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ASYMPTOTIC COMMUTATIVITY
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ABSTRACT. The standard commutants in a noncommutative algebra are de-
rived from commutativity which in terms of Lie algebras means (adT)(S) = 0.
Some “weaker commutativities” given by vanishing (asymptotic vanishing)
properties of the powers of adT, for instance (adT)n(S) = 0 or
lim

n→∞
‖(adT)n(S)‖1/n = 0 when T and S are bounded linear operators on some

complex Banach space, describe in a similar way different type of “weaker
commutants”. This paper studies these “weaker commutants” and their corre-
sponding compositions, in particular “weaker bicommutants", in connection
with J. von Neumann’s classical bicommutant theorem.

KEYWORDS: Bounded operator, commutant, selfadjoint operator algebra.

MSC (2010): Primary 46L10, 47B47; Secondary 47A11, 47B48.

1. INTRODUCTION

One of the main concepts derived from commutativity is “the commutant”
and the well-known J. von Neumann’s bicommutant theorem (see [14]) in the
algebra of all bounded operators on a Hilbert space is one of the main results
concerning it. On the other hand a lot of properties containing as particular case
commutativity in a (normed) algebra, particularly for bounded operators on a
Banach space, have been described and well studied in terms of Lie theory (see
for instance [2], [4], [8], [13], [17]). So, if S, T are bounded operators on a complex
Banach space, let adT(S) = TS − ST. T commutes with S means adT(S) = 0
and the commutant of a subset S of bounded operators is S ′ = {T : (adT)(S) =
0, ∀S ∈ S}. The two conditions

lim
n→∞

‖(adT)n(S)‖1/n = 0 and lim
n→∞

‖(adS)n(T)‖1/n = 0

have respectively as particular cases the following equalities,

(adT)m(S) = 0 and (adS)p(T) = 0
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for some m, p natural numbers. For m = 1 or p = 1 these mean that T commutes
with S. Using one of the above four mentioned equalities we can associate to a
subset S of bounded operators different types of commutants Cα(S) in the sim-
ilar way as the equality adT(S) = 0 associates to S its commutant C1(S) = S ′.
This paper studies these “commutants” and the composition of such commutants
Cα(Cβ(S)), in particular CαCα(S), in connection with the classical bicommutant
C1(C1(S)) = (S ′)′ = S ′′ and some closure operators on the set of all subsets of
bounded operators on a Hilbert space.

2. THE SPACES YU({0})

Let Y be a complex Banach space and B(Y) the Banach algebra of all
bounded linear operators on Y . For an open subset D of C (the field of complex
numbers), O(D,Y) denotes the Fréchet space of all analytic Y-valued functions
on D.

Recall that S ∈ B(Y) has the single valued extension property (s.v.e.p.) if
for every open subset G of C, the unique analytic solution f ∈ O(G,Y) of the
equation (λ − T) f (λ) = 0, λ ∈ G, is identically 0. Thus, for every y ∈ Y and
S ∈ B(Y) having (s.v.e.p.) there exists a maximal open subset ρS(y) ⊂ C and a
unique analytic function y̆ ∈ O(ρS(y),Y) such that (λ − T) f (λ) = y for every
λ ∈ ρS(y). Usually σS(y) = C \ ρS(y) is the local spectrum of T at y and for
every closed set F ⊂ C, YS(F) denotes the linear manifold of all vectors satisfying
σS(y) ⊂ F (see [4], [6]).

In the following, we will consider an analogue of the above linear manifold
YS(F) for an arbitrary U ∈ B(Y), U not necessarily having (s.v.e.p.). For an
arbitrary U ∈ B(Y) we consider these spaces only for some closed subsets F ⊂
C. More precisely, the following definition describes a class of closed subsets F
of C attached to an arbitrary U ∈ B(Y). Every subset F in this class defines a
subspace YU(F) of Y in a similar way as YS(F) are defined for S having (s.v.e.p.).
In particular, for a complex Banach space X , Y = B(X ) 3 T and U = ad(T) ∈
B(Y), the corresponding subspace YU({0}) will be employed in the following to
describe “weaker commutantants” ({0}denotes the subset of C consisting of the
null element 0 of C ).

DEFINITION 2.1. For a closed subset F of C we say that U has (s.v.e.p.) on
C \ F, or F is analytic spectral compatible with U ∈ B(Y), if the only solution f ∈
O(C \ F,Y) of the equation

(λ−U) f (λ) = 0, λ ∈ C \ F

is the null function.

EXAMPLES 2.2. We mention the following examples:
(i) The spectrum of U, σ(U) is analytic spectral compatible with U.
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(ii) If F is a closed subset F ⊂ C and C \ F is a connex set having a nonempty
intersection with the resolvent set ρ(U) of U, then F is analytic spectral compati-
ble with U.

(iii) Every compact subset K of C with C \ K a connex set is analytic spectral
compatible with U.

(iv) Every finite subset of C is analytic spectral compatible with U.
(v) S ∈ B(Y) has the single valued extension property if and only if every

closed subset F of C is analytic spectral compatible with S; every closed subset F
of C is analytic spectral compatible with every S ∈ B(Y) having (s.v.e.p.).

Definition 2.1 can be rewritten as in the following lemma.

LEMMA 2.3. For U ∈ B(Y) and a closed subset F ⊂ C, the following assertions
are equivalent:

(i) F is analytic spectral compatible with U;
(ii) there exists y ∈ Y such that the equation

(λ−U)h(λ) = y, for all λ ∈ C \ F

has a unique solution f ∈ O(C \ F,Y).
Proof. (i)⇒ (ii) because by (i) y = 0 satisfies (ii). It remains to prove (ii)⇒

(i). It is obvious if we have y = 0 in (ii). If in (ii) we have y 6= 0 and h is the
unique solution given by (ii), then (λ−U)(h(λ) + f (λ)) = y, for every λ ∈ C \ F
and f ∈ O(C \ F,Y) verifying (λ−U) f (λ) = 0 for λ ∈ C \ F. Then we deduce
by (ii) h(λ) + f (λ) = h(λ) for every λ ∈ C \ F, which gives f (λ) = 0 for every
λ ∈ C \ F, hence (i) holds.

Recall now a well known analogue of the above linear manifold YS(F) (as-
sociated to S ∈ B(Y) having (s.v.e.p.)) for an arbitrary U ∈ B(Y). The strong
spectral manifold M(F, U) = M0(F, U) was defined (see [3]) for an arbitrary
U ∈ B(Y) and every closed subset F ⊂ C. Sometimes called the “global spectral
space” (see [9]), M0(F, T) consists of all y ∈ Y for which there exists an ana-
lytic function f ∈ O(C \ F,Y) satisfying the equation (λ −U) f (λ) = y for ev-
ery λ ∈ C \ F. Also used in describing property (δ) for an arbitrary bounded
operator on Y (see [1]), the linear manifold M0(F, U) is YS(F) for every closed
subset F ⊂ C if S has (s.v.e.p.). Therefore an analogue of YS(F) for an arbitrary
U ∈ B(Y) can be the linear manifold M0(F, U). When F ⊂ C is a closed sub-
set “analytic spectral compatible”with U, the following definition introduces a
suggestive name and notation for M0(F, U) in order to simplify our exposition.

DEFINITION 2.4. If U ∈ B(Y) and F ⊂ C is a closed set that is analytic
spectral compatible with U we denote

YU(F) = {y ∈ Y : ∃ f ∈ O(C \ F,Y), (λ−U) f (λ) = y for all λ ∈ C \ F}

and we call it the resolvent space of U corresponding to F.
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REMARK 2.5. We note the following:
(i) Obviously YU(F) = M0(F, U) is a linear manifold and by Definition 2.1 it

is easy to deduce (see Lemma 2.3) that for every y ∈ YU(F) there exists a unique
function f ∈ O(C \ F,Y) satisfying the equation (λ − U) f (λ) = y for every
λ ∈ C \ F. We denote this unique function by y̌F.

(ii) The linear manifold YU(F) is defined for an arbitrary U ∈ B(Y) only for
F analytic spectral compatible with U. If S has (s.v.e.p.) then YS(F) = YS(F) for
every closed subset F ⊂ C.

The following proposition is a direct consequence of the definitions above.

PROPOSITION 2.6. Let U ∈ B(Y) and YU(F) be a resolvent space for U as in
Definition 2.4. Then we have:

(i) XYU(F) ⊂ YU(F), for all X ∈ B(Y) commuting with U.
(ii) If z = Xy, then žF = Xy̌F for every y ∈ YU(F).

PROPOSITION 2.7. In the conditions of the Proposition 2.6, the following equality
defines a linear operator RF(λ, U) on YU(F), if for each y ∈ YU(F) and λ ∈ C \ F, we
have:

(i) RF(λ, U) : YU(F)→ YU(F), RF(λ, U)y = y̌F(λ).
(ii) For every λ ∈ C \ F, RF(λ, U) is the inverse of the linear operator (λ−U)|YU(F).

Proof. First, we prove (i). It is easy to observe that the following equalities
define for every λ ∈ C \ F a function gλ ∈ O(C \ F,Y),

gλ(µ) =

{ y̌F(µ)−y̌F(λ)
λ−µ µ 6= λ,

−y̌′F(λ) µ = λ.

Now, a simple computation gives (µ−U)gλ(µ) = y̌F(λ) for every λ, µ ∈ C \ F.
This means that y̌F(λ) ∈ YU(F) for every λ ∈ C \ F and (i) is proved. For proving
(ii), let y be an arbitrary element y ∈ YU(F). By the definition of RF(λ, U) and
y̌F(λ), we have

(λ−U)RF(λ, U)y = (λ−U)y̌F(λ) = y

for all λ ∈ C \ F. We can also compute RF(λ, U)(λ−U)y = žF(λ) where z = (λ−
U)y. By Proposition 2.6, we have žF(µ) = (λ−U)y̌F(µ) for every λ, µ ∈ C \ F
and finally we have for µ = λ, RF(λ, U)(λ −U)y = (λ −U)y̌F(λ) = y which
concludes the proof.

COROLLARY 2.8. Let U ∈ B(X ) be an arbitrary linear operator on X and ρ(U)
the resolvent set of U. Let F ⊂ C be a closed subset analytic spectral compatible with U
and RF(λ, U) from the above Proposition 2.7. If (C \ F) ∩ ρ(U) 6= ∅, then we have:

(i) RF(λ, U) is an extension from (C \ F) ∩ ρ(U) to C \ F of the resolvent R(λ, U)
of U.
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(ii) For every y ∈ YU(F), RF(λ, U)y = y̌F(λ) is the single analytic extension g of
R(λ, U)y from (C \ F) ∩ ρ(U) to C \ F and satisfying the equation (λ−U)g(λ) = y
for λ ∈ C \ F.

Proof. First we observe that R(λ, U)YU(F) ⊂ YU(F) for every λ ∈ ρ(U),
so R(λ, U) = RF(λ, U) on (C \ F) ∩ ρ(U) 6= ∅ as inverse of the same oper-
ator (λ − U)|YU(F). This proves (i). For proving (ii), it suffices to recall that
RF(λ, U)y = y̌F(λ) is analytic on C \ F (see Proposition 2.7), R(λ, U) is analytic
on (C \ F)∩ ρ(U) 6= ∅, and y̌F(λ) is the single analytic function on C \ F verifying
(λ−U)g(λ) = y because F is analytic spectral compatible with U.

Although the linear manifold YU(F) is not generally closed, it is possible
to describe some other topological properties of it. In [11] it is proved that for
every closed subset F of C and S ∈ B(X ) having (s.v.e.p.), the linear manifold
YS(F) is the range of a continuous Y-valued linear map defined on some Fréchet
space. This property holds also for YU(F), the linear manifold corresponding to
an arbitrary U and a closed subset F ⊂ C analytic spectral compatible with U, the
above mentioned corresponding property when S has (s.v.e.p.) being a particular
case (see Examples 2.2(v)).

PROPOSITION 2.9. If U ∈ B(Y) and F ⊂ C is analytic spectral compatible with
U, then there exist a Fréchet space YF and a continuous linear injective map φU : YF →
Y such that Range φF = YU(F).

Proof. The following assertions give the proof and will also be used in the
follwing. Let us consider O(C \ F,Y) the standard Fréchet space of all Y-valued
analytic functions on C \ F.

Step 1. We have

Y ' {y : C \ F → Y , y(λ) = y for all λ ∈ C \ F where y ∈ Y}
= { f : C \ F → Y where f is constant} ⊂ O(C \ F).

By this identification ', the norm topology of Y is the topology induced by the
Fréchet topology of O(C \ F,Y).

Step 2. Y can be considered a closed subspace of O(C \ F,Y).
Step 3. The following linear map is continuous,

φU : O(C \ F,Y)→ O(C \ F,Y),
[φU(ϕ)](λ) = (λ−U)ϕ(λ) for all λ ∈ C \ F and

φU(y̌F) = y, for all y ∈ YU(F).

Step 4. φ−1
U (Y) is a closed subspace of O(C \ F,Y), hence a Fréchet space.

Step 5. Because F is analytic spectral compatible with U we have

φ−1
U ({y}) =

{
{y̌F} if y ∈ YU(F),
∅ if y /∈ YU(F).
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Obviously φU(φ
−1
U (Y)) = YU(F) and φU |φ−1

U (Y) is an injective map.

So the conclusion of the Proposition 2.9 holds if we put YF = φ−1
U (Y) =

φ−1
U (YU(F)), by observing that φU(YF) = YU(F).

The inverse of φU |φ−1
U (Y) is defined on YU(F) as the following map

y→ y̌F, for every y ∈ YU(F)

which can also be denoted by φ−1
U . The inverse of this algebraic isomorphism is

the continous map φU |φ−1
U (Y).

Now we consider a particular case of a closed set analytic spectral compati-
ble with U ∈ B(Y) and its corresponding resolvent space, namely the subset {0}
of C and the corresponding resolvent space YU({0}) (by Examples 2.2(iv), {0}
is spectral compatible with all U ∈ B(Y)). Using Laurent’s development of an
analytic function on C \ {0}, an appropriate description of the linear manifold
YU({0}) can be given. The following proposition is devoted to it.

PROPOSITION 2.10. For every U ∈ B(Y) the following equalities hold:

YU({0}) =
{

y : lim
n→∞

‖(U)ny‖1/n = 0
}

and

y̌{0}(λ) = ∑
n>0

λ−(n+1)Uny, for every λ ∈ C \ {0}, y ∈ YU({0}).

The proof is an easy consequence of the following lemma.

LEMMA 2.11. For an arbitrary fixed y ∈ Y and U ∈ B(Y) the following state-
ments are equivalent:

(i) There exists ϕ ∈ O(C \ {0},Y) such that (λ − U)ϕ(λ) = y for every λ ∈
C \ {0}.

(ii) lim
n→∞

‖Uny‖1/n = 0.
If (i) holds, then

y̌{0}(λ) = ϕ(λ) = ∑
n>0

λ−(n+1)Uny, for every λ ∈ C \ {0}.

Proof. (ii) ⇒ (i) Indeed, by (ii) ϕ(λ) = ∑
n>0

λ−(n+1)Uny, λ ∈ C \ {0}, is an

analytic function on C \ {0} and obviously satisfies (i).
(i)⇒ (ii) Let us consider ϕ as in (i). Then there exists a sequence {yn} ⊂ Y

so that

ϕ(λ) =
n=+∞

∑
n=−∞

λnyn

and (λ−U)ϕ(λ) = y, for every λ ∈ C \ {0}. We then have,

(λ−U)ϕ(λ)=
n=+∞

∑
n=−∞

λn+1yn−
n=+∞

∑
n=−∞

λnUyn = ∑
m 6=0

λm(ym−1−Uym)+y−1−Uy0
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and by (i) it follows that

∑
m 6=0

λm(ym−1 −Uym) + y−1 −Uy0 = y

for every λ ∈ C \ {0}. Therefore, we have

(2.1) ym−1 = Uym, for every m 6= 0 and y−1 −Uy0 = y

and we can write for n > 0,

Un−kyn = yk if 0 6 k 6 n.

Then the following inequalities hold:

‖yk‖ 6 ‖Un−k‖‖yn‖ if 0 6 k 6 n.

But ϕ∈O(C\ {0},Y) gives lim
n→+∞

‖yn‖1/n =0 and by the above inequalities we get

yk = 0 for every k > 0.

In particular y0 = 0 and by (2.1) it is easy to obtain y = y−1 −Uy0 = y−1, y−2 =
Uy−1 = Uy, . . . , y−(n+1) = Uyn = Uny for every n > 0. Hence, we obtain a
complete description of ϕ from (i) (in particular this gives also a direct proof of
the uniqueness of ϕ in (i)) i.e.

y̌{0}(λ) = ϕ(λ) = ∑
n>0

λ−(n+1)Uny, for every λ ∈ C \ {0}

and obviously we have lim
n→∞

‖Uny‖1/n = 0. Hence (i)⇒ (ii) and the lemma has

been proved.

Now, we use the Proposition 2.10 in order to obtain YU({0}) as the range of
an injective continuous linear map on the Fréchet space Y{0} (see Proposition 2.9).
More precisely, in the particular case F = {0} we have to describe the following
objects from Proposition 2.9: the Fréchet space YF and the map φU : YF → Y , a
continuous linear injective map having Range φU = YU({0}). For F = {0} we
have

φU : O(C \ {0},Y)→ O(C \ {0},Y)
where

[φU(ϕ)](λ) = (λ−U)ϕ(λ) =
n=+∞

∑
n=−∞

λn+1yn −
n=+∞

∑
n=−∞

λnUyn,

for every

ϕ ∈ O(C \ {0},Y), ϕ(λ) =
n=+∞

∑
n=−∞

λnyn and λ ∈ C \ {0}.

The Banach space Y is a closed subspace of O(C \ {0},Y) and

Y =
{ +∞

∑
n=−∞

λnyn : yn = 0 for every n 6= 0 and y0 ∈ Y
}

.
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The structure of YU({0}) is described as in the Propositions 2.9, 2.10. So, we
deduce Y{0} = φ−1

U (Y) = φ−1
U (YU({0})) and

Y{0} =
{

∑
n>0

λ−(n+1)Uny : every λ ∈ C \ {0}, y, lim
n→∞

‖Uny‖1/n = 0
}

.

We thus have a linear isomorphism

φU : Y{0} → YU({0}) ⊂ Y , ∑
n>0

λ−(n+1)Uny 7→ y

for all y ∈ Y verifying lim
n→∞

‖Uny‖1/n = 0. So, φU(Y{0}) = YU({0}) and φU is

an injective linear continuous map from the Fréchet space Y{0} into the Banach
space Y .

Finally we discuss the locally convex topologies on YU({0}). Given a fam-
ily {Yα}α∈A of complex vector subspaces Yα of a complex vector space Y , there
exists a locally convex topology on Y having Yα as closed subspace for every
α ∈ A. Every linear functional f 6= 0 on Y is given by the equalities f (eγ) =
1, f (eβ) = 0 if β 6= γ for some linear base {eβ} of Y . As every linear independent
system of vectors in Y can be completed to a base, there exists a family of linear
functionals { fαβ}(α, β)∈A×B on Y such that Yα =

⋂
β∈B

ker fαβ for every α ∈ A. The

topology on Y given by the family of seminorms pαβ(·) = | fαβ(·)|, (α, β) ∈ A× B,
has Yα as closed subspace for every α ∈ A. In this way can be defined a locally
convex topology on Y such that in this topology YU({0}) are closed subspaces
for all U ∈ B(Y).

On the other hand, for an arbitrary fixed U ∈ B(Y) a Fréchet topology on
YU({0}) can be derived from an equivalent assertion with the definition of this
linear manifold given by the following lemma. As usual N denotes the set of all
natural numbers.

LEMMA 2.12. The following assertions are equivalent:
(i) y ∈ YU({0}).

(ii) lim
n→∞

‖Uny‖1/n = 0.

(iii) sup
n∈N
‖(αU)ny‖ < +∞ for every α ∈ N, α > 1.

Proof. (i) ⇔ (ii) is given by Proposition 2.10. It is easy to see that (iii) is
equivalent with the following assertion:

for every α > 0 there exist kα ∈ N such that sup
n>kα

‖(αU)nx‖ < +∞.

For proving (ii)⇒ (iii) it is sufficient to observe that for every α > 0 there exists
kα ∈ N such that ‖Unx‖ < (1/α)n for every n > kα. For proving (iii) ⇒ (ii) we
deduce from (iii) that for every α > 0 there exists Mα with ‖(αU)nx‖ < Mα for
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every n ∈ N i.e. ‖Unx‖ < Mα(1/α)n for every n ∈ N. This gives

lim sup
n→∞

‖Unx‖1/n <
1
α

for every α > 0 and lim
n→∞

‖Unx‖1/n = 0.

Hence (iii)⇒ (ii), (ii)⇔ (iii) and the lemma has been proved.

NOTATION 2.13. For U ∈ B(Y) and α > 0, we denote for every y ∈ Y ,

pU,α(y) = sup
n∈N
‖(αU)ny‖ = sup{‖y‖, ‖αUy‖, . . . , ‖αnUny‖, . . .}.

REMARK 2.14. We note the following:
(i) For every α > 0, pU,α : YU({0})→ R+ is a norm on YU({0}).

(ii) The equivalence given by Lemma 2.12 can be rewritten:

y ∈ YU({0}) if and only if pU,α(y) < +∞ for every α ∈ N, α > 1.

PROPOSITION 2.15. The increasing sequence of norms {pU,k}16k∈N defines a
Fréchet space topology on YU({0}). Every norm pU,k, 1 6 k ∈ N on YU({0}) can
be extended to a norm on Y . The resulting sequence of norms on Y defines a metrizable
locally convex topology on Y , and in this topology YU({0}) is a closed subspace of Y .

Proof. First we verify that {pU,k}16k∈N defines a Fréchet space topology on
YU({0}). Consider {yn} ⊂ YU({0}) a Cauchy sequence corresponding to the
increasing sequence of norms {pU,k}16k∈N. We now prove that there exists y ∈
YU({0}) such that {pU,k}(yn − y) → 0 for n → ∞. By the Cauchy property of
{yn}, for every 1 6 k ∈ N and η > 0 there exists a natural number m(k, η) such
that

‖(kU)n(ym − yp)‖ < η for every m, p > m(k, η) and every n ∈ N.

For n = 0 we deduce that {yn} is a Cauchy sequence in the Banach space Y . So
there exists y ∈ Y such that ‖yn − y‖ → 0 for n → ∞ and taking the limit for
p→ ∞ in the above inequalities, we obtain

‖(kU)n(ym − y)‖ 6 η for every m > m(k, η) and every n ∈ N.

Using Remark 2.14(ii) we deduce that ym − y ∈ YU({0}), y = ym − (ym − y) ∈
YU({0}) and

lim
m→∞

pU,k(ym − y) = 0 for every k, 1 6 k ∈ N

which means that ym → y in the topology given by the increasing sequence of
norms {pU,k}16k∈N. Therefore YU({0}) endowed with the increasing sequence
of norm {pU,k}16k∈N is a Fréchet space. Using Zorn’s lemma as in the proof of the
Hahn–Banach theorem it is possible to prove that there exists an extension of the
seminorm pU,k and the inequality ‖y‖ 6 pU,k(y) from YU({0}) to a seminorm
p̃U,k on Y verifying the inequality ‖y‖ 6 p̃U,k(y) for every y ∈ Y . Indeed, we can
prove the following lemma.
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LEMMA 2.16. Let Y be a complex vector space, s be a seminorm on Y and Y1 a
subspace of Y . The following assertions hold:

(i) Every seminorm p on Y1 can be extended to a seminorm p̃ on Y .
(ii) If s(y1) 6 p(y1) for every y1 ∈ Y1, then p can be extended to a seminorm p̃

verifying s(y) 6 p̃(y) for every y ∈ Y and p̃ is a norm on Y if the seminorm s is a norm.

Proof. First we prove the lemma for Y = Y1 + Cx, x /∈ Y1. In this case
an arbitrary y ∈ Y can be written uniquely y = y1 + λx, y1 ∈ Y1, λ ∈ C and
p̃(y) = p(y1) + |λ| is well defined and p̃ is a seminorm extension of p to Y . If
s(y1) 6 p(y1) for every y1 ∈ Y1, then

s(y1 + λx) 6 s(y1) + |λ| 6 p(y1) + |λ| = p̃(y).

because s is a seminorm and we can chose x ∈ Y \ Y1 with the property s(x) = 1
or s(x) = 0 for every x ∈ Y \ Y1. Now it is easy to verify that for the following
ordered set S̃ the hypothesis of Zorn’s lemma hold. S̃ consists of all pairs (Z , q)
where Z is a subspace of Y , Y1 ⊂ Z and q is a seminorm extension of p to Z
(verifying s(z) 6 q(z) for every z ∈ Z when we use S̃ for the proof of the second
part of the lemma). The order on S̃ is the following:

(Z1, q1) ≺ (Z2, q2) if and only if Z1 ⊂ Z2 and q2|Z1 = q1.

Therefore S̃ has a maximal element (Z0, qo). If Z0 6= Y there exists x ∈ Y \
Z0 and we can consider Z1 = Z0 + Cx. From the first part of the proof there
exists a seminorm extension of q0 to Z1 verifying the conclusion of lemma which
contradicts the maximality of (Z0, qo). Thus, Z0 = Y and q0 will be p̃ from the
conclusion of the lemma which is now completely proved.

We conclude by proving that YU({0}) is a closed subspace of Y in the lo-
cally convex topology given by the norms p̃U,k , 1 6 k ∈ N. Let {yn} ⊂ YU({0})
be a sequence in Y and yn → y ∈ Y , n → ∞, in the metrizable locally con-
vex topology on Y given by the increasing sequence of norms { p̃U,k}16k∈N on
Y . Then {yn} is a Cauchy sequence in the Fréchet topology of YU({0}) given by
the norms pU,k because the norms p̃U,k are extensions of the norms pU,k. So there
exists y0 ∈ YU({0}) such that yn → y0 in the Fréchet topology of YU({0}) given
by the norms pU,k therefore y = y0 and Proposition 2.15 is proved.

REMARK 2.17. We note the following:
(i) The locally convex metrizable topology on Y is stronger than the topology

given by the initial norm ‖ · ‖ of Y (‖y‖ 6 p̃U,k(y) for every y ∈ Y and 1 6 k ∈ N).
(ii) The set {y ∈ Y : pU,k(y) 6 m} is for every 1 6 k ∈ N a closed subset of the

normed space Y for every 1 6 m ∈ N.

PROPOSITION 2.18. YU({0}) is a subset of type Fσ of the Banach space Y .
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Proof. The following decomposition holds

YU({0}) =
⋃

m>1

{pU,k(y) 6 m}, for every 1 6 k ∈ N,

and the above Remark 2.17 concludes the proof.

All the above results concerning the spaceYU({0}) can be rewritten forY =
A a Banach algebra and U = adT ∈ B(A), T ∈ A, adT(S) = TS− ST for S ∈ A
(in particular forA = B(X ) the Banach algebra of all bounded linear operator on
a complex Banach space X ).

NOTATION 2.19. For Y = A, including the particular case whenA = B(X ),
we denote

YU({0}) = AadT({0})
when U = adT, T ∈ A, adT(S) = TS− ST for S ∈ A.

We have a specific description for AadT({0}) when A = B(X ) and T ∈
B(X ),

AadT({0}) =
{

S ∈ B(X ) : lim
n→∞
‖(adT)n(S)‖ = 0

}
.

First we can attach to x ∈ X , 1 6 k ∈ N and T ∈ B(X ) the following function on
B(X ):

padT,k,x(S) = sup
n∈N
{‖(k · adT)n(S)x‖} for every S ∈ B(X ).

The following inequalities hold:

(2.2) ‖Sx‖ 6 padT,k,x(S) 6 padT,k(S)‖x‖.
If we denote

ÃadT({0}) = {S : padT,k,x(S) < +∞ for every x ∈ X and 1 6 k ∈ N},

it is easy to observe by the above inequalities (2.2) that AadT({0}) ⊂ ÃadT({0}).
By the Banach–Steinhaus theorem we obtain the equalityAadT({0}) = ÃadT({0})
and the following description of AadT({0}).

PROPOSITION 2.20. If X is a complex Banach space and T ∈ B(X ) is a bounded
linear operator on X then the following equalities hold:

AadT({0}) = {S : padT,k,x(S) < +∞ for every x ∈ X and 1 6 k ∈ N}
= {S : padT,k(S) < +∞ for every 1 6 k ∈ N}

=
{

S ∈ B(X ) : lim
n→∞
‖(adT)n(S)‖ = 0

}
.

By applying Lemma 2.16 in two steps using the two inequalities from (2.2)
we deduce now that the families of seminorms on AadT({0}) {padT,k,x}k>1,x∈X
and {padT,k}k>1 can be extended to a family of seminorms { p̃adT,k,x}k>1,x∈X and
a family of norms { p̃adT,k}k>1 on B(X ). These satisfay the inequalities,

(2.3) ‖Sx‖ 6 p̃adT,k,x(S) 6 p̃adT,k(S)‖x‖.
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So we can associate to each T ∈ B(X ) two locally convex topologies on B(X )
stronger than τso, the so-topology on B(X ). If we denote τsa,T (the strong asymp-
totic commutativity topology associated to T) the locally convex topology given by
the family of seminorms { p̃adT,k,x}k>1,x∈X and if we denote τa,T (the asymptotic
commutativity topology associated to T) the local convex topology given by the fam-
ily of norms {padT,k}k>1, then we have

(2.4) τso ≺ τsa,T ≺ τa,T .

Finally we recall that for A = B(X ), AadT({0}) is a closed subspace of B(X ) in
the Fréchet topology τa,T .

3. ASYMPTOTIC COMMUTATIVITY, NIL-COMMUTATIVITY, ASYMPTOTIC COMMUTANTS,
AND “OTHER” COMMUTANTS

In this section we discuss some extensions of commutativity. Let A be an
associative algebra. Recall the following notation for commutativity which will
be used in the following (see [12]). For S, T ∈ A, S ^ T means that S commutes
with T i.e. ST = TS or, in terms of Lie algebras, adS(T) = 0. This relation is
symmetric i.e. S ^ T ⇒ T ^ S and for L ⊂ A we denote

L′ = {X ∈ A : X ^ S for every S ∈ L} the commutant of L,

L′′ the bicommutant of L, etc.

The usual commutativity is embedded as a particular case in the following
straightforward implications:

S ^ T ⇒ (adS)n(T) = 0 for 1 6 n ∈ N,

and if A is a normed algebra we have,

(adS)k(T) = 0 for some k ∈ N⇒ lim
n→∞
‖(adS)n(T)‖1/n = 0.

We now define extensions of the usual commutativity concept, and the associated
”commutants", by using the (weaker) properties of commutativity which are con-
tained in the two implications above. We begin by defining n-commutativity in
an associative algebra A, which corresponds to the first implication above.

DEFINITION 3.1. Let 1 6 n ∈ N be a fixed natural number. If A and B are
two elements of A, we say that A n-commutes with B if we have

(adA)n(B) = 0

and we denote this property by A n
^ B.

REMARK 3.2. (i) For n = 1 we have the commutativity,

A 1
^ B if and only if A ^ B.
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(ii) For n 6= 1, in general A n
^ B does not imply B n

^ A (the relation A n
^ B is

not symmetric).
(iii) A n

^ B⇒ A m
^ B for every m > n, in particular

A ^ B⇒ A m
^ B for every m > 1.

The n-commutants are now defined in a natural way.

DEFINITION 3.3. Let L ⊂ A be a subset of A and m a natural number.
The right n-commutant of L is

Crn(L) = {T ∈ A : S n
^ T for every S ∈ L} =

⋂
S∈L

ker(adS)n.

The left n-commutant of L is

Cln(L) = {T ∈ A : T n
^ S for every S ∈ L} = {T ∈ A : L ⊂ ker(adT)n}.

The n-commutant of L is

Cn(L) = Crn(L) ∩ Cln(L) = {T ∈ A : (adS)n(T) = (adT)n(S) = 0}.

The regular right (respectively left) nil-commutants of L are

Cr(L) =
⋃

n>1

Crn(L) and Cl(L) =
⋃

n>1

Cln(L).

The regular nil-commutant of L is

C−(L) = Cr(L) ∩ Cl(L) =
⋃

n>1

Cn(L).

REMARK 3.4. We note the following:
(i) Crn(L) ⊂ Crm(L), Cln(L) ⊂ Clm(L), ∀ n 6 m.

(ii) Crn(L) ∩ Clk(L) ⊂ Cn∨k(L).
(iii) Cr1(L) = Cl1(L) = C1(L) = L′ ⊂ Cn(L) ⊂ C−(L), ∀ n > 1.
(iv) Crn({S}) = ker(adS)n, Cln({S}) = {T ∈ A : S ∈ ker(adT)n}, Cn({S}) =
{T ∈ A : T n

^ S, S n
^ T}, ∀ S ∈ A.

The second type of commutativity will be called nil-commutativity and means
n-commutativity with variable n.

DEFINITION 3.5. If A, B ∈ A, A nil-commutes or ν-commutes with B if there
exists a natural number k > 1 such that A k

^ B. We will denote this property by
A ν
^ B.

REMARK 3.6. We also note the following:
(i) A n

^ B for n ∈ N, n > 1⇒ A ν
^ B.

(ii) If A ν
^ B, then there exists min{k : A ν

^ B} = k(A, B) which is called the
index of nil-commutativity (or ν-commutativity) when A ν

^ B.
(iii) If A ν

^ B then A n
^ B for every n > k(A, B), n ∈ N.
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(iv) The relation given by A ν
^ B is not symmetric. We can also define “com-

mutants”corresponding to ν-commutativity.

DEFINITION 3.7. Let L ⊂ A be a subset of A.
The right nil-commutant (rν-commutant) of L is

Crν(L) = {T ∈ A : S ν
^ T for every S ∈ L} =

⋂
S∈L

⋃
n∈N

ker(adS)n.

The left nil-commutant (lν-commutant) of L is

Clν(L) = {T ∈ A : T ν
^ S for every S ∈ L} =

{
T ∈ A : L ⊂

⋃
n∈N

ker(adT)n
}

.

The nil-commutant (ν-commutant) of L is

Cν(L)=Crν(L)∩Clν(L)={T∈A : (∀S∈L)(∃n∈N)(adS)n(T)=(adT)n(S)=0}.

REMARK 3.8. We also note that:
(i) Cr(L) ⊂ Crν(L), and Cl(L) ⊂ Clν(L), C−(L) ⊂ Cν(L),L′ ⊂ Cν(L);

(ii) Crν({S}) =
⋃

n∈N
ker(adS)n;

(iii) Clν({S}) =
{

T ∈ A : S ∈ ⋃
n∈N

ker(adT)n
}

, Cν({S}) = {T ∈ A : ∃n ∈

N, (adS)n(T) = (adT)n(S) = 0}.
In closing, let us consider the case when (A, ‖ · ‖) is a Banach algebra. In this

case, we introduce asymptotic commutativity, which corresponds to the second
implication mentioned in the begining of this section.

DEFINITION 3.9. We say that S ∈ A asymptotically commutes with T ∈ A if

lim
n→∞
‖(adS)n(T)‖1/n = 0,

that is T ∈ AadS({0}) and we denote it S a
^ T.

REMARK 3.10. It is worth mentioning the following:
(i) T a

^ S means

lim
n→∞
‖(adT)n(S)‖1/n = 0, i.e. S ∈ AadT({0})

and the relation S a
^ T is not symmetric.

(ii) S ^ T ⇒ S n
^ T ⇒ S ν

^ T ⇒ S a
^ T.

(iii) S ^ T ⇒ T ^ S⇒ T n
^ S⇒ T ν

^ S⇒ T a
^ S.

As in the case of n-commutativity or ν-commutativity we can define com-
mutants for the case of asymptotic-commutativity.

DEFINITION 3.11. Let L ⊂ A be a subset of A.
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The right asymptotic commutant of L is

Cr
∼
(L) = {T ∈ A : S a

^ T for every S ∈ L} =
⋂

S∈L
AadS({0}).

The left asymptotic commutant of L is

C l
∼
(L) = {T ∈ A : T a

^ S for every S ∈ L} = {T ∈ A : L ⊂ AadT({0})}.

The asymptotic commutant of L is

C∼(L) = Cr
∼
(L) ∩ C l

∼
(L).

REMARK 3.12. We note the following facts:
(i) Using the seminorms introduced in Section 2, see (2.2) and (2.3), we can

describe C l
∼
(L), Cr

∼
((L), C∼(L) for an arbitrary L ⊂ A,

C l
∼
(L) = {T ∈ A : pk,adT(S) < +∞, for every 1 6 k ∈ N and S ∈ L},

Cr
∼
(L) = {T ∈ A : pk,adS(T) < +∞, for every 1 6 k ∈ N and S ∈ L}.

(ii) Cr
∼
(S) = AadS({0}), C l

∼
(S) = {T ∈ A : S ∈ AadT({0})}.

(iii) Cr(L) ⊂ Crν(L) ⊂ Cr
∼
(L), Cl(L) ⊂ Clν(L) ⊂ C l

∼
(L) and L′ ⊂ Cn(L) ⊂

C−(L) ⊂ Cν(L) ⊂ C∼(L), for 1 6 k ∈ N and L ⊂ A.

The above introduced “commutants”( Definitions 3.3, 3.7, 3.11) define maps
on P(A) = {L : L ⊂ A} for any Banach algebra A (some of them for a general
associative algebra A as in Definitions 3.3, 3.7). If we use the generic notation
C(L) for one of these commutants of L ⊂ A, then

π : P(A)→ P(A), π(L) = C(L) for L ⊂ A,

denotes one of these maps. The following proposition summarizes some basic
properties concerning these maps.

PROPOSITION 3.13. The map π has the following properties:
(i) π is a decreasing map, i.e. L ⊂M⇒ π(M) ⊂ π(L).

(ii) If A is a ∗-complex Banach algebra and L ⊂ A is selfadjoint then π(L) is selfad-
joint.

If π is one of the maps attached to C1, Cn, Cν, C∼, we have for every L ⊂ A:
(a) L ⊂ π2(L) = π2k(L) and π2k+1 = π.
(b) L ⊂ Cln(Crn(L)) ∩ Crn(Cln(L)), L ⊂ Clν(Crν(L)) ∩ Crν(Clν(L)), and L ⊂

C l
∼
(Cr
∼
(L)) ∩ Cr

∼
(C l
∼
(L)).

Proof. Properties (i), (ii) and (b) follow directly from the definitions. For
proving (a) it is easy to verify using definitions that L ⊂ π2(L) and then we
proceed as in the well known case when π(L) = L′.
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PROPOSITION 3.14. For every L ⊂ A the following assertions hold:
(i) L′ ⊂ Cr(L) ⊂ Crν(L) ⊂ Cr

∼
(L), L′ ⊂ Cl(L) ⊂ Clν(L) ⊂ C l

∼
(L), and

L′ ⊂ Cn(L) ⊂ C−(L) ⊂ Cν(L) ⊂ C∼(L), for 1 6 k ∈ N and L ⊂ A.
(ii) L ⊂ L′′ ⊂ C∼(L′).

(iii) C l
∼

C l
∼
(L) ∪ C l

∼
Cr
∼
(L) ⊂ C l

∼
(L′) and Cr

∼
C l
∼
(L) ∪ Cr

∼
Cr
∼
(L) ⊂ Cr

∼
(L′).

(iv) C∼C∼(L) ⊂ C∼(L′).
Proof. One applies the definitions and (i) of the above Proposition 3.13.
For (i) see also (iii) from the Remark 3.12.
For (ii) replace L by L′ in L′ ⊂ C∼(L) from (i).
For (iii) one applies (i) for C l

∼
, C l
∼

in L′ ⊂ Cr(L) and L′ ⊂ Cl(L).
For (iv), (i) holds also for C∼ and from (i) we have L′ ⊂ C∼(L).

4. COMMUTATORS COMPOSITION FOR SELFADJOINT SUBSETS OF BOUNDED OPERATORS
ON A COMPLEX HILBERT SPACE

Let L be a set of linear bounded operators on a complex Banach space X .
Because C1C1(L) = (L′)′ = L′′, if Cα, Cβ are given by Definitions 3.3, 3.7, 3.11
we call CαCβ(L) a bicommutant type set. This section is devoted to initiating a
study of these bicommutants type sets, including the cases when L is a selfadjoint
set of bounded operators on a complex Hilbert space H, or a selfadjoint unital
subalgebra L of B(H).

We start by associating toL some well known objects suggested by the proof
of J. von Neuman’s bicommutant theorem. If B(X ) is the Banach algebra of all
bounded linear operators on a Banach complex space X and L ⊂ B(X ) we de-
note:

LatL = {Y ⊂ X : Y closed subspace, SY ⊂ Y for every S ∈ L},

Lsi
= {T ∈ B(X ) : TY ⊂ Y for every Y ∈ LatL},

XL(x) = sp{Sx : S ∈ L} ⊂ X for every x ∈ X ,

Li
= {T ∈ B(X ) : Tx ∈ XL(x) for every x ∈ X}.

The following basic properties are easy consequences of the definitions.

PROPERTIES 4.1. In what follows, L,L1,L2 are subsets of B(X ) and the fol-
lowing properties hold:

(i) L ⊂ Lsi
.

(ii) L1 ⊂ L2 ⇒ LatL1 ⊂ LatL2 ⇒ L
si
1 ⊂ L

si
2 .

(iii) L1 ⊂ L2 ⇒ XL1(x) ⊂ XL2(x) for every x ∈ X ⇒ Li
1 ⊂ L

i
2.

(iv) L ⊂ Li
.

(v) XL(x) = XLi(x) for every x ∈ X .
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(vi) (Li
)

i
= Li

and by the above properties (iii) and (iv), “ (·)i
”is a closure

operator on the subsets of B(X ).

(vii) L ⊂ L1 ⊂ L
i ⇒ Li

= Li
1.

(viii) If A ⊂ B(X ), Amultiplicatively closed, then

XA(x) = sp{Ax : A ∈ A} ∈ LatA for every x ∈ X .

(ix) If A ⊂ B(X ), Amultiplicatively closed and I ∈ A, then

x ∈ XA(x) for every x ∈ X and Lsi ⊂ Li
.

Proof. We only prove (v), (vi) and (vii); the proofs of the other properties are
simple verifications. By (iv) and (iii) we have XL(x) ⊂ XLi(x) for every x ∈ X .

On the other hand, T ∈ Li
implies Tx ∈ XL(x) for every x ∈ X , so we deduce

XL(x) ⊃ XLi(x) for every x ∈ X and the property (v). Then property (vi) follows
from (v) and definitions, because the following implication holds:

XL1(x) = XL2(x) for every x ∈ X ⇒ Li
1 = Li

2.

Property (vii) is a well known property of the closure operators and it follows
from properties (iii) and (vi).

Now we recall that a projector P ∈ B(X ), i.e. an idempotent bounded linear
operator on X , has the spectrum σ(P) = {0, 1}, is decomposable, its maximal
spectral spaces being P(X ) and (I− P)(X ). Moreover P = e{1}(P) is the value of
analytic functional calculus of P in e{1} (an analytic function equals 1, respectively
0 in a neighborhood of 1, respectively 0). The following lemma describes the
right asymptotic commutant and asymptotic commutant (see (3.11)) of a projector
P ∈ B(X ).

LEMMA 4.2. If X, P ∈ B(X ) and P2 = P, then the following assertions are
equivalent:

(ca) P a
^ X, i.e. lim

n→∞
‖(adP)nX‖1/n = 0;

(c) PX = XP;
(̃c) P a

^ X and X a
^ P.

Proof. It is enough to prove (ca) ⇒ (c), the other implications being obvi-
ous. The implication is an easy consequence of an asymptotic formula for the
commutator (see [2]) observing that all the derivatives of e{1} ∈ O(σ(P)) are
identically zero and by the asymptotic formula for the commutator we deduce
[e{1}(P), X] = 0.

By Definition 3.11 the above lemma can be rewritten.

LEMMA 4.3. For every projector P ∈ B(X ) we have

Cr
∼
({P}) = C∼({P}) = {P}′.
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Let now H be a complex Hilbert space. In the following all the results refer
to the case when X = H. We denote by P the set of all selfadjoint projectors on
H, P = {P ∈ B(H) : P2 = P = P∗}. As usual ∗ : B(H) → B(H) is the adjoint
operation, T∗ is the adjoint of T ∈ B(H) and a subset L ⊂ B(H) is selfadjoint if
T∗ ∈ L for every T ∈ L. We denote PY ∈ P the ortogonal projection on Y for
every closed subspace Y of H. We recall also the following well known result,
one of the keys of the bicommutant theorem.

LEMMA 4.4. If L ⊂ B(H) is a selfadjoint set, then the following assertions are
equivalent:

(i) Y ∈ LatL.
(ii) PY ∈ L′.

Proof. (ii)⇒ (i) is obvious. If (i) holds then PYSPY = SPY for every S ∈ L.
So PYS∗PY = PYS∗ for every S ∈ L, which gives PYSPY = PYS because L is a
selfadjoint set.

PROPOSITION 4.5. If L ⊂ B(H) is a selfadjoint set, then Lsi
= (P ∩ L′)′, i.e.

for every X ∈ B(H) the following assertions are equivalent:

(i) X ∈ Lsi.
(ii) X ∈ (P ∩ L′)′ (i.e. XP = PX for every P ∈ P ∩ L′).

Proof. (ii) ⇒ (i) is obvious because L is selfadjoint and by the above Lem-
ma 4.4 we have Y ∈ LatL if and only if PY ∈ L′. For proving (i)⇒ (ii) we observe
that for P ∈ P ∩ L′ we have also (I − P) ∈ P ∩ L′ and by the above lemma PH
and (I − P)H are both in LatL. But PH and (I − P)H are all maximal spectral
spaces of P and by [4] we get that lim

n→∞
‖(adP)nX‖1/n = 0, i.e. P a

^ X and by

Lemma 4.2 we have PX = XP, hence (ii).

PROPOSITION 4.6. If L ⊂ B(H) is a selfadjoint set, then Lsi
= L′′.

Proof. Having P ∩ L′ ⊂ L′ we deduce by Proposition 4.5 the inclusion

L′′ ⊂ (P ∩ L′)′ = Lsi
.

To prove the equality we have to prove the other inclusion and it suffices to prove
that X ∈ Lsi

commutes with every selfadjoint element A ∈ L′. Indeed, L hence
L′ being selfadjoint sets, every element T ∈ L′ is a linear combination of selfad-
joint elements of L′. So, let X ∈ Lsi

and A = A∗ ∈ L′. If {Pλ} is the family of
spectral projectors of A, {Pλ} commutes with every operator commuting with A,
in particular with L because A is supposed to be in L′. Then, by the above Propo-
sition 4.5 X commutes with {Pλ}, hence with A, which concludes the proof.

PROPOSITION 4.7. If L ⊂ B(H) is a selfadjoint set, then

Cr
∼
(L′) ⊂ Lsi

,



ASYMPTOTIC COMMUTATIVITY 193

i.e. the following implication holds:

X ∈ Cr
∼
(L′)⇒ XY ⊂ Y for every Y ∈ LatL.

Proof. X ∈ Cr
∼
(L′) means lim

n→∞
‖(adT)nX‖1/n = 0 for every T ∈ L′. For

Y ∈ LatL we have PY ∈ L′ (see Lemma 4.4). Thus,

lim
n→∞
‖(adPY )nX‖1/n = 0

and by Lemma 4.3 we deduce PYX = XPY . Hence XY ⊂ Y for every X ∈ Cr
∼
(L)

and Y ∈ LatL.

With the following corollary we start to describe the sets of bicommutant
type anounced in the beginning of this section.

COROLLARY 4.8. For every selfadjoint set L ⊂ B(H) we have:

Cr
∼
(L′) = Lsi

= L′′.

Proof. By first inclusion of (i) from Proposition 3.14, Proposition 4.6 and
Proposition 4.7, we have L′′ ⊂ Cr

∼
(L′) and Cr

∼
(L′) ⊂ Lsi

= L′′.

Another result concerning the sets of bicommutant type, in particular
C∼C∼(L), can be obtained using this corollary and properties (iii) and (vi), from
Properties 4.1.

THEOREM 4.9. The following relations hold when L is a selfadjoint subset of
B(H):

L ⊂ C∼C∼(L) ⊂ C∼(L′) = Cr
∼
(L′) = L′′ = Lsi

.

Proof. The last two equalities are given by Corollary 4.8. The first inclu-
sion is an easy consequence of the definition of C∼ and the second is (iv) from
Proposition 3.14. By (ii) of Proposition 3.14 we have L′′ ⊂ C∼(L′). On the other
hand, the inclusion C∼(L′) ⊂ Cr

∼
(L′) results directly by definition. So we deduce

L′′ ⊂ C∼(L′) ⊂ Cr
∼
(L′) = L′′, hence the equalities L′′ = C∼(L′) = Cr

∼
(L′) = L′′

and the theorem is proved.

COROLLARY 4.10. If L is a selfadjoint subset of B(H), then

(Lsi
)

si
= Lsi and C∼C∼(L)

si
= Lsi

.

Proof. Like L, L′ is also selfadjoint set, hence L′′ is selfadjoint. The last

equality from the above theorem gives (Lsi
)

si
= Lsi

. We can also replace in

the above theorem L by L′′ and using (a) of Proposition 3.13 we obtain L′′si
=

(L′′)′′ = L′′. We thus proved

(Lsi
)

si
= L′′si

= L′′ = Lsi
.



194 MIHAI ŞABAC

By the above theorem we have

L ⊂ C∼C∼(L) ⊂ L
si

,

and using (ii) from Properties 4.1 we obtain

Lsi ⊂ C∼C∼(L)
si ⊂ (Lsi

)
si
= Lsi

which conclude the proof.

For a selfadjoint multiplicative closed set A ⊂ B(H) which contains the
identity operator I onHwe can compare the asymptotic bicommutants ofAwith
Ai

. We begin with a preliminary result concerning the asymptotic bicommutant
type set given by Cr

∼
C1(A).

PROPOSITION 4.11. Let A ⊂ B(H) be a multiplicatively closed, selfadjoint set
containing the identity I ∈ B(H). The following relations hold:

Cr
∼

C1(A) = Cr
∼
(A′) ⊂ Ai and Cr

∼
(A′)i

= Ai
.

Proof. From (viii) of Properties 4.1 we get that Asi ⊂ Ai
because A is multi-

plicatively closed and I ∈ A. BecauseA is selfadjoint, by Proposition 4.7 we have
that

Cr
∼
(A′) ⊂ Asi ⊂ Ai

.

SinceA ⊂ Cr
∼
(A′) ⊂ Ai

, (iii) and (vi) of Properties 4.1 imply the equality Cr
∼
(A′)i

= Ai
and the proof is complete.

The following theorem sumarizes some results concerning the composition
of the following maps given by the “special” commutants Cr

∼
, C l
∼

, C∼, C1 (C1 de-

notes the classical comutant L′ and the others are defined in Section 2). We focus
on the composition of commutants mentioned above on the subset of B(H) for
which the bicommutant theorem holds. In other words we talk about “bicom-
mutant” type sets resulting from the composition of the “special” commutants
introduced earlier.

THEOREM 4.12. LetA be a selfadjoint subalgebra of B(H) such that I ∈ A. Then
the following relations hold:

(i) A ⊂ C∼C∼(A) ⊂ Cr
∼
(A′) = A′′ = Aso

= Asi ⊂ Ai.

(ii) Cr
∼

Cr
∼
(A) ∪ Cr

∼
C l
∼
(A) ∪ Cr

∼
C∼(A) ⊂ Cr

∼
(A′) ⊂ Ai.

(iii) Ai
= C∼C∼(A)

i
= Cr

∼
(A′)i

= C∼(A′)
i
= A′′i = Asoi

= Asii
.

Proof. For (i) we apply Theorem 4.9, J. von Neumann’s bicommutant the-
orem and (ix) of Properties 4.1 for Asi ⊂ Ai

. For proving (iii), we apply the
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operator (·)i
in (i) taking into account Properties 4.1. For proving (ii), we de-

duce by definitions that A′ is contained in the asymptotic commutant C∼(A) =
Cr
∼
(A)∩C l

∼
(A) and the first inclusion of (ii) results from the decreasing property

of Cr
∼

(see property (i) of Proposition 3.13) and then we can use (i).

To conclude we describe how we order by inclusion other bicommutant
type sets attached to a selfadjoint subset L ⊂ B(H). All these bicommutant type
sets attached to L are contained in the bicommutant C1C1(L) = L′′. The follow-
ing relations follow from L′ ⊂ Cn(L) ⊂ Cln(L) ∩ Crn(L) using the decreasing
property (i) of Crn, Cn and properties (a) and (b) from Proposition 3.13.

(I) We have

CrnCrn(L) ⊂ CrnCn(L) ⊂ Crn(L′) ⊂ Cr
∼
(L′) = L′′,

CnCrn(L) ⊂ CnCn(L) ⊂ Cn(L′) ⊂ Crn(L′) ⊂ Cr
∼
(L′) = L′′,

L ⊂ CnCn(L) ⊂ Cn(L′) ⊂ Crn(L′) ⊂ Crν(L′) ⊂ Cr
∼
(L′) = L′′,

L ⊂ CrnCln(L) ⊂ CrnCn(L) ⊂ Crn(L′) ⊂ Cr
∼
(L′) = L′′.

(II) In the same way as above we obtain,

CrνCrν(L) ⊂ CrνCν(L) ⊂ Crν(L′) ⊂ Cr
∼
(L′) = L′′,

CνCrν(L) ⊂ CνCν(L) ⊂ Cν(L′) ⊂ C∼(L′) ⊂ Cr
∼
(L′) = L′′,

L ⊂ CνCν(L) ⊂ Cν(L′) ⊂ C∼(L′) ⊂ Cr
∼
(L′) = L′′,

L ⊂ CrνClν(L) ⊂ CrνCν(L) ⊂ Crν(L′) ⊂ Cr
∼
(L′) = L′′.

It is easy to verify that Crn(M), Cln(M), Cn(M) are so-closed for every
M ⊂ B(H). If we pass to so-closure (usually denoted by (·)so

) in the last two
chains of inclusions from (I) we obtain by the bicommutant theorem the follow-
ing equalities.

PROPOSITION 4.13. If L is a unital ∗-subalgebra of B(H), then the following
equalities hold:

Lso
= L′′ = CrnCln(L) = CrnCn(L) = CnCn(L) = Cn(L′) = Crn(L′) = Cr

∼
(L′).

WhenL is a so-closed, unital ∗-subalgebra of B(H), the two last chains from
inclusions (I) and (II), the inclusion L ⊂ Cr

∼
C l
∼
(L) ∩ Cr

∼
C∼(L), (i) and (ii) from

Theorem 4.12 and the J. von Neumann’s bicommutant theorem give besides the
equalities from the conclusion of the above proposition the following equalities.
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PROPOSITION 4.14. If L is a so-closed, unital ∗-subalgebra of B(H), then the
following equalities hold:

L = L′′ = C∼C∼(L) = C∼(L′) = Cr
∼

C l
∼
(L) = Cr

∼
C∼(L)

= CνCνL = Crν(L′) = Cν(L′) = CrνClν(L) = CrνCν(L).
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