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ABSTRACT. We show that coincidence of the full and reduced crossed prod-
uct C∗-algebras of a group action on a unital commutative C∗-algebra implies
amenability of the action whenever the group is exact. This is a partial answer
to a problem posed by C. Anantharaman-Delaroche in 1987.
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1. INTRODUCTION

Anantharaman-Delaroche introduced in 1987 amenability of group actions
on C∗-algebras and proved that amenability of actions implies coincidence of the
full and reduced crossed product C∗-algebras. Moreover she proved that an ac-
tion on a nuclear C∗-algebra is amenable if and only if its reduced crossed product
is nuclear [1]. We show the converse of the first result assuming that the group is
exact in the sense of E. Kirchberg and S. Wassermann [9] and the algebra is unital
and commutative. Moreover, we can also prove a corresponding result for non-
commutative C∗-algebras under a certain technical assumption. More precisely,
we have the following theorem.

THEOREM 1.1. Let Γ be a (discrete) exact group and A be a unital Γ-C∗-algebra.
Assume that one of the following conditions is satisfied:

(i) The full and reduced crossed products of A by Γ coincide and A is commutative.
(ii) The full and reduced crossed products of A⊗ Aop by Γ coincide and A is nuclear.

Then the action Γ y A is amenable.

The consequence is natural since if the algebra is the field of complex num-
bers with a trivial group action, then the full and reduced crossed products are
the full and reduced group algebras, and in this case it was already proved by
Hulanicki in 1966 [8]. However, in our case, the method is completely different
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to the one of Hulanicki. We use two properties related with the property C′ of
R.J. Archbold and C.J.K. Batty [3] and the weak expectation property (WEP) of
E.C. Lance [10].

Moreover, the assumption is also natural since it is known that a group is
exact if and only if it acts amenably on a unital commutative C∗-algebra ([6], [11]).

Finally, we remark that the commutative case of our theorem can also be
interpreted as a statement of locally compact étale groupoids which also have
associated full and reduced C∗-algebras and amenability (cf. [2]).

2. PRELIMINARIES

In this section, we recall basic definitions and facts.
For a (discrete) group Γ, a Γ-C∗-algebra (A, α) is a C∗-algebra A with an

action α of Γ by ∗-automorphisms. We always consider A∗∗ with a natural Γ-
action, also denoted by α, which is the ultraweakly continuous extension of the
original α. We also give the opposite Aop of A an associated action αop such that
α

op
s (aop) = αs(a)op for any aop ∈ Aop and any s ∈ Γ. If (B, β) is another Γ-C∗-

algebra, then the minimal tensor product A⊗ B naturally has the diagonal action
α⊗ β of Γ, that is, (α⊗ β)s = αs ⊗ βs for any s ∈ Γ. For a family of Γ-C∗-algebras
{(Ai, αi)}i, its direct product ∏ Ai has a Γ-action (∏ αi)s = ∏ αi,s. We will omit α
in the notation if no confusion occurs.

For a Γ-C∗-algebra (A, α), its algebraic crossed product A oalg Γ is a ∗-
algebra which consists of finitely supported A-valued functions on Γ with twisted
convolution product and involution, that is, the product (∑ asδs)(∑ btδt) is de-
fined as ∑ asαsbtδst and the involution sends ∑ asδs to ∑ αs−1 a∗s δs−1 , where aδs
denotes a A-valued function on Γ which sends s to a and others to 0. We may
regard A as a subalgebra of Aoalg Γ by a 7→ aδe and Γ as a subset of it by s 7→ 1δs
if A is unital.

The full crossed product of A is the universal enveloping C∗-algebra of
A oalg Γ. To define the reduced crossed product of A, assume that A is em-
bedded into some B(H) with a unitary representation u of Γ on H which im-
plements the Γ-action on A, that is, αsa = usau∗s for any a ∈ A ⊆ B(H) and s ∈ Γ.
Such an embedding always exists. Then the reduced crossed product of A is de-
fined to be the closure of A oalg Γ ⊆ B(`2Γ ⊗ H), where aδs acts on `2Γ ⊗ H as
aδs(ξ ⊗ η) = λsξ ⊗ ausη. The left regular representation Γ y `2Γ is denoted as λ,
that is, (λsξ)(t) = ξ(s−1t) for any s, t ∈ Γ and any ξ ∈ `2Γ. In fact, the definition
does not depend on the choice of the embedding A ⊆ B(H).

The following is a central concept in this paper.

DEFINITION/THEOREM 2.1 ([1]). A group action of Γ on a C∗-algebra A is said
to be amenable if there exist a net of finitely supported positive definite functions hi :
Γ → Z(A∗∗) such that hi(e) 6 1 for any i and hi(s) converges to 1 ultraweakly for each
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s ∈ Γ. If A is nuclear as a C∗-algebra, then it is equivalent to saying that the reduced
crossed product A or Γ is nuclear.

Here a map h : Γ → Z(A∗∗) is said to be positive definite if the matrix
[αsi h(s

−1
i sj)]ij is positive for each finitely many elements s1, . . . , sn in Γ.

The most important example of an amenable action in this paper comes
from an exact group.

DEFINITION/THEOREM 2.2 ([9], [6], [11]). A group Γ is said to be exact if for
any exact sequence of Γ-C∗-algebras

0→ J → A→ A/J → 0

the associated sequence of C∗-algebras

0→ J or Γ → A or Γ → A/J or Γ → 0

is also exact.
It is equivalent to saying that the left multiplication action Γ y `∞Γ is amenable.

In this case, we have a net of positive definite maps in the definition of
the amenable action with ranges contained in `∞Γ, not only its double dual (see
Théorème 4.9 of [1]). Hence we can conclude that the diagonal action Γ y `∞Γ⊗
A is also amenable for any unital Γ-C∗-algebras A.

The next ingredient is the Haagerup standard form, but we state only a part
of the result which is sufficient for our purpose.

THEOREM 2.3 ([7]). For any Γ-C∗-algebra (A, α), there exist a faithful normal
representation of A∗∗ into B(H), a conjugate linear isometric involution J on H and a
unitary representation u of Γ on H satisfying the following conditions:

(i) JA∗∗ J = (A∗∗)′.
(ii) JzJ = z∗ for any element z in the center of A∗∗.

(iii) J = us Ju∗s for any s ∈ Γ.
(iv) αsa = usau∗s for any a ∈ A and s ∈ Γ.

We observe that if A is commutative, then A∗∗ is maximally abelian in the
standard form by (i) and (ii) of the theorem. We also see that aop 7→ Ja∗ J defines a
universal representation of the opposite Aop of A. The weak closure of its range
is the commutant of A∗∗ by (i) and u implements the naturally induced Γ-action
on Aop by (iii) and (iv).

Finally, we recall multiplicative domains of completely positive (cp) maps
(see, for example, Proposition 1.5.7 of [4]).

DEFINITION/PROPOSITION 2.4. For a cp map ϕ : A → B, its multiplica-
tive domain Aϕ is defined as Aϕ = {a ∈ A : ϕ(aa∗) = ϕ(a)ϕ(a)∗ and ϕ(a∗a) =
ϕ(a)∗ϕ(a)}. Then ϕ satisfies ϕ(ab) = ϕ(a)ϕ(b) and ϕ(ba) = ϕ(b)ϕ(a) for any
a ∈ Aϕ and b ∈ A.
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We will occasionally use this proposition for cp maps which are extensions
of ∗-homomorphisms. Then the domain of ∗-homomorphism is contained in the
multiplicative domain of the cp map.

3. PROOF OF THE MAIN THEOREM

Let us start to prove the theorem. We need two lemmata to prove the theo-
rem. These are related with the property C′ of Archbold and Batty and the WEP
of Lance as already mentioned in the introduction.

The proof and the consequence of the first lemma is similar to the one of
that exactness implies property C′ for C∗-algebras (cf. Proposition 9.2.7 of [4]).

LEMMA 3.1. For any exact group Γ and any Γ-C∗-algebra A, the natural map
A∗∗ oalg Γ → (A or Γ)∗∗ extends to a ∗-homomorphism on A∗∗ or Γ.

Proof. First we remark that the natural inclusion A ↪→ Aor Γ ↪→ (Aor Γ)∗∗

extends to A∗∗ → (Aor Γ)∗∗ which induces a map A∗∗oalg Γ → (Aor Γ)∗∗ from
the algebraic crossed product. Let

AI =
{
(xi)i ∈∏

i∈I
Ai : (xi)i is strong∗-convergent in A∗∗

}
for a directed set I where Ai is a copy of A. This is a Γ-invariant C∗-subalgebra of
∏
i∈I

Ai. The ∗-homomorphism π : AI → A∗∗, assigning to a net its strong∗-limit, is

surjective for a sufficiently large I by Kaplansky’s density theorem. Fix such a set
I. Then the natural map π̃ : AI oalg Γ ⊆ A∗∗ oalg Γ → (A or Γ)∗∗ is continuous

in the topology of AI or Γ since for any
n
∑

k=1
(xk

i )iδsk ∈ AI oalg Γ we have

∥∥∥π̃
( n

∑
k=1

(xk
i )iδsk

)∥∥∥ =
∥∥∥strong∗- lim

i

n

∑
k=1

xk
i δsk

∥∥∥ 6 sup
i

∥∥∥ n

∑
k=1

xk
i δsk

∥∥∥ =
∥∥∥ n

∑
k=1

(xk
i )iδsk

∥∥∥.

The last equality follows from the fact that there exists a natural embedding
(∏i∈I Ai) or Γ ↪→ ∏

i∈I
(Ai or Γ), ∑

k
(xk

i )iδsk 7→ (∑k xk
i δsk )i. This is well-defined

and injective since if Ai ⊆ B(Hi), then (∏i∈I Ai) or Γ ⊆ B(`2Γ ⊗ (⊕Hi)) and
∏
i∈I

(Ai or Γ) ⊆ B(⊕(`2Γ ⊗ Hi)) and an obvious unitary implements the embed-

ding. Thus we have a ∗-homomorphism AI or Γ → (A or Γ)∗∗ which vanishes
on (kerπ) or Γ. Since we have assumed that Γ is exact, we have A∗∗ or Γ '
(AI or Γ)/((kerπ)or Γ)→ (A or Γ)∗∗.

The second lemma corresponds in the non-equivariant case to a statement
that nuclearity implies the WEP. In the noncommutative case, we need a possibly
stronger assumption.



A CHARACTERIZATION OF AMENABILITY OF GROUP ACTIONS ON C∗ -ALGEBRAS 45

LEMMA 3.2. Let (A, α) be a unital Γ-C∗-algebra. Assume that one of the following
conditions is satisfied:

(i) The full and reduced crossed products of A by Γ coincide and A is commutative.
(ii) The full and reduced crossed products of A⊗ Aop by Γ coincide and A is nuclear.

Here Aop is the opposite of A.
Then there exists a Γ-equivariant cp map `∞Γ ⊗ A → A∗∗ which is the identity

on A, where A is considered to be embedded into `∞Γ⊗ A as C1`∞ Γ ⊗ A

Proof. Let A∗∗ ⊆ B(H) be the Haagerup standard form of A∗∗. Note that
(Aop)∗∗ has a natural embedding into B(H) such that (Aop)∗∗ = (A∗∗)′ and the
Γ-actions on A and Aop are implemented by a unitary representation u of Γ on H
as explained in the previous section.

(i) First, assume that the full and reduced crossed products of A by Γ coin-
cide and A is commutative. Consider the representation π : A or Γ = A o Γ →
B(H) induced by the covariant representation. On the other hand, A or Γ is em-
bedded in B(`2Γ ⊗ H) so that aδs acts as λs ⊗ aus for any a ∈ A and any s ∈ Γ.
By Arveson’s extension theorem we have a cp map π̃ : B(`2Γ ⊗ H) → B(H)
which restricts to π on A or Γ. Then the restriction of the cp map to `∞Γ⊗ A ⊆
B(`2Γ⊗ H), where elements of `∞Γ act on `2Γ as multiplication operators, does
the work for the following reason. First, note that any x ∈ `∞Γ ⊗ A commutes
with 1⊗ a ∈ 1⊗ A and the latter is in the multiplicative domain of π̃. Hence we
have aπ̃(x) = π̃((1⊗ a)x) = π̃(x(1⊗ a)) = π̃(x)a, that is, π̃(`∞Γ⊗ A) ⊆ A′ =
A∗∗ since A is commutative. To show that the cp map π̃ : `∞Γ⊗ A → A∗∗ is Γ-
equivariant, we only need to recall that, by unitarity of A, λs⊗ us ∈ B(`2Γ⊗H)π̃ ,
which is sent to us by π̃, and λ implements the left multiplication action Γ y `∞Γ.
Indeed, we have π̃(s( f ⊗ a)) = π̃((λs ⊗ us)( f ⊗ a)(λs ⊗ us)∗) = usπ̃( f ⊗ a)u∗s =
αsπ̃( f ⊗ a) for any f ∈ `∞Γ, a ∈ A and s ∈ Γ.

(ii) In this case, consider a natural representation π : (A⊗ Aop)or Γ = (A⊗
Aop)o Γ → B(H), (a ⊗ bop)δs 7→ aJb∗ Jus, induced by the Haagerup standard
form of A. This extends to a cp map π̃ : ((`∞Γ⊗ A)⊗ Aop)or Γ → B(H) whose
restriction to `∞Γ ⊗ A ⊗ C1Aop ' `∞Γ ⊗ A gives us the desired Γ-equivariant
cp map, using the similar “multiplicative domain argument”. Namely, apply it
twice to reduce its range and to show that it is Γ-equivariant. Reduction follows
from the fact that 1⊗ 1⊗ aop ∈ `∞Γ ⊗ A ⊗ Aop ⊆ (`∞Γ ⊗ A ⊗ Aop)or Γ is in
the multiplicative domain. To show that the cp map is equivariant, we see that
s ∈ Γ ⊆ (`∞Γ⊗ A⊗ Aop)or Γ is in the multiplicative domain.

Now, we recall and prove the main theorem.

THEOREM 3.3. Assume that A is a Γ-C∗-algebra satisfying the conditions of the
last lemma. Moreover, assume that Γ is exact. Then A or Γ is nuclear. In other words
the action Γ y A is amenable.

Proof. Combining the previous lemmata and considering the functoriality
of taking reduced crossed products with respect to equivariant cp maps, we have
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the following commutative diagram:

(`∞Γ⊗ A)or Γ // A∗∗ or Γ // (A or Γ)∗∗

A or Γ

OO 77 33

Thus the natural inclusion A or Γ ↪→ (A or Γ)∗∗ factors through (`∞Γ ⊗
A)or Γ which is nuclear since the action Γ y `∞Γ⊗ A is amenable whenever Γ
is exact and A is unital. Therefore A or Γ is nuclear. Recall that any C∗-algebra
whose inclusion into its double dual is nuclear is nuclear (see Proposition 2.3.8.
of [4]).

Finally we remark that R. Willett and G. Yu have shown that for the Gromov
monster group Γ there exists a Γ-invariant ideal Au in `∞Γ for which the Baum–
Connes assembly map for Γ with coefficients in Au is injective but not surjective,
and the maximal Baum–Connes assembly map for Γ with coefficients in Au is an
isomorphism. In particular, the canonical surjection `∞Γ o Γ → `∞Γ or Γ cannot
be an isomorphism (see, Corollary A. 4 of [12]). Note that the Gromov monster is
an essentially unique known example of a nonexact group (cf. [5], [11]).

Acknowledgements. I would like to thank Y. Kawahigashi and N. Ozawa for valuable
discussions and comments. I would also appreciate a comment on the last remark by
R. Willett.
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