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ABSTRACT. We give two new conditions on topological k-graphs equivalent
to Yeend’s aperiodicity condition (A). Each of the new conditions concerns fi-
nite paths rather than infinite. We use a specific example, resulting from a new
construction of a twisted topological k-graph, to demonstrate the improve-
ments achieved by the new conditions. Reducing this proof of equivalence
to the discrete case also gives a new direct proof of the corresponding condi-
tions in discrete k-graphs, where previous proofs depended on simplicity of
the corresponding C∗-algebra.
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1. INTRODUCTION

The theory of graph C∗-algebras began with the work of Cuntz and Krieger
[1] and the later work of Enomoto and Watatani [2]. Since then, there have been
many contributions by a variety of researchers resulting in an extensive collection
of literature. The main idea is to associate to each directed graph a C∗-algebra
and use the combinatorics of the graph to answer questions about the structure
of the C∗-algebra. The study of graph algebras had been particularly fruitful in its
provision of a rich class of easily accessible examples of C∗-algebras with various
properties.

To this end, the idea of a graph has been generalized in a few ways includ-
ing the k-graphs of Kumjian and Pask [7] and the topological graphs of Katsura
[5]. Most recently, the work of Yeend provides a generalization of both higher-
rank graphs and topological graphs, with the unifying theory of topological k-
graphs [14].

An important outcome of the study of each type of graph is the relationship
between the periodic paths (or lack there of) in the graph and the simplicity of the
associated C∗-algebra. The first such aperiodicity condition for directed graphs
appears in [6], there referred to as condition (L), and states that every cycle of the
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graph must have an entry. This is one of the necessary conditions for simplicity
and that relationship demonstrates the beauty of the subject; it is easy to look at
picture of a directed graph and check if each cycle has an entry.

The key to cycles having or not having entries is the idea of being able to
“back out of a cycle" and build an aperiodic infinite path. As the infinite paths
play an important role in the groupoid construction of the C∗-algebra, in the case
of higher-rank graphs the original aperiodicity condition, called condition (A),
was stated in terms of infinite paths. Lewin, Robertson, and Sims have devel-
oped conditions on higher-rank graphs, which are equivalent to aperiodicity [8],
[10], that involve only finite paths. The work of this paper gives extensions of
these aperiodicity conditions to the case of topological k-graphs and proves their
equivalence.

In the first section we will discuss the background on topological k-graphs
that is needed. In the middle section we state the two new aperiodicity conditions
and prove the main result of equivalence with Yeend’s condition (A). We also
address a new proof of the equivalence of the corresponding discrete conditions.
The final section gives a new method of constructing a topological k-graph from
a discrete k-graph. The construction of these twisted topological k-graphs shares
the flavor of Yeend’s skew product graphs ([14], Definition 8.1) as well as the
topological dynamical systems defined by Farthing, Patani, and Willis, [4]. An
advantage over the skew product graphs is the fact that we need not begin with
a topological k-graph, but can use a discrete graph with desired properties. Also,
we need only a suitable topological space and a continuous functor rather than
the k commuting local homeomorphisms {Ti} of topological dynamical systems.
We give a specific example of this construction and use one of the new conditions
to show the topological k-graph is aperiodic, demonstrating the improvements
gained by considering finite paths.

2. BACKGROUND

The basics (and considerably more) on topological k-graphs and their C∗-
algebras can be found in Yeend’s original papers [12], [13], [14]. We review some
of the basics here for convenience.

We will consider N to contain 0 and regard Nk as the category with a single
object and composition given by addition. We use {ei}k

i=1 to represent the stan-
dard basis of Nk and for m ∈ Nk denote the ith component by mi. For m, n ∈ Nk,
we say m > n if mi > ni for every i ∈ {1, 2, . . . , k}, write m ∨ n for the coordinate
maximum, and m ∧ n for the coordinate minimum.

For a natural number k, a topological k-graph is a pair (Λ, d) consisting of a
small category Λ = (Obj(Λ), Mor(Λ), r, s) and a functor d : Λ→ Nk which satisfy
the following:
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(i) Obj(Λ) and Mor(Λ) are second-countable, locally compact, Hausdorff
spaces;

(ii) r, s : Mor(Λ)→ Obj(Λ) are continuous and s is a local homeomorphism;
(iii) composition ◦ : Λ×c Λ → Λ is continuous and open, where Λ×c Λ has

the relative topology inherited from the product topology on Λ×Λ;
(iv) d : Λ→ Nk is continuous, where Nk has the discrete topology; and
(v) for all λ ∈ Λ and all m, n ∈ Nk such that d(λ) = m + n, there exist unique

µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and λ = µν.
Condition (v) is called the unique factorization property and is exactly the

same as that for discrete k-graphs. The functor d is called the degree map, or the
shape map. For n ∈ Nk, we denote by Λn the open set d−1(n) in Mor(Λ), and
refer to its elements as paths of shape n. It is often necessary to deal with the range
and source maps as they relate to paths of a specific shape, so the notation rn
refers to the restriction of the range map r to the set Λn and similarly sn := s|Λn .
A consequence of the unique factorization property is that Λ0 is the set of iden-
tity morphisms of Λ, and these are referred to as the vertices of Λ. For any sets
X, Y ⊂ Λ we use XY for the set {µν | µ ∈ X, ν ∈ Y, s(µ) = r(ν)}. This notation is
of particular use when the first set is a set of vertices and the second set is all the
paths. So, for V ⊂ Λ0, VΛ = {λ ∈ Λ | r(λ) ∈ V} and ΛV = {λ ∈ Λ | s(λ) ∈ V}.
A vertex v is a source in Λ if for some n ∈ Nk vΛn is empty.

The factorization property implies that for λ ∈ Λ and m < n < d(λ) ∈ Nk

there are unique paths denoted λ(0, m) ∈ Λm, λ(m, n) ∈ Λn−m, and λ(n, d(λ)) ∈
Λd(λ)−n such that λ(0, m)λ(m, n)λ(n, d(λ)) = λ. We think of λ(p, q) as the por-
tion of the path λ that runs from q to p.

An important class of examples of k-graphs are the grid graphs, Ωk,m. For
a fixed k > 1 and m ∈ (N ∪ {∞})k the discrete k-graph Ωk,m has morphisms
{(p, q) ∈ Nk ×Nk | p 6 q 6 m}, range and source maps given by r(p, q) = (p, p)
and s(p, q) = (q, q), composition defined as (p, q)(q, r) = (p, r) and degree map
given by d(p, q) = q− p.

We visualize a discrete k-graph by its 1-skeleton, a directed graph whose
vertices are Λ0 and whose edges are paths from the sets Λei and are colored k
different colors depending on the shape. Frequently dashed or dotted arrows
are also (or instead) used to depict edges of different shape. For consistency, in
this paper green edges will be solid and of shape e1, blue edges dotted and of
shape e2, and red edges dashed and of shape e3. In some cases, such as any Ωk,m,
we can construct the entire k-graph from the 1-skeleton. In other cases we need
more information. Consider the path bd in Figure 1(b) of shape (0, 1, 1). By the
unique factorization property, bd must factor uniquely as a “red-blue" path. So,
bd = µν with d(µ) = (0, 0, 1) and d(ν) = (0, 1, 0). It cannot be determined from
the 1-skeleton alone if the unique factorization we desire is cb or cb′. We need to
specify factorization rules for each bi-colored path:

da = a′c, f a = a′e, bd = cb′, b f = eb′, f d = d f , ce = ec.
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(a) The 1-Skeleton of Ω3,(3,2,1)
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(b) A 1-skeleton of a 3-graph requiring factor-
ization rules

FIGURE 1. 1-Skeletons of two different 3-graphs

For topological k-graphs, (Λ1, d1) and (Λ2, d2), a topological k-graph morphism
is a continuous degree preserving functor x : Λ1 → Λ2. That is, d2(x(λ)) = d1(λ).
We are particularly concerned with the graph morphisms from the grid graphs.
The path space of a topological k-graph Λ

XΛ :=
⋃

m∈(N∪{∞})k

{x : Ωk,m → Λ | x is a graph morphism}

can be thought to include Λ since any finite path λ uniquely determines a graph
morphism xλ : Ωk,d(λ) → Λ such that x(m, n) = λ(m, n) for any m 6 n 6 d(λ).
We extend the idea of range and degree so that r(x) = x(0, 0) and d(x) = m for
x : Ωk,m → Λ. In practice, we think of taking a particular grid graph and labeling
the vertices and edges while following the structure of and factorization rules
associated to the 1-skeleton of Λ. So, a path of shape (∞, ∞, ∞) with range v in
the 3-graph of Figure 1(b) with the factorization rules given could look like that
of Figure 2.
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FIGURE 2. An infinite path in a 3-graph
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In order to define aperiodic paths in a topological k-graph we need the idea
of the shift map. The shift map σm on XΛ assigns to x the unique path σmx in
XΛ which satisfies d(σmx) = d(x)− m and σmx(0, n) = x(m, m + n) for all 0 6
n 6 d(x)−m. For m ∈ Nk, the shift map of degree m removes a path of shape m
from the range end of x. We say a path x ∈ XΛ is aperiodic if for any m, n ∈ Nk

σmx = σnx implies that m = n. The path of Figure 2 is periodic, as σ(2,0,1)x = x.
The idea of a minimal common extension of two paths will be important in

one of our formulations of aperiodicity and it is also necessary in our definition
of a boundary path. For paths µ, ν ∈ Λ, we say λ is a common extension of µ and
ν if we can factor λ = µµ′ and λ = νν′ for some µ′, ν′ ∈ Λ. We consider λ to
be a minimal common extension if it also satisfies d(λ) = d(µ) ∨ d(ν). We denote
by MCE(µ, ν) the set of minimal common extensions of µ and ν and for subsets
X, Y ⊂ Λ define

MCE(X, Y) :=
⋃

µ∈X,ν∈Y
MCE(µ, ν).

A topological k-graph Λ is compactly aligned if whenever X, Y ⊂ Λ are compact,
then MCE(X, Y) is also compact.

For a vertex v ∈ Λ0, we say a subset E ⊂ Λ is compact exhaustive for v if E is
compact, r(E) is a neighborhood of v, and for all λ ∈ r(E)Λ there exists a µ ∈ E
such that MCE(λ, µ) 6= ∅. A path x ∈ XΛ is a boundary path if for any m ∈ Nk with
m 6 d(x) and any set E which is compact exhaustive set for x(m, m), there exists
a λ ∈ E such that x(m, m + d(λ)) = λ. We write ∂Λ for the set of all boundary
paths in XΛ. As in discrete k-graphs the boundary paths are a generalization of
the infinite paths of directed graphs, ([11], Lemma 4.22).

Under the condition that Λ is compactly aligned, we can build a topological
groupoid GΛ called the boundary path groupoid which has ∂Λ as its unit space and
can be endowed with a locally compact Hausdorff topology. The C∗-algebra of Λ,
C∗(Λ), is the full groupoid C∗-algebra of the boundary path groupoid, C∗(GΛ).
As we will not need the details of the construction of the C∗-algebra to under-
stand the results of this paper, we refer the reader to [14] for the formulation of
this topology as well as a more in depth discussion. However, to demonstrate
the importance of aperiodicity, we conclude the background information with a
result of Yeend.

PROPOSITION 2.1 ([14], Theorem 5.2). For a compactly aligned topological k-
graph (Λ, d), the boundary path groupoid GΛ is topologically principal if and only if for
every open set V ⊂ Λ0 there exists an x ∈ V∂Λ which is aperiodic.

See [9], for structure and simplicity arguments relying on the groupoid be-
ing topologically principal and amenable. The authors use groupoid techniques
to prove the equivalence of (i) and (iii) of the main theorem of this paper. Theo-
rem 3.1 remains the cleaner and more accessible proof of the equivalence of the
two notions of aperiodicity
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3. RESULTS

The condition that every open set of vertices must have an aperiodic path
that terminates in that set is the natural extension of aperiodicity conditions for
topological graphs and discrete k-graphs. Yeend introduced the condition and re-
ferred to it as condition (A). Our main result, Theorem 3.1, gives two new equiv-
alent conditions to Yeend’s condition (A).

THEOREM 3.1. Let (Λ, d) be a compactly aligned topological k-graph with no
sources. Then the following conditions are equivalent:

(i) For any open set V ⊂ Λ0 there exists an aperiodic path x ∈ V∂Λ.
(ii) For any open set V ⊂ Λ0 and any pair m 6= n ∈ Nk there exists a path λV,m,n ∈

VΛ such that d(λ) > m ∨ n and

(3.1) λ(m, m + d(λ)− (m ∨ n)) 6= λ(n, n + d(λ)− (m ∨ n)).

(iii) For any distinct pair of open sets X, Y ⊂ Λ such that s(X) = s(Y) and both s|X
and s|Y are homeomorphisms there exists τ ∈ s(X)Λ such that MCE(Xτ, Yτ) = ∅.

It is not difficult to see that in the discrete case, (if Obj(Λ) and Mor(Λ) both
have the discrete topology) then conditions (i)–(iii) above reduce to Definition 4.3
of [7], condition (iv) of Lemma 3.2 of [10], and Definition 3.1 of [8] respectively.
This special case gives the following corollary. The equivalence that appears in
Corollary 3.2 is already known, as each condition is a necessary condition for
simplicity of the associated C∗-algebra. The direct proof of this equivalence that
follows from the proof of Theorem 3.1 is new, and an important outcome of this
work.

COROLLARY 3.2. Let (Λ, d) be a discrete finitely aligned k-graph with no sources.
Then the following are equivalent:

(i) For each v ∈ Λ0 there exists and aperiodic path x ∈ v∂Λ.
(ii) For each v ∈ Λ0 and each m 6= n ∈ Nk there exists a path λ ∈ vΛ such that

d(λ) > m ∨ n and which satisfies (3.1).
(iii) For every pair of distinct paths α, β ∈ Λ with s(α) = s(β) there exists a path

τ ∈ s(α)Λ such that MCE(ατ, βτ) = ∅.

The proof of the theorem requires an important lemma. Lemma 3.3 is an
extension of Lemma 5.6 of [5] which shows that near a path which satisfies (3.1)
are a lot of other paths which also satisfy (3.1). This allows us to extend the proof
of the equivalence of (i) and (iv) in Lemma 3.2 of [10] to topological k-graphs.

LEMMA 3.3. Let V be a nonempty open subset of Λ0, m 6= n ∈ Nk, and λ ∈ VΛ.
If λ satisfies (3.1) for m and n, then there exists a compact neighborhood E ⊂ VΛd(λ)of
λ such that every µ ∈ E satisfies (3.1).



APERIODICITY CONDITIONS IN TOPOLOGICAL k-GRAPHS 9

Proof. Suppose λ ∈ VΛ satisfies (3.1). We can factor λ in two ways:

λ = λ(0, m)λ(m, m + d(λ)− (m ∨ n))λ((m + d(λ)− (m ∨ n), d(λ)) and

λ = λ(0, n)λ(n, n + d(λ)− (m ∨ n))λ((n + d(λ)− (m ∨ n)), d(λ)).

Let Em and En be disjoint compact neighborhoods of λ(m, m + d(λ) − (m ∨ n))
and λ(n, n + d(λ)− (m ∨ n)). Also, let E1, E2, E3, and E4 be compact neighbor-
hoods of λ(0, m), λ(m + d(λ) − (m ∨ n), d(λ)), λ(0, n), and λ(n + d(λ) − (m ∨
n), d(λ)) respectively. We define the set E′ to be the paths in Λd(λ) that can be
factored as paths in E1, Em and E2 as well as E3, En, and E4. So,

E′={αβγ : (α, β, γ)∈E1×c Em×c E2}∩{µνξ : (µ, ν, ξ) ∈ E3×c En×c E4}⊂Λd(λ).

Now, let F ⊂ V be a compact neighborhood of r(λ) and

E = E′ ∩ r−1
d(λ)(F).

Then E ⊂ VΛd(λ) is a compact neighborhood of λ with nonempty interior in
which every element satisfies (3.1).

Proof of Theorem 3.1. We will show condition (ii) is equivalent to each of (i)
and (iii).

(i) ⇒ (ii) Fix and open set V ⊂ Λ0, and a pair m 6= n ∈ Nk, and suppose
x ∈ V∂Λ is aperiodic. Then, σmx 6= σnx and so for a sufficiently large p ∈ Nk

σmx(0, p) 6= σnx(0, p).

Let λ = x(0, p + m ∨ n), then

λ(m, m+d(λ)−m ∨ n)= x(m, m+(p+m ∨ n)−m ∨ n)=σmx(0, p) 6= σnx(0, p)

= x(n, n + p + m ∨ n−m ∨ n) = λ(n, n + d(λ)−m ∨ n).

So, d(λ) > m ∨ n and λ satisfies (3.1).
(ii)⇒ (i) Fix an open set V ⊆ Λ0 and let {(mi, ni)}∞

i=1 be a listing of the ele-
ments in the set {(m, n) ∈ Nk ×Nk |m 6= n}. Let V1 = V, choose λ1 ∈ V1Λ such
that d(λ1) > m1 ∨ n1 and (3.1) is satisfied for m1 and n1; choose a compact neigh-
borhood F1 of λ1 by Lemma 3.3; and let E1 := F1∂Λ ={x ∈ ∂Λ | x(0, d(λ1)) ∈ F1}.
Now, proceed inductively:

Vi := interior of s(Fi−1),

λi := λVi ,mi ,ni satisfy (3.1) for mi and ni,

Fi := a compact neighborhood of λi given by Lemma 3.3, and

Ei := F1 · · · Fi∂Λ.

Notice that each Ei is compact in ∂Λ by Lemma 3.8 of [13]: Let p = q =
i

∑
j=1

d(λj)

and U = V = F1 · · · Fi ⊂ Λ∑i
j=1 d(λj). Then Ei is exactly the set Z(U ∗s V, p− q),
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which is compact in ∂Λ. Also note that the Ei’s are nested; E1 ⊃ E2 ⊃ · · · .
Now, let

E :=
∞⋂

i=1

Ei ⊂ ∂Λ.

The set E is non-empty, so take any x ∈ E. Let µi = x(d(λ1λ2 · · · λi−1), d(λi)) for
each i ∈ N. Then by Lemma 4.1.3 of [12], x is the unique element in XΛ such that
d(x) = lim

j→∞
d(µ1µ2 · · · µj) and x(0, d(µ1µ2 · · · µj)) = µ1µ2 · · · µj, so it makes sense

to write
x = µ1µ2µ3 · · · ,

with each µi ∈ Fi. Fix m 6= n ∈ Nk. Then for some i ∈ N, (m, n) = (mi, ni) in the
listing above. So,

σmx
( i−1

∑
j=1

d(λj),
i

∑
j=1

d(λj)− (m ∨ n)
)
= σ

m+∑i−1
j=1 d(λj)x(0, d(λi)− (m ∨ n))

= σ∑i−1
j=1 d(λj)x(m, m + d(λi)− (m ∨ n))

= µi(m, m + d(µi)− (m ∨ n)).

Similarly,

σnx
( i−1

∑
j=1

d(λj),
i

∑
j=1

d(λj)− (m ∨ n)
)
= µi(n, n + d(µi)− (m ∨ n)).

By the definition of Fi, we know that

µi(m, m + d(µi)− (m ∨ n)) 6= µi(n, n + d(µi)− (m ∨ n)),

and thus σmx 6= σnx and x is an aperiodic boundary path.
(ii) ⇒ (iii) Fix distinct open sets X, Y ⊂ Λ such that s(X) = s(Y) and s|X

and s|Y are both homeomorphisms. Similar to Remark 3.2 of [8], we may assume
r(X) = r(Y) and further that for µ ∈ X and ν ∈ Y if s(µ) = s(ν), then r(µ) = r(ν).
To the contrary, suppose there exist µ ∈ X and ν ∈ Y with s(µ) = s(ν) = v but
r(µ) 6= r(ν). Then MCE(Xv, Yv) = MCE(µ, ν) = ∅.

Also, we may assume that there exist m 6= n ∈ Nk such that s(Xm)∩ s(Yn) 6=
∅. If this were not the case, then for any µ ∈ X the unique ν ∈ Ys(µ) must also
have degree m. Thus, either MCE(Xs(µ), Ys(µ)) = MCE(µ, ν) = ∅ or µ = ν.
Since X 6= Y, there must exist a pair with no minimal common extensions.

Now, fix m 6= n ∈ Nk such that s(Xm) ∩ s(Yn) 6= ∅ as above. Let V be
the nonempty open set s(Xm) ∩ s(Yn). Choose λV,m,n by (ii). Suppose that α ∈
MCE(Xλ, Yλ). Then, α = µλµ′ = νλν′ where µ ∈ Xm, ν ∈ Yn, and µ′, ν′ ∈ s(λ)Λ.
Notice that

λ(m, m + d(λ)− (m ∨ n)) = α(m + n, m + n + d(λ)− (m ∨ n))

= λ(n, n + d(λ)− (m ∨ n)),

but this contradicts the choice of λ. Thus, MCE(Xλ, Yλ) = ∅.
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(iii)⇒ (ii) Fix an open set V ⊂ Λ0 and a pair m 6= n ∈ Nk. Notice r−1
m∨n(V) ⊂

Λm∨n is open and let U ⊂ r−1
m∨n(V) such that s|U is a homeomorphism. Define

X := {µ(m, m∨ n) | µ ∈ U} and Y := {µ(n, m∨ n) | µ ∈ U}. Using a restriction of
the continuous and open composition map, it can be shown that X and Y are both
open. As s(X) = s(U) = s(Y) and both s|X and s|Y are homeomorphisms, by (iii)
choose τ ∈ s(X)Λ such that MCE(Xτ, Yτ) = ∅. Since s|U is a homeomorphism,
there is a unique µ ∈ U such that s(µ) = r(τ). Let ξ = µ(m, m ∨ n) ∈ X and
υ = µ(n, m ∨ n) ∈ Y and notice Xτ = {ξτ} and Yτ = {υτ}. Let ω ∈ s(τ)Λm∨n

and define λ = µτω. Now,

λ(m, m + d(λ)− (m ∨ n)) = (µτω)(m, m + d(τ) + (m ∨ n))

= ξ(τω)(0, d(τ) + m) = ξτω(0, m).

Similarly,
λ(n, n + d(λ)− (m ∨ n)) = υτω(0, n).

If ξτω(0, m) = υτω(0, n), then λ ∈ MCE(ξτ, υτ) = MCE(Xτ, Yτ), a contradic-
tion.

To get a better intuition for conditions (ii) and (iii), it is helpful to consider
the special case of a directed graph. If a directed graph E satisfies condition (ii),
then for any two natural numbers m 6= n we can find a path in E such that the mth

and nth edges are different. There is also an enlightening diagram of condition
(iii) in the discrete case in Appendix A of [10]. Consider two paths µ and ν in a
directed graph E where s(µ) = s(ν), r(µ) = r(ν) and d(µ)∧ d(ν) = 0 as described
in Remark 3.2 of [8]. This implies that one path, say µ, is just a vertex and ν must
be a loop based at that vertex. Condition (iii) then says that the loop µ must have
an entry.

4. EXAMPLES

To demonstrate the importance of these formulations of aperiodicity we
give an example of a topological k-graph in which condition (iii) is straightfor-
ward to verify whereas condition (i) would be quite difficult. First we define
what we call a twisted product topological k-graph. This twisting construction takes
a discrete k-graph and puts a copy of an appropriate topological space X at each
vertex, and twists the edges according to a functor τ.

PROPOSITION 4.1. Let (Λ, d) be a finitely aligned k-graph with no sources, X be
a second countable, locally compact, Hausdorff space, and

τ : Λ→ {φ : X → X | φ is a local homeomorphism}

a continuous functor. Then the pair (Λ×τ X, d̃), with object and morphism sets

Obj(Λ×τ X) := Obj(Λ)× X and Mor(Λ×τ X) := Mor(Λ)× X,
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range and source maps

r(λ, x) := (r(λ), τλ(x)) and s(λ, x) := (s(λ), x),

and composition

(λ, τµ(x)) ◦ (µ, x) = (λµ, x),

whenever s(λ) = r(µ) in (Λ, d), and degree functor

d̃(λ, x) = d(λ)

is a topological k-graph.

The proof that (Λ×τ X, d̃) satisfies all the requirements of a topological k-
graph is straightforward and the details unenlightening, so we omit the proof
here.

Consider the discrete 2-graph of Evans and Sims [3] whose 1-skeleton is
pictured in Figure 3

v0 v1 v2 v3
· · · · · ·

vn vn+1

...

α1
0 α2

0

α2
1

α3
0

α3
1

α3
2

αn
0

αn
1

αn
n-1

...

β1
0 β2

0

β2
1

β3
0

β3
1

β3
2

βn
0

βn
1

βn
n-1

FIGURE 3. The 1-skeleton of a discrete k-graph Λ.

with factorization rules given by

αn
i βn+1

j = βn
ξn(i,j)α

n+1
ζn(i,j)

where (i, j) 7→ (ξn(i, j), ζn(i, j)) is a permutation of Z/nZ×Z/(n + 1)Z.
For an example of a twisted product we take the 1-skeleton of Figure 3,

with ξn and ζn being “plus 1" in the group Z/nZ, the topological space T with
the usual topology, and the functor τ given by ταn

i
(z) = τβn

j
(z) := zn.

We show the twisted topological k-graph above satisfies condition (iii). We
start with the appropriate open sets X, Y ∈ Λ×τ T. As the topology on Λ is
discrete, we may assume that X and Y have the form X = {µ} × U and Y =
{ν} × V, for paths µ, ν ∈ Λ and open sets U, V ⊂ T. Since s(X) = s(Y), it must
be true that s(µ) = s(ν) and U = V. As in Remark 3.2 of [8], we may assume
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r(µ) = r(ν) and d(µ) ∧ d(ν) = 0. We assume µ consists of only green edges and
ν only blue. We can see that µ must have the form

µ = (αm
i0 , zk) · · · (αm+n−2

in−2
, (zm+n)m+n−1)(αm+n−1

in−1
, zm+n)(αm+n

in , z)

where z ∈ U and k is given by k =
m+n
∏

i=m+1
i. Similarly,

ν = (βm
j0 , zk) · · · (βm+n

jn , z).

We consider the path τ = (βm+n+1
j0−n , z1/m+n+1). Notice the path ντ is built of all

blue edges, so it cannot be factored to appear as a different path. We follow the
factorization rules to rewrite the path µτ such that the first edge is a blue edge,
and then compare to ντ:

µτ = (αm
i0 , zk)(αm+1

i1
, zk/m+n) · · · (αm+n

in , z)(βm+n+1
j0−n , z1/m+n+1)

= (βm
j0+1, zk)(αm+1

i0+1 , zk/m+n) · · · (αm+n
in+1 , z1/m+n+1).

If m 6= 1, (βm
j0

, zk) 6= (βm
j0+1, zk) and the paths µτ and ντ will have no common

extensions. If m = 1, then we would amend a similar path of shape (0, 2) so that
µτ and ντ would be guaranteed to differ in the second blue edge by a similar
calculation. Thus, MCE(Xτ, Yτ) = ∅ and Λ×τ T is aperiodic.

In contrast, if we were to check for aperiodicity using condition (i) we would
need to consider infinite paths of the form

x = (αi
0, z)(βi+1

0 , z1/i+1)(αi+2
0 , z1/(i+1)(i+2))(βi+3

0 , z1/(i+1)(i+2)(i+3)) · · ·

and investigate σmx for any m ∈ Nk. A precise calculation requires a variety of
formulas for σmx to cover different cases and then checking the various factor-
izations of the result for periodic behavior. It is at least three long and somewhat
complicated calculations.

It is worth noting that this work covers only topological k-graphs without
sources. This was a common hypothesis in the early works on direct graphs,
topological graphs, and k-graphs that was eventually replaced with less restric-
tive hypotheses. It is the hope of the author to develop similar conditions and
results for topological k-graphs with sources.
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