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ABSTRACT. We develop an unsuspended version of connective E-theory and
prove connective versions of results by Dădărlat–Loring and Shulman. As a
corollary, we see that two separable C∗-algebras of the form C0(X)⊗ A, where
X is a based, connected, finite CW-complex and A is a unital, properly infinite
algebra, are connective E-theory equivalent if and only if they are asymptotic
matrix homotopy equivalent.
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1. INTRODUCTION

Let S denote the Connes–Higson asymptotic homotopy category of separable
C∗-algebras, defined in [1]. Let Σ denote the suspension functor ΣB := C0(R)⊗ B
and let K denote the algebra of compact operators on a separable Hilbert space.

E-theory is the bivariant K-theory defined by

(1.1) E(A, B) := S(ΣA, ΣB⊗K).

In this paper, we prove connective extensions of the following two closely
related results.

THEOREM 1.1 ([8]). Let A be a separable C∗-algebra. Then qA⊗K is S-equivalent
to Σ2 A⊗K.

THEOREM 1.2 ([5], Theorem 4.3). Let A and B be separable C∗-algebras. If the
abelian monoid S(A, A⊗K) is a group, then the suspension functor induces an isomor-
phism

(1.2) S(A, B⊗K) ∼= E(A, B⊗K).
See Theorem 4.8 and Theorem 4.11 for the precise statements. Considering

stable algebras, we obtain Theorem 1.1 and Theorem 1.2, respectively. Our proof
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of Theorem 1.2 is closely related to the remark after Theorem 4.3 of [5]. We note
that this gives new and more conceptual, if not simpler, proofs of the theorems.

For details of connective bivariant K-theory and its applications see, for in-
stance, [4], [6], [7], [10].

2. THE ASYMPTOTIC MATRIX HOMOTOPY CATEGORY

We start by fixing some notation.

NOTATION 2.1. (i) Let A and B be C∗-algebras. We write A ? B, A× B and
A⊗ B for the free product, direct product/sum and maximal tensor product of A
and B, respectively.

(ii) For n > 1, let Mn denote the C∗-algebra of n× n complex matrices. For n,
m > 1, we write ⊕ for the operation

⊕ : Mn ×Mm → Mn+m, (a, b) 7→
(

a
b

)
(2.1)

and, im,n, for m > n, for the inclusion

im,n : Mn ↪→ Mm, a 7→ a⊕ 0.(2.2)

We identify C with M1 and Mn ⊗ Mm with Mnm for n, m > 1, and K with the
colimit of Mn along im,n.

(iii) For k > 0, let Σk denote the C∗-algebra C0(Rk) of continuous functions on
Rk vanishing at infinity. We identify Σ0 with C and Σk ⊗Σl with Σk+l for k, l > 0.

DEFINITION 2.2. Let A and B be separable C∗-algebras. We define m(A, B)
as the colimit

(2.3) m(A, B) := colim
n→∞

S(A, B⊗Mn)

along (idB⊗im,n)∗.

We summarize some properties of m that are well-known and/or easy to
check. Statements (i)–(iii) say, essentially, that m is a homotopy invariant, matrix
stable category enriched over the abelian monoids.

PROPOSITION 2.3. Let A, B, C and D stand for separable C∗-algebras and let m,
n > 1.

(i) Homotopic ∗-homomorphisms A→ B define the same class in m(A, B).
(ii) The composition

S(B, C⊗Mm)× S(A, B⊗Mn)→ S(A, C⊗Mmn)(2.4)

(g, f ) 7→ (g⊗ idMn) ◦ f(2.5)

gives m a category structure, with the identity morphism on A represented by idA⊗in,1
: A→ A⊗Mn.
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(iii) The addition

S(A, B⊗Mn)× S(A, B⊗Mm)→ S(A, B⊗Mn+m)(2.6)

( f , g) 7→ f ⊕ g(2.7)

gives m(A, B) the structure of an abelian monoid, bilinear with respect to composition.
(iv) The tensor product

S(A, B⊗Mn)× S(C, D⊗Mm)→ S(A⊗ C, B⊗ D⊗Mnm)(2.8)

( f , g) 7→ f ⊗ g(2.9)

defines a natural bilinear functor

⊗ : m(A, B)×m(C, D)→ m(A⊗ C, B⊗ D).(2.10)

(v) For any A and C, the functor F(B) := m(A, B⊗ C) is split exact.

Proof. We prove only the last statement (v). This follows from Proposi-
tion 3.2 in [5] and Theorem 2.6.15 in [11].

DEFINITION 2.4 (cf. Definition 4.4.14 of [10]). We call m the asymptotic matrix
homotopy category of separable C∗-algebras.

LEMMA 2.5 ([3], Proposition 3.1(a)). For any separable C∗-algebras B and C,
the natural map

(2.11) B ? C → B× C

is an m-equivalence.

COROLLARY 2.6. For any separable C∗-algebras B, C and D, the natural map

(2.12) (B⊗ D) ? (C⊗ D)→ (B ? C)⊗ D

is an m-equivalence.

Proof. The following diagram is commutative

(2.13) (B⊗ D) ? (C⊗ D) //

��

(B ? C)⊗ D

��

(B⊗ D)× (C⊗ D) // (B× C)⊗ D .

The vertical maps are m-equivalences by Lemma 2.5 and the bottom horizontal
map is an isomorphism.

NOTATION 2.7. Let B be a separable C∗-algebra. Following Cuntz, we write

qB for the kernel of the folding map B ? B
id ? id // B .

We note that the short exact sequence

(2.14) 0 // qB // B ? B // B // 0
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is split-exact.

PROPOSITION 2.8. For any separable C∗-algebras B and D, the natural map

(2.15) σB,D : q(B⊗ D)→ qB⊗ D

is an m-equivalence.

Proof. Fix A and let F denote the functor F(B) := m(A, B).
We apply F to the following commutative diagram of split-exact sequences:

(2.16) 0 // q(B⊗ D) //

σB,D

��

(B⊗ D) ? (B⊗ D) //

��

B⊗ D // 0

0 // qB⊗ D // (B ? B)⊗ D // B⊗ D // 0 .

By Corollary 2.6, F induces isomorphism on the middle map. Since F is split
exact, it follows that F(σB,D) is an isomorphism. Now the proof follows from
Yoneda’s lemma.

REMARK 2.9. Let Ho denote the homotopy category of C∗-algebras and let n
denote the matrix homotopy category with morphisms

(2.17) n(A, B) := colim
n

Ho(A, B⊗Mn).

Then, in Lemma 2.5 and Corollary 2.6, we actually have n-equivalences. How-
ever, the map σB,D from Proposition 2.8 is not an n-equivalence in general. For
instance, let T0 denote the reduced Toepliz algebra. Then T0 is KK-contractible,
hence q(T0)⊗K is contractible i.e. homotopy equivalent to the zero algebra 0 by
[2]. However, qC⊗ T0 ⊗K has a non-trivial projection, hence not contractible. It
follows that σC,T0 : q(T0)→ qC⊗ T0 is not an n-equivalence.

Indeed, for any A and B, we have a natural isomorphism

(2.18) Ho(A, B⊗K) ∼= n(A, B⊗K).

Hence if f : A → B is an n-equivalence, then f ⊗ idK : A ⊗ K → B ⊗ K is a
homotopy equivalence.

REMARK 2.10. Let A and B be separable C∗-algebras.
(i) We have a natural isomorphism

(2.19) S(A, B⊗K) ∼= m(A, B⊗K).

It follows that if f ∈ m(A, B) is an m-equivalence, then the map f ⊗ idK is an
S-equivalence from A⊗K to B⊗K.

(ii) Tensoring with K gives an isomorphism

(2.20) S(A, B⊗K) ∼= S(A⊗K, B⊗K).
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3. MATRIX HOMOTOPY SYMMETRY

The following definition is inspired by [5].

DEFINITION 3.1. A separable C∗-algebra A is matrix homotopy symmetric if
idA ∈ m(A, A) has an additive inverse: there is n > 1 and η : A→ A⊗Mm such
that in,1 ⊕ η : A→ A⊗Mn+m is null-homotopic.

REMARK 3.2. (i) If the monoid m(A, A) is a group, then A is matrix homo-
topy symmetric. Conversely, if A is matrix homotopy symmetric, then m(A, B)
and m(B, A) are abelian groups for any B.

(ii) If A is matrix homotopy symmetric, then so is A⊗ D for any D.
(iii) If A is m-equivalent to B and A is matrix homotopy symmetric, then so

is B.

EXAMPLE 3.3. (i) The algebra Σ1 is matrix homotopy symmetric. In fact,
the algebra C0(X), of continuous functions vanishing at the base point, is matrix
homotopy symmetric for any based, connected, finite CW-complex X, by Proposi-
tion 3.1.3 in [7] and the discussion preceding it.

(ii) The algebra qB is matrix homotopy symmetric for any B, by taking n =
m = 1 and η = τ the flip-map on qA, by Proposition 1.4 in [3].

NOTATION 3.4. Let B be a separable C∗-algebra. Let πB : qB → B denote
the composition

(3.1) πB : qB � � // B ? B
id ?0 // B .

We remark that q is functorial (for ∗-homomorphisms) and for any ∗-homo-
morphism f : A→ B, we have a commutative diagram

(3.2) qA
q( f )

//

πA

��

qB

πB

��

A
f

// B .

From our point of view, the following is the key ingredient that underlies
both Theorem 1.1 and Theorem 1.2.

PROPOSITION 3.5. Let A be a separable C∗-algebra. Then the following state-
ments are equivalent:

(i) The algebra A is matrix homotopy symmetric.
(ii) For any B and D, we have

(πB ⊗ idD)∗ : m(A, qB⊗ D) ∼= m(A, B⊗ D).

(iii) The map πA : qA→ A is an m-equivalence.
(iv) The map πC ⊗ idA : qC⊗ A→ A is an m-equivalence.
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Proof. The statements (iii) and (iv) are equivalent by Proposition 2.8.
Since qA is matrix homotopy symmetric (cf. Example 3.3(ii)), it follows from

Remark 3.2 that (ii) implies (i).
(i) implies (ii) Suppose that A is matrix homotopy symmetric. Then the

functor F(B) := m(A, B⊗ D) is a homotopy invariant, split exact, matrix stable
functor with values in abelian groups. Hence (πB)∗ : F(qB)→ F(B) is an isomor-
phism for all B, by Proposition 3.1 in [3].

The remaining implication, (ii)⇒ (iii), follows from Yoneda’s lemma.

As a corollary, we now prove Theorem 1.1. In view of Proposition 2.8, it is
enough to prove the following; see also Theorem 4.8.

THEOREM 3.6 (Bott periodicity). Let u : qC → Σ2 ⊗M2 ∈ m(qC, Σ2) denote
the Bott element. Then

(3.3) u⊗ idK : qC⊗K → Σ2 ⊗M2 ⊗K ∼= Σ2 ⊗K

is an m-equivalence (equivalently, an S-equivalence).

Proof. We have a commutative diagram

(3.4) q(qC)
q(u)

//

πqC

��

q(Σ2 ⊗M2)

π
Σ2⊗M2

��

qC u // Σ2 ⊗M2 .

The vertical maps are m-equivalences by Proposition 3.5. In fact, the map πqC
is an n-equivalence by Theorem 1.6 in [3]. The map q(u) ⊗ idK is a homotopy
equivalence (in particular, an m-equivalence) by KK-theoretic Bott periodicity. It
follows that u⊗ idK is an m-equivalence.

4. BOTT INVERTIBILITY

DEFINITION 4.1. Let u : qC → Σ2 ⊗ M2 ∈ m(qC, Σ2) denote the Bott ele-
ment. We say that a separable C∗-algebra D is Bott inverting if the element

(4.1) u⊗ idD ∈ m(qC⊗ D, Σ2 ⊗ D)

is an m-equivalence.

REMARK 4.2. (i) If D is Bott inverting, then so is D⊗ B for any B.
(ii) If D is m-equivalent to B and D is Bott inverting, then so is B.

First we show that there are plenty of algebras that are Bott inverting. See
Example 4.10 for an example that is not Bott inverting.
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LEMMA 4.3. Let D be a separable C∗-algebra. Suppose that for some n > 1, the
inclusion

(4.2) idD ⊗in,1 : D ↪→ D⊗Mn

factors in S through a Bott inverting algebra. Then D is Bott inverting.

Proof. Let

(4.3) D
f

// B
g

// D⊗Mn

be a factorization of the inclusion idD ⊗in,1 : D ↪→ D⊗Mn, with B Bott inverting.
Then the following diagram is commutative in S:

(4.4) qC⊗ D
idqC ⊗ f

//

u⊗idD
��

qC⊗ B
idqC ⊗g

//

u⊗idB
��

qC⊗ D⊗Mn

u⊗idD⊗Mn
��

Σ2 ⊗M2 ⊗ D
id

Σ2⊗M2
⊗ f
// Σ2 ⊗M2 ⊗ B

id
Σ2⊗M2

⊗g
// Σ2 ⊗M2 ⊗ D⊗Mn .

Since in,1 is invertible in m, and u ⊗ idB is invertible by assumption, it follows
that u⊗ idD is invertible.

DEFINITION 4.4. We say that a C∗-algebra D is stable if D ∼= D⊗K.

By Bott periodicity (Theorem 3.6) and Remark 4.2, stable algebras are Bott
inverting.

LEMMA 4.5 (Kirchberg). Let D be a separable C∗-algebra. If D contains a stable
full C∗-subalgebra, then the map

(4.5) idD ⊗i4,1 : D ↪→ D⊗M4

factors through a stable algebra.

For the proof see the proof of Lemma 4.4.7 in [10].
Combining Lemma 4.3 and Lemma 4.5, we get the following.

COROLLARY 4.6. All separable C∗-algebras that contain a stable full C∗-sub-
algebra are Bott inverting. In particular, all separable, unital, properly infinite C∗-
algebras are Bott inverting.

REMARK 4.7. Same methods show that comparison map from algebraic to
topological K-theory

(4.6) Kalg
∗ (D)→ Ktop

∗ (D)

is an isomorphism if D has a stable full C∗-subalgebra; see [9].

Now we are ready to state and prove the connective versions of Theorem 1.1
and Theorem 1.2, which we recover by considering stable algebras.

The following is the connective version of Theorem 1.1.
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THEOREM 4.8. Let A be a separable C∗-algebra. If D is Bott inverting, then we
have m-equivalences

(4.7) qA⊗ D ∼=m qC⊗ A⊗ D ∼=m Σ2 ⊗ A⊗ D.

The proof follows from Proposition 2.8 and Bott invertibility.

DEFINITION 4.9 ([10], Theorem 4.2.1). Let A and B be separable C∗-algebras.
For n ∈ Z, we define bun(A, B) as the colimit

(4.8) bun(A, B) := colim
k→∞

m(Σk ⊗ A, Σk+n ⊗ B)

along the suspension maps. The connective E-category bu is the category with
morphisms bu0(A, B).

Let X and Y be based, connected, finite CW-complexes. Then from the proof
of Theorem 4.2.1 in [10], we see that

(4.9) bun(C0(X), C0(Y)) ∼= kkn(Y, X)

in the notation of [6], [7].

EXAMPLE 4.10. We give an example of C∗-algebra which is not Bott invert-
ing.

Let X be a based, connected, finite CW-complex and let D = C0(X). Then,
for any k 6 0, we have buk(D,C) ∼= 0 by Corollary 3.4.3 in [7].

We claim that D is Bott inverting if and only if D is m-contractible. Indeed,
first note that, by Proposition 3.5, the map

(4.10) idΣ1 ⊗πC : Σ1 ⊗ qC→ Σ1

is an m-equivalence, thus πC : qC→ C is a bu-equivalence. Now suppose that D
is Bott inverting. Then

(4.11) buk(D,C) ∼= buk(qC⊗ D,C) ∼= buk−2(D,C),

for any k ∈ Z. Hence the map 0 : D → 0 induces an m-equivalence by Theo-
rem 2.4 in [6]. The converse is clear.

In particular, for any k > 0, the algebra Σk is not Bott inverting.

The following is the connective version of Theorem 1.2.

THEOREM 4.11. Let A and B be a Bott inverting separable C∗-algebras. If A is
matrix homotopy symmetric, then we have a natural isomorphism

(4.12) m(A, B) ∼= bu(A, B).
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Proof. Suppose that A is matrix homotopy symmetric. By Proposition 3.5,
we have the isomorphisms

(4.13) m(A, qC⊗ B)

∼=
��

∼= // m(qC⊗ A, qC⊗ B)

∼=
��

m(A, B)
∼= // m(qC⊗ A, B) ,

and by Bott invertibility, we have

(4.14) m(qC⊗ A, qC⊗ B) ∼= m(Σ2 ⊗ A, Σ2 ⊗ B).

Now it is easy to check that the composition

(4.15) m(A, B)→ m(qC⊗ A, qC⊗ B)→ m(Σ2 ⊗ A, Σ2 ⊗ B)

is the double suspension Σ2.

COROLLARY 4.12. Let A and B be a matrix homotopy symmetric, Bott invert-
ing separable C∗-algebras. Then A and B are bu-equivalent if and only if they are m-
equivalent.

COROLLARY 4.13. Two separable C∗-algebras of the form C0(X)⊗ A, where X
is a based, connected, finite CW-complex and A is a unital, properly infinite algebra, are
bu-equivalent if and only if they are m-equivalent.

The proof follows from Example 3.3(i) and Corollary 4.6.
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[4] M. DĂDĂRLAT, On the asymptotic homotopy type of inductive limit C∗-algebras,
Math. Ann. 297(1993), 671–676.
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