
such that (ϕ(sε

ij)) = (tij) + εen.

PROPOSITION 2.6. Let ϕ : S → T be a quotient map. Then the dual map ϕd :
T d → Sd is a complete order embedding.

Proof. We already have that the dual map is completely positive. Suppose
(gij) in Mn(T d) such that (ϕd(gij)) is positive in Mn(Sd). We will show that
(gij) is positive, that is, if (tlm) is positive in Mk(T ) then (gij(tlm)) is positive (in
Mk ⊗Mn). Fix ε > 0 and let (tε

lm) = (tlm) + εek. We know that there is a positive
element (sε

lm) in Mk(S) such that (ϕ(sε
lm)) = (tε

lm). Note that (gij(tε
lm))i,j,l,m =

(ϕd(gij)(sε
lm)). Now using the fact that (ϕd(gij)) is positive we get (gij(tε

lm))i,j,l,m
is positive. Since ε is arbitrary and (tε

lm) → (tlm) as ε → 0 we have that (gij(tlm))
is positive. So the proof is done.

PROPOSITION 2.7. Let J be a null subspace of a finite dimensional operator system
S . Then (S/J)d is an operator subsystem of Sd with a proper selection of faithful states.
(More precisely if δ is a faithful state on S with J ⊂ ker(δ) then the induced state δ on
S/J is faithful and satisfies qd(δ) = δ where q is the quotient map from S onto S/J).

Proof. Proposition 2.6 ensures that qd : (S/J)d → Sd is a complete order
embedding. So we deal with the proper selection of the faithful states. In fact let
δ0 be a faithful state on S/J. Then we claim that δ0 ◦ q is a faithful state on S .
Clearly it is a state and if s is non-zero positive then ϕ(s) is non-zero positive in
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S/J and δ0(q(s)) is a positive number. Finally declaring δ0 ◦ q as the unit of Sd,
we obtain that qd is unital as qd(δ0) = δ0 ◦ q.

We remark that in order to obtain “unitality” in the above proposition start-
ing with a null subspace is important. In fact if J is a kernel and δ1 and δ2 are
faithful states on S/J and S , respectively, then qd(δ1) = δ2 requires that J is in
the kernel of δ2 and consequently it has to be a null subspace.

The converse of the above result is also true which is referred as the first iso-
morphism theorem in [12]. For completeness of the paper we include the proof.

THEOREM 2.8 (Farenick, Paulsen). Let S be a finite dimensional operator system
and S0 be an operator subsystem of S . Then the adjoint id : Sd → Sd

0 of the inclusion
S0 ↪→ S is a quotient map. By proper selection of faithful states we may also assume that
it is unital.

Proof. Since the inclusion is a cp map its adjoint is again a cp map. It is also
elementary to see that id is surjective. Thus, we will only prove that if (id( fij)) is
positive in Mn(Sd

0 ) then there is positive (gij) in Mn(S) such that id( fij) = id(gij)

for every i, j. Now, (id( fij)) is positive in Mn(Sd
0 ) means that the linear map

S0 3 s 7→ (id( fij)(s)) = ( fij(s)) ∈ Mn

is a cp map. By Arveson’s extension theorem [1], this map has a cp extension from
S into Mn, which we identify with (gij). Now, clearly (gij) is positive in Mn(Sd)

and id( fij) = id(gij) for every i, j. We will continue with the unitality problem.
In fact it is elementary to show that if f is a faithful state on S then f still has the
same property when it is restricted to S0. Thus id( f ) is again a faithful state.

REMARK 2.9. In the above theorem we see that the adjoint of the inclusion
map is a unital quotient map. The kernel of this map is a null subspace. In fact if f
is positive in Sd and id( f ) = 0 together imply that f is a positive linear functional
on S such that f |S0 is 0. Since, we have that ‖ f ‖ = ‖ f (e)‖, necessarily f = 0.

3. TENSOR PRODUCTS OF OPERATOR SYSTEMS

In this section we recall the axiomatic definition of tensor products in the
category of operator systems and review properties of several tensor products
established in [21]. Suppose S and T are two operator systems. A matricial cone
structure τ = {Cn} on S ⊗ T where Cn ⊂ Mn(S ⊗ T )h, is said to be an operator
system structure if

(1) (S ⊗ T , {Cn}, eS ⊗ eT ) is an operator system,
(2) for any (sij) ∈ Mn(S)+ and (trs) ∈ Mk(T )+, (sij ⊗ trs) is in Cnk for all n, k,
(3) if φ : S → Mn and ψ : T → Mk are ucp maps then φ⊗ ψ : S ⊗ T → Mnk

is a ucp map for every n and k.
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The resulting operator system is denoted by S ⊗τ T . A mapping τ : O ×
O → O is said to be an operator system tensor product (or simply a tensor product)
provided τ maps each pair (S , T ) to an operator system structure on S ⊗ T ,
denoted by S ⊗τ T . A tensor product τ is said to be functorial if for every operator
systems S1,S2, T1 and T2 and every ucp maps φ : S1 → S2 and ψ : T1 → T2 the
associated map φ⊗ ψ : S1 ⊗τ T1 → S2 ⊗τ T2 is ucp. A tensor product τ is called
symmetric if S ⊗τ T = T ⊗τ S and associative if (S ⊗τ T )⊗τ R = S ⊗τ (T ⊗τ R)
for every S , T andR.

There is a natural partial order on the operator system tensor products: If τ1
and τ2 are two tensor products then we say that τ1 6 τ2 if for every operator sys-
tems S and T the identity id : S ⊗τ2 T → S ⊗τ1 T is completely positive. In other
words τ1 is smaller with respect to τ2 if the cones it generates are larger. (Recall
that larger matricial cones generate smaller canonical operator space structures.)
The partial order on operator system tensor products forms a lattice as pointed
out in Section 7 of [21] and raises fundamental nuclearity properties as we shall
discuss in the next section.

In the remaining of this section we discuss several important tensor prod-
ucts, namely the minimal (min), maximal (max), maximal commuting (c), en-
veloping left (el) and enveloping right (er) tensor products. With respect to the
partial order relation given in the previous paragraph we have the following
schema [21] :

min 6 el, er 6 c 6 max .

3.1. MINIMAL TENSOR PRODUCT. Let S and T be two operator systems. We
define the matricial cone structure on the tensor product S ⊗ T as follows:

Cmin
n (S , T ) = {(uij) ∈ Mn(S ⊗ T ) : ((φ⊗ ψ)(uij))ij ∈ M+

nkm for every

ucp maps φ : S → Mk and ψ : T → Mm for all k, m}.

The matricial cone structure {Cmin
n } satisfies the axioms (1), (2), and (3) and the

resulting operator system is denoted by S ⊗min T . If τ is another operator system
structure on S ⊗ T then we have that min 6 τ. In other words {Cmin

n } forms the
largest cone structure. The minimal tensor product, of course when considered
as a map min : O ×O → O, is symmetric and associative. It is functorial and
injective in the sense that if S1 ⊂ S2 and T1 ⊂ T2 then S1 ⊗min T1 ⊂ S2 ⊗min
T2 completely order isomorphically. It coincides with the C∗-algebraic minimal
tensor products when restricted to C∗-algebras (except for completion). It is also
spatial in the sense that if S ⊂ B(H) and T ⊂ B(K) then the concrete operator
system structure on S ⊗ T arising from the inclusion B(H ⊗ K) coincides with
their minimal tensor product. All these results can be directly found in Section 4
of [21].
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3.2. MAXIMAL TENSOR PRODUCT. The construction of the maximal tensor prod-
uct of two operator systems S and T involves two steps. We first define

Dmax
n (S , T ) = {A∗(P⊗Q)A : P ∈ Mk(S)+, Q ∈ Mm(T )+, A ∈ Mkm,n, k, m ∈ N}.

The matricial order structure {Dmax
n } is strict and compatible (for the definitions

see Chapter 13 of [35] e.g.), moreover, eS ⊗ eT is a matrix order unit. However it
fails to be an Archimedean order unit. So the construction requires another step,
namely the completion of the cones which is known as the Archimedeanization
process (see [37] e.g) as follows:

Cmax
n (S , T ) = {P ∈ Mn(S ⊗ T ) : r(e1 ⊗ e2)n + P ∈ Dmax

n (S , T ) ∀r > 0}.

Now the matrix order structure {Cmax
n } satisfies all the axioms and the resulting

operator system is denoted by S ⊗max T . If τ is another operator system struc-
ture on S ⊗ T then we have that τ 6 max, that is, {Cmax

n } is the smallest cone
structure. max, as min, has all properties symmetry, associativity and functorial-
ity. It coincides with the C∗-algebraic maximal tensor product when restricted to
unital C∗-algebras (again, except for completion). As it is well known from C∗-
algebras, it does not have the injectivity property that min possesses. However
it is projective as discussed in [16]. Another important aspect of the maximal
tensor product is the following duality property given by Lance in [28]: A lin-
ear map f : S ⊗max T → C is positive if and only if the corresponding map
ϕ f : S → T d is completely positive. Here ϕ f (s) is the linear functional on T
given by ϕ f (s)(t) = f (s⊗ t). (See also Lemma 5.7 and Theorem 5.8 of [21].) Con-
sequently we obtain the following representation of the maximal tensor product:

(S ⊗max T )d,+ = CP(S , Td).

The following property of the maximal tensor product will be useful:

PROPOSITION 3.1. Let Si and Ti be operator systems and ϕi : Si → Ti be com-
pletely positive maps for i = 1, 2. Then the associated map ϕ1 ⊗ ϕ2 : S1 ⊗max S2 →
T1 ⊗max T2 is cp.

Proof. It is easy to see that (ϕ1 ⊗ ϕ2)
n(Dmax

n (S1,S2)) ⊂ Dmax
n (T1, T2). So let

u be in Cmax
n (S1,S2). For any r > 0, r(e1 ⊗ e2)n + u ∈ Dmax

n (S1,S2). This means
that, for every r > 0, r(ϕ1(e1)⊗ ϕ2(e2))n +(ϕ1⊗ ϕ2)

n(u) is in Dmax
n (T1, T2). Now,

we can complete the positive elements ϕ1(e1) and ϕ2(e2) to a multiple of the units,
that is, we can find positive elements x ∈ S2 and y ∈ T2 such that ϕ1(e1) + x and
ϕ2(e2) + y are multiple of the units. Since r(x ⊗ y)n belongs to Dmax

n (T1, T2) we
have that the sum of these terms

r(x⊗ y)n + r(ϕ1(e1)⊗ ϕ2(e2))n + (ϕ1 ⊗ ϕ2)
n(u) = rk(e1 ⊗ e2)n + (ϕ1 ⊗ ϕ2)

n(u)

is in Dmax
n (T1, T2) for every r > 0. Thus, (ϕ1 ⊗ ϕ2)

n(u) ∈ Cmax
n (T1, T2).



NUCLEARITY RELATED PROPERTIES IN OPERATOR SYSTEMS 111

3.3. MAXIMAL COMMUTING TENSOR PRODUCT. Another important tensor prod-
uct we want to discuss is the maximal commuting (or commuting) tensor product
which is denoted by c. It agrees with the C∗-algebraic maximal tensor products
on the category of unital C∗-algebras however it is different than max for general
operator systems. The matrix order structure is defined by using the ucp maps
with commuting ranges. More precisely, if S and T are two operator systems
then Ccom

n consist of all (uij) ∈ Mn(S ⊗ T ) with the property that for any Hilbert
space H, any ucp φ : S → B(H) and ψ : T → B(H) with commuting ranges

(φ · ψ)(n)(uij) > 0

where φ · ψ : S ⊗ T → B(H) is the map defined by φ · ψ(s ⊗ t) = φ(s)ψ(t).
The matricial cone structure {Ccom

n } satisfies the axioms (1), (2) and (3), and the
resulting operator system is denoted by S ⊗c T . The commuting tensor product c
is functorial and symmetric however we do not know whether is it associative or
not. Before listing the main results concerning the tensor product c we underline
the following fact: If τ is an operator system structure on S ⊗ T such that S ⊗τ T
has a representation in a B(H) with “S ⊗ e” and “e⊗ T ” commuting, then one
has τ 6 c. This directly follows from the definition of c and justifies the name
“maximal commuting”. The following are Theorems 6.4 and 6.7 from [21].

THEOREM 3.2. If A is a unital C∗-algebra and S is an operator system, then we
have a complete order isomorphism A⊗c S = A⊗max S .

THEOREM 3.3. Let S and T are operator systems. Then we have a complete order
embedding S ⊗c T ⊂ C∗u(S)⊗max C∗u(T ).

In fact the following improvement of this theorem will be more useful:

PROPOSITION 3.4. Let S and T be operator systems. Then we have a canonical
complete order embedding S ⊗c T ⊂ C∗u(S)⊗max T .

Proof. By using the functoriality of c we have that the following maps

S ⊗c T
i⊗id−−→ C∗u(S)⊗max T

id⊗i−−→ C∗u(S)⊗max C∗u(T ),

where id is the identity and i is the inclusion, are ucp. Theorem 3.3 ensures that
the composition is a complete order embedding so the first map, which is uni-
tal, has the same property. (Here we use the fact that if the composition of two
ucp maps is a complete order embedding then the first map has the same prop-
erty.)

The following result is a direct consequence of Corollary 6.5 in [22] which
characterizes the ucp map defined by the commuting tensor product of two op-
erator systems:

PROPOSITION 3.5. Let S and T be two operator systems and let ϕ : S ⊗c T →
B(H) be a ucp map. Then there is Hilbert space K containing H as a Hilbert subspace
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and ucp maps φ : S → B(K) and ψ : T → B(K) with commuting ranges such that
ϕ = PHφ · ψ|H . Conversely, every such map is ucp.

3.4. SOME ASYMMETRIC TENSOR PRODUCTS. In this subsection we discuss the
enveloping left (el) and enveloping right (er) tensor products. Given operator
systems S and T we define

S ⊗el T :⊆ I(S)⊗max T and S ⊗er T :⊆ S ⊗max I(T )

where I(·) is the injective envelope of an operator system. Both el and er are
functorial tensor products. We do not know whether these tensor products are
associative. They are not symmetric but asymmetric in the sense that

S ⊗el T = T ⊗er S via the map s⊗ t 7→ t⊗ s.

el and er have the following one sided injectivity property ([21], Theorem 7.5).

THEOREM 3.6. The tensor product el is the maximal left injective functorial tensor
product, that is, for any S ⊂ S1 and T we have

S ⊗el T ⊆ S1 ⊗el T

and it is the maximal functorial tensor product with this property.

Likewise, er is the maximal right injective tensor product. It directly fol-
lows from the definition that if S is an injective operator system then S ⊗el T =
S ⊗max T for every operator system T . Now for an arbitrary operator system S
this allows us to conclude that the tensor product el is independent of the injec-
tive object that we represent S , that is, if S ↪→ S1 where S1 is injective then for
any operator system T , the tensor product on S ⊗ T arising from the inclusion
S1 ⊗max T coincides with el. To see this we only need to use the left injectivity
of el:

S ⊗el T ↪→ S1 ⊗el T = S1 ⊗max T .

A similar property for the tensor product er holds. el and er, in general, are not
comparable however they both lie between min and c.

4. CHARACTERIZATION OF VARIOUS NUCLEARITIES

In the previous section we have reviewed the tensor products in the cat-
egory of operator system. In this section we will overview the behavior of the
operator systems under tensor products. More precisely, we will see several char-
acterizations of the operator systems that fix a pair of tensor products.

Given two tensor products τ1 6 τ2, an operator systems S is said to be
(τ1, τ2)-nuclear provided S ⊗τ1 T = S ⊗τ2 T for every operator system T . We
remark that the place of the operator system S is important as not all the tensor
products are symmetric.
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4.1. COMPLETELY POSITIVE FACTORIZATION PROPERTY (CPFP). We want to start
with a discussion on the characterization of (min, max)-nuclearity given in [17].
An operator system S is said to have CPFP if there is a net of ucp maps

φα : S → Mnα and ψα : Mnα → S
such that the identity id: S → S is approximated by ψα ◦ φα in point-norm topol-
ogy, that is, for any s ∈ S , ψα ◦ φα(s)→ s. The following is Corollary 3.2 of [17].

THEOREM 4.1. The following are equivalent for an operator system S :
(i) S is (min, max)-nuclear, that is, S ⊗min T = S ⊗max T for all T .

(ii) S has CPFP.

The characterization in this theorem extends the characterization of nuclear
unital C∗-algebras. Recall that a unital C∗-algebraA is said to be nuclear ifA⊗min
B = A⊗max B for every C∗-algebra B. By using Proposition 3.4, it is elementary
to show that A is nuclear if and only if it is (min, max)-nuclear operator system.
Consequently the above result extends a well known result of Choi and Effros [8].
We also remark that in [25] and [27] an operator system is defined as nuclear if
it satisfies CPFP. Consequently the classical term “nuclearity” coincides with the
(min, max)-nuclearity.

4.2. OPERATOR SYSTEM LOCAL LIFTING PROPERTY (OSLLP). Another aspect we
want to discuss is the operator system local lifting property (osLLP) and we will
see that it is equivalent to (min, er)-nuclearity. An operator system S is said to
have osLLP if for every unital C∗-algebra A and ideal I in A and for every ucp
map ϕ : S → A/I the following holds: For every finite dimensional operator
subsystem S0 of S , the restriction of ϕ on S0, say ϕ0, lifts to a completely positive
map on A so that the following diagram commutes.

A
q

��

S0 ⊂ S ucp ϕ
//

ϕ̃0

44

A/I

Of course, S may possess osLLP without a global lifting. We also remark that the
completely positive local liftings can also be chosen to be ucp in the definition of
osLLP (see the discussion in Section 8 of [22]). The LLP definition for a C∗-algebra
given in [24] is the same. So it follows that a unital C∗-algebra has LLP (in the
sense of Kirchberg) if and only if it has osLLP. The following result is from [24].

THEOREM 4.2 (Kirchberg). The following are equivalent for a C∗-algebra A:
(i) A has LLP.

(ii) A⊗min B(H) = A⊗max B(H) for every Hilbert space H.

Here is the operator system variant given in [22]:

THEOREM 4.3. The following are equivalent for an operator system S :



114 ALI Ş. KAVRUK

(i) S has osLLP.
(ii) S ⊗min B(H) = S ⊗max B(H) for every Hilbert space H.

(iii) S is (min, er)-nuclear, that is, S ⊗min T = S ⊗er T for every T .

It is not hard to show that in the above theorem “every Hilbert space” can be
replaced by l2(N). If we denote B = B(l2(N)), the above equivalent conditions, in
some similar context, is also called B-nuclearity. (See [3], e.g.) Consequently for
operator systems osLLP, B-nuclearity and (min, er)-nuclearity are all equivalent.

REMARK 4.4. The definition of LLP of a C∗-algebra in Chapter 16 of [39] is
different, it requires completely contractive liftings from finite dimensional op-
erator subspaces. However, as it can be seen in Theorem 16.2 of [39], all the
approaches coincide for C∗-algebras.

Note. When we work with the finite dimensional operator systems we re-
move the extra word “local”, we even remove “os” and simply say “lifting prop-
erty”.

It seems to be important to remark that in the definition of osLLP one can
replace ucp maps by cp maps.

REMARK 4.5. The following are equivalent for an operator system S :
(i) S has osLLP.

(ii) For every unital C∗-algebra A and ideal I and for every cp map ϕ : S →
A/I, the restriction of ϕ on any finite dimensional operator subsystem S has a cp
lift on A.

Proof. (ii) implies (i) is clear. Conversely suppose (i) holds. This implies
that S ⊗min B(H) = S ⊗max B(H). Let ϕ : S → A/I be a cp map and S0 a finite
dimensional operator subsystem of S . Now if we represent Sd

0 into a B(H) (and
set B = B(H)) we have that

Sd
0 ⊗min S ⊂ B⊗min S = B⊗max S

id⊗ϕ−−−→ B⊗max A/I,

is cp map where we use the injectivity of minimal tensor product and Proposi-
tion 3.1. By using first remark in Chapter 17 of [39] and Corollary 5.16 of [22], we
have that

B⊗max A/I =
B⊗max A
B⊗max I

→ B⊗min A
B⊗min I

⊃
Sd

0 ⊗min A
Sd

0 ⊗ I
.

Since the inclusion i : S0 → S is cp, this corresponds to a positive element ui in
Sd

0 ⊗min S . (See Lemma 8.4 of [22].) Thus, under the composition of the above
maps, the image v of ui is still positive in (Sd

0 ⊗min A)/(Sd
0 ⊗ I). Since this quo-

tient is proximinal (see Corollary 5.15 of [22]), there is a positive element w in
Sd

0 ⊗min A giving v under the quotient map. Now, again by using Lemma 8.4 of
[22], w corresponds to a cp map ϕ̃ : S0 → A. It is easy to verify that ϕ̃ is a lift of
ϕ when restricted to S0.
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4.3. WEAK EXPECTATION PROPERTY (WEP). If A is a unital C∗-algebra then the
bidual C∗-algebra A∗∗ is unitally completely order isomorphic to the bidual op-
erator system Add. This allows one to extend the notion of WEP, which is intro-
duced and shown to be a fundamental nuclearity property by Lance in [29], to
the category of operator systems. We say that an operator system S has WEP
if the canonical inclusion i : S ↪→ Sdd extends to a ucp map on the injective
envelope I(S):

S � � i //
_�

��

Sdd

I(S)

77

In [22] it was shown that WEP implies (el, max)-nuclearity and the difficult
converse is shown in [16]. Consequently we have that

THEOREM 4.6. An operator system has WEP if and only if it is (el, max)-nuclear.

4.4. DOUBLE COMMUTANT EXPECTATION PROPERTY (DCEP). Another nuclear-
ity property we want to discuss is DCEP which coincides with WEP for unital
C∗-algebras however is different than WEP for general operator systems. An
operator system S is said to have DCEP if every representation i : S ↪→ B(H)
extends to a ucp map from I(S) into S ′′, the double commutant of S in B(H).

S � � //
_�

��

B(H) ⊇ S′′

I(S)

44

In fact, by using Arveson’s commutant lifting theorem [1] (or Theorem 12.7
of [35]), it can be directly shown that a unital C∗-algebra has WEP if and only
if it has DCEP. Many fundamental results and conjectures concerning WEP in
C∗-algebras reduces to DCEP in operator systems. The following is a direct con-
sequence of Theorems 7.1 and 7.6 in [22]:

THEOREM 4.7. The following are equivalent for an operator system S :
(i) S is (el, c)-nuclear, that is, S ⊗el T = S ⊗c T for every T .

(ii) S has DCEP.
(iii) S ⊗min C∗(F∞) = S ⊗max C∗(F∞).
(iv) For any S ⊂ A and B, where A and B are unital C∗-algebras, the inclusion
S ⊗max B ↪→ A⊗max B is a complete order embedding.

Here C∗(F∞) is the full C∗-algebra of the free group on countably infinite
generators F∞. Note that (iii) is Kirchberg’s WEP characterization in [24] and (iv)
is Lance’s seminuclearity in [29] for unital C∗-algebras.
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4.5. EXACTNESS. The importance of exactness and its connection to the tensor
theory of C∗-algebras appear in the work of Kirchberg [24], [25]. Exactness is
really a categorical term and requires a correct notion of quotient theory. The
operator system quotients established in [22], which we reviewed in Section 2, is
used to extend the exactness to operator systems. Before starting the definition
we recall a couple of results from [22]: Let S be an operator system, A be a unital
C∗-algebra and I be an ideal in A. Then S⊗̄I is a kernel in S⊗̂minA where ⊗̂min
represents the completed minimal tensor product and ⊗̄ denotes the closure of
the algebraic tensor product in the larger space. By using the functoriality of the
minimal tensor product it is easy to see that the map

S⊗̂minA
id⊗q−−→ S⊗̂min(A/I),

where id is the identity on S and q is the quotient map from A onto A/I, is ucp
and its kernel contains S⊗̄I. Consequently the induced map

(S⊗̂minA)/(S⊗̄I) −→ S⊗̂min(A/I)

is still unital and completely positive. An operator system is said to be exact if
this induced map is a bijective and a complete order isomorphism for every C∗-
algebra A and ideal I in A. In other words we have the equality

(S⊗̂minA)/(S⊗̄I) = S⊗̂min(A/I).

We remark that the induced map may fail to be surjective or injective, moreover
even if it has these properties it may fail to be a complete order isomorphism.

REMARK 4.8. If dim(S) < ∞ then we have that S ⊗min A = S⊗̂minA and
S⊗̄I = S ⊗ I. Moreover the induced map

(S ⊗min A)/(S ⊗ I) −→ S ⊗min (A/I)

is always bijective. Thus, for this case, exactness is equivalent to the statement
that the induced map is a complete order isomorphism.

Proof. Let S = span{s1, . . . , sk}. Suppose that {un} is a Cauchy sequence
in the algebraic tensor product S ⊗min A with limit u in S⊗̂minA. We will show
that u belongs to S ⊗min A. Clearly we can write un = s1 ⊗ an

1 + · · · + sk ⊗ an
k .

We will prove that {an
i }n is Cauchy in A for every i = 1, . . . , k. Let δi : S → C be

the linear map defined by δi(sj) = δij. Since each of δi is completely bounded we
have that δ⊗ id : S ⊗minA → A given by s⊗ a 7→ δ(s)a is a completely bounded
map, in particular it is continuous. (Here we use the fact that the minimal tensor
product of two operator system is the same as the operator space minimal tensor
product. This is easy to see as both of them are spatial. We also use the fact that
every linear map defined from a finite dimensional operator space is completely
bounded.) Clearly {an

i }n is the image of {un} under this map and consequently
it is Cauchy. Let ai be the limit of these sequences in A for i = 1, . . . , k. Now
it is elementary to show that u = s1 ⊗ a1 + · · · + sk ⊗ ak. This directly follows
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from the triangle inequality and the cross norm property of the minimal tensor
product, i.e., ‖s⊗ a‖ = ‖s‖‖a‖).

The proof of the fact that S⊗̄I = S ⊗ I is similar to this so we skip it. It is
elementary to see that the image of the induced map

(S ⊗min A)/(S ⊗ I) −→ S ⊗min (A/I)

covers the algebraic quotient which is the same as its completion for this case.
Thus, it is onto. Finally we need to show that it is injective. More precisely, we
need to show that the map S ⊗min A → S ⊗ A/I has kernel S ⊗ I. Suppose
the image of ∑ si ⊗ ai is 0, that is, ∑ si ⊗ ȧi is 0 in S ⊗ A/I. Since {s1, . . . , sn}
is a linearly independent set we have that each of ȧ1, . . . , ȧk is 0. Thus a1, . . . , ak
belongs to I. This finishes the proof.

Note. The term exactness in this paper coincides with 1-exactness in [22].
A unital C∗-algebra is exact (in the sense of Kirchberg) if and only if it is

an exact operator system which follows from the fact that the unital C∗-algebra
ideal quotient coincides with the operator system kernel quotient. The following
is Theorem 5.7 of [22]:

THEOREM 4.9. An operator system is exact if and only if it is (min, el)-nuclear.

In Theorem 6.6 we will see that exactness and the lifting property are dual
pairs. We want to finish this subsection with the following stability property:

PROPOSITION 4.10. Exactness passes to operator subsystems. That is, if S is
exact then every operator subsystem of S is exact. Conversely, if every finite dimensional
operator subsystem of S is exact then S is exact.

Proof. We will use the nuclearity characterization of exactness, i.e., (min,
el)-nuclearity. First suppose S is exact and S0 is an operator subsystem of S . By
using the injectivity of min and left injectivity of el we have that

S0 ⊗min T ⊆ S ⊗min T and S0 ⊗el T ⊆ S ⊗el T

for every operator system T . Since the tensors on the right hand side coincide it
follows that S0 is (min, el)-nuclear, equivalently it is exact.

To prove the second part suppose that S is not exact. This means that there
is an operator system T such that the identity

S ⊗min T → S ⊗el T

is not a cp map, that is, there is an positive element U in Mn(S ⊗min T ) which is
not positive in Mn(S ⊗el T ). Clearly S has a finite dimensional operator subsys-
tem S0 such that U belongs to Mn(S0 ⊗ T ). Now again using the fact that

S0 ⊗min T ⊆ S ⊗min T and S0 ⊗el T ⊆ S ⊗el T

we see that U is positive in Mn(S0⊗min T ) but not positive in Mn(S0⊗el T ). This
means that S0 is not exact. This finishes the proof.
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4.6. FINAL REMARKS ON NUCLEARITY. Unlike C∗-algebras a finite dimensional
operator system may not posses a certain type of nuclearity. For example M2 ⊕
M2 has a five dimensional operator subsystem which does not have the lifting
property (See Corollary 10.12, e.g.). Exactness and the local lifting property of
three dimensional operator systems are directly related to the Smith–Ward prob-
lem which is currently still open (Section 11). Similarly we will see that the Kirch-
berg conjecture is a problem about nuclearity properties of five dimensional op-
erator systems.

The following schema summarizes the nuclearity characterizations that we
have discussed in this section:

min

exactness

CPFP

LLP

C∗−nuclearity

6 el

WEP

DCEP

, er 6 c 6 max

PROPOSITION 4.11. The following are equivalent for an operator system S :
(i) S is (min, c)-nuclear, that is, S ⊗min T = S ⊗c T for every operator system T .

(ii) S is C∗-nuclear, that is, S ⊗min A = S ⊗max A for every unital C∗-algebra A.

Proof. Suppose (i). By using Theorem 3.2 we have that S ⊗min A = S ⊗c
A = S ⊗max A. Hence we obtain (ii). Conversely suppose (ii). By the injectivity
of the minimal tensor product and by Proposition 3.4 we have the inclusions

S ⊗min T ⊆ S ⊗min C∗u(T ) and S ⊗c T ⊆ S ⊗max C∗u(T ).
Since the tensor products on the right hand side coincide (i) follows.

REMARK 4.12. (i) We use the term C∗-nuclearity rather than (min, c)
-nuclearity.

(ii) The above table for unital C∗-algebras summarizes the classical discussion
for C∗-algebras. Recall that in this case c and max coincides and consequently
WEP and DCEP are the same properties. Also osLLP and LLP are the same.
It is also important to remark that if we start with a unital C∗-algebra A then
(min, el)-nuclearity, for example, can be verified with unital C∗-algebras. That
is, A⊗min T = A⊗el T for every operator system T if and only if A⊗min B =
A⊗el B for every unital C∗-algebra B. We left the verification of this to the reader.
In addition to this, as we pointed out before,A is exact (in the sense of Kirchberg)
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if and only if it is an exact operator system. Similar properties hold for other
nuclearity properties WEP, CPFP and LLP. Thus, we obtain the following schema:

min 6

exactness

nuclearity=CPFP

LLP

el

WEP

er

q

6 max

For this case (er, max)-nuclearity of a C∗-algebra coincides with the nuclearity by
Lance [29], (see also Proposition 7.7 of [21]). By this simple schema it is rather easy
to see that nuclearity is equivalent to exactness and WEP, e.g. Also suppose thatA
and B are unital C∗-algebras such that A has WEP and B has LLP. Now by using
the fact that LLP is equivalent to (min, er)-nuclearity we have that A⊗min B =
A⊗el B. (Note. B is on the right hand side.) Again by using the fact that WEP is
the same as (el, c=max)-nuclearity we haveA⊗el B = A⊗max B. Thus we obtain
a well known result of Kirchberg: A⊗min B = A⊗max B.

We close this section with the following observation about finite dimen-
sional operator systems. Roughly speaking it states that the finite dimensional
operator systems, except a small portion, namely the C∗-algebras, are never
(c, max)-nuclear. So in this case, (min, c)-nuclearity (i.e. C∗-nuclearity) is the high-
est nuclearity that one should expect. (Of course, among the tensor products min
6 el, er 6 c 6 max.)

PROPOSITION 4.13. The following are equivalent for a finite dimensional operator
system S :

(i) S is (c, max)-nuclear.
(ii) S is unitally completely order isomorphic to a C∗-algebra.

(iii) S ⊗c Sd = S ⊗max Sd.

Proof. Since c and max coincides when one of the tensorants is a C∗-algebra,
(ii) implies (i). Clearly (i) implies (iii). We will show that (iii) implies (ii). Consider
id : S → S . This corresponds to a positive linear functional fid : S ⊗max Sd → C.
Since max and c coincide by the assumption and S ⊗c Sd ⊂ C∗u(S)⊗max Sd, fid
extends to a positive linear functional f̃id : C∗u(S) ⊗max Sd → C by Arveson’s
extension theorem. Let ϕ : C∗u(S) → (Sd)d = S be the corresponding cp map.
Clearly ϕ extends the identity on S . Now by using a slight modification of Theo-
rem 15.2 of [35] we have that S has a structure of a C∗-algebra.
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5. WEP AND KIRCHBERG’S CONJECTURE

In this section we improve Kirchberg’s WEP characterization for unital C∗-
algebras and we express Kirchberg’s conjecture in terms of a five dimensional
operator system problem. The last schema in the previous section still includes
many question marks. There is no known example of a non-nuclear C∗-algebra
which has WEP and LLP. One another major open question is whether LLP im-
plies WEP, which is known as the Kirchberg conjecture. More precisely, in his
astonishing paper [24] he proves that:

THEOREM 5.1 (Kirchberg). The following are equivalent:
(i) Every separable II1-factor is a von Neumann subfactor of the ultrapower Rω of the

hyperfinite II1-factor R for some ultrafilter ω ∈ βN \N.
(ii) For a unital C∗-algebra LLP implies WEP.

(iii) Every unital C∗-algebra is a quotient of a C∗-algebra that has WEP (i.e. QWEP).
(iii) C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞).
(iv) C∗(F∞) has WEP.

The validity of the equivalent conditions in this theorem is still unknown.
The first one is Connes’ embedding problem. We refer to [9] for related defi-
nitions on this subject. The remaining equivalent arguments are known as the
Kirchberg conjecture (or Kirchberg’s QWEP conjecture). As we pointed out be-
fore C∗(F∞) (respectively, C∗(Fn)) stands for the full C∗-algebra of the free group
with a countably infinite number of (respectively, with n) generators. As shown
in [24], in the above theorem C∗(F∞) can be replaced by C∗(F2). In fact, since
there is an injective group homomorphism ρ : F∞ → F2, by using Proposition
8.8 in [39], we have that C∗(F∞) can be represented as a C∗-subalgebra of C∗(F2)
and, again by using the same theorem, there is ucp inverse of this representation.
Consequently the identity on C∗(F∞) factors via ucp maps through C∗(F2). Con-
versely, the identity on C∗(F2) factors via ucp maps through C∗(F∞) in a trivial
way.

LEMMA 5.2. Let S and T be two operator systems. If the identity on S factors
via ucp maps through T then any nuclearity property of T passes to S . That is if T is
(τ1, τ2)-nuclear, where τ1 and τ2 are functorial tensor products with τ1 6 τ2, then S has
the same property.

Proof. Let φ : S → T and ψ : T → S be the ucp maps such that ψ ◦ φ(s) = s
for every s in S . Let R be any operator system. Then, by using the functoriality
we have that

S ⊗τ1 R
φ⊗id−−−→ T ⊗τ1 R = T ⊗τ2 R

ψ⊗id−−−→ S ⊗τ2 R

is a sequence of ucp maps such that the composition is the identity. Since τ1 6 τ2
we have that S ⊗τ1 R = S ⊗τ2 R. Thus, S is (τ1, τ2)-nuclear.
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Since WEP coincides with (el, max)-nuclearity, it follows that C∗(F∞) has
WEP if and only if C∗(F2) has WEP. By a similar argument the above conditions
are equivalent to the statement C∗(F2)⊗min C∗(F2) = C∗(F2)⊗max C∗(F2). We
also remark that Kirchberg’s WEP characterization can be given as follows, which
will be useful when we express WEP in terms of a tensor product with a lower
dimensional operator system:

THEOREM 5.3. The following are equivalent for a unital C∗-algebra A:
(i) A has WEP.

(ii) A⊗min C∗(F∞) = A⊗max C∗(F∞).
(iii) A⊗min C∗(F2) = A⊗max C∗(F2).

Proof. Equivalence of (i) and (ii) is the Kirchberg’s WEP characterization. To
see that (iii) implies (ii) we again use the fact that the identity on C∗(F∞) factors
through ucp maps on C∗(F∞). So let φ : C∗(F∞) → C∗(F2) and ψ : C∗(F2) →
C∗(F∞) be the ucp maps whose composition is the identity on C∗(F∞). Now,
suppose (iii) holds. By using the functoriality of min and max we have that

A⊗min C∗(F∞)
id⊗φ−−−→ A⊗min C∗(F2) = A⊗max C∗(F2)

id⊗ψ−−−→ A⊗max C∗(F∞).

is a sequence of ucp maps such that the composition is the identity. Thus (ii)
holds. (ii) implies (iii) is similar.

Since WEP and LLP has natural extensions to general operator systems it is
natural to approach Kirchberg’s conjecture from this perspective. We define Sn
as the operator system in C∗(Fn) generated by the unitary generators, that is,

Sn = span{g1, . . . , gn, e, g∗1 , . . . , g∗n} ⊂ C∗(Fn).

Sn can also be considered as the universal operator system generated by n con-
tractions as it satisfies the following universal property: Every map f : {gi}n

i=1 →
T with ‖ f (gi)‖ 6 1 extends uniquely to a ucp map ϕ f : Sn → T (in an obvious
way).

{gi}n
i=1

f
//

_�

��

T

Sn

ϕ f

55

The proof of this property relies on the unitary dilation of a contraction and the
reader may refer to the discussion in Section 9 of [22]. From this one can easily
deduce that Sn has the lifting property. Indeed, let ϕ : Sn → A/I be a ucp
map where I ⊂ A is an ideal, unital C∗-algebra couple. Let ϕ(gi) = ai + I for
i = 1, . . . , n. Since C∗-algebra ideal quotients are proximinal (see Lemma 2.4.6 of
[39] e.g.) there exists bi in A such that bi + I = ai + I with ‖bi‖ = ‖ai + I‖. Since
a ucp map is contractive we have that ‖ai + I‖ 6 1 and so ‖bi‖ 6 1. Therefore
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the function gi 7→ bi extends uniquely to a ucp map. It is elementary to show that
this map is a lift of ϕ.

An operator subsystem S of a C∗-algebraA is said to contain enough unitaries
if there is a collection of unitaries in S which generates A as a C∗-algebra, that is,
A is the smallest C∗-algebra that contains these unitaries. This notion is inspired
by a work of Pisier (see Chapter 13 of [39]) and in [22] it was shown that several
nuclearity properties of A can be deduced from S (see Corollary 9.6 of [22]).

LEMMA 5.4. Let A and B be unital C∗-algebras and {uα} be a collection of uni-
taries in A which generates A as a C∗-algebra. If ϕ : A → B is a ucp map such that
ϕ(uα) is a unitary in B for every α then ϕ is a ∗-homomorphism.

Proof. This is an application of Choi’s work on the multiplicative domains
in [5]. Since e = ϕ(uαu∗α) = ϕ(uα)ϕ(uα)∗ = ϕ(u∗αuα) = ϕ(uα)∗ϕ(uα), each uα

belongs to multiplicative domain of ϕ. These elements generates A, thus, ϕ is a
∗-homomorphism.

LEMMA 5.5. Let S ⊂ A contain enough unitaries and let B be a unital C∗-
algebra. Let {uα} be the collection of unitaries in S which generates A. Suppose ϕ :
S → B is a ucp map such that ϕ(uα) is a unitary in B for every α. Then ϕ extends
uniquely to a ucp map on A which is necessarily a ∗-homomorphism.

Proof. Lemma 4.16 in [22] ensures that ϕ extends to a ∗-homomorphism. So
there exists a ucp extension of ϕ on A. Also the above lemma implies that any
ucp extension has to be a ∗-homomorphism. Since {uα} generates A and every
extension coincides on {uα} it follows that extension is unique.

PROPOSITION 5.6. Suppose S ⊂ A contains enough unitaries. ThenA coincides
with the enveloping C∗-algebra of S , that is, the unique unital ∗-homomorphism π :
A → C∗e (S) which extends the inclusion of S in C∗e (S) is bijective.

Proof. Let {uα} be the collection of unitaries in S which generates A as a
C∗-algebra. Let i be the inclusion of S in C∗e (S). Note that the image {π(uα) =
i(uα)} of the unitary collection {uα} forms a set of unitaries and it generates the
image of π which coincides with C∗e (S). We can represent A into a B(H) as
a C∗-subalgebra. Now, by Arveson’s extension theorem, the inclusion of S in
A ⊂ B(H) extends to ucp map ϕ on C∗e (S). Note that ϕ(i(uα)) = uα, that is, ϕ
maps a collection of unitaries, which generates C∗e (S), to a collection of unitaries
in B(H). Now by using the above lemma ϕ must be a unital ∗-homomorphism.
Moreover, since the image of {i(uα)} stays inA and generatesA, the image of ϕ is
preciselyA. The rigidity of the enveloping C∗-algebra ensures that ϕ is one to one
too. Note that ϕ−1 is again a unital ∗-homomorphism such that ϕ−1(s) = i(s) for
every s in S . Now the universal property of the enveloping C∗-algebras ensures
that π = ϕ−1, thus π is bijective.
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Despite this result we still prefer to use the term “contains enough uni-
taries”. Our very first example is, of course, Sn ⊂ C∗(Fn). This also means
that C∗e (Sn) = C∗(Fn). It is also important to remark that not every operator sys-
tem contains enough unitaries in its enveloping C∗-algebra. The following is an
improvement of Proposition 9.5 of [22]:

PROPOSITION 5.7. Suppose S ⊂ A and T ⊂ B contain enough unitaries. Then

S ⊗min T ⊂ A⊗max B =⇒ A⊗min B = A⊗max B.

Proof. Let {uα} and {vβ} be unitaries in S and T that generate A and B,
respectively. By using the injectivity of the minimal tensor product we have the
inclusion S ⊗min T ⊂ A⊗min B. It is not hard to see that the unitaries {uα ⊗ vβ},
which belong to S ⊗min T , generate A ⊗min B. It is also clear that the inclu-
sion S ⊗min T ↪→ A⊗max B maps these unitaries to unitaries again. Thus, by
Lemma 5.5, this inclusion extends uniquely to a ∗-homomorphism which is nec-
essarily the identity. So we conclude that A⊗min B = A⊗max B.

COROLLARY 5.8. Suppose S ⊂ A and T ⊂ B contain enough unitaries. Then

S ⊗min T = S ⊗c T =⇒ A⊗min B = A⊗max B.

Proof. Let S ⊗τ T be the operator system tensor product arising from the
inclusion A⊗max B. Clearly min 6 τ 6 c. (Note. c is the maximal commuting
tensor product.) Since min and c coincides on S ⊗ T we have that S ⊗min T ⊂
A⊗max B. Thus, by Proposition 5.7, the result follows.

THEOREM 5.9. The following are equivalent for a unital C∗-algebra A:
(i) A has WEP.

(ii) A⊗min S2 = A⊗max S2.

Proof. First suppose (i). Since WEP coincides with (el, max)-nuclearity and
S2 has the lifting property (equivalently (min, er)-nuclearity, also keeping in mind
that it is written on the right hand side) we have

A⊗min S2 = A⊗el S2 = A⊗max S2.

Conversely suppose (ii) holds. Since S2 contains enough unitaries in C∗(F2) (and
A contains enough unitaries in itself), by the above corollary, we obtain that
A⊗min C∗(F2) = A⊗max C∗(F2). Thus A has WEP.

The above theorem can be extended to general operator systems as follows:

THEOREM 5.10. An operator system S has DCEP if and only if we have a com-
plete order isomorphism S ⊗min S2 = S ⊗c S2.

Proof. First of all recall from Subsection 4.4 that S has DCEP if and only
S ⊗min C∗(F∞) = S ⊗max C∗(F∞). Since the identity on C∗(F∞) decomposes via
ucp maps through C∗(F2), and vice versa, the latter condition is equivalent to
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S ⊗min C∗(F2) = S ⊗max C∗(F2). (The proof is the same as that of Theorem 5.3.)
Now supposing S has DCEP (equivalently (el, c)-nuclearity) we have that

S ⊗el S2 = S ⊗c S2.

Since S2 has the lifting property (equivalently (min, er)-nuclearity) (and taking
into account that it is on the right hand side) we get

S ⊗min S2 = S ⊗el S2.

This proves one direction. Conversely suppose that S ⊗min S2 = S ⊗c S2. This in
particular implies that we have the complete order embedding

S ⊗min S2 ⊂ S ⊗max C∗(F2).

Indeed, letting τ be the operator system structure on S ⊗ S2 arising from the in-
clusion S ⊗max C∗(F2) it is easy to see that min 6 τ 6 c. Since min = c, the
above inclusion follows. Also note that, by the injectivity of min, S ⊗min S2 ⊂
A⊗min C∗(F2), where A is any C∗-algebra containing S as an operator subsys-
tem. Now let S ⊗max C∗(F2) ⊂ B(H) in such a way that “S” and “C∗(F2)” por-
tions commute and “C∗(F2)” is a C∗-subalgebra of B(H). By using the Arveson’s
extension theorem we have a ucp map

S ⊗min S2
� � //

⋂
S ⊗max C∗(F2) ⊂ B(H)

A⊗min C∗(F2)

ϕ

22

We claim that ϕ is the identity operator when restricted to S ⊗min C∗(F2). Note
that ϕ, when restricted to “C∗(F2)” in A ⊗min C∗(F2), must be the identity op-
erator as it maps each unitary generator to itself. This means that, by using the
theory of Choi on multiplicative domains e.g., ϕ(a⊗ b) = ϕ(a⊗ e)ϕ(e⊗ b) for all
a ∈ A and b ∈ C∗(F2). Since we readily have that ϕ(s⊗ e) = s⊗ e we obtain that
ϕ(s⊗ b) = (s⊗ e)ϕ(e⊗ b) = (s⊗ e)(e⊗ b) = s⊗ b. Since ϕ maps an elementary
tensor to itself it follows that it is the identity. Consequently we proved that the
identity from S ⊗min C∗(F2) to S ⊗max C∗(F2) is a cp map. By the discussion at
the beginning of this proof we obtain that S has DCEP.

In the following theorem the equivalence of (i)–(iv) is Theorems 9.1 and 9.4
of [22]. So we will only prove that these are equivalent to (v) and (vi), which ex-
press Kirchberg conjecture in terms of a five dimensional operator system prob-
lem.

THEOREM 5.11. The following are equivalent:
(i) Kirchberg conjecture has an affirmative answer.

(ii) Sn has DCEP for every n.
(iii) Sn ⊗min Sn = Sn ⊗c Sn for every n.
(iv) Every finite dimensional operator system with the lifting property has DCEP.
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(v) S2 has DCEP.
(vi) S2 ⊗min S2 = S2 ⊗c S2.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows from Theorems 9.1
and 9.4 of [22]. These conditions clearly imply (v) and (vi). Moreover the above
theorem clearly implies that (v) and (vi) are equivalent. Conversely suppose that
(vi) holds. Since S2 contains enough unitaries in C∗(F2), by Corollary 5.8, it fol-
lows that C∗(F2)⊗min C∗(F2) = C∗(F2)⊗max C∗(F2), that is, the Kirchberg con-
jecture has an affirmative answer.

6. THE REPRESENTATION OF THE MINIMAL TENSOR PRODUCT

Suppose V and W are vector spaces with dim(V) < ∞, then it is well known
that there is a bijective correspondence V⊗W ∼= L(V∗, W) where L(V∗, W) is the
vector space of linear maps from V∗ into W. The bijective linear map is given by

∑ vi ⊗ wi 7→ ̂∑ vi ⊗ wi where ̂∑ vi ⊗ wi( f ) = ∑ f (vi)wi.

This identification plays an important role in the characterization of minimal ten-
sor products both in Banach space and operator space theory (see [4] e.g.) . (Note
that every linear map defined from a finite dimensional operator space is com-
pletely bounded which can be seen in [34].) The following is the operator system
variant of this well known correspondence. In this section we will study various
application of this equivalence. The first part is Lemma 8.4 of [21].

PROPOSITION 6.1. Let S and T be operator systems where dim(S) is finite. Then
there is a bijective correspondence

(S ⊗min T )+ ←→ CP(Sd, T ).

That is, a finite sum ∑ si ⊗ ti is positive if and only if the corresponding map ∑̂ si ⊗ ti is
completely positive from Sd into T . In particular every linear map from Sd into T can
be written as a linear combination of completely positive maps.

Proof. The bijective correspondence is already shown in [21]. Now let S =
span{e = s1, s2, . . . , sn} written in the special basis form as in Lemma 2.5 and let
Sd = span{δ1, δ2, . . . , δn}written as the corresponding dual basis form. Consider
a linear map ϕ : Sd → T where ϕ(δi) = ti. Now ∑(si⊗ ti) can be written as linear
combination of positives in S ⊗min T , say ∑(si ⊗ ti) = x1 − x2 + ix3 − ix4 where
each xi is positive. By the first part, the corresponding maps x̂i are completely
positive from Sd into T and clearly ϕ = x̂1 − x̂2 + ix̂3 − ix̂4. This finishes the
proof.

COROLLARY 6.2. If S and T are operator systems with dim(S) < ∞ then every
linear map from S to T can be written as a linear combination of completely positive
maps.



126 ALI Ş. KAVRUK

Aside. Supposing S and T are operator systems with dim(S) < ∞ then
CB(S , T ) has a structure of an operator system: The involution is given by ϕ∗(s)
= ϕ(s∗)∗ and the positive cones structures can be describe as

(ϕij) ∈ Mn(CB(S , T )) is positive if the map S 3 s 7→ (ϕij(s)) ∈ Mn(T ) is cp.

The non-canonical Archimedean order unit can be chosen to be δ̃ = δ(·)eT where
δ is a faithful state on S . Moreover we obtain the following identity

Sd ⊗min T = CB(S , T )

unitally and completely order isomorphicaly. Of course, this also means that
S ⊗min T = CB(Sd, T ) where the identity of CB(Sd, T ) is chosen to be ê(·)eT .

Proposition 6.1 has several important consequences. We want to start with
the following duality property between the minimal and the maximal tensor
products given in [12]. We also include the proof as it relies on the representa-
tion of the tensor products.

THEOREM 6.3 (Farenick, Paulsen). For finite dimensional operator systems S
and T we have the following unital complete order isomorphisms:

(S ⊗max T )d = Sd ⊗min T d and (S ⊗min T )d = Sd ⊗max T d.

More precisely, if δS and δT are faithful states on S and T , respectively, which we set
as Archimedean order units, then δS ⊗ δT is again a faithful state on S ⊗min T and
S ⊗max T when considered as a linear functional.

Proof. We first show that S ⊗min T and (Sd⊗max T d)d are completely order
isomorphic. Note that

(S ⊗min T )+ = CP(Sd, T ) = (Sd ⊗max T d)d,+.

Here the second equation follows from the representation of the maximal tensor
product that we discussed in Subsection 3.2. Therefore, we obtain that a positive
linear functional on Sd ⊗max T d corresponds to a positive element in S ⊗min T .
This shows that the bijective linear map

S ⊗min T → (Sd ⊗max T d)ds⊗ t 7→ s⊗̇t where s⊗̇t
(

∑ fi ⊗ gi

)
= ∑ fi(s)gi(t)

is an order isomorphism. To see that it is an complete order isomorphism we can
reduce the matricial levels to a ground level as follows. First note that

Mn(S)⊗min T and (Mn(S)d ⊗max T d)d

are order isomorphic. The left hand side can be identified with Mn(S ⊗min T ).
On the other hand, for any operator systemRwe have the identification Mn(Rd)
= (Mn(R))d given by ( fij) 7→ F where F(rij) = ∑ fij(rij). In fact, we first iden-
tify Mn(Rd) with linear operators from R into Mn (where we use the definition
of positivity) and these linear operators are identified with linear functionals on
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Mn(R) (see Theorem 6.1 of [35], e.g.). By the associativity of the maximal tensor
product we have that the right hand side can be identified with

(Mn(Sd)⊗max T d)d = (Mn(Sd ⊗max T d))d = Mn((Sd ⊗max T d)d).

Thus the above map is completely order isomorphic. We may suppose that these
operator systems have the same unit by declaring eS ⊗̇eT as the Archimedean or-
der unit on (Sd ⊗max T d)d. (Since both of these matrix ordered spaces are com-
pletely order isomorphic, clearly, eS ⊗̇eT plays the same role on (Sd ⊗max T d)d.)
Finally by taking appropriate duals, we obtain both first and second desired iden-
tifications.

This duality correspondence allows us to recover the following special case
about the projectivity of the maximal tensor product given in [16].

THEOREM 6.4. Let S and T be finite dimensional operator systems and J ⊂ S be
a null subspace. Then J ⊗ T ⊂ S ⊗max T is a null subspace and we have that

(S ⊗max T )/(J ⊗ T ) = (S/J)⊗max T .

In other words, the induced map S ⊗max T −→ (S/J)⊗max T is a unital quotient map.

Proof. Proposition 2.7 ensures that (S/J)d is an operator subsystem of Sd.
Thus, by using the injectivity of the minimal tensor product, we have that

(S/J)d ⊗min T d ⊂ Sd ⊗min T d.

Now, Theorem 2.8 (and the remark thereafter) ensure that the adjoint of this map
is a quotient map whose kernel is a null subspace. Thus, by using the above
result, the adjoint of this inclusion, i.e., the natural map below

S ⊗max T −→ (S/J)⊗max T

is a quotient map. By a dimension count argument its kernel is J ⊗ T which is a
null subspace.

With the following lemma we resolve some technical issues. Its proof is
again based on the representation of the minimal tensor product.

LEMMA 6.5. Let S be a finite dimensional operator system,A be a C∗-algebra and
I be an ideal in A. Then the following are equivalent:

(i) For all n, every ucp map ϕ : S → Mn(A)/Mn(I) has cp lift on Mn(A).
(ii) For all n, every cp map ϕ : S → Mn(A)/Mn(I) has cp lift on Mn(A).

(iii) We have the unital complete order isomorphism

(Sd ⊗min A)/(Sd ⊗ I) = Sd ⊗min (A/I).

Proof. We first remark that if we replace “for all n” with “for n = 1” in
(i) and (ii) and remove “complete” in (iii) and prove the lemma this way then
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the original arguments are automatically satisfied. In fact this follows from the
identifications

Mn((Sd ⊗min A)/(Sd ⊗ I)) = Mn(Sd ⊗min A)/Mn(Sd ⊗ I)

= (Sd ⊗min Mn(A))/(Sd ⊗Mn(I))

and Mn(Sd⊗min (A/I)) = Sd⊗min Mn(A/I). So we will prove the equivalences
only for the ground level. Clearly (ii) implies (i). (iii) implies (ii) is also easy. The
cp map ϕ : S → A/I corresponds to a positive element in Sd ⊗min (A/I). Since
we assumed (iii) and the first quotient in (iii) is proximinal (see Corollary 5.15 of
[22] e.g.) it follows that u is quotient of a positive element v in Sd ⊗min A. Now,
again by using the representation of minimal tensor product, v corresponds a cp
map ϕ̃ : S → A. It is not hard to show that ϕ̃ is a lift of ϕ.

We finally show that (i) implies (iii). First note that (i) implies the following:
Whenever φ : S → A/I is a cp map with φ(e) is invertible then φ has cp lift on
A. In fact if we set ψ = φ(e)−1/2φ(·)φ(e)−1/2 then ψ is a ucp map and hence
has a cp lift ψ̃ on A. Now, if a is in A+ with a + I = φ(e)1/2 then it is easy to
see that the cp map aψ̃(·)a is a lift of φ. Secondly, we remark that the induced
map from (Sd ⊗min A)/(Sd ⊗ I) to Sd ⊗min (A/I) is already bijective and ucp
(see Remark 4.8). Thus we need to show that its inverse is positive. So let u be
positive in Sd ⊗min (A/I) and set uε = u + ε1 for ε > 0, where 1 is the unit of
Sd ⊗min (A/I). (Note. 1 = f ⊗ ėA where f is a faithful sate on S .) Since u and
uε are positive elements they corresponds to cp maps ϕ and ϕε from S into A/I,
respectively. It is not hard to see that ϕε(eS ) = ϕ(eS ) + εėA. This means that
ϕε(eS ) is invertible and so it has a cp lift ϕ̃ε from S intoA. This again correspond
to a positive element Uε in Sd ⊗min A. Now it is not hard to see that the positive
element Uε + Sd ⊗ I is the inverse image of uε = u + ε1 for every ε > 0. This is
enough to conclude that the two operator systems in (iii) are order isomorphic.

THEOREM 6.6. Let S be a finite dimensional operator system. Then S has the lift-
ing property if and only if Sd is exact (and vice versa). In other words, S is
(min, er)-nuclear if and only if Sd is (min, el)-nuclear.

Proof. The proof is based on Lemma 6.5. If S has the lifting property then
(i) in the same lemma will be satisfied for every C∗-algebra and ideal. Thus (iii)
implies that Sd is exact. The reverse direction is similar. Since Sdd = S we clearly
have that S is exact if and only if Sd has the lifting property.

THEOREM 6.7. If the Kirchberg conjecture has an affirmative answer then, in the
finite dimensional case, C∗-nuclearity is preserved under duality, that is, if S is C∗-
nuclear then Sd is again C∗-nuclear.

Proof. Let S be a finite dimensional C∗-nuclear operator system. In partic-
ular S is exact and has the lifting property. By the above result Sd has both of
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these properties. Now if the Kirchberg conjecture is true then Theorem 5.11 im-
plies that Sd has DCEP. It is easy to see that exactness and DCEP together imply
C∗-nuclearity. Thus, Sd is C∗-nuclear.

The local lifting property of a C∗-algebra, in general, does not pass to its
quotients by ideals. In fact it is well known that every C∗-algebra is the quotient
of a full C∗-algebra of a free group which has the local lifting property however
there are C∗-algebras without this property. On the finite dimensional operator
systems this situation is different:

THEOREM 6.8. Let S be a finite dimensional operator system and let J be a null
subspace of S . If S has the lifting property then S/J has the same property.

Proof. Recall from Proposition 2.7 that (S/J)d is an operator subsystem of
Sd. Since S has the lifting property then Sd is exact by Theorem 6.6. Propo-
sition 4.10 states that exactness passes to operator subsystems so (S/J)d is ex-
act and consequently using Theorem 6.6 again it follows that S/J has the lifting
property.

EXAMPLE 6.9. We define Jn ⊂ Mn as the subspace which includes all the
diagonal operators with 0 trace. Clearly Jn is a null subspace and consequently, by
Proposition 2.4, it is a kernel. Since Mn is a nuclear C∗-algebra, it is a (min, max)-
nuclear operator system. In particular, it is (min, er)-nuclear, equivalently has the
lifting property. Thus, by the above theorem Mn/Jn has the lifting property. We
will come back to this example in later sections.

The lifting property is also stable when passing to universal C∗-algebras.
The following result is an unpublished work of Ivan Todorov which he informed
me of during this research. The operator space analogue can be seen in [31].

THEOREM 6.10. Let S be a finite dimensional operator system. Then S has the
lifting property if and only if C∗u(S) has LLP.

Proof. First suppose that S has the lifting property. Let π : C∗u(S) → A/I
be a unital ∗-homomorphism. (Note. As pointed out in Remark 16.3(ii) of [39] it is
enough to consider the unital representations to verify the LLP of a C∗-algebra.)
Let π0 be the restriction of π on S . By using the local lifting property of S we
have a ucp map ϕ from S to A which lifts π0. Let ρ : C∗u(S) → A be the uni-
tal ∗-homomorphism extending ϕ. It is elementary to show that ρ is a lift of π.
Conversely suppose that C∗u(S) has LLP. Let ϕ : S → A/I be a ucp map. Let
π : C∗u(S) → A/I be the associated ∗-homomorphism. Now since S is a finite
dimensional operator subsystem of C∗u(S), the restriction of π on S , namely ϕ,
lifts to a ucp map on A. This completes the proof.

For some other applications the following result will be useful.
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PROPOSITION 6.11. Suppose S and T are two finite dimensional operator sys-
tems with the same dimensions. Then there is a surjective ucp map ϕ : S → T .

Proof. Let S = span{e = s1, s2, . . . , sn} and T = span{e = t1, t2, . . . , tn}
written in the special basis form as in Lemma 2.5. Let Sd = span{δ1, δ2, . . . , δn}
given in the corresponding dual basis form. Recall that δ1 is an Archimedean
order unit for Sd. Note that

δ2 ⊗ t2 + · · ·+ δn ⊗ tn

is a self-adjoint element of Sd ⊗min T and consequently there is a large M such
that

δ1 ⊗ e + (δ2 ⊗ t2 + · · ·+ δn ⊗ tn)/M

is positive. Now by using Proposition 6.1 it is elementary to see that the corre-
sponding completely positive map from S to T is unital and surjective.

COROLLARY 6.12. Suppose S and T are operator systems with dim(T ) finite
and dim(T ) 6 dim(S). Then there is a surjective ucp map from S to T .

Proof. Suppose dim(T ) = n and let S0 be an n-dimensional operator sub-
system of S . By using the above proposition there is a surjective ucp map from
S0 onto Cn. Since Cn is injective this map extends to a ucp map from S on Cn.
Now again by using the above proposition we have surjective ucp map from Cn

onto T . Composition of these two maps is surjective and ucp.

In [27] Kirchberg and Wasserman exemplify the behavior of universal C∗-
algebras of some low dimensional operator systems. More precisely they show
that:

(i) C∗u(C2) is unitally ∗-isomorphic to C[0, 1], in particular, it is nuclear.
(ii) C∗u(C3) is not exact.

By using Corollary 6.12 we obtain the following:

PROPOSITION 6.13. (i) If S is a two dimensional operator system then C∗u(S) is
nuclear. In particular S is (min, c)-nuclear (equivalently C∗-nuclear).

(ii) If S is an operator system with dim(S) > 3 then C∗u(S) is not exact.

Proof. Both parts of the proof are based on Corollary 6.12. Suppose S is a
two dimensional operator system. Let ϕ : C2 → S be a surjective ucp map and
let π : C∗u(C2) → C∗u(S) be the corresponding unital ∗-homomorphism. Note
that π is surjective so C∗u(C2)/ker(π) and C∗u(S) are ∗-isomorphic C∗-algebras.
This means that C∗u(S) is quotient of a nuclear C∗-algebra and consequently it is
nuclear (see [7] e.g.). To see that S is (min, c)-nuclear first fix an operator system
T . We have the inclusions

S ⊗min T ⊂ C∗u(S)⊗min T and S ⊗c T ⊂ C∗u(S)⊗max T .

Since the tensor products on the right coincide it follows that S is (min, c)-nuclear.
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Now let S be an operator system with dim(S) > 3. Assume for a con-
tradiction that C∗u(S) is exact. Let ϕ : S → C3 be a surjective ucp map and let
π : C∗u(S)→ C∗u(C3) be the corresponding unital ∗-homomorphism which is sur-
jective. This means that C∗u(C3) is a quotient of an exact C∗-algebra. So another
result of Kirchberg [25], which states that exactness passes to quotients by ideals,
requires C∗u(C3) to be exact which is a contradiction.

For another application of Corollary 6.12 we need some preliminary results.
If X is an operator space then there is an essentially unique, operator system TX
together with a completely isometric inclusion i : X ↪→ TX such that it satisfies the
following universal property: For every completely contractive map φ : X → S ,
where S is an operator system, there exists a unique ucp map ϕ : TX → S such
that ϕ(i(x)) = φ(x) for every x in X.

X_�

i
��

cc φ
// S

TX

ucp ϕ

88

To see the existence of TX one can first consider the universal unital C∗-algebra
C∗u〈X〉 of the operator space X. Recall that it has the following universal prop-
erty: Every completely contractive map defined from X into a unital C∗-algebra
A extends uniquely to a unital ∗-homomorphism. (See Theorem 8.14 of [39] e.g.)
Now let the span of X, X∗ and the unit e be TX . (Also note that the image can
be taken to an operator system.) If X0 is an operator subspace of X then we have
a unital complete order embedding TX0 ⊂ TX . We leave the proof of this as an
exercise. Also, the following identification is immediate:

C∗u〈X〉 = C∗u(TX).

Recall that an operator space X is said to have the λ-operator space local lifting
property (λ-OLLP) if the following holds for every unital C∗-algebra A and ideal
I in A. If φ : X → A/I is a completely contractive (cc) map and X0 is a finite
dimensional operator subspace of X then φ|X0 has a lift φ̃0 onAwith ‖φ̃0‖cb 6 λ.
We claim that:

PROPOSITION 6.14. Let X be an operator space. Then X has 1-OLLP if and only
if TX has osLLP.

Proof. LetA be a unital C∗-algebra and I be an ideal inA. First suppose that
X has 1-OLLP. Let ϕ : TX → A/I be a ucp map and let T0 be a finite dimensional
operator subsystem of TX . Clearly we can find a finite dimensional subspace
X0 of X such that the operator system generated by X0, which is actually TX0 ,
contains T0. Note that ϕ|X is cc and so its restriction on X0 has a cc lift onA. Now
by using the universal property of TX0 we obtain a ucp map from TX0 onA. Now
the restriction of this map on T0 is a ucp lift on A.
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Conversely suppose TX has osLLP and let φ : X → A/I be a cc map. This
map has a ucp extension ϕ on TX . Let X0 be a finite dimensional operator sub-
space of X. Clearly TX0 is a finite dimensional operator subsystem of TX and
consequently ϕ, when restricted to TX0 has a ucp lift on A. Finally restriction of
this lift on X0 is cc. This finishes the proof.

When X = C, TX is a three dimensional operator system. The following is
from [24].

PROPOSITION 6.15. The following are equivalent:
(i) The Kirchberg conjecture has an affirmative answer.

(ii) C∗u〈C〉 has WEP.

Depending heavily on this characterization we can obtain further equiva-
lences. (The equivalence of (i) and (iv) was pointed out by Vern Paulsen.)

PROPOSITION 6.16. The following are equivalent:
(i) The Kirchberg conjecture has an affirmative answer.

(ii) There exists a three dimensional operator system S such that C∗u(S) has WEP.
(iii) There exists an operator system S with dim(S) > 3 such that C∗u(S) has WEP.
(iv) C∗u(M2) has WEP.

Proof. Clearly (iv) implies (iii). To see that (iii) implies (ii), let S be an op-
erator system with dim(S) > 3 such that C∗u(S) has WEP. Let T be a three di-
mensional operator system with the lifting property. (For example C3.) By us-
ing Corollary 6.12, we know that there is a surjective ucp map ϕ from S to T .
Note that this ucp map extends to a surjective ∗-homomorphism π : C∗u(S) →
C∗u(T ). Since C∗u(S)/ker(π) and C∗u(T ) are ∗-isomorphic C∗-algebras we obtain
that C∗u(T ) is QWEP. Also by Theorem 6.10 C∗u(T ) has LLP. A well known re-
sult of Kirchberg states that QWEP and LLP together imply WEP ([24]). Thus,
(iii) implies (ii). Now we will show (ii) implies (i). By using the above result of
Kirchberg it is enough to prove that C∗u〈C〉 has WEP. Recall that C∗u〈C〉 = C∗u(TC).
Since C has 1-OLLP it follows that TC has the lifting property. By Theorem 6.10
C∗u(TC) has LLP. By using an argument that we used in the implication (iii)⇒ (ii)
it is easy to see that existence of a three dimensional operator system with WEP
implies C∗u(TC) is QWEP. Consequently C∗u(TC) = C∗u〈C〉 has WEP. Finally to see
that (i) implies (iv), note that C∗u(M2) has LLP (since M2 has the lifting property).
So assuming KC it follows that C∗u(M2) has WEP.

7. FURTHER EXACTNESS AND LIFTING PROPERTIES

We first want to review some instances where the operator space and the
operator system quotients are completely isometric. Then by using a result of
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Ozawa [30], we obtain simpler exactness and local liftability conditions for oper-
ator systems. This follows the track of Pisier and Ozawa’s approach for operator
spaces (see Theorem 16.10 and Remark 17.6 of [39], e.g.). Let S be an operator
system and let A be a unital C∗-algebra and I be an ideal in A. As we pointed
out in Subsection 4.5, S⊗̄I ⊂ S⊗̂minA is a kernel. (⊗̂min denotes the completed
minimal tensor product and ⊗̄ is the closure of the algebraic tensor product in the
larger space.) Moreover, the canonical operator spaces structure on the operator
system quotient

(S⊗̂minA)(S⊗̄I)

coincides with the operator space quotient of S⊗̂minA by its closed subspace
S⊗̄I. (See Theorem 5.1 of [22].) Also recall from Remark 4.8 that when S is
finite dimensional then the minimal tensor of S with a C∗-algebra is already a
completed object so we will use ⊗min instead of ⊗̂min. Similarly if I is an ideal in
a C∗-algebra A then S⊗̄I coincides with the algebraic tensor product S ⊗ I. So
we omit the bar over the tensor product.

Notation. For simplicity in the following results we let B denote B(l2) and K
stand for the ideal of compact operators in B(l2).

Suppose A is a unital C∗-algebra and I is an ideal in A. Let

C = {φ : A → B : φ is ucp and φ(I) ⊆ K}.

For φ in C we use the notation φ̇ for the induced mapA/I → B/K. If X is a finite
dimensional operator space then φ denotes the corresponding map

(X⊗̂A)/(X⊗I)→ (X⊗̂B)/(X⊗K).

where ⊗̂ is the minimal operator space tensor product. We are ready to state:

PROPOSITION 7.1 ([30]). Let X be a finite dimensional operator space. If A is a
unital separable C∗-algebra and I is an ideal in A then for any u in X⊗A/I we have

‖u‖X⊗̂A/I = sup
φ∈C
‖(id⊗ φ̇)(u)‖X⊗̂B/K

and for any v in (X⊗̂A)/(X⊗I)

‖v‖(X⊗̂A)/(X⊗I) = sup
φ∈C
‖(id⊗ φ)(v)‖(X⊗̂B)/(X⊗K).

Before stating the following result we want to emphasize that the minimal
operator system and the minimal operator space tensor products coincide. (In
fact they are both spatial.) The exactness criteria in the next theorem is true for
every operator system which we shall include as a corollary.

THEOREM 7.2. Suppose S is a finite dimensional operator system. Then S is exact
if and only if

(S ⊗min B)/(S ⊗K) ∼= S ⊗min B/K.



134 ALI Ş. KAVRUK

Proof. One direction is clear. So suppose that (S ⊗min B)/(S ⊗min K) ∼=
S ⊗min B/K. In particular this implies that the associated map is completely iso-
metric. (Recall. The operator space quotient and operator system quotient has
same operator space structure.) So using Ozawa’s above result we have that for
every separable unital C∗-algebra A and ideal I in A the associated map

(S ⊗min A)/(S⊗I) −→ S ⊗min A/I

is isometric. (The minimal tensor product of operator systems coincides with the
minimal operator space tensor product.) To see that it is a complete isometry it is
enough to consider the identification Mn(A/I) = Mn(A)/Mn(I). Since a unital
complete isometry is a complete order isomorphism we have that the exactness is
satisfied for the separable case. Now suppose A is an arbitrary unital C∗-algebra
and I is an ideal in A. Assume for a contradiction that the associated map

(S ⊗min A)/(S⊗I) −→ S ⊗min A/I

is not a complete isometry. Again considering the identification Mn(A/I) =
Mn(A)/Mn(I) we may suppose that the map is not an isometry. This means
that there is an element u of S ⊗min A such that the norm of u + S⊗I under this
associated map is strictly smaller. ClearlyA has a separable unital C∗-subalgebra
A0 such that u belongs to S ⊗ A0. Let I0 = A0 ∩ I, which is an ideal in A0.
Moreover we have A0/I0 ⊂ A/I so the injectivity of minimal tensor products
ensures that

S ⊗min A0/I0 ⊂ S ⊗min A/I.

We also have the following sequence of ucp maps:

S ⊗min A0 ↪→ S ⊗min A → (S ⊗min A)/(S⊗I)

which has the kernel S ⊗ I0. So the associated map (S ⊗min A0)/(S⊗I0) →
(S ⊗min A)/(S⊗I) is ucp. Finally when we look at the following sequence of
ucp maps

(S ⊗min A0)/(S⊗I0)→ (S ⊗min A)/(S⊗I) −→ S ⊗min A/I ⊃ S ⊗min A0/I0

the norm of the element u + S⊗I0 is smaller. This is a contradiction as the exact-
ness of S fails for a separable C∗-algebra and ideal in it.

COROLLARY 7.3. Let S be an operator system. Then S is exact if and only if

(S⊗̂minB)/(S⊗̄K) ∼= S⊗̂minB/K.

Proof. One direction is trivial. So suppose exactness in K ⊂ B is satisfied.
Let S0 be a finite dimensional operator subsystem. By using Corollary 5.6 of [22]
we have that

S0 ⊗min B
S0 ⊗K ⊂ S⊗̂minB

S⊗̄K .

Similarly, by the injectivity of min, we have S0 ⊗min B/K ⊂ S⊗̂minB/K. So for
the operator system S0 the exactness condition for K ⊂ B in Proposition 7.2 is
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satisfied and consequently it is exact. Since S0 is an arbitrary finite dimensional
operator subsystem of S , by Proposition 4.10, it follows that S is exact.

Recall from Theorem 6.6 that exactness and the lifting property are dual
pairs. That is a finite dimensional operator system S has the lifting property if
and only if Sd is exact. This, together with Lemma 6.5, lead to the following
simplification of the lifting property.

PROPOSITION 7.4. A finite dimensional operator system S has the lifting property
if and only if every ucp map defined from S into B/K has a ucp lift on B.

Proof. Recall from Section 4.2 that in the definition of osLLP the local cp lifts
can be taken to be unital. This proves one direction. Conversely suppose that
every ucp map defined from S into B/K has a ucp lift on B. This means that,
for every n, every ucp map ϕ : S → Mn(B)/Mn(K) has a ucp lift on Mn(B). In
fact this directly follows from the fact that Mn(B) can be identified with B via a
C∗-algebraic isomorphism which preserves the compactness. Thus, S satisfy the
property (i) in Lemma 6.5. So the dual system Sd has the property (iii) in the
same lemma. Now, Theorem 7.2 implies that Sd is exact. Finally, by Theorem 6.6,
S has the lifting property.

8. COPRODUCTS OF OPERATOR SYSTEMS

In this chapter we recall basic facts on the amalgamated direct sum of two
operator systems over the unit introduced in [23] (or with the language of [13] co-
product of two operator systems) and we will show that it can be formed directly
by using the operator system quotient theory. We show that the lifting property
is preserved under coproducts. However the stability of the double commutant
expectation property turns out to be related to Kirchberg conjecture. Recall that
if S and T are two operator systems then the coproduct S ⊕1 T of S and T is an
operator system together with unital complete order embeddings i : S ↪→ S ⊕1 T
and j : T ↪→ S ⊕1 T which satisfies the following universal property: For every
ucp map φ : S → R and ucp map ψ : T → R, where R is an operator system,
there exists a unique ucp map ϕ : S ⊕1 T → R such that ϕ(i(s)) = φ(s) and
ϕ(j(t)) = ψ(t) for every s in S and t in T .
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One way to construct this object can be described as follows: Consider the C∗-
algebra free product of C∗u(S) ∗1 C∗u(T ) amalgamated over the identity. Define
S ⊕1 T as the operator system generated by S and T in C∗u(S) ∗1 C∗u(T ). We leave
the verification that this span has the above universal property as an exercise. We
also refer to Section 3 of [13] for a different construction of the coproducts. Below
we will obtain coproducts in terms of operator system quotients.

Consider S ⊕ T . Since (e,−e) is a selfadjoint element which is neither posi-
tive nor negative, by Theorem 2.3, J = span{(e,−e)} is a kernel in S ⊕T (in fact it
is a null subspace and hence a completely proximinal kernel by Proposition 2.4).
So we have a quotient operator system (S ⊕ T )/J. Note that in the quotient we
have

(e, e) + J = (2e, 0) + J = (0, 2e) + J.
Consider i : S → S ⊕ T /J by s 7→ (2s, 0) + J. We claim that i is a unital complete
order isomorphism. Clearly it is unital and completely positivity follows from
the fact that it can be written as a composition of cp maps, namely S → S ⊕
T , s 7→ (2s, 0) and the quotient map. Now suppose that the image of (sij) ∈
Mn(S) is positive. That is, ((2(sij, 0) + J)) is positive in Mn(S ⊕ T /J). Since
J is completely proximinal there are scalars αij such that ((2sij + αije,−αije)) is
positive in Mn(S ⊕ T ). Note that this forces (−αije) to be positive in Mn(T ). So
we have that (2sij + αije) + (−αije) = 2(sij) must be positive in Mn(S). Hence
(sij) is positive and it follows that i is a complete order isomorphism.

Similarly j : T → S ⊕ T /J, t 7→ (0, 2t) + J is also a unital complete order
isomorphism. Finally let φ : S → R and ψ : T → R be ucp maps. Consider
ϕ : S ⊕ T /J → R given by ϕ((s, t) + J) = (φ(s) + ψ(t))/2. It is elementary
to check ϕ is ucp, ϕ(i(·)) = φ and ϕ(j(·)) = ψ. Consequently with the above
mentioned inclusions we have

S ⊕1 T = S ⊕ T /span{(e,−e)}.
We also remark that C∗u(S ⊕1 T ) = C∗u(S) ∗1 C∗u(T ), which in fact follows from
the universal property of the coproduct of operator systems and unital free prod-
ucts of C∗-algebras. It is also clear that when S and T are finite dimensional then
dim(S ⊕1 T ) = dim(S) + dim(T )− 1.

The lifting property is preserved under coproducts:

PROPOSITION 8.1. The following are equivalent for finite dimensional operator
systems S and T :

(i) S and T have the lifting property.
(ii) S ⊕1 T has the lifting property.

Proof. Suppose S ⊕1 T has the lifting property. Let φ : S → A/I be a ucp
map where I ⊂ A is a C∗-algebra, ideal couple. Suppose f is a state on T and set
ψ : T → A/I by ψ = f (·)(e + I). By using the universal property of S ⊕1 T we
obtain a ucp map ϕ : S ∗ T → A/I. For simplicity we will identify the S and T
with their canonical images in S ⊕1 T . Clearly a ucp lift of ϕ on A is a ucp lift of
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φ when restricted to S . Thus S has osLLP. A similar argument shows that T has
the same property.

Conversely suppose S and T have the lifting property. Let ϕ : S ⊕1 T →
A/I be a ucp map. Again we will identify the S and T with their canonical
images in S ⊕1 T . Let φ : S → A be a ucp lift of ϕ|S , the restriction of ϕ on S .
Similarly let ψ be the ucp lift of ϕ|T . Finally by using the universal property of
S ⊕1 T let ϕ̃ be the ucp map from S ⊕1 T into A associated with φ and ψ. It is
elementary to see that ϕ̃ is a lift of ϕ. This finishes the proof.

Recall that we define Sn as the operator system generated by the unitary
generators of C∗(Fn), that is,

Sn = span{g1, . . . , gn, e, g∗1 , . . . , g∗n} ⊂ C∗(Fn).

We remind the reader that Sn can also be considered as the universal operator
system generated by n contractions as it satisfies the following universal prop-
erty: Every function f : {gi}n

i=1 → T with ‖ f (gi)‖ 6 1 extends uniquely to a ucp
map ϕ f : Sn → T (in an obvious way).

{gi}n
i=1

f
//
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It is easy to see that Sn is naturally included in Sn+k where the inclusion
is given by the map gi 7→ gi for i = 1, . . . , n. In a similar way, Sk can also be
represented in Sn+k via the map gi 7→ gn+i for i = 1, . . . , k. Thus, there is a
map from Sn ⊕1 Sk to Sn+k. The following result states that this natural map is a
complete order isomorphism. We skip its elementary proof. In fact, it is easy to
show that Sn+k satisfies the universal property that Sn ⊕1 Sk has.

LEMMA 8.2. Sn ⊕1 Sk = Sn+k.

Proof by Example. We wish to show that S1 = span{g, e, g∗} ⊂ C∗(F1) is C∗-
nuclear. This is based on Sz.-Nagy’s dilation theorem (see Theorem 1.1 of [35],
e.g.): If T ∈ B(H) is a contraction then there is a Hilbert space K containing H as
a subspace and a unitary operator U in B(K) such that Tn = PHUn|H for every
positive n. Of course, by taking the adjoint, we also have that (T∗)n = PH(U∗)n|H
for every positive n. This means that there is a ucp map defined from C∗(F1)
into C∗{I, T, T∗}, the C∗-algebra generated by T in B(H), which is given by the
compression of the unital ∗-homomorphism extending the representation g 7→ U.
That is, the map γT defined from C∗(F1) into B(H) given by gn 7→ Tn, e 7→ I and
g−n 7→ (T∗)n is ucp. Now we wish to show that S1 ⊗max A ⊂ C∗(F1)⊗max A for
everyA. Let ϕ : S1⊗maxA → B(K) be a ucp map. Then by Proposition 3.5, there
is a Hilbert space K1 containing K as a subspace and ucp maps φ : S1 → B(K1)
and ψ : A → B(K1) with commuting ranges such that ϕ = PKφ · ψ|K. Note



138 ALI Ş. KAVRUK

that φ(g) must be a contraction. The map γφ(g) is a ucp extension of φ on C∗(F1).
Clearly γφ(g) and ψ have commuting ranges. Thus PKγφ(g) ·ψ|K is a ucp extension
of ϕ on C∗(F1)⊗max A. In conclusion we have that every ucp map defined from
S1 ⊗max A into a B(K) extends to a ucp map on C∗(F1)⊗max A. This is enough
to conclude that S1 ⊗max A ⊂ C∗(F1) ⊗max A. It is well known that C∗(F1) =
C∗(Z) = C(T) (see [38], e.g.) and the C∗-algebra of continuous functions on a
compact set is nuclear (see [35], e.g.). Since S1 ⊗min A ⊂ C∗(F1) ⊗min A and
C∗(F1) is nuclear we conclude that S1 is C∗-nuclear.

QUESTION 8.3. In the previous example we have shown that the three di-
mensional operator system span{1, z, z∗} ⊂ C(T), where z is the coordinate func-
tion, is C∗-nuclear. In general, if X is a compact set then is every three dimen-
sional operator subsystem span{1, f , f ∗} ⊂ C(X) C∗-nuclear? In fact, by us-
ing the spectral theorem it is enough to consider the case when X is a subset of
{z : |z| 6 1}. So, when this subset is the unit circle then the answer is affirmative.

Since the Kirchberg conjecture (KC) is equivalent to the statement that S2
has DCEP it is natural to raise the following questions:

QUESTION 8.4. Suppose S and T are two finite dimensional operator sys-
tems with DCEP. Does S ⊕1 T have DCEP?

QUESTION 8.5. Suppose S and T are two finite dimensional C∗-nuclear op-
erator systems. Does S ⊕1 T have DCEP?

RESULTS. An affirmative answer to the Question 8.4 implies an affirmative an-
swer to the KC. This follows from the fact that S2 = S1⊕1 S1 and S1 is C∗-nuclear,
in particular it has DCEP. On the other hand Question 8.5 is equivalent to the KC.
First suppose that KC is true. If S and T are C∗-nuclear operator systems then, in
particular, they have the lifting property and so S ⊕1 T has the lifting property.
Since we assumed KC, by using Theorem 5.11, S ⊕1 T must have DCEP. Con-
versely if we suppose that Question 8.5 is true then in particular S2 = S1 ⊕1 S1
has DCEP.

9. k-MINIMALITY AND k-MAXIMALITY

In this section we review k-minimality and k-maximality in the category of
operator systems introduced by Xhabli in [45]. This theory and a similar con-
struction in the category of operator spaces are used extensively in the under-
standing of entanglement breaking maps and separability problems in quantum
information theory ([45], [46] and [19], e.g.). Our interest in k-minimality and k-
maximality arises from their compatiblity with exactness and the lifting property
which will be apparent in this section. We start with the following observation:



NUCLEARITY RELATED PROPERTIES IN OPERATOR SYSTEMS 139

PROPOSITION 9.1. Let ϕ : S → B(H) be a linear map. Then ϕ is k-positive if
and only if there is a unital k-positive map ψ : S → B(H) and R > 0 in B(H) such that
ϕ = Rψ(·)R.

Proof. We will show only the non-trivial direction. Let ϕ : S → B(H) be
a k-positive map. We assume that ϕ(e) = A satisfies 0 6 A 6 I, where I is
the identity in B(H). For any ε > 0 let ϕε : S → B(H) be the map defined by
ϕε = (A + εI)−1/2 ϕ(·)(A + εI)−1/2. Since B(S , B(H)) is a dual object, which
arises from the fact that B(H) is dual of a Banach space, the net {ϕε} has a w∗-
limit, say ψ. First note that ψ is unital. Indeed, ϕε(e) = A(A + εI)−1 converges to
the identity I in the w∗-topology of B(H). Consequently ψ is unital. We also claim
that ψ is k-positive. To see this let (sij) be positive in Mk(S). Since ϕε is k-positive
we have that (ϕε(sij)) is positive in Mk(B(H)). The weak convergence ϕε → ψ

ensures that, for fixed i, j, ϕε(sij) has a limit in the w∗-topology of B(H) which
is necessarily ψ(sij). Now the result follows from the fact that positive cones are
closed in the w∗-topology of B(H). Finally we claim that ϕ = A1/2ψ(·)A1/2.
Indeed this follows from the uniqueness of the w∗-limit in B(S , B(H)). In fact
we have that A1/2 ϕε(·)A1/2 converges to A1/2ψ(·)A1/2. On the other hand for
fixed s in S , A1/2 ϕε(s)A1/2 converges to ϕ(s) (in the w∗-topology of B(H)). So
the proof is done.

COROLLARY 9.2. The following properties of an operator system S are equivalent:
(i) Every k-positive map defined from S into an operator system is cp.

(ii) Every unital k-positive map defined from S into an operator system is cp.

Before getting started with the k-minimality and k-maximality we also recall
the following result (see Theorem 6.1 of [35]).

LEMMA 9.3. Suppose φ : S → Mk is a linear map. Then φ is k-positive if and
only if it is completely positive.

Following Xhabli [45], for an operator system S we define the k-minimal
cone structure as follows:

Ck−min
n = {(sij) ∈ Mn(S) : (φ(sij)) > 0 for every ucp φ : S → Mk}.

By considering Proposition 9.1 one can replace ucp by cp in this definition. Now,
the ∗-vector space S together with the matricial cone structure {Ck−min

n }∞
n=1 and

the unit e form an operator system which is called the k-minimal operator system
structure generated by S and denoted by OMINk(S). We refer to Section 2.3 of [45]
for the proof of these results and we remark that OMINk(S) is named as super
k-minimal structure so we drop the term “super” in this paper. Roughly speaking
OMINk(S) is (possibly) a new operator system whose positive cones coincide
with the positive cones of S up to the kth level and after the kth level they are the
largest cones so that the total matricial cone structure is still an operator system.
Note that larger cones generate smaller canonical operator space structure so this
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construction is named the k-minimal structure. We list a couple of remarkable
results from [45]:

THEOREM 9.4 (Xhabli). Suppose S is an operator system and k is a fixed number.
Then:

(i) OMINk(S) can be represented in Mk(C(X)) for some compact space X.
(ii) If ϕ : T → OMINk(S) is a k-positive map then ϕ is completely positive.

(iii) The identity id : OMINk(S)→ S is k-positive.
(iv) For any m 6 k the identities S → OMINk(S) → OMINm(S) are completely

positive.

LEMMA 9.5. Let S be an operator system. Then S = OMINk(S) if and only if
every k-positive map defined from an operator system into S is completely positive.

Proof. One direction follows from the above result of Xhabli. Conversely,
suppose that every k-positive map defined into S is cp. This, in particular, implies
that the identity id: OMINk(S) → S , which is k-positive, is cp. Since the inverse
of this map is also cp it follows that S = OMINk(S).

Let S be an operator system and k be a fixed natural number. To define the
k-maximal structure we first consider the following cones:

Dk−max
n = {A∗DA : A ∈ Mmk,n and D = diagonal(D1, . . . , Dm)

where Di ∈ Mk(S)+ for i = 1, . . . , m}.
{Dk−max

n } forms a strict compatible matricial order structure on S and e is a ma-
tricial order unit. However, e fails to be Archimedean and to resolve this problem
we use the Archimedeanization process (see [37]):

Ck−max
n = {(sij) ∈ Mn(S) : (sij) + εen ∈ Dk−max

n for every ε > 0}.

Note that Dk−max
n ⊂Ck−max

n . The ∗-vector space S together with the matricial cone
structure {Ck−max

n }∞
n=1 and the unit e form an operator system which is called k-

maximal operator system structure generated by S and denoted by OMAXk(S). For
related proof we refer to Section 2.3 of [45]. (We again drop the term “super”.)
The OMAXk(S) is (possibly) a new operator system structure on the ∗-vector
space S such that the matricial cones coincide with the matricial cones of the
operator system S up to kth-level and after k, the cones are the smallest possible
cones such a way that the total structure makes S an operator system with unit e.

THEOREM 9.6 (Xhabli). Let S be an operator system and k be a fixed number.
Then:

(i) Every k-positive map defined from OMAXk(S) into an operator system is com-
pletely positive.

(ii) The identity id : S → OMAXk(S) is k-positive.
(iii) For any m 6 k the identities OMAXm(S) → OMAXk(S) → S are completely

positive.
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The proof of the following lemma is similar to Lemma 9.5 so we skip it.

LEMMA 9.7. Let S be an operator system. Then S = OMAXk(S) if and only if
every k-positive map defined from S into another operator system is completely positive.

After these preliminary results we are ready to examine the role of k-mini-
mality and the k-maximality in the nuclearity theory. We start with the following
easy observation:

LEMMA 9.8. OMINk(S) is exact for any operator system S and k.

Proof. Recall that OMINk(S) can be represented in Mk(C(X)) for some com-
pact space X. Note that Mk(C(X)) is a nuclear C∗-algebra and consequently it
is (min, max)-nuclear operator system. Clearly (min, max)-nuclearity implies
(min, el)-nuclearity (equivalently exactness) and, by Proposition 4.10, exactness
passes to operator subsystems so we have that OMINk(S) is exact.

Note that if S is a finite dimensional operator system then a faithful state
on S still has the same property when S is equipped with OMINk or OMAXk
structure. Keeping this observation in mind we are ready to state:

THEOREM 9.9. Let S be a finite dimensional operator system. Then we have the
unital complete order isomorphisms

OMIN k(S)d = OMAX k(Sd) and OMAX k(S)d = OMIN k(Sd).

Proof. We only prove the fist equality. The second equality follows from the
first one if we replace S by Sd and take the dual of both side. To show the first
one we set R = OMINk(S) and we will first prove the following: Whenever ϕ :
Rd → T is a k-positive map then ϕ is cp. So by using Lemma 9.7 we conclude that
Rd = OMAXk(Rd). Assume for a contradiction that there is a k-positive map
ϕ : Rd → T which is not cp. Clearly we may assume that T is finite dimensional.
(If not we can consider an operator subsystem of T containing the image of ϕ.)
Now by using Lemma 1.4 we have that ϕd : T d → R is a k-positive map but it
is not cp. This is a contradiction as Lemma 9.5 requires that ϕ is a cp map. Thus
Rd = OMAXk(Rd). Next we show that OMAXk(Rd) = OMAXk(Sd) which
finishes the proof. To see this note that the identity id: S → R is cp and its inverse
is k-positive. This implies that idd : Rd → S is cp and its inverse is k-positive.
(We skip the elementary proof of the fact that (ϕd)−1 = (ϕ−1)d.) Thus up to
kth level Rd and Sd are order isomorphic. Hence OMAXk(Rd) = OMAXk(Sd).
Finally by using the observation that we mentioned before the theorem we may
assume that this identification is also unital.

LEMMA 9.10. Let S be a finite dimensional operator system. Then OMAXk(S)
has the lifting property for any natural number k.
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Proof. Lemma 9.8 states that OMINk(Sd) is exact. By the above theorem we
see that OMINk(Sd)d = OMAXk(S) and by using Theorem 6.6 we conclude that
this dual has the lifting property.

We are now ready to establish a weaker lifting property:

THEOREM 9.11. S be a finite dimensional operator system and k be a positive
integer. If ϕ : S → A/I is a k-positive map, where A is a unital C∗-algebra and I ⊂ A
is an ideal, then ϕ has a k-positive lift on A. If ϕ is unital then one can chose the lift map
unital too.

Proof. When S is equipped with the OMAXk structure ϕ becomes a cp map.
By Lemma 9.10 OMAXk(S) has the lifting property so ϕ lifts to a cp map ϕ̃

on A. Moreover, by the discussion in Subsection 4.2, if ϕ is unital then one can
chose the lift unital too. When S is considered with its initial structure the lift is
k-positive.

This allows us to retrieve a well-known result in [40]:

COROLLARY 9.12 (Robertson, Smith). Every finite dimensional operator system
S has the k-lifting property in the sense that every cp map ϕ : S → A/I, where A is
a unital C∗-algebra and I ⊂ A is an ideal, has a k-positive lift on A for every k. If ϕ is
unital then one can chose the lift maps unital too.

We want to remark that if S is a finite dimensional operator system then the
k-lifting property, which S has for every k, does not imply the lifting property.

In Theorem 3.3 of [33] it was shown that there is a five dimensional operator
subsystem of the Calkin algebra B/K such that the inclusion does not have a ucp
lift (or cp lift) on B. In the next section we will see that even M2 ⊕M2 has a five
dimensional operator system that does not have the lifting property. For three
dimensional operator systems a similar problem turns out to be equivalent to the
Smith–Ward problem which we will study in Section 11.

COROLLARY 9.13. Let X be a finite dimensional operator space,A be a unital C∗-
algebra and I be an ideal inA. Then every completely contractive (cc) map φ : X → A/I
has a k-contractive lift on A for every k.

Proof. Recall that the universal operator system RX ⊃ X has the property
that every cc map defined from X into an operator system extends uniquely to a
ucp map.

Now, φ extends to a ucp map ϕ : RX → A/I. By the above corollary
this map has a unital 2k-positive lift on A. Since a unital 2k-positive map is k-
contractive, the restriction of this lift on X has the desired property.
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10. QUOTIENTS OF THE MATRIX ALGEBRA Mn

In this section we obtain new proofs of some of the results of [12] and dis-
cuss some new formulations of the Kirchberg conjecture (KC) in terms of opera-
tor system quotients of the matrix algebras. The duality and the quotient theory
when applied to some special operator subsystems of Mn raise difficult stability
problems which will be apparent in this section. We will also consider the prob-
lem about the minimal and the maximal tensor product of three copies of C∗(F∞)
from an operator system perspective.

Recall from Example 6.9 that we define Jn ⊂ Mn as the diagonal matrices
with 0 trace. As we pointed out, Jn is a null subspace of Mn and consequently, by
Proposition 2.4, it is a completely proximinal kernel. (Also recall that Mn/Jn has
the lifting property.) However, with the following result of Farenick and Paulsen
we directly see that Jn is a kernel and, moreover, we obtain an identification of
Mn/Jn as well as its enveloping C∗-algebra.

As usual C∗(Fn) stands for the full C∗-algebra of the free group Fn on n
generators, say g1, . . . , gn. LetWn be the operator subsystem of C∗(Fn) given by

Wn = {gig∗j : 1 6 i, j 6 n}.

We are now ready to establish the connection between these operator systems
given in [12]. As usual {Eij} denotes the standard matrix units for Mn. Consider
ϕ : Mn →Wn given by ϕ(Eij) = gig∗j /n. Then

THEOREM 10.1 (Farenick, Paulsen). The above map ϕ : Mn →Wn is a quotient
map with kernel Jn. That is, the induced map ϕ : Mn/Jn → Wn is a bijective unital
complete order isomorphism. Moreover, C∗e (Mn/Jn) = C∗(Fn−1).

Now we are ready to state:

THEOREM 10.2. The following are equivalent:
(i) KC has an affirmative answer.

(ii) M3/J3 has DCEP.
(iii) M3/J3 ⊗min M3/J3 = M3/J3 ⊗c M3/J3.

Proof. Example 6.9 states that M3/J3 has the lifting property. So if we as-
sume (i) then, by Theorem 5.11, M3/J3 has DCEP. This proves that (i) implies
(ii). To see that (ii) implies (iii) we recall that the lifting property is character-
ized by (min, er)-nuclearity. Thus we readily have that M3/J3 ⊗min M3/J3 =
M3/J3 ⊗er M3/J3. Now, by our assumption, M3/J3 has DCEP, equivalently, (el,
c)-nuclearity. Now, applying this to M3/J3 on the right hand side, we have that
M3/J3 ⊗er M3/J3 = M3/J3 ⊗c M3/J3. Thus, (ii) implies (iii). We finally show
that (iii) implies (i). In fact, M3/J3 contains enough unitaries in its enveloping
C∗-algebra, namely, C∗(F2) (see Section 5 for the related definition). This simply
follows from the fact thatW3 is linear span of unitaries, thus, it contains enough
unitaries in the C∗-algebra generated by itself (in C∗(F3)). So, by Proposition 5.6,
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this C∗-algebra must be coincides with its enveloping C∗-algebra. Now, by iden-
tifying Mn/Jn withWn, we conclude that M3/J3 contains enough unitaries in its
enveloping C∗-algebra, namely, C∗(F2). Thus assuming (iii), by Corollary 5.8, we
have that C∗(F2)⊗min C∗(F2) = C∗(F2)⊗max C∗(F2). Thus (iii) implies (i).

We remark that Theorem 5.2 of [12] states that if Mn/Jn ⊗min Mn/Jn =
Mn/Jn⊗max Mn/Jn for every n then it follows that KC has an affirmative answer.

QUESTION 10.3. Is Mn/Jn ⊗c Mn/Jn = Mn/Jn ⊗max Mn/Jn for every n?
What about n = 3?

Recall that we define Sn as the operator subsystem of C∗(Fn) which contains
the unitary generators. More precisely, Sn = {g1, . . . , gn, e, g∗1 , . . . , g∗n}. Another
important operator subsystem of Mn, which is related to Sn, is the tridiagonal
matrices Tn. We define

Tn = span{Eij : |i− j| 6 1} ⊂ Mn.

The study on the nuclearity properties of these operator systems goes back to
[21]. In Theorem 5.16 it was shown that T3 is C∗-nuclear (i.e. (min, c)-nuclear). In
general, Proposition 6.11 states that if S is an operator subsystem of Mn associ-
ated with a chordal graph G then S is C∗-nuclear. We refer to Section 5 of [21] for
related definitions and discussions. Since Tn is associated with the chordal graph
(over vertices {1, 2, . . . , n})

{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), . . . , (n, n)}

we have that

PROPOSITION 10.4. Tn is C∗-nuclear for every n.

As we mentioned at the end of Section 3, a finite dimensional operator sys-
tem is (c, max)-nuclear if and only if it completely order isomorphic to a C∗-
algebra. Consequently, for an operator system which is not a C∗-algebra, such as
Tn, C∗-nuclearity is the highest nuclearity that one should expect.

Since Jn, the diagonal n× n matrices with 0 trace, is a null subspace of Tn, by
Proposition 2.4, it is a completely proximinal kernel. Also note that C∗-nuclearity
clearly implies the lifting property and so, by Theorem 6.8, we have that Tn/Jn
has the lifting property. The following is from [12]:

THEOREM 10.5. Tn/Jn is unitally completely order isomorphic to Sn−1. More
precisely, the ucp map γ : Tn → Sn−1 given by

Ei,i 7→ e/n for i = 1, . . . , n,
Ei,i+1 7→ gi/n for i = 1, . . . , n− 1,
Ei+1,i 7→ g∗i /n for i = 1, . . . , n− 1,

is a quotient map with kernel Jn.
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This again brings difficult stability problems we have considered in the last
section:

COROLLARY 10.6. The following are equivalent:
(i) KC has an affirmative answer.

(ii) For any finite dimensional C∗-nuclear operator system S and null subspace J of
S one has S/J has DCEP.

(iii) Tn/Jn has DCEP for every n.
(iv) T3/J3 has DCEP.

Proof. Since T3/J3 = S2, (i) and (iv) are equivalent by Theorem 5.11. Also,
as we mentioned, Tn/Jn has lifting property. So if we assume (i) we must have
that Tn/Jn has DCEP. (iii) implies (iv) is clear. Now we need to show that (ii) is
equivalent to remaining. Clearly (ii) implies (iv) (or (iii)). On the other hand if S
is C∗-nuclear then, in particular, it has the lifting property and so, by Theorem 6.8,
S/J has the lifting property. So assuming (i) we must have that this quotient has
DCEP.

This corollary indicates that KC is indeed an operator system quotient prob-
lem.

PROPOSITION 10.7. Suppose S ⊗τ T has DCEP where τ is any functorial tensor
product. Then both S and T have DCEP.

Proof. This follows from a very basic principle: The identity on S factors
via ucp maps through S ⊗τ T . More precisely, the inclusion i : S → S ⊗τ T
given by s 7→ s⊗ eT is a ucp map. Conversely, if g is a state on T then id⊗ g :
S ⊗τ T → S ⊗C ∼= S is again a ucp map such that (id⊗ g) ◦ i is the identity on
S . This shows that if S ⊗τ T has DCEP (equivalently (el, c)-nuclearity) then by
Lemma 5.2 S has DCEP. Clearly a similar argument shows that T has the same
property.

The fact that T3/J3 = S2 together with Theorem 5.9 allow us characterize
WEP as follows (we refer the reader to [11] for further applications of this result):

THEOREM 10.8. A unital C∗-algebraA has WEP if and only if the associated map
T3 ⊗min A → (T3/J3)⊗min A is a quotient map. In other words we have the complete
order isomorphism

(T3 ⊗min A)/(J3 ⊗A) = (T3/J3)⊗min A.

Proof. By using the projectivity of the maximal tensor product and C∗-nuc-
learity of T3 we have that

S2 ⊗max A = T3/J3 ⊗max A = (T3 ⊗max A)/(J3 ⊗A) = (T3 ⊗min A)/(J3 ⊗A).
Now if A has WEP then, by Theorem 5.9, the equality in the theorem satisfies.
Conversely if the equality is satisfied then S2 ⊗min A = S2 ⊗max A, equivalently,
A has WEP.
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We now discuss some duality results from [12]. Recall that we write Sn in
the following basis form: Sn = span{g1, . . . , gn, e, g∗1 , . . . , g∗n}. When we pass to
dual basis we have that

Sd
n = span{δ1, . . . , δn, δ, δ∗1 , . . . , δ∗n}.

We leave the elementary proof of the fact that δg∗i
= δ∗i to the reader. We also

remind that δ is a faithful state and we consider it as the Archimedean matrix
order unit for the dual operator system. We now see that Sd

n can be identified
with an operator subsystem of M2 ⊕ M2 ⊕ · · · ⊕ M2 (the direct sum of n copies
of M2). To avoid the excessive notation we use the following:

e=(I2, . . . , I2), e1=(E12, 0, . . . , 0), e2=(0, E12, 0, . . . , 0), . . . , en =(0, . . . , 0, E12).

Consider the following map:

γ : Sd
n →

n⊕
i=1

M2 given by δ 7→ e, δi 7→ ei and δ∗i 7→ e∗i for i = 1, . . . , n.

Now we are ready to state:

THEOREM 10.9 (Farenick, Paulsen). The above map γ : Sd
n →

n⊕
i=1

M2 is a

unital complete order embedding.

By using the diagonal identification of M2 ⊕ M2 in M4, in particular, we
have that

Sd
2 =




a b 0 0
c a 0 0
0 0 a d
0 0 e a

 : a, b, c, d, e ∈ C

 .

In [43] it was shown by Wasserman that C∗(Fn) is not exact for any n > 2.
Clearly Sn contains enough unitaries in C∗(Fn). The following is Corollary 9.6
in [22]:

PROPOSITION 10.10. Suppose that S ⊂ A contains enough unitaries. If S is
exact (respectively has DCEP) then A is exact (respectively has WEP).

COROLLARY 10.11. Sn is not exact for any n > 2.

Exactness is stable under C∗-algebra ideal quotients, that is, if a C∗-algebra
is exact then any of its quotients by an ideal has the same property (see [25]
and [44]). This stability property is not valid for general operator system quo-
tients even under the favorable conditions: The dimension of the operator sys-
tem is finite and the kernel is a null subspace. In fact since Tn is C∗-nuclear (i.e.
(min, c)-nuclear) then in particular it is exact (equivalently (min, el)-nuclear).
However, its quotient by the null subspace Jn, namely Sn = Tn/Jn, is not exact.

COROLLARY 10.12. M2⊕M2 (or M4) has a five dimensional operator subsystem
(namely Sd

2 ) which does not possess the lifting property.
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Proof. Since S2 is not exact then, by Theorem 6.6, its dual can not have the
lifting property.

The following result is perhaps well known but we are unable to provide a
reference.

COROLLARY 10.13. The Calkin algebra B/K does not have WEP.

Proof. Assume for a contradiction that B/K has WEP. Then this implies that
S2 ⊗min B/K = S2 ⊗c=max B/K. Since S2 has the lifting property we also have
that S2 ⊗min B = S2 ⊗max B. Thus,

S2⊗max B/K = (S2⊗max B)/(S2⊗K) = (S2⊗min B)/(S2⊗K) = S2⊗min B/K.

This means that, by Theorem 7.2, S2 is exact which is a contradiction.

COROLLARY 10.14. S2 ⊗max S2 has the lifting property.

Proof. Note that (S2 ⊗max S2)
d = Sd

2 ⊗min Sd
2 ⊂ M4 ⊗min M4. Since exact-

ness passes to operator subsystems we have that (S2⊗max S2)
d is exact. Thus, by

Theorem 6.6, S2 ⊗max S2 has the lifting property.

REMARK. We do not know whether the lifting property is preserved under the
maximal tensor product. For finite dimensional operator systems, by using The-
orems 6.6 and 6.3, the same question can be reformulated as follows: Is exactness
preserved under the minimal tensor product? If S and T contain enough uni-
taries in their enveloping C∗-algebras (also under the assumption that both S
and T are separable) the answer is affirmative. In fact, by Proposition 10.10, both
C∗e (S) and C∗e (T ) must be exact. Also note that both of these C∗-algebras are
separable. We know that every separable exact C∗-algebra can be represented in
a nuclear C∗-algebra [26]. So S and T can be represented in nuclear C∗-algebras,
say A and B, respectively. Note that S ⊗min T ⊂ A⊗min B and it is elementary
to show that A⊗min B is again nuclear. Thus, S ⊗min T embeds in a nuclear C∗-
algebra. Since nuclearity implies exactness and exactness passes to operator sub-
systems it follows that S ⊗min T is exact. However, in general, the exactness of
S may not pass to C∗e (S). In [27], Kirchberg and Wassermann construct a separa-
ble, (min, max)-nuclear operator system S with the property that C∗u(S) = C∗e (S).
Clearly S is exact. However, since dim(S) > 3, C∗u(S) equivalently C∗e (S), is not
exact.

In quantum mechanics, one of the basic problems in modeling an experi-
ment is determining whether by using the quantum correlations we can approxi-
mate all the correlations arised via algebric quantum field theory. More precisely,
Tsirelson’s problem asks whether the behaviors obtained with the commutativity
assumption on observables can be described by behaviours obtained via space-
like separation. The proper definitions and basic result in this question are be-
yond the scope of this paper and we refer the reader to [14], [20], [41]. In [20] it
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was shown that when the actors are Alice and Bob (that is, in the bipartite sce-
nario) the question is reduced to whether

C∗(F∞)⊗min C∗(F∞) = C∗(F∞)⊗max C∗(F∞),

in other words, the Kirchberg conjecture. When Charlie is also included, i.e. with
three actors, Tsirelson’s problem is known to be related to whether the minimal
and the maximal tensor products of three copies of C∗(F∞) coincide. So we want
to close this section with a discussion on this topic from an operator system per-
spective.

CONJECTURE 10.15.

3⊗
i=1

minC∗(F∞) =
3⊗

i=1
maxC∗(F∞).

This should be considered as an extended version of the Kirchberg conjec-
ture. An affirmative answer of Conjecture 10.15 implies that the Kirchberg conjec-
ture is true. In fact this follows from the fact that for any functorial tensor product
τ and operator systems S and T we have that S ∼= S ⊗C ⊂ S ⊗τ T . So if we put
C = C∗(F∞) then

C⊗min C ⊂ (C⊗min C)⊗min C and C⊗max C ⊂ (C⊗max C)⊗max C.

Thus, if Conjecture 10.15 is true then KC is also true. On the other hand even if
we assume that KC has an affirmative answer it is still unknown whether Conjec-
ture 10.15 is true or not. We want to start with the following observations which
are perhaps well known and will be more convenient when we express this prob-
lem in terms of lower dimensional operator systems.

THEOREM 10.16. The following are equivalent:
(i) Conjecture 10.15 has an affirmative answer.

(ii) C∗(F∞)⊗max C∗(F∞) has WEP.
(iii) We have that

3⊗
i=1

minC∗(F2) =
3⊗

i=1
maxC∗(F2).

(iv) C∗(F2)⊗max C∗(F2) has WEP.

Proof. Since the identity on C∗(F∞) factors via ucp maps through C∗(F2),
by using the functoriality of the max tensor product, it follows that the identity
on C∗(F∞)⊗max C∗(F∞) factors via ucp maps through C∗(F2)⊗max C∗(F2). So
by using Lemma 5.2 we obtain that (iv) implies (ii). Since the identity on C∗(F2)
factors via ucp maps through C∗(F∞), we similarly obtain that (ii) implies (iv).
The proof of the equivalence of (i) and (iii) is based on the same fact. In general,
if the identity on S decomposes into ucp maps through T (say id = ψ ◦ φ), also
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assuming that T ⊗min T ⊗min T = T ⊗max T ⊗max T , we have that the maps

3⊗
i=1

minS
φ⊗φ⊗φ−−−−→

3⊗
i=1

minT =
3⊗

i=1
maxT

ψ⊗ψ⊗ψ−−−−→
3⊗

i=1
maxS

are ucp and their composition is the identity from triple minimal tensor product
of S to maximal tensor product of S . Thus these two tensor products coincide.
This proves that (i) and (iii) are equivalent. Now let C stand for C∗(F∞). We
will show that (ii) implies (i). Since C ⊗max C has WEP then in particular, by
Lemma 5.2, this implies that C has WEP, equivalently C ⊗min C = C ⊗max C.
(Recall. These are all equivalent arguments in Kirchberg’s theorem that we men-
tioned at the beginning of Section 5.) By using Kirchberg’s WEP characterization
we readily have that (C⊗min C)⊗min C = (C⊗min C)⊗max C. If we replace the
min by max on the right hand side of this equation we obtain (i). Conversely
suppose (i) is true. As we pointed out earlier, this, in particular, implies KC. Thus
C⊗min C = C⊗max C. Since we assumed that the triple minimal and the maximal
tensor product of C coincide, by replacing a max by min (as seen below)

(C⊗max C)⊗max C = (C⊗min=max C)⊗min C

we have that , C ⊗max C satisfies Kirchberg’s WEP characterization. So we ob-
tain (ii).

THEOREM 10.17. If S2 ⊗min S2 has DCEP then Conjecture 10.15 is true.

Proof. If S2 ⊗min S2 has DCEP then in particular S2 has DCEP and conse-
quently KC has an affirmative answer, that is, C∗(F2)⊗min C∗(F2) = C∗(F2)⊗max
C∗(F2). Also note that S2 ⊗min S2 contains enough unitaries in C∗(F2) ⊗min
C∗(F2), hence assuming it has DCEP, by Proposition 10.10, C∗(F2)⊗min C∗(F2)
has WEP.

QUESTION 10.18. Is S2 ⊗c S2 = S2 ⊗max S2?

QUESTION 10.19. Is DCEP preserved under commuting tensor product?
That is, if S and T are operator systems with DCEP then does S ⊗c T have the
same property?

An affirmative answer to any of these questions implies that KC is equiva-
lent to Conjecture 10.15. We first remark that in the above theorem the min can
be replaced by c, this follows from the fact that if S2 ⊗min S2 has DCEP then in
particular, S2 has DCEP and consequently we have that S2 ⊗min S2 = S2 ⊗c S2.
Now suppose that the first question is true. Since S2⊗max S2 has the lifting prop-
erty then S2 ⊗c S2 has the lifting property. Hence assuming KC, it has DCEP. So
by the above theorem Conjecture 10.15 has an affirmative answer. Now suppose
that the second question is true. If we suppose KC has an affirmative answer (so
that S2 has DCEP) then S2⊗min S2 = S2⊗c S2 and this tensor product has DCEP,
thus, Conjecture 10.15 is also true.



150 ALI Ş. KAVRUK

In [32], Ozawa proved that B(H)⊗min B(H) does not have WEP where H =
l2. Since WEP and DCEP coincide for C∗-algebras and B(l2) has WEP we see that
DCEP, in general, does not preserved under the minimal tensor product.

Let T = span{I, E12, E34, E21, E43} ⊂ M4. Recall that Sd
2 and T are unitally

completely order isomorphic. Thus we have that

S2 ⊗min S2 = S2 ⊗max S2 ⇐⇒ T ⊗min T = T ⊗max T
which follows from the duality result in Theorem 6.3.

QUESTION 10.20. Is T ⊗min T = T ⊗max T ? Equivalently, is S2 ⊗min S2 =
S2 ⊗max S2?

Since KC is equivalent to the statement that S2 ⊗min S2 = S2 ⊗c S2 a pos-
itive answer to this question provides an affirmative answer to KC. In addi-
tion to this it also proves that Conjecture 10.15 is true since the condition in the
Question 10.18 is satisfied and thus, by the previous paragraph, KC and Conjec-
ture 10.15 are equivalent.

11. MATRICIAL NUMERICAL RANGE OF AN OPERATOR

Let S be an operator system. For x ∈ S we define the nth matricial numerical
range of x by wn(x) = {ϕ(x) : ϕ : S → Mn is ucp}. Note that if we consider the
operator subsystem Sx = span{e, x, x∗} of S then, by using Arveson’s extension
theorem, the matricial ranges of x remain the same when it is considered as an
element of Sx. We also remark that if T is an operator in B(H) then its numerical
range W(T) = {〈Tx, x〉 : ‖x‖ 6 1} has the property that W(T) = w1(T) (see [2],
e.g.). For several properties and results regarding matricial ranges we refer the
reader to [2], [33] and [42]. We include some of these results in the sequel. We
start with the following well known fact (see Lemma 4.1 of [21] e.g.).

LEMMA 11.1. Let S be an operator system and A ∈ Mn(S). Then A is positive
if and only if for every k and for every ucp map ϕ : S → Mk one has ϕ(n)(A) is positive
in Mn(Mk).

This lemma indicates that the matricial ranges of an element x in an operator
system carry all the information of the operator subsystem Sx = span{e, x, x∗} as
A ∈ Mn belongs to wn(x) if and only if there is a ucp map ϕ : Sx → Mn such that
ϕ(x) = A. Since ϕ is ucp the image of any element in Sx can be determined by
the value ϕ(x). We can also state this as follows:

PROPOSITION 11.2. Let S = span{e, x, x∗} and T = span{e, y, y∗} be two
operator systems. Then the linear map ϕ : S → T given by ϕ(e) = e, ϕ(x) = y and
ϕ(x∗) = y∗, provided it is well-defined, is ucp if and only if wn(y) ⊆ wn(x) for every
n. Consequently, ϕ is a complete order isomorphism if and only if wn(x) = wn(y) for
every n.
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Proof. First suppose that ϕ is ucp and let A ∈ wn(y). So there is a ucp
map ψ : T → Mn such that ψ(y) = A. Clearly ψ ◦ ϕ is a ucp map from S
into Mn which maps x to A. Thus, A belongs to wn(x). Since n was arbitrary
this completes the proof of one direction. Now suppose that wn(y) ⊆ wn(x)
for every n. We will show that ϕ is a cp map. The above lemma states that if
u is in Mn(R), where R is any operator system, then u is positive if and only
if for every k and for every ucp map φ : R → Mk one has φ(n)(u) is positive.
>From this we deduce that an element of the form u = e⊗ A + x ⊗ B + x∗ ⊗ C
in Mn(S) is positive if and only if for every ucp map φ : R → Mk one has
φ(n)(u) = Ik ⊗ A + ϕ(x) ⊗ B + ϕ(x)∗ ⊗ C is positive in Mk ⊗ Mn for every k,
equivalently, Ik ⊗ A + X⊗ B + X∗ ⊗ C is positive in Mk ⊗Mn for every k and for
every X in wk(x). Of course, same property holds in Mn(T ) when x is replaced
by y. Now, by using the assumption wk(y) ⊆ wk(x) for every k, it is easy to see
that ϕ is a cp map. The final part follows from the fact that ϕ−1 is ucp if and only
if wn(x) ⊆ wn(y) for every n.

In this section we again use the notations B for B(l2) and K for the ideal
of compact operators. A dot over an element will represents its image under the
quotient map. We start with the following result given in [42].

THEOREM 11.3 (Smith, Ward). Let Ṫ ∈ B/K and n be an integer. Then there is
a compact operator K such that wn(T + K) = wn(Ṫ).

REMARK. In fact this theorem follows by using the k-lifting property of a finite
dimensional operator system (Theorem 9.11). Moreover, we can deduce a more
general form as follows: If A is a unital C∗-algebra and I ⊂ A is an ideal then
for any ȧ in A/I, and for any k there is an element x in I such that wk(a + x) =
wk(ȧ). This directly follows from the k-lifting property of the operator system
Sȧ = {ė, ȧ, ȧ∗} and the fact that every k-positive map defined from an operator
system into Mk is completely positive.

Turning back to the above result, we see that for a fixed n, an operator T ∈ B
can be compactly perturbed such that the resulting operator and its residue under
the quotient map have the same nth matricial range. Then the authors stated the
following conjecture which is currently still open.

SMITH–WARD PROBLEM (SWP). For every T in B(H) there is a compact operator
K such that wn(T + K) = wn(Ṫ) for every n.

This question is also considered in [33] and several equivalent formulations
have been given. In particular it was shown that it is enough to consider block
diagonal operators, and for this case, the problem reduces to a certain distance
question ([33], Theorem 3.16). However, the following remark which depends on
an observation in [2] will be more relevant to us. We include the proof of this for
the completeness of the paper.

PROPOSITION 11.4 (Paulsen). The following are equivalent:
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(i) SWP has an affirmative answer.
(ii) For every operator subsystem of the form SṪ = { İ, Ṫ, Ṫ∗} in the Calkin algebra

B/K, the inclusion SṪ ↪→ B/K has a ucp lift on B.

Proof. First suppose that SṪ has a ucp lift ϕ on B. Since q(ϕ(Ṫ)) = T, where
q is the quotient map from B into B/K, ϕ(Ṫ) = T + K for some compact operator
K. It is not hard to show that wn(T + K) = wn(Ṫ) for every n. In fact, if A ∈
wn(Ṫ), say A is the image φ(Ṫ) of some ucp map φ : B/K → Mn, then the
composition φ ◦ q is a ucp map from B into Mn which maps T to A. Conversely
if B is in wn(T), say ψ(T) = B where ψ : B→ Mn is ucp, then ψ ◦ ϕ : SṪ → Mn is
ucp that maps Ṫ to B. Since T was arbitrary it follows that (i) is true. Conversely
suppose that (i) holds. So for Ṫ in B/K we can find K in K such that wn(Ṫ) =
wn(T + K) for every n. Now, by using Proposition 11.2, SṪ and ST+K ⊂ B are
unitally completely order isomorphic via Ṫ 7→ T + K. This map is ucp and a lift
of the inclusion SṪ ↪→ B/K. So the proof is done.

Depending on Proposition 7.4 and Theorem 6.6 we obtain the following for-
mulations of the SWP:

THEOREM 11.5. The following are equivalent:
(i) SWP has an affirmative answer.

(ii) Every three dimensional operator system has the lifting property.
(iii) Every three dimensional operator system is exact.

Proof. Equivalence of (ii) and (iii) follows from Theorem 6.6. If every three
dimensional operator system is exact then their duals, which cover all three di-
mensional operator systems, must have the lifting property and vice versa. Now
suppose (ii). This in particular implies that for every operator subsystem of the
form SṪ = { İ, Ṫ, Ṫ∗} in the Calkin algebra B/K, the inclusion SṪ ↪→ B/K has a
ucp lift on B. Hence by the above result of Paulsen, we conclude that SWP has an
affirmative answer. Now suppose (i) holds. Let S be a three dimensional opera-
tor system. We will show that S has the lifting property. Let ϕ : S → B/K be a
ucp map. Clearly the image ϕ(S) is of the form SṪ = { İ, Ṫ, Ṫ∗} for some T in B.
Since we assumed SWP, the above result of Paulsen ensures that SṪ has a ucp lift
on B, say ψ. Now ψ ◦ ϕ is a ucp lift of ϕ on B. Finally by using Proposition 7.4 we
conclude that S has the lifting property.

Recall from Proposition 6.13 that every two dimensional operator system is
C∗-nuclear and consequently they are all exact and have the lifting property. On
the other hand there is a five dimensional operator system, namely S2, which is
not exact and, by Theorem 6.6, its dual Sd

2 , which embeds in M2 ⊕M2, does not
posses the lifting property.

REMARK 11.6. There is a four dimensional operator system which is not ex-
act and consequently, by Theorem 6.6, its dual does not have the lifting property.
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Proof. It is well known that F2 embeds in Z2 ∗ Z3 (see p. 24 of [18] ,e.g.). So
by using Proposition 8.8 of [39], C∗(F2) embeds in C∗(Z2 ∗Z3) with a ucp inverse.
Thus, the identity on C∗(F2) decomposes via ucp maps through C∗(Z2 ∗ Z3).
This means that, by Lemma 5.2, any nuclearity property of C∗(Z2 ∗ Z3) passes
to C∗(F2). Since C∗(F2) is not exact we obtain that C∗(Z2 ∗ Z3) cannot be exact.
Note that Z2 ∗ Z3 can be described by 〈a, b : a2 = b3 = e〉 so, necessarily, a must
be a self adjoint unitary in C∗(Z2 ∗ Z3). Let S = span{e, a, b, b∗}. S is a four di-
mensional operator subsystem of C∗(Z3 ∗ Z2) that contains enough unitaries. By
Corollary 9.6 of [22] S cannot be exact. The remaining part follows from Theo-
rem 6.6.

Now we turn back to the Kirchberg conjecture (KC). Before we establish
a connection between SWP and KC we recall that an operator system is (min,
c)-nuclear if and only if it is C∗-nuclear. We refer back to Section 4 for related
discussion. We also remind the reader that KC is equivalent to the statement that
every finite dimensional operator system that has the lifting property has the dou-
ble commutant expectation property (DCEP). Now if we assume that both SWP
and KC have affirmative answers then it follows that every operator system with
dimension three is exact and has the lifting property, equivalently, they are all
(min, el)-nuclear and (min, er)-nuclear. Since we assumed KC it follows that
all three dimensional operator systems must have DCEP, equivalently (el, c)-
nuclearity. Finally, (min, el)-nuclearity and (el, c)-nuclearity implies (min, c)-
nuclearity, that is, C∗-nuclearity. Conversely if every operator system of dimen-
sion three is C∗-nuclear this in particular implies they are all exact, (or have the
lifting property). Hence we obtain that

KC + SWP =⇒ every three dimensional
operator system is C∗-nuclear

=⇒ SWP .

Consequently forming an example of a three dimensional operator system which
is not C∗-nuclear shows that both KC and SWP cannot be true. Showing indeed
that they are all C∗-nuclear provides an affirmative answer to SWP.

QUESTION 11.7. We repeat a question we considered before: If X is a com-
pact subset of {z : |z| 6 1} then is S = {1, z, z∗}, where z is the coordinate
function, C∗-nuclear? When X is the unit circle T then S coincides with S1 and
for this case we know that S is C∗-nuclear.
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