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ASYMPTOTIC COMMUTATIVITY
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ABSTRACT. The standard commutants in a noncommutative algebra are de-
rived from commutativity which in terms of Lie algebras means (adT)(S) = 0.
Some “weaker commutativities” given by vanishing (asymptotic vanishing)
properties of the powers of adT, for instance (adT)"(S) = 0 or
Jlim [ (adT)"(S)||*/" = 0 when T and S are bounded linear operators on some

complex Banach space, describe in a similar way different type of “weaker
commutants”. This paper studies these “weaker commutants” and their corre-
sponding compositions, in particular “weaker bicommutants”, in connection
with J. von Neumann’s classical bicommutant theorem.
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1. INTRODUCTION

One of the main concepts derived from commutativity is “the commutant”
and the well-known J. von Neumann’s bicommutant theorem (see [14]) in the
algebra of all bounded operators on a Hilbert space is one of the main results
concerning it. On the other hand a lot of properties containing as particular case
commutativity in a (normed) algebra, particularly for bounded operators on a
Banach space, have been described and well studied in terms of Lie theory (see
for instance [2], [4], [8], [13], [17]). So, if S, T are bounded operators on a complex
Banach space, let adT(S) = TS — ST. T commutes with S means adT(S) = 0
and the commutant of a subset S of bounded operators is S’ = {T : (adT)(S) =
0,VS € §}. The two conditions

: n 1/n _ : n 1/n _
lim [|(adT)"()[[" =0 and lim |(ad$)"()|"/" = 0
have respectively as particular cases the following equalities,

(adT)™(S) =0 and (adS)’(T)=0
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for some m, p natural numbers. For m = 1 or p = 1 these mean that T commutes
with S. Using one of the above four mentioned equalities we can associate to a
subset S of bounded operators different types of commutants C,(S) in the sim-
ilar way as the equality adT(S) = 0 associates to S its commutant C;(S) = S'.
This paper studies these “commutants” and the composition of such commutants
Cu(Cp(8)), in particular CyCq(S), in connection with the classical bicommutant
C1(C1(8)) = (8")' = 8" and some closure operators on the set of all subsets of
bounded operators on a Hilbert space.

2. THE SPACES YU ({0})

Let ) be a complex Banach space and B()) the Banach algebra of all
bounded linear operators on ). For an open subset D of C (the field of complex
numbers), O(D, Y) denotes the Fréchet space of all analytic )-valued functions
onD.

Recall that S € B(Y) has the single valued extension property (s.v.e.p.) if
for every open subset G of C, the unique analytic solution f € O(G,Y) of the
equation (A —T)f(A) = 0,A € G, is identically 0. Thus, for every y € )Y and
S € B(Y) having (s.v.e.p.) there exists a maximal open subset ps(y) C C and a
unique analytic function 7 € O(ps(y),Y) such that (A — T)f(A) = y for every
A € ps(y). Usually os(y) = C\ ps(y) is the local spectrum of T at y and for
every closed set F C C, Vs(F) denotes the linear manifold of all vectors satisfying
0s(y) C F (see [4], [6]).

In the following, we will consider an analogue of the above linear manifold
Ys(F) for an arbitrary U € B()), U not necessarily having (s.v.e.p.). For an
arbitrary U € B(Y) we consider these spaces only for some closed subsets F C
C. More precisely, the following definition describes a class of closed subsets F
of C attached to an arbitrary U € B()). Every subset F in this class defines a
subspace YY(F) of Y in a similar way as Y5 (F) are defined for S having (s.v.e.p.).
In particular, for a complex Banach space X, Y = B(X) 5> Tand U = ad(T) €
B(Y), the corresponding subspace VY ({0} ) will be employed in the following to
describe “weaker commutantants” ({0}denotes the subset of C consisting of the
null element 0 of C).

DEFINITION 2.1. For a closed subset F of C we say that U has (s.v.e.p.) on
C\ F, or F is analytic spectral compatible with U € B()), if the only solution f €
O(C\ F,Y) of the equation

(A=U)f(A)=0, AeC\F
is the null function.

EXAMPLES 2.2. We mention the following examples:
(i) The spectrum of U, o(U) is analytic spectral compatible with U.
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(i) If F is a closed subset F C C and C \ F is a connex set having a nonempty
intersection with the resolvent set p(U) of U, then F is analytic spectral compati-
ble with U.

(iii) Every compact subset K of C with C \ K a connex set is analytic spectral
compatible with U.
(iv) Every finite subset of C is analytic spectral compatible with U.

(v) S € B(Y) has the single valued extension property if and only if every
closed subset F of C is analytic spectral compatible with S; every closed subset F
of C is analytic spectral compatible with every S € B()) having (s.v.e.p.).

Definition 2.1 can be rewritten as in the following lemma.

LEMMA 2.3. For U € B(Y) and a closed subset F C C, the following assertions
are equivalent:
(i) F is analytic spectral compatible with U;
(i) there exists y € Y such that the equation

(A=U)h(A) =y, forallA € C\F
has a unique solution f € O(C\ F,Y).

Proof. (i) = (ii) because by (i) y = 0 satisfies (ii). It remains to prove (ii) =
(i). It is obvious if we have y = 0 in (ii). If in (ii) we have y # 0 and & is the
unique solution given by (ii), then (A — U)(h(A) + f(A)) =y, forevery A € C\ F
and f € O(C\ F,Y) verifying (A —U)f(A) = 0for A € C\ F. Then we deduce
by (ii) h(A) + f(A) = h(A) for every A € C\ F, which gives f(A) = 0 for every
A € C\ F, hence (i) holds. 1

Recall now a well known analogue of the above linear manifold YVs(F) (as-
sociated to S € B()) having (s.v.e.p.)) for an arbitrary U € B(Y). The strong
spectral manifold M(F,U) = My(F,U) was defined (see [3]) for an arbitrary
U € B(Y) and every closed subset F C C. Sometimes called the “global spectral
space” (see [9]), Mo(F,T) consists of all y € Y for which there exists an ana-
lytic function f € O(C\ F,)) satisfying the equation (A — U)f(A) = y for ev-
ery A € C\ F. Also used in describing property (6) for an arbitrary bounded
operator on Y (see [1]), the linear manifold M(F,U) is Ys(F) for every closed
subset F C C if S has (s.v.e.p.). Therefore an analogue of Vs(F) for an arbitrary
U € B(Y) can be the linear manifold My(F,U). When F C C is a closed sub-
set “analytic spectral compatible”with U, the following definition introduces a
suggestive name and notation for My(F, U) in order to simplify our exposition.

DEFINITION 24. If U € B(Y) and F C C is a closed set that is analytic
spectral compatible with U we denote

YUF)={yeY:3f € O(C\FY),(A-U)f(A) =yforallA € C\ F}

and we call it the resolvent space of U corresponding to F.
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REMARK 2.5. We note the following:

(i) Obviously YY(F) = My(F, U) is a linear manifold and by Definition 2.1 it
is easy to deduce (see Lemma 2.3) that for every y € YU (F) there exists a unique
function f € O(C\ F,)) satisfying the equation (A — U)f(A) = y for every
A € C\ F. We denote this unique function by .

(ii) The linear manifold Y'Y (F) is defined for an arbitrary U € B()) only for
F analytic spectral compatible with U. If S has (s.v.e.p.) then Y°(F) = Ys(F) for
every closed subset F C C.

The following proposition is a direct consequence of the definitions above.

PROPOSITION 2.6. Let U € B(Y) and YY(F) be a resolvent space for U as in
Definition 2.4. Then we have:
(i) XYY (F) c YYU(F), forall X € B(Y) commuting with U.
(i) If z = Xy, then Zr = Xy for every y € YUY (F).

PROPOSITION 2.7. In the conditions of the Proposition 2.6, the following equality
defines a linear operator Rp(A, U) on YY(F), if for eachy € YU (F)and A € C\ F, we
have:

(i) Re(A, U) : YU(F) — YY(F), Re(A, U)y = ¥r(A).
(ii) For every A € C\ F, Rp(A, U) is the inverse of the linear operator (A — U)|yu py.

Proof. First, we prove (i). It is easy to observe that the following equalities
define for every A € C\ F a function gy € O(C\ F, ),

?F(H})L:?F()\) wE A,

a(p) = { .
“yr(A) p=A

Now, a simple computation gives (y — U)gx (i) = yr(A) for every A,y € C\ F.

This means that iz (A) € VY (F) forevery A € C\ F and (i) is proved. For proving

(ii), let y be an arbitrary element y € YY(F). By the definition of Rr(A,U) and

yr(A), we have

(A= WRp(A, U)y = (A = W)ye(A) =y

forall A € C\ F. We can also compute Rr(A, U)(A — U)y = Zp(A) wherez = (A —
U)y. By Proposition 2.6, we have Zp(u) = (A — U)jr(p) for every A,y € C\ F
and finally we have for y = A, Rp(A,U)(A — U)y = (A — U)jr(A) = y which
concludes the proof. 1

COROLLARY 2.8. Let U € B(X) be an arbitrary linear operator on X and p(U)
the resolvent set of U. Let F C C be a closed subset analytic spectral compatible with U
and Rp(A, U) from the above Proposition 2.7. If (C\ F) N p(U) # @, then we have:
(i) Rp(A, U) is an extension from (C\ F) N p(U) to C \ F of the resolvent R(A, U)
of U.
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(i) For every y € YY(F), Rp(A, U)y = §r(A) is the single analytic extension g of
R(A, U)y from (C\ F) Np(U) to C\ F and satisfying the equation (A —U)g(A) =y
for A € C\ F.

Proof. First we observe that R(A, U)VY(F) c YY(F) for every A € p(U),
so R(A,U) = Rp(A,U) on (C\ F)Np(U) # @ as inverse of the same oper-
ator (A — U)|yu(p). This proves (i). For proving (ii), it suffices to recall that
Rr(A, U)y = yp(A) is analytic on C \ F (see Proposition 2.7), R(A, U) is analytic
on (C\F)Np(U) # @, and jr(A) is the single analytic function on C \ F verifying
(A —U)g(A) = y because F is analytic spectral compatible with U. 1

Although the linear manifold VY (F) is not generally closed, it is possible
to describe some other topological properties of it. In [11] it is proved that for
every closed subset F of C and S € B(X') having (s.v.e.p.), the linear manifold
Ys(F) is the range of a continuous )Y-valued linear map defined on some Fréchet
space. This property holds also for YY(F), the linear manifold corresponding to
an arbitrary U and a closed subset F C C analytic spectral compatible with U, the
above mentioned corresponding property when S has (s.v.e.p.) being a particular
case (see Examples 2.2(v)).

PROPOSITION 2.9. IfU € B(Y) and F C C is analytic spectral compatible with
U, then there exist a Fréchet space Vg and a continuous linear injective map ¢y : Vp —
Y such that Range ¢r = YY(F).

Proof. The following assertions give the proof and will also be used in the
follwing. Let us consider O(C \ F, ) the standard Fréchet space of all }-valued
analytic functions on C \ F.

Step 1. We have

Y~{y:C\F—)Y,y(A) =yforallA € C\ F wherey € V}
={f:C\ F — Y where f is constant} C O(C\ F).
By this identification ~~, the norm topology of J is the topology induced by the
Fréchet topology of O(C\ F, ).
Step 2. ) can be considered a closed subspace of O(C\ F,)).
Step 3. The following linear map is continuous,
pu:O(C\FY)— O(C\F)Y),
[pu(e)](A) =(A—=U)p(A) forallA € C\F and
¢u(yr) =y, forally € VY(F).

Step 4. 47&1 () is a closed subspace of O(C \ F,)), hence a Fréchet space.
Step 5. Because F is analytic spectral compatible with U we have

{7} ify € YU(F),

4’{11({]/}) = {® ify ¢ YU(F).



180 MIHAI SABAC

Obviously <pu(<p&1 (¥)) = YY(F) and ¢U|¢a1(y) is an injective map.
So the conclusion of the Proposition 2.9 holds if we put YV = ¢ (V) =
cpal (VY(F)), by observing that ¢ (Vg) = YU (F). 1

The inverse of ¢y| oi1(y) 18 defined on Y'Y (F) as the following map
u

y — i, foreveryy € YY(F)

which can also be denoted by ¢;'. The inverse of this algebraic isomorphism is
the continous map ¢y| o7l (V)"

Now we consider a particular case of a closed set analytic spectral compati-
ble with U € B()) and its corresponding resolvent space, namely the subset {0}
of C and the corresponding resolvent space YY({0}) (by Examples 2.2(iv), {0}
is spectral compatible with all U € B(Y)). Using Laurent’s development of an
analytic function on C \ {0}, an appropriate description of the linear manifold
YUY ({0}) can be given. The following proposition is devoted to it.

PROPOSITION 2.10. For every U € B(Y) the following equalities hold:
Y ({o}) = {y: lim [I(W)"y|"/" =0} and
Yoy (A) = Z )F(”H)U”y, for every A € C\ {0},y € YH({0}).
n=0
The proof is an easy consequence of the following lemma.

LEMMA 2.11. For an arbitrary fixed y € Y and U € B()) the following state-
ments are equivalent:

(i) There exists ¢ € O(C\ {0},Y) such that (A — U)p(A) = y for every A €
C\ {0}

SN 15 ny,|1/n _
(ii) lim [|U"y[" = 0.

If (i) holds, then
Yiop(A) = 9(A) = ) A=y, for every A € €\ {0}.
n=0
Proof. (ii) = (i) Indeed, by (i) p(A) = ¥ A~"+DU"y, A € C\ {0}, is an

n=0
analytic function on C \ {0} and obviously satisfies (i).
(i) = (ii) Let us consider ¢ as in (i). Then there exists a sequence {y,} C Y
so that

n=-+oo

p(A) = 2 Ay

n=—oo
and (A —U)¢(A) =y, forevery A € C\ {0}. We then have,

n=+oo

n—=-+oo
(A=U)p(A)= Z AnHW‘ Z AUy, = Z?\m(ym—ruym)w_l—uyo

n=-—00 n=-—oo m#0
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and by (i) it follows that

Y A" (W1 = Uym) +y-1 = Uyo =y

m=20
for every A € C\ {0}. Therefore, we have
(2.1) Ym—1 = Uym, foreverym #0andy_1—Uyo=y
and we can write forn > 0,

u %y, =y, if0<k<n
Then the following inequalities hold:
lyll < U Wyl if0 <k <n.

Butpe O(C\ {0}, ) gives gl}rl [y« ||*/" =0 and by the above inequalities we get
n (9]

yx =0 foreveryk > 0.

In particular yp = 0 and by (2.1) it is easy to obtainy = y_1 — Uy = y_1,y—2 =
Uy-1 = UY,...,Y_(ny1) = Uyn = U"y forevery n > 0. Hence, we obtain a
complete description of ¢ from (i) (in particular this gives also a direct proof of
the uniqueness of ¢ in (i)) i.e.

Jip(A) = (M) = ) A0y for every A € C )\ {0}

n=0
and obviously we have nlgrolo |U"y||'/" = 0. Hence (i) = (ii) and the lemma has

been proved. 1

Now, we use the Proposition 2.10 in order to obtain Y ({0}) as the range of
an injective continuous linear map on the Fréchet space Vg, (see Proposition 2.9).
More precisely, in the particular case F = {0} we have to describe the following
objects from Proposition 2.9: the Fréchet space Yy and the map ¢y : Vp — YV, a
continuous linear injective map having Range ¢;; = YY({0}). For F = {0} we
have

¢u : O(C\ {0}, ) — O(C\ {0},))

where ., .
[pu(@)](A) = (A = U)p(A) = ; Ay — ; AUy,
for every
n=-+oo
¢ €O0(C\{0},Y), ¢(A)= } A'ynandA€C\{0}.

The Banach space ) is a closed subspace of O(C \ {0}, ) and

—+00
y:{ Z A"y yn = 0 for every n # 0 and yoey}.

n=-—oo
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The structure of YU ({0}) is described as in the Propositions 2.9, 2.10. So, we
deduce Yyoy = ¢ (V) = ¢ (YY({0})) and

y{o} = { 2 )\*(H+1)uny: every/\ c C\ {0}'%"13%0 ”unynl/n _ 0}.

n=0

We thus have a linear isomorphism

pu: Vo = Yo cy, YA Uty sy

n=0

forall y € Y verifying lim [uy[|'/" = 0. So, pu(Yioy) = YH({0}) and ¢y is
an injective linear continuous map from the Fréchet space Yy, into the Banach
space ).

Finally we discuss the locally convex topologies on VY ({0}). Given a fam-
ily {Vu}aca of complex vector subspaces Y, of a complex vector space ), there
exists a locally convex topology on Y having ), as closed subspace for every
a € A. Every linear functional f # 0 on )Y is given by the equalities f(e,) =
1, f(eg) = 0if B # -y for some linear base {eg} of ). As every linear independent
system of vectors in ) can be completed to a base, there exists a family of linear
functionals {fup} (s, p)caxp On Y such that Y, = ﬁﬂBker fup for every a € A. The

€

topology on ) given by the family of seminorms p,g(-) = |fas(-)|, (&, B) € A x B,
has ), as closed subspace for every « € A. In this way can be defined a locally
convex topology on ) such that in this topology VY ({0}) are closed subspaces
forallU € B(Y).

On the other hand, for an arbitrary fixed U € B(Y) a Fréchet topology on
YUY ({0}) can be derived from an equivalent assertion with the definition of this
linear manifold given by the following lemma. As usual N denotes the set of all
natural numbers.

LEMMA 2.12. The following assertions are equivalent:
My e 3’”({0})/-
N H n||1/n —
(i) lim ||y |1/ = 0.
(iii) sup || (aU)"y|| < o0 for every « € N,a > 1.
neN
Proof. (i) < (ii) is given by Proposition 2.10. It is easy to see that (iii) is
equivalent with the following assertion:

for every a > 0 there exist k, € N such that sup || (al)"x|| < +o0.
n=>kg

For proving (ii) = (iii) it is sufficient to observe that for every & > 0 there exists
ky € N such that |[U"x|| < (1/«)" for every n > k,. For proving (iii) = (ii) we
deduce from (iii) that for every a > 0 there exists M, with ||(al)"x|| < M, for
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every n € Nie. ||U"x|| < Mu(1/a)" for every n € N. This gives
1
limsup ||U"x||'/" < = foreverya >0 and lim ||U"x|'/" = 0.
n—00 e n—oo
Hence (iii) = (ii), (ii) < (iii) and the lemma has been proved. &
NOTATION 2.13. For U € B()) and « > 0, we denote for every y € ),

pu«(y) = sup ([ ()|l = sup{llyll, lallyl], ..., [[&"U"y],...}.
ne

REMARK 2.14. We note the following:
(i) For every a > 0, py o : YY({0}) — R is a norm on VY ({0}).
(if) The equivalence given by Lemma 2.12 can be rewritten:

y € YYU({0}) if and only if py 4 (y) < 4oo for every « € N,a > 1.

PROPOSITION 2.15. The increasing sequence of norms {py i }1<ken defines a
Fréchet space topology on Y4 ({0}). Every norm pyy, 1 < k € Non YU ({0}) can
be extended to a norm on Y. The resulting sequence of norms on ) defines a metrizable
locally convex topology on Y, and in this topology VY ({0}) is a closed subspace of V.

Proof. First we verify that {py x }1<ken defines a Fréchet space topology on
YUY ({0}). Consider {y,} C YY({0}) a Cauchy sequence corresponding to the
increasing sequence of norms {p x }1<ken. We now prove that there exists y €
YYU({0}) such that {pyx}(yn —y) — 0 for n — co. By the Cauchy property of
{yn}, for every 1 < k € Nand 5 > 0 there exists a natural number m(k, ) such
that

|(KU)" (ym —yp)|| <n forevery m,p > m(k,17) and every n € N.

For n = 0 we deduce that {y,} is a Cauchy sequence in the Banach space ). So
there exists y € ) such that ||y, —y|| — 0 for n — oo and taking the limit for
p — oo in the above inequalities, we obtain

|(kU)" (ym —y)|| <1y forevery m > m(k,n) and every n € N.

Using Remark 2.14(ii) we deduce that y,, —y € YY({0}), ¥ = ym — (ym —y) €
YY({0}) and
im pyx(ym —y) =0 foreveryk,1<keN

m—o0

which means that ¥, — v in the topology given by the increasing sequence of
norms {py }1<ken. Therefore YU ({0}) endowed with the increasing sequence
of norm {py x }1<ken is a Fréchet space. Using Zorn’s lemma as in the proof of the
Hahn-Banach theorem it is possible to prove that there exists an extension of the
seminorm py; and the inequality ||y|| < py(y) from YY({0}) to a seminorm
Pu i on Y verifying the inequality ||y|| < pu(y) for every y € ). Indeed, we can
prove the following lemma.
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LEMMA 2.16. Let Y be a complex vector space, s be a seminorm on Y and Yy a
subspace of Y. The following assertions hold:
(i) Every seminorm p on Yy can be extended to a seminorm p on ).
(i) If s(y1) < p(y1) for every y1 € Yy, then p can be extended to a seminorm p
verifying s(y) < p(y) foreveryy € Y and p is a norm on ) if the seminorm s is a norm.

Proof. First we prove the lemma for Y = Y + Cx,x ¢ ). In this case
an arbitrary y € Y can be written uniquely y = y; + Ax,y; € V;,A € Cand
p(y) = p(y1) + |A| is well defined and p is a seminorm extension of p to ). If
s(y1) < p(y) for every y; € Y, then

s(y1 +Ax) <s(y1) + A < p(yr) + A = Py)-

because s is a seminorm and we can chose x € )\ ) with the property s(x) =1
or s(x) = 0 for every x € Y\ V. Now it is easy to verify that for the following
ordered set S the hypothesis of Zorn’s lemma hold. S consists of all pairs (Z,9)
where Z is a subspace of ), Vi C Z and ¢ is a seminorm extension of p to Z
(verifying s(z) < q(z) for every z € Z when we use S for the proof of the second
part of the lemma). The order on S is the following:

(31/%) =< (Zz,Qz) if and Ol’lly if Zl C Zz and q2|Zl ={1-

Therefore S has a maximal element (Zg,q,). If Zg # ) there exists x € J\
Zy and we can consider Z; = Zj + Cx. From the first part of the proof there
exists a seminorm extension of qg to Z; verifying the conclusion of lemma which
contradicts the maximality of (Zy,q,). Thus, Zp = Y and go will be p from the
conclusion of the lemma which is now completely proved. 1

We conclude by proving that YY({0}) is a closed subspace of ) in the lo-
cally convex topology given by the norms pyjx , 1 < k € N. Let {y,,} € YU ({0})
be a sequence in Y and y, — y € Y, n — oo, in the metrizable locally con-
vex topology on ) given by the increasing sequence of norms {py;x }1<ken On
Y. Then {y,} is a Cauchy sequence in the Fréchet topology of V! ({0}) given by
the norms py; x because the norms py; ; are extensions of the norms py; ;. So there
exists yg € YY({0}) such that y, — yo in the Fréchet topology of YUY ({0}) given
by the norms py; x therefore y = yg and Proposition 2.15 is proved. 1

REMARK 2.17. We note the following:
(i) The locally convex metrizable topology on Y is stronger than the topology
given by the initial norm || - || of Y (||y|| < pux(v) foreveryy € Yand1 < k € N).
(ii) The set {y € Y : pyx(y) < m} is for every 1 < k € N a closed subset of the
normed space ) for every 1 <m € N.

PROPOSITION 2.18. YUY ({0}) is a subset of type F, of the Banach space .
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Proof. The following decomposition holds
YI{0}) = U {pukly) <m}, forevery 1<keN,
m=1

and the above Remark 2.17 concludes the proof. 1

All the above results concerning the space Y)Y/ ({0}) can be rewritten for ) =
A a Banach algebra and U = adT € B(A), T € A,adT(S) =TS—STforS € A
(in particular for A = B(X') the Banach algebra of all bounded linear operator on
a complex Banach space &X).

NOTATION 2.19. For Y = A, including the particular case when A = B(X),

we denote
YU({0}) = AT ({0})

when U = adT, T € A,adT(S) =TS —ST for S € A.

We have a specific description for .A4247({0}) when A = B(X) and T €
B(X),

AT ({0}) = {5 € B(X) : lim [|(adT)"(S)| = 0}~
First we can attach tox € X,1 < k € Nand T € B(X) the following function on
B(X):
PadTkx(S) = sup{||(k-adT)"(S)x[|} forevery S € B(X).

neN
The following inequalities hold:
(22) 15x[] < Padrx(S) < paark(S)[x]-

If we denote
AT (£0}) = {S : paari+(S) < +oo forevery x € X and 1 < k € N},
it is easy to observe by the above inequalities (2.2) that A4 ({0}) c AT ({0}).

By the Banach-Steinhaus theorem we obtain the equality 4247 ({0}) = 4247 ({0})
and the following description of .A247({0}).

PROPOSITION 2.20. If X'is a complex Banach space and T € B(X') is a bounded
linear operator on X then the following equalities hold:

AT (L01) = {S : paari(S) < +oo forevery x € X and 1 < k € N}
= {S: Paark(S) < +oo for every 1 < k € N}

= {s€B(x): lim||(2dT)"(5)] = 0}.

By applying Lemma 2.16 in two steps using the two inequalities from (2.2)
we deduce now that the families of seminorms on AT ({0}) {paar i tes1xex
and {p.drk }k>1 can be extended to a family of seminorms {Paq7 k x tk>1 xrex and
a family of norms {Paqrk }x>1 on B(X). These satisfay the inequalities,

(2.3) 1Sx[] < PadTkx(S) < Paark(S) |l x|
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So we can associate to each T € B(X) two locally convex topologies on B(X')
stronger than Tg,, the so-topology on B(X'). If we denote Ty, 1 (the strong asymp-
totic commutativity topology associated to T) the locally convex topology given by
the family of seminorms {P,q7 t x }k>1xex and if we denote 7, 7 (the asymptotic
commutativity topology associated to T) the local convex topology given by the fam-
ily of norms {paq7 i }x>1, then we have

(2.4) Tso < Tsa, T < Ta,T-

Finally we recall that for A = B(X), A247({0}) is a closed subspace of B(X) in
the Fréchet topology T, T.

3. ASYMPTOTIC COMMUTATIVITY, NIL-COMMUTATIVITY, ASYMPTOTIC COMMUTANTS,
AND “OTHER” COMMUTANTS

In this section we discuss some extensions of commutativity. Let A be an
associative algebra. Recall the following notation for commutativity which will
be used in the following (see [12]). For S, T € A,S — T means that S commutes
with T i.e. ST = TS or, in terms of Lie algebras, adS(T) = 0. This relation is
symmetrici.e. S — T = T — S and for £ C A we denote

L' ={XeA: X — Sforevery S € L} the commutant of L,

L" the bicommutant of £, etc.

The usual commutativity is embedded as a particular case in the following
straightforward implications:

S—T= (adS)"(T) =0 forl1<neN,
and if A is a normed algebra we have,
(adS)*(T) =0 for some k € N = nlg%o||(ad5)n(T)||”” =0.

We now define extensions of the usual commutativity concept, and the associated
“commutants", by using the (weaker) properties of commutativity which are con-
tained in the two implications above. We begin by defining n-commutativity in
an associative algebra A, which corresponds to the first implication above.

DEFINITION 3.1. Let 1 < n € N be a fixed natural number. If A and B are
two elements of 4, we say that A n-commutes with B if we have

(adA)"(B) =0
and we denote this property by A = B.

REMARK 3.2. (i) For n = 1 we have the commutativity,

Axl/BifandonlyifAvB.
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(ii) For n # 1,in general A -~ B does not imply B L A (the relation A = B is
not symmetric).
(iti) AL B = A L Bforevery m > n, in particular
A—B=AZLB foreverym>1.

The n-commutants are now defined in a natural way.

DEFINITION 3.3. Let £ C A be a subset of A and m a natural number.
The right n-commutant of L is

Crn(L) ={T € A:S L Tforevery S € L} = () ker(adS)".
seL
The left n-commutant of L is
Cu(L) ={Tc A:T L SforeverySec L} ={Tc A: L Cker(adT)"}.
The n-commutant of L is
Cu(L) =Cen(L)NCy(L) ={T € A: (adS)"(T) = (adT)"(S) = 0}.
The reqular right (respectively left) nil-commutants of L are

Ce(L) = JCm(L) and G(L) = |JCu(L).

n=1 n=1

The regular nil-commutant of L is

C-(£) =G(L)NG(L)

[
-
O
=
B

REMARK 3.4. We note the following:
(1) Cen(L) C Cem (L), Cip(L) € Cp (L), V 1 < m.
(if) Cen(£) N Ci(£) C Cvi(£).
(iii) Cn (L) =Cn(L) =C1(L) =L C Cu(L) CC_(L),¥Yn > 1.
(iv) Crn({S}) = ker(adS)", C,,({S}) = {T € A: S € ker(adT)"}, C,({S}) =
{TeA:TL5,5LT}vSe A
The second type of commutativity will be called nil-commutativity and means
n-commutativity with variable n.

DEFINITION 3.5. If A,B € A, A nil-commutes or v-commutes with B if there
exists a natural number k > 1 such that A £ B. We will denote this property by
AL B.

REMARK 3.6. We also note the following:

()AL BforneNn>1=>ALB.
(ii) If A L B, then there exists min{k : A L B} = k(A, B) which is called the
index of nil-commutativity (or v-commutativity) when A -~ B.
(iii) If AL B then A L B for every n > k(A,B),n € N.
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(iv) The relation given by A L B is not symmetric. We can also define “com-
mutants”corresponding to v-commutativity.
DEFINITION 3.7. Let £ C Abe a subset of A.
The right nil-commutant (rv-commutant) of L is
Co(L)={T€A:SL TforeverySc L} = () U ker(ads)".
SeL neN
The left nil-commutant (lv-commutant) of L is
Co(L)={TcA:T L SforeverySc L} = {T ceA:Lc | ker(adT)”}.
neN
The nil-commutant (v-commutant) of L is
C(L)=Crn(L)NC(L)={TecA: (VS L)(IneN)(adS)"(T)=(adT)"(S)=0}.
REMARK 3.8. We also note that:
(1) G (L) C Cr(L£),and G (L) € C (L), C_(L) C Cy(L), L C Cu(L);
(i) Cw({S}) = U ker(adS)";
neN
(iii) C, ({S}) = {T ceAd:Se | ker(adT)”}, C{S) ={TeA:Tne
neN
N, (adS)"(T) = (adT)"(S) = 0}.

In closing, let us consider the case when (A4, || - ||) is a Banach algebra. In this
case, we introduce asymptotic commutativity, which corresponds to the second
implication mentioned in the begining of this section.

DEFINITION 3.9. We say that S € A asymptotically commutes with T € A if

. n 1/n _
Jlim [ (adS)" (T)[|"" = 0,

thatis T € .4245({0}) and we denoteit S < T.
REMARK 3.10. It is worth mentioning the following:

(i) T L S means

Tim || (adT)"(S)[* =0, ie.S e A"T({0})

and the relation S - T is not symmetric.
()S—T=5LT=5LT=52T
(i)S— T=T—S=TLs=>TLs=TZLs.
As in the case of n-commutativity or v-commutativity we can define com-

mutants for the case of asymptotic-commutativity.

DEFINITION 3.11. Let £ C A be a subset of A.
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The right asymptotic commutant of L is

Cr(L)={TeA:S L Tforevery S L} = () A ({0}).
sel

The left asymptotic commutant of L is

Cil(L)={TeA:TLSforevery Se L} ={Te A: L c AT {o})}.

~

The asymptotic commutant of L is
Co(L) = CE(ﬁ) N Cl(ﬁ)'

REMARK 3.12. We note the following facts:

(i) Using the seminorms introduced in Section 2, see (2.2) and (2.3), we can
describe C (L), C;((L), C~ (L) for an arbitrary £ C A,

Ci(L) ={T € A: praar(S) < +oo, foreveryl1 < ke Nand S € L},
<

Cr(L) ={T € A: praqs(T) < 4co, foreveryl < ke Nand S € L}.

(ii) C; (S) = A5 ({0}), Ci(S)={TeA:5¢ AT ({0})}.
(iii) Ce(£) C C(L) € Cr(L), QL) € Cu(L) € Ci(L) and £ € Ca(L) C
C_(L)ycCy(L)ycCu(L), fort<keNand L C A.

The above introduced “commutants”( Definitions 3.3, 3.7, 3.11) define maps
on P(A) = {L: L C A} for any Banach algebra A (some of them for a general
associative algebra A as in Definitions 3.3, 3.7). If we use the generic notation
C(L) for one of these commutants of £ C A, then

7:P(A) = P(A), w(L)=C(L) forLC A,

denotes one of these maps. The following proposition summarizes some basic
properties concerning these maps.

PROPOSITION 3.13. The map 7t has the following properties:
(i) 7t is a decreasing map, i.e. L C M = (M) C n(L).
(ii) If A is a -complex Banach algebra and L C A is selfadjoint then rt(L) is selfad-
joint.
If 7 is one of the maps attached to Cq, Cp,, Cy, C~, we have for every L C A:
(@) £ C 7*(L) = (L) and 7+ = 71,
(b) L C Cln(crn(‘c)) N Crn(cln(‘c))/ LcC Clv(crv(ﬁ)) N Crv(clv(‘c))r and L C
C1(Ce(£)) NG (C1(£)):

Proof. Properties (i), (ii) and (b) follow directly from the definitions. For
proving (a) it is easy to verify using definitions that £ C 72(£) and then we
proceed as in the well known case when 77(£) = L. 1
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PROPOSITION 3.14. For every L C A the following assertions hold:
(i) L C G(L) C Cu(L) C Ce(L), L C Q(L) C Cu(L) C Ci(L), and
L' CCu(L)CC_(L)CCy(L)TCu(L), for1 <k € Nand L C A.
(i) £ c L cCo(L).
(iii) C, Cy (E) uc;Cy (ﬁ) Cc C (C’) and C,C; (E) UC:Cy (ﬁ) C Cy (C’)
(iv) C~.Co(L) C C(L).
Proof. One applies the definitions and (i) of the above Proposition 3.13.
For (i) see also (iii) from the Remark 3.12.
For (ii) replace L by £ in £ € C. (L) from (i).
For (iii) one applies (i) for C;,C) in £' C C;(£) and L' C G(L).
For (iv), (i) holds also for C.. and from (i) we have £’ C C.(L). &

4. COMMUTATORS COMPOSITION FOR SELFADJOINT SUBSETS OF BOUNDED OPERATORS
ON A COMPLEX HILBERT SPACE

Let £ be a set of linear bounded operators on a complex Banach space X
Because C1C1 (L) = (L) = L", if Cy, Cg are given by Definitions 3.3, 3.7, 3.11
we call CoCg(L) a bicommutant type set. This section is devoted to initiating a
study of these bicommutants type sets, including the cases when L is a selfadjoint
set of bounded operators on a complex Hilbert space H, or a selfadjoint unital
subalgebra £ of B(H).

We start by associating to £ some well known objects suggested by the proof
of J. von Neuman'’s bicommutant theorem. If B(X) is the Banach algebra of all
bounded linear operators on a Banach complex space X and £ C B(X) we de-
note:

LatL = {)Y C X : Y closed subspace,SY C ) forevery S € L},

.= {TeB(X):TY C Yforevery Y € LatL},
Xre(x) =sp{Sx:Se€ L} C Xforeveryx € X,
= {T € B(X): Tx € X, (x) for every x € X'}.
The following basic properties are easy consequences of the definitions.

PROPERTIES 4.1. In what follows, £, L1, £, are subsets of 5(X) and the fol-
lowing properties hold:

GLcL. _
(ii) £1 C L5 = Latly C Latly = L C L.
(iii) £1 C Ly = X, (x) C X, (x) forevery x € X' = Zil C Ziz.
(iv) £ C L.
V) Xe(x) = Xzi(x) forevery x € X.
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—i . _
i) (€') = L and by the above properties (iii) and (iv), “ ()1 ”is a closure
operator on the subsets of B(X').
vi)LcLicL =L =L,
(viii) If A C B(&X'), A multiplicatively closed, then
Xa(x) =sp{Ax: A e A} € LatA foreveryx € X.

(ix) If A C B(&X), A multiplicatively closed and I € A, then

x € Xg(x) foreveryx € X and . cT.

Proof. We only prove (v), (vi) and (vii); the proofs of the other properties are
simple verifications. By (iv) and (iii) we have X (x) C Xzi (x) for every x € X.
On the other hand, T € T implies Tx € X (x) for every x € X, so we deduce
Xre(x) D Xzi(x) for every x € X and the property (v). Then property (vi) follows
from (v) and definitions, because the following implication holds:

X (x) = X, (x) foreveryx € X = Zil = Ziz.

Property (vii) is a well known property of the closure operators and it follows
from properties (iii) and (vi). 1

Now we recall that a projector P € B(X), i.e. an idempotent bounded linear
operator on X, has the spectrum ¢(P) = {0,1}, is decomposable, its maximal
spectral spaces being P(X') and (I — P)(X'). Moreover P = ey, (P) is the value of
analytic functional calculus of P ine(y) (an analytic function equals 1, respectively
0 in a neighborhood of 1, respectively 0). The following lemma describes the
right asymptotic commutant and asymptotic commutant (see (3.11)) of a projector
P e B(X).

LEMMA 4.2. If X,P € B(X) and P> = P, then the following assertions are
equivalent:

(c)) PL X, ie. JEISO|\(adP)”X||1/” =0;
(c) PX = XP;
@P<L Xand X L P.

Proof. It is enough to prove (ca) = (c), the other implications being obvi-

ous. The implication is an easy consequence of an asymptotic formula for the

commutator (see [2]) observing that all the derivatives of ef;; € O(c(P)) are
identically zero and by the asymptotic formula for the commutator we deduce

[6{1}(P),X] =0. 1
By Definition 3.11 the above lemma can be rewritten.

LEMMA 4.3. For every projector P € B(X') we have

C:({P}) = C.({P}) = {P}".
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Let now H be a complex Hilbert space. In the following all the results refer
to the case when X = H. We denote by P the set of all selfadjoint projectors on
H,P={PcB(H): P> =P =P*}. Asusual * : B(H) — B(H) is the adjoint
operation, T* is the adjoint of T € B(#) and a subset L C B(H) is selfadjoint if
T* € L for every T € L. We denote Py € P the ortogonal projection on Y for
every closed subspace Y of H. We recall also the following well known result,
one of the keys of the bicommutant theorem.

LEMMA 4.4. If L C B(H) is a selfadjoint set, then the following assertions are
equivalent:
(i) Y € LatL.
(ii) Py € L.
Proof. (ii) = (i) is obvious. If (i) holds then Py, SPy = SPy for every S € L.
So Py S*Py = PyS* for every S € L, which gives Py SPy, = PyS because L is a
selfadjoint set. 1

PROPOSITION 4.5. If L C B(H) is a selfadjoint set, then = (PNL'Y,ie.
for every X € B(H) the following assertions are equivalent:
() XeLl”
(i) X € (PN L") (ie. XP = PX forevery P € PN L').
Proof. (ii) = (i) is obvious because L is selfadjoint and by the above Lem-
ma 4.4 we have Y € LatL ifand only if Py, € £L'. For proving (i) = (ii) we observe

that for P € P N L we have also (I — P) € PN L' and by the above lemma PH
and (I — P)H are both in LatL. But PH and (I — P)H are all maximal spectral

spaces of P and by [4] we get that nlgn |(adP)"X|['/" = 0, i.e. P < X and by
Lemma 4.2 we have PX = XP, hence (ii). 1

PROPOSITION 4.6. If £ C B(H) is a selfadjoint set, then L* = L.
Proof. Having P N L' C L' we deduce by Proposition 4.5 the inclusion

£'cPncy =z
To prove the equality we have to prove the other inclusion and it suffices to prove

that X € £ commutes with every selfadjoint element A € £'. Indeed, £ hence
L’ being selfadjoint sets, every element T € L’ is a linear combination of selfad-
joint elements of £'. So,let X € £ and A = A* € L'. If {P,} is the family of
spectral projectors of A, { P, } commutes with every operator commuting with A,
in particular with £ because A is supposed to be in £'. Then, by the above Propo-
sition 4.5 X commutes with {P, }, hence with A, which concludes the proof. 1

PROPOSITION 4.7. If L C B(H) is a selfadjoint set, then
Ce (L) c L,
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i.e. the following implication holds:

XeC(L)Y=XYCY forevery) € LatL.

Proof. X € Cy(L') means nli_r>r°10||(adT)”XH1/" = 0 for every T € L'. For
Y € LatL we have Py € L' (see Lemma 4.4). Thus,
: ny|1/n _
tim | (acPy)"X] /7 = 0
and by Lemma 4.3 we deduce PyX = XPy. Hence XY C Y forevery X € C, (L)
and Y € Latl. 1

With the following corollary we start to describe the sets of bicommutant
type anounced in the beginning of this section.

COROLLARY 4.8. For every selfadjoint set L C B(H) we have:
Co(chY=2C"=r".

Proof. By first inclusion of (i) from Proposition 3.14, Proposition 4.6 and

—si — o 1

Proposition 4.7, we have £ C C,(L') and C+ (L") C L

Another result concerning the sets of bicommutant type, in particular
C~C~(L), can be obtained using this corollary and properties (iii) and (vi), from
Properties 4.1.

THEOREM 4.9. The following relations hold when L is a selfadjoint subset of
B(H):

—si

LCC.Cu(L)ycCu(Lh=C(LY=L"=2L".

Proof. The last two equalities are given by Corollary 4.8. The first inclu-
sion is an easy consequence of the definition of C. and the second is (iv) from
Proposition 3.14. By (ii) of Proposition 3.14 we have £L” C C(£’). On the other
hand, the inclusion C. (L") C Cy (L') results directly by definition. So we deduce

L"C Cu(L) C Ce(L') = L, hence the equalities L = C. (L") = C, (L") = L"
and the theorem is proved. 1

COROLLARY 4.10. If L is a selfadjoint subset of B(H), then
—si i —si 5l —si
(L) =L and C.C.(L) =L
Proof. Like L, L' is also selfadjoint set, hence £" is selfadjoint. The last

——S1 .
equality from the above theorem gives (£) = £ . We can also replace in

the above theorem £ by £” and using (a) of Proposition 3.13 we obtain ﬁSi =
(L") = L". We thus proved
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By the above theorem we have
LcCC.Cu(L)C L,

and using (ii) from Properties 4.1 we obtain

—si

e ey =z
which conclude the proof. 1

For a selfadjoint multiplicative closed set A C B(#) which contains the
identity operator I on H we can compare the asymptotic bicommutants of A with
A'. We begin with a preliminary result concerning the asymptotic bicommutant
type set given by C,Cy(A).

PROPOSITION 4.11. Let A C B(H) be a multiplicatively closed, selfadjoint set
containing the identity I € B(H). The following relations hold:

C:Ci(A) =Cr(A) CA and Cr(A) = A

Proof. From (viii) of Properties 4.1 we get that A A because A is multi-
plicatively closed and I € A. Because A is selfadjoint, by Proposition 4.7 we have
that , _

C.(A)c A cA.
Since A C C;(A') C A, (iii) and (vi) of Properties 4.1 imply the equality C; (A’ )i
— A’ and the proof is complete. &
The following theorem sumarizes some results concerning the composition

of the following maps given by the “special” commutants C,,C;,C~, C; (C; de-

notes the classical comutant £’ and the others are defined in Section 2). We focus
on the composition of commutants mentioned above on the subset of B(#) for
which the bicommutant theorem holds. In other words we talk about “bicom-
mutant” type sets resulting from the composition of the “special” commutants
introduced earlier.

THEOREM 4.12. Let A be a selfadjoint subalgebra of B(H) such that I € A. Then
the following relations hold:

(i) A CCaCu(A) CCr(A) = A = A = X" C A
(i) CrCr (A) UCCy (A) UCrC(A) C Cr(A) € A.

—i i i i i =%l &
(iii) A' = C.Co(A) =G, () = C.(A) = A" =X = A",
Proof. For (i) we apply Theorem 4 9, J. von Neumann’s bicommutant the-

orem and (ix) of Properties 4.1 for A ¢ A For proving (iii), we apply the
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operator mi in (i) taking into account Properties 4.1. For proving (ii), we de-
duce by definitions that A’ is contained in the asymptotic commutant C.(A) =
Cr(A)NCy(A) and the first inclusion of (ii) results from the decreasing property

of Cy(see pwroperty (i) of Proposition 3.13) and then we can use (i). 1

To conclude we describe how we order by inclusion other bicommutant
type sets attached to a selfadjoint subset £ C B(#). All these bicommutant type
sets attached to £ are contained in the bicommutant C;C;(£) = L. The follow-
ing relations follow from £’ C C,(L) C C,(£) N Cyn(L) using the decreasing
property (i) of Ciy, C,;, and properties (a) and (b) from Proposition 3.13.

(I) We have

CrnCrn(E) C CrnCn(ﬁ) C Crn(ﬁl) C C£<£/) = E”,
CaCon(£) € CaCa(£) € CalL!) € Cun(£') © C(£]) = £,
C - CnCn(;C) - Cn(;cl) C Crn(ﬁl) C Crv(ﬁ’) C C£(£/) = Ell,
E C Crncln(ﬁ) C CI‘TZCTZ(L) C Crn (E’) C Cz(cl) = E”.
(II) In the same way as above we obtain,
Cr]/Cr]/( ) C Cer]/(E) C Cry(ﬁl) C Cr (»C/) - E”,
CyCr]/( ) C CVCV<£) C Cy( /) C Cw(ﬁl) C Cr (;C/) = L://,
;6 C CVC]/(ﬁ) C C]/( /> C C/\/(ﬁl) C Cr (ﬁl) = £//,
;C C Cr]/Ch/( ) r]/CV(E) C Crv(ﬁl) C Ci(ﬁl) = E”.

It is easy to verify that Cy, (M), Cp, (M), Cy(M) are so-closed for every

M C B(H). If we pass to so-closure (usually denoted by GSO) in the last two
chains of inclusions from (I) we obtain by the bicommutant theorem the follow-
ing equalities.

PROPOSITION 4.13. If L is a unital x-subalgebra of B(H), then the following
equalities hold:

L = L" = CuCiy (L) = ConC (L) = CuCn(L) = Cu(L) = Cru(L') = C (L),
When L is a so-closed, unital x-subalgebra of (), the two last chains from
inclusions (I) and (II), the inclusion £ C C,C;(£) NC:C~ (L), (i) and (ii) from

Theorem 4.12 and the ]. von Neumann’s bicommutant theorem give besides the
equalities from the conclusion of the above proposition the following equalities.
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PROPOSITION 4.14. If L is a so-closed, unital x-subalgebra of B(H), then the
following equalities hold:

L=/L"=C.Co(L) =Co(L) = C:Cy (L) = CcC(L)
= CuCL = Coy(L)) = Cu(L!) = CruCy (L) = CunCo(L).
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