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ABSTRACT. Let (P1, . . . , Pn) be an n-tuple of projections in a unital C∗-algebra
A. We say (P1, . . . , Pn) is complete in A if A is the linear direct sum of the
closed subspaces P1A, . . . , PnA. In this paper, we give some necessary and
sufficient conditions for the completeness of (P1, . . . , Pn) and discuss the per-
turbation problem and connectivity of the set of all complete n-tuple of pro-
jections in A.
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INTRODUCTION

Throughout the paper, we always assume that A is a C∗-algebra with the
unit 1. The theory of C∗-algebras could be refered to Dixmier’s book [5]. It is well-
known that A has a faithful representation (ψ, Hψ) with ψ(1) = I (cf. Theorem
2.6.1 of [5] or Theorem 1.6.17 of [9] or Theorem 1.5.36 of [19]). Let H be a complex
Hilbert space with inner product 〈·, ·〉 and B(H) be the C∗-algebra of all bounded
linear operators on H. For T ∈ B(H), let Ran(T) (respectively Ker(T)) denote the
range (respectively kernel) of T.

Let V1, V2 be closed subspaces in H such that

H = V1 u V2 = V⊥1 u V2,

that is, V1 and V2 are in generic position (cf. [7]). Let Pi be the projection of H onto
Vi, i = 1, 2. Then

H = Ran(P1)u Ran(P2) = Ran(I − P1)u Ran(P2).

In this case, Halmos gave very useful matrix representations of P1 and P2 in
[7]. Following Halmos’ work on two closed subspaces which are in generic po-
sition, Sunder investigated in [15] the n-tuple of closed subspaces (V1, . . . , Vn)
in H which satisfy the condition H = V1 u · · · u Vn (H is the direct sum of
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V1, . . . , Vn), that is, for any ξ ∈ H, there are unique ξi ∈ Vi, i = 1, . . . , n such
that ξ = ξ1 + · · · + ξn. Some natural generalizations of [7] were presented in
[15]. If we let Pi be the projection of H onto Vi, i = 1, . . . , n, then the condition
H = V1 u · · ·u Vn is equivalent to H = Ran(P1)u · · ·u Ran(Pn).

Now the question yields: when does the relation H = Ran(P1) u · · · u
Ran(Pn) hold for an n-tuple of projections (P1, . . . , Pn)? When n = 2, Buck-
holdtz proved in [3] that Ran(P1) u Ran(P2) = H if and only if P1 − P2 is in-
vertible in B(H) if and only if I − P1P2 is invertible in B(H) and if and only if
P1 + P2 − P1P2 is invertible in B(H). More information about two projections can
be found in [2]. Koliha and Rakočević generalized Buckholdtz’s work to the set of
C∗-algebras and rings. They gave some equivalent conditions for decomposition
R = PRuQR or R = R PuR Q in [11] and [12] for idempotent elements P and
Q in a unital ring R. They also characterized the Fredholmness of the difference
of projections on H in [13]. For n > 3, the question remains unknown so far. But
there are some works concerning this problem. For example, the estimation of the
spectrum of the finite sum of projections on H is given in [1] and the C∗-algebra
generated by certain projections is investigated in [14] and [16], etc.

Let Pn(A) denote the set of n-tuples (n > 2) of non-trivial projections in A
and put

PCn(A) = {(P1, . . . , Pn) ∈ Pn(A) : P1Au · · ·u PnA = A}.

It is worth to note that ifA = B(H) and (P1, . . . , Pn) ∈ Pn(B(H)), then (P1, . . . , Pn)
∈PCn(B(H)) if and only if Ran(P1)u · · ·uRan(Pn)=H (see Theorem 1.2 below).

In this paper, we will investigate the set PCn(A) for n > 3. The paper
consists of four sections. In Section 1, we give some necessary and sufficient
conditions that make (P1, . . . , Pn) ∈ Pn(A) be in PCn(A). In Section 2, using
some equivalent conditions for (P1, . . . , Pn) ∈ PCn(A) obtained in Section 1, we
obtain an explicit expression of Pi1 ∨ · · · ∨ Pik for {i1, . . . , ik} ⊂ {1, . . . , n}. In
Section 3, we discuss the perturbation problems for (P1, . . . , Pn) ∈ PCn(A). We

find an interesting result: if (P1, . . . , Pn) ∈ Pn(A) with A =
n
∑

i=1
Pi invertible in

A, then ‖Pi A−1Pj‖ <
[
(n− 1)‖A−1‖‖A‖2]−1, i 6= j implies Pi A−1Pj = 0, i 6= j,

i, j = 1, . . . , n. We show in this section that for given ε ∈ (0, 1), if (P1, . . . , Pn) ∈
Pn(A) satisfies the condition ‖PiPj‖ < ε, then there exists an n-tuple of mutually
orthogonal projections (P′1, . . . , P′n) ∈ Pn(A) such that ‖Pi − P′i ‖ 6 (n− 1)ε, i =
1, . . . , n, which improves a conventional estimate: ‖Pi − P′i ‖ < (12)n−1n!ε, i =
1, . . . , n (cf. [9]). In the final section, we will study the connectivity of PCn(A).

1. EQUIVALENT CONDITIONS FOR COMPLETE n-TUPLES OF PROJECTIONS IN C∗-ALGEBRAS

LetA+ denote the set of all positive elements inA and GL(A) (respectively
U(A)) denote the group of all invertible (respectively unitary) elements inA. Let
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Mk(A) denote matrix algebra of all k× k matrices over A. For any a ∈ A, we set
aA = {ax : x ∈ A} ⊂ A.

DEFINITION 1.1. An n-tuple of projections (P1, . . . , Pn) in A is called com-
plete in A if (P1, . . . , Pn) ∈ PCn(A).

THEOREM 1.2. Let (P1, . . . , Pn) ∈ Pn(A). Then the following statements are
equivalent:

(i) (P1, . . . , Pn) is complete in A.
(ii) Hψ = Ran(ψ(P1))u · · ·u Ran(ψ(Pn)) for any faithful representation (ψ, Hψ)

of A with ψ(1) = I.
(iii) Hψ = Ran(ψ(P1))u · · ·uRan(ψ(Pn)) for some faithful representation (ψ, Hψ)

of A with ψ(1) = I.

(iv) λ
(

∑
j 6=i

Pj

)
+ Pi ∈ GL(A) for 1 6 i 6 n and all λ ∈ C\{0}.

(v) ∑
j 6=i

Pj + λPi ∈ GL(A), i = 1, 2, . . . , n and ∀ λ ∈ [1− n, 0).

(vi) A =
n
∑

i=1
Pi ∈ GL(A) and Pi A−1Pi = Pi, i = 1, . . . , n.

(vii) A =
n
∑

i=1
Pi ∈ GL(A) and Pi A−1Pj = 0, i 6= j, i, j = 1, . . . , n.

(vii) A =
n
∑

i=1
Pi ∈ GL(A) and Ei = Pi A−1 ∈ A are idempotent elements with the

properties: EiEj = 0, i 6= j, i, j = 1, . . . , n and
n
∑

i=1
Ei = 1.

(ix) There is an n-tuple of idempotent elements (E1, . . . , En) in A such that EiPi =

Pi, PiEi = Ei, i = 1, . . . , n and EiEj = 0, i 6= j, i, j = 1, . . . , n,
n
∑

i=1
Ei = 1.

In order to show Theorem 1.2, we need the following lemmas.

LEMMA 1.3. Let B, C ∈ A+\{0} and suppose that λB + C is invertible in A for
every λ ∈ R\{0}. Then there is a non-trivial orthogonal projection P ∈ A such that

B = (B + C)1/2P(B + C)1/2, C = (B + C)1/2(1− P)(B + C)1/2.

Proof. Put D = B + C and Dλ = λB + C, ∀ λ ∈ R\{0}. Then D > 0, D and
Dλ are all invertible in A, ∀ λ ∈ R\{0}.

Put B1 = D−1/2BD−1/2, C1 = D−1/2CD−1/2. Then B1 + C1 = 1 and

D−1/2DλD−1/2 = λB1 + C1 = λ + (1− λ)C1 = (1− λ)(λ(1− λ)−1 + C1)

is invertible in A for any λ ∈ R\{0, 1}. Since λ 7→ λ/(1− λ) is a homeomor-
phism from R\{0, 1} onto R\{−1, 0}, it follows that σ(C1) ⊂ {0, 1}. Note that
B1 and C1 are all non-zero. So σ(C1) = {0, 1} = σ(B1) and hence P = B1 is a
non-zero projection in A and B = D1/2PD1/2, C = D1/2(1− P)D1/2.

LEMMA 1.4. Let B, C ∈ A+\{0}. Then the following statements are equivalent:
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(i) For any non-zero real number λ, λB + C is invertible in A.
(ii) B + C is invertible in A and B(B + C)−1B = B.

(iii) B + C is invertible in A and B(B + C)−1C = 0.
(iv) B + C is invertible in A and for any B′, C′ ∈ A+ with B′ 6 B and C′ 6 C,

B′(B + C)−1C′ = 0.

Proof. (i) ⇒ (ii) By Lemma 1.3, there is a non-zero projection P in A such
that B = D1/2PD1/2, C = D1/2(1− P)D1/2, where D = B + C ∈ GL(A). So

B(B + C)−1B = D1/2PD1/2D−1D1/2PD1/2 = B.

The assertion (ii)⇔ (iii) follows from

B(B + C)−1B = B(B + C)−1(B + C− C) = B− B(B + C)−1C.

(iii)⇒ (iv) For any C′ with 0 6 C′ 6 C,

0 6 B(B + C)−1C′(B + C)−1B 6 B(B + C)−1C(B + C)−1B = 0,

we have B(B + C)−1C′ = B(B + C)−1C′1/2C′1/2 = 0. This implies that C′(B +
C)−1B = 0.

In the same way, we also obtain that for any B′ with 0 6 B′ 6 B, C′(B +
C)−1B′ = 0.

(iv)⇒ (iii) is obvious.
(ii)⇒ (i) Set X = (B + C)−1/2B and Y = (B + C)−1/2C. Then X, Y ∈ A and

X∗X = B, X + Y = (B + C)1/2. Thus, for any λ ∈ R\{0},

X + λY = (B + C)−1/2(B + λC),

(X + λY)∗(X + λY) = ((1− λ)X + λ(B + C)1/2)∗((1− λ)X + λ(B + C)1/2)

= (1− λ)2B + 2λ(1− λ)B + λ2(B + C) = B + λ2C,

and consequently, (X + λY)∗(X + λY) > B + C if |λ| > 1 and

(X + λY)∗(X + λY) > λ2(B + C)

when |λ| < 1. This indicates that (X + λY)∗(X + λY) is invertible in A. Noting
that B + C > ‖(B + C)−1‖−1 · 1, we have, for any λ ∈ R\{0},

(B + λC)2 = (X + λY)∗(B + C)(X + λY) > ‖(B + C)−1‖−1(X + λY)∗(X + λY).

Therefore, B + λC is invertible in A, ∀ λ ∈ R\{0}.

LEMMA 1.5. Let P ∈ A be a non-trivial projection and A ∈ A+. If A + P is
invertible in A, then A + λP is invertible in A for all λ < −‖A‖.

Proof. Put

A1 = P(A + P)P, A2 = P(A + P)(1− P), A4 = (1− P)(A + P)(1− P),

and express A + λP as the form A + λP =

[
A1 + (λ− 1)P A2

A∗2 A4

]
.
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Since A + P > ‖(A + P)−1‖−1 · 1, we have A4 > ‖(A + P)−1‖−1(1− P) and
so that A4 is invertible in (1− P)A(1− P). Thus, from the following equation

(A + P)
[

P 0
−A−1

4 A∗2 1− P

]
=

[
A1 − A2 A−1

4 A∗2 + (λ− 1)P A2
0 A4

]
,

we get that A + λP is invertible if and only if A1 − A2 A−1
4 A∗2 + (λ − 1)P is in-

vertible in PAP. Since A1 6 P‖A + P‖P 6 (1 + ‖A‖)P, it follows that

−A1 + A2 A−1
4 A∗2 − (λ− 1)P > (−‖A‖ − λ)P + A2 A−1

4 A∗2 > (−‖A‖ − λ)P > 0

when λ < −‖A‖. Therefore, A + λP is invertible in A for λ < −‖A‖.

The next lemma comes from Lemma 1 of [4] and Lemma 3.5.5 of [19]:

LEMMA 1.6. Let P ∈ A be an idempotent element. Then
(i) P + P∗ − 1 ∈ GL(A).

(ii) R = P(P + P∗ − 1)−1 is a projection in A satisfying PR = R and RP = P.
Moreover, if R′ ∈ A is a projection such that PR′ = R′ and R′P = P, then

R′ = R.

Now we begin to prove Theorem 1.2.

Proof of Theorem 1.2. (i)⇒ (vi) Statement (i) implies that there are b1, . . . , bn

∈ A such that 1 =
n
∑

i=1
Pibi. Put Î =


1

0
. . .

0

, X =


P1 · · · Pn
0 · · · 0
...

. . .
...

0 · · · 0

 and

Y =

b1 0 · · · 0
...

...
. . .

...
bn 0 · · · 0

. Then

Î = XY = XYY∗X∗ 6 ‖Y‖2XX∗ = ‖Y‖2


n
∑

i=1
Pi

0
. . .

0


and so that A =

n
∑

i=1
Pi is invertible in A. Therefore, Pi has two expressions

Pi = P1 A−1Pi + · · ·+ Pi A−1Pi + · · ·+ Pn A−1Pi(1.1)

= 0 + · · ·+ 0︸ ︷︷ ︸
i−1

+Pi + 0 + · · ·+ 0︸ ︷︷ ︸
n−i

,(1.2)

i = 1, . . . , n. Since A = P1Au · · ·u PnA, the expression of Pi must be unique. So
we have Pi = Pi A−1Pi from (1.1) and (1.2), i = 1, . . . , n.

(ii)⇒ (iii) is obvious.
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(iii) ⇒ (iv) Set Qi = ψ(Pi), i = 1, . . . , n. From Ran(Q1)u · · · u Ran(Qn)

= Hψ, we obtain idempotent operators F1, . . . , Fn in B(Hψ) such that
n
∑

i=1
Fi = I,

FiFj = 0, i 6= j and Fi Hψ = Qi Hψ, i, j = 1, . . . , n. So FiQi = Qi, QiFi = Fi and
FjQi = 0, i 6= j, 1 6 i, j 6 n. Using these relations, it is easy to check that

( n

∑
i=1

λiQi

)( n

∑
i=1

λ−1
i F∗i Fi

)
=

n

∑
i=1

Fi = I,
( n

∑
i=1

λ−1
i F∗i Fi

)( n

∑
i=1

λiQi

)
=

n

∑
i=1

F∗i = I,

for any non-zero complex numbers λi, i = 1, . . . , n. Particularly, for any λ ∈
C\{0}, (

λ
(

∑
j 6=i

Qj

)
+ Qi

)−1
= λ−1 ∑

j 6=i
F∗j Fj + F∗i Fi

in B(Hψ). So λ
(

∑
j 6=i

Qj

)
+ Qi is invertible in ψ(A), 1 6 i 6 n by Corollary 1.5.8 of

[19] and so λ
(

∑
j 6=i

Pj

)
+ Pi ∈ GL(A) since ψ is faithful and ψ(i) = I.

(iv)⇒ (v) Obviously.
(v)⇒ (vi) Put Ai(λ) = ∑

j 6=i
Pj + λPi, i = 1, . . . , n, λ ∈ R\{0}, then

(Ai(λ))
2 6 2

(
∑
j 6=i

Pj

)2
+ 2λ2Pi 6 2(n− 1)∑

j 6=i
Pj + 2λ2Pi

6 2 max{n− 1, λ2}(P1 + · · ·+ Pn).

So Ai(λ) is invertible in A, ∀ λ ∈ [1 − n, 0) means that A = P1 + · · · + Pn is
invertible in A. Note that Ai(λ) > max{1, λ}A when λ > 0. Thus, Ai(λ) is

invertible in A for λ > 0, ∀ 1 6 i 6 n. When λ < 1− n 6 −
∥∥∥ ∑

j 6=i
Pj

∥∥∥, Ai(λ) is

also invertible in A by Lemma 1.5. Therefore, A(λ) is invertible in A for all λ ∈
R\{0}. Applying Lemma 1.4 to ∑

j 6=i
Pj and Pi, i = 1, . . . , n, we get the assertion.

(vi) ⇒ (vii) Set Ci = ∑
j 6=i

Pj, i = 1, . . . , n. Since Pi(Ci + Pi)
−1Pi = Pi and

Pj 6 Ci, j 6= i, i, j = 1, . . . , n, it follows from Lemma 1.4 that Pi A−1Pj = 0, i 6= j,
i, j = 1, . . . , n.

(vii) ⇒ (viii) By the assumption, we have Pi A−1
(

∑
j 6=i

Pj

)
= 0, i = 1, . . . , n.

So Pi A−1Pi = Pi, i = 1, . . . , n, by Lemma 1.4. Set Ei = Pi A−1, i = 1 · · · , n. Then
Ei are idempotent elements in A and EiEj = 0, i 6= j, i, j = 1, . . . , n. It is obvious

that
n
∑

i=1
Ei = AA−1 = 1.
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(viii) ⇒ (ix) Let (P1, . . . , Pn) ∈ Pn(A) with A =
n
∑

i=1
Pi ∈ GL(A) such that

Ei = Pi A−1 ∈ A are idempotent and EiEj = 0,
n
∑

i=1
Ei = 1, i 6= j, i, j = 1, . . . , n.

Clearly, PiEi = Ei, i = 1, . . . , n. From Pi A−1 = Ei = E2
i = Pi A−1Pi A−1, we get

that Pi = Pi A−1Pi and hence EiPi = Pi, i = 1, . . . , n.
(ix)⇒ (i) Let E1, . . . , En be idempotent elements in A such that EiEj = δijEi,

n
∑

i=1
Ei = 1 and EiPi = Pi, PiEi = Ei, i, j = 1, . . . , n. Then EiA = PiA, i = 1, . . . , n

and A = E1Au · · ·u EnA = P1Au · · ·u PnA.
(ix) ⇒ (ii) Let E1, . . . , En be idempotent elements in A such that EiEj =

δijEi,
n
∑

i=1
Ei = 1 and EiPi = Pi, PiEi = Ei, i, j = 1, . . . , n. Let (ψ, Hψ) be any

faithful representation of A with ψ(i) = I. Put E′i = ψ(Ei) and Qi = ψ(Pi),

i = 1, . . . , n. Then E′i E
′
j = δijE′i ,

n
∑

i=1
E′i = I and Ran(E′i) = Ran(Qi), i, j = 1, . . . , n.

Consequently, Hψ = Ran(Q1)u · · ·u Ran(Qn).

REMARK 1.7. Statement (iii) in Theorem 1.2 cannot be replaced by “for any
i ∈ {1, . . . , n}, Pi − ∑

j 6=i
Pj is invertible".

For example, let H(4) =
4⊕

i=1
H and put A = B(H(4)),

P1 =


I

I
0

0

 , P2 =


I

0
I

0

 , P3 =


I

0
0

I

 .

Clearly, Pi − ∑
j 6=i

Pj is invertible, 1 6 i 6 3, but P2 + P3 − 2P1 is not invertible, that

is, (P1, P2, P3) is not complete in A.

COROLLARY 1.8 ([3], Theorem 1). Let P1, P2 be non-trivial projections in B(H).
Then H = Ran(P1)u Ran(P2) if and only if P1 − P2 is invertible in B(H).

Proof. By Theorem 1.2, H = Ran(P1) u Ran(P2) implies that P1 − P2 ∈
GL(B(H)).

Conversely, if P1 − P2 ∈ GL(B(H)), then from

2(P1 + P2) > (P1 − P2)
2,

we get that P1 + P2 ∈ GL(B(H)) and so that for any λ > 1, P1 − λP2, P2 − λP1 ∈
GL(B(H)) by Lemma 1.5. Thus, for any λ ∈ (0, 1], P1 − λP2 and P2 − λP1 are all
invertible in B(H). Consequently, H = Ran(P1)u Ran(P2) by Theorem 1.2.
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2. SOME REPRESENTATIONS CONCERNING THE COMPLETE n-TUPLE OF PROJECTIONS

We first state a lemma which is frequently used in this section and the later
sections.

LEMMA 2.1. Let B ∈ A+ such that 0 ∈ σ(B) is an isolated point. Then there is a
unique element B† ∈ A+ such that

(2.1) BB†B = B, B†BB† = B†, BB† = B†B.

Proof. Define a continuous function f (t) on σ(B) by

f (t) =

{
0 t = 0,
1 t ∈ σ(B)\{0},

and set B† = f (B) ∈ A. Then B† ∈ A+ and it is easy to check that (2.1) is satisfied.
If there is another B′ ∈ A+ such that BB′B = B, B′BB′ = B′ and BB′ = B′B,

then we have

BB′ = BB†BB′ = B†BB′B = B†B and B′ = B′BB′ = B†BB′ = B†BB† = B†,

that is, such B† is unique.

REMARK 2.2. The element B† in the above lemma is called the Moore–
Penrose inverse of B. When 0 6∈ σ(B), B† is defined to be B−1. The detailed
information can be found in [19].

Let (P1, . . . , Pn) ∈ PCn(A) and put A =
n
∑

i=1
Pi. By Theorem 1.2, A ∈ GL(A)

and Ei = Pi A−1, 1 6 i 6 n, are idempotent elements satisfying the conditions

EiEj = 0, i 6= j; EiPi = Pi, PiEi = Ei, i = 1, . . . , n; and
n

∑
i=1

Ei = 1.

By Lemma 1.6, Pi = Ei(E∗i +Ei− 1)−1, 1 6 i 6 n. So the C∗-algebra C∗(P1, . . . , Pn)
generated by P1, . . . , Pn is equal to the C∗-algebra C∗(E1, . . . , En) generated by
E1, . . . , En.

Put Qi = A−1/2Pi A−1/2, i = 1, . . . , n. Then QiQj = δijQi by Theorem 1.2,

i, j = 1, . . . , n and
n
∑

i=1
Qi = 1. Thus,

(2.2) Pi = A1/2Qi A1/2 and Ei = Pi A−1 = A1/2Qi A−1/2, i = 1, . . . , n.

PROPOSITION 2.3. Let (P1, . . . , Pn) ∈ PCn(A) with A =
n
∑

i=1
Pi. Then for any

λi 6= 0, i = 1, . . . , n,
( n

∑
i=1

λiPi

)−1
= A−1

( n
∑

i=1
λ−1

i Pi

)
A−1.
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Proof. Keeping the symbols as above, we have

n

∑
i=1

λiPi = A1/2
( n

∑
i=1

λiQi

)
A1/2.

Thus,( n

∑
i=1

λiPi

)−1
= A−1/2

( n

∑
i=1

λ−1
i Qi

)
A−1/2 = A−1

( n

∑
i=1

λ−1
i Pi

)
A−1.

Now for i1, i2, . . . , ik ∈ {1, 2, . . . , n} with i1 < i2 < · · · < ik, put A0 =
k
∑

r=1
Pir and Q0 =

k
∑

r=1
Qir . Then A0, Q0 ∈ A and Q0 is a projection. From (2.2),

A0 = A1/2Q0 A1/2. Thus, σ(A0)\{0} = σ(Q0 AQ0)\{0} (cf. Proposition 1.4.14
of [19]). Since AA−1 = 1 = A1/2 A−1 A1/2 and A−1 6 ‖A−1‖, it follows that
‖A−1‖A > 1 and hence Q0 AQ0 > ‖A−1‖−1Q0. It implies that Q0 AQ0 is invert-
ible in Q0AQ0. Thus 0 ∈ σ(Q0 AQ0) is an isolated point and so that 0 ∈ σ(A0)
is also an isolated point. So we can define Pi1 ∨ · · · ∨ Pik to be the projection
A†

0 A0 ∈ A by Lemma 2.1. This definition is reasonable: if P ∈ A is a projection
such that P > Pir , r = 1, . . . , k, then PA0 = A0 and hence PA0 A†

0 = A0 A†
0, i.e.,

P > Pi1 ∨ · · · ∨ Pik . Since A0 > Pir , we have

0 = (1− A†
0 A0)A0(1− A†

0 A0) > (1− A†
0 A0)Pir (1− A†

0 A0)

and consequently, Pir (1− A†
0 A0) = 0, that is, Pir 6 Pi1 ∨ · · · ∨ Pik , i = 1, . . . , k.

PROPOSITION 2.4. Let (P1, . . . , Pn) ∈ PCn(A) with A =
n
∑

i=1
Pi. Let i1, . . . , ik

be as above and {j1, . . . , jl} = {1, . . . , n}\{i1, . . . , ik} with j1 < · · · < jl . Then

Pi1 ∨ · · · ∨ Pik = A1/2
[( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)]−1
A1/2(2.3)

=
( k

∑
r=1

Pir

)[( k

∑
r=1

Pir

)2
+

l

∑
t=1

Pjt

]−1( k

∑
r=1

Pir

)
,

where
[( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)]−1
stands for the inverse of

( k
∑

r=1
Qir

)
A
( k

∑
r=1

Qir

)
in( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)
.

Proof. Using the symbols Pi, Qi, Ei as above, and according to (2.2),

k

∑
r=1

Pir = A1/2
( k

∑
r=1

Qir

)
A1/2,

k

∑
r=1

Eir = A1/2
( k

∑
r=1

Qir

)
A−1/2.
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Thus
( k

∑
r=1

Eir

)( k
∑

r=1
Pir

)
=

k
∑

r=1
Pir and

k
∑

r=1
Eir =

( k
∑

r=1
Pir

)
A−1. Then we have

( k

∑
r=1

Eir

)
Pi1 ∨ · · · ∨ Pik = Pi1 ∨ · · · ∨ Pik , Pi1 ∨ · · · ∨ Pik

( k

∑
r=1

Eir

)
=

k

∑
r=1

Eir ,

according to the definition of Pi1 ∨ · · · ∨ Pik .

Since
k
∑

r=1
Eir is an idempotent element in A, it follows from Lemma 1.6 that

(2.4) Pi1 ∨ · · · ∨ Pik =
( k

∑
r=1

Eir

)[ k

∑
r=1

(E∗ir + Eir )− 1
]−1
∈ A.

Noting that
( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)
is invertible in

(( k
∑

r=1
Qir

)
A
( k

∑
r=1

Qir

))
and( l

∑
t=1

Qjt

)
A
( k

∑
t=1

Qjt

)
is invertible in

( k
∑

t=1
Qjt

)
A
( k

∑
t=1

Qjt

)
and

k

∑
r=1

(E∗ir + Eir )− 1 = A−1/2
[( k

∑
r=1

Qir

)
A + A

( k

∑
r=1

Qir

)
− A

]
A−1/2

= A−1/2
[( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)
−
( l

∑
t=1

Qjt

)
A
( l

∑
t=1

Qjt

)]
A−1/2,

we obtain that[ k

∑
r=1

(E∗ir+Eir )−1
]−1

=A1/2
[[( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)]−1
−
[( l

∑
t=1

Qjt

)
A
( l

∑
t=1

Qjt

)]−1]
A1/2.

Combining this with (2.4), we can get (2.3).

Note that
k
∑

r=1
Pir = A1/2

( k
∑

r=1
Qir

)
A1/2,

l
∑

t=1
Pjt = A1/2

( l
∑

t=1
Qjt

)
A1/2 and( k

∑
r=1

Pir

)2
= A1/2

( k
∑

r=1
Qir

)
A
( k

∑
r=1

Qir

)
A1/2. Therefore,

( k

∑
r=1

Pir

)[( k

∑
r=1

Pir

)2
+

l

∑
t=1

Pjt

]−1( k

∑
r=1

Pir

)
= A1/2

( k

∑
r=1

Qir

)([( k

∑
r=1

Qir

)
A
( k

∑
r=1

Qir

)]−1
+

l

∑
t=1

Qjt

)( k

∑
r=1

Qir

)
A1/2

= Pi1 ∨ · · · ∨ Pik

by (2.3).
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3. PERTURBATIONS OF A COMPLETE n-TUPLE OF PROJECTIONS

Let X be a Banach space and let C be a bounded linear operator acting in X.
According to Chapter IV, Section 5 of [10], the reduced minimum modulus γ(C)
is given by

γ(C) =

{
inf{‖Cx‖ : dist(x, KerT) = 1, x ∈ X} C 6= 0,
+∞ C = 0.

We list some properties of the reduced minimum modulus in the lemma that
follows.

LEMMA 3.1 (cf. [19]). Let C be in B(H)\{0}. Then
(i) γ(C) = inf{‖Cx‖ : x ∈ (KerC)⊥, ‖x‖ = 1}.

(ii) ‖Cx‖ > γ(C)‖x‖, ∀ x ∈ (Ker(C))⊥.
(iii) γ(C) = inf{λ : λ ∈ σ(|C|)\{0}}, where |C| = (C∗C)1/2.
(iv) γ(C) > 0 if and only if Ran(C) is closed if and only if 0 is an isolated point of

σ(|C|) if 0 ∈ σ(|C|).
(v) γ(C) = ‖C−1‖−1 when C is invertible.

(vi) γ(C) > ‖B‖−1 when CBC = C for B ∈ B(H)\{0}.
For a ∈ A+, put β(a) = inf{λ : λ ∈ σ(a)\{0}}. Combining Lemma 3.1 with

the faithful representation of A, we can obtain

COROLLARY 3.2. Let a ∈ A+. Then
(i) β(a) > 0 if and only if 0 ∈ σ(a) is isolated when a 6∈ GL(A).

(ii) β(a) > ‖c‖−1 when aca = a for some c ∈ A+\{0}.
Let E be a C∗-subalgebra of B(H) with the unit I. Let (T1, . . . , Tn) be an n-

tuple of positive operators in E with Ran(Ti) closed, i = 1, . . . , n. Put Ĥ =
n⊕

i=1
H,

H0 =
n⊕

i=1
Ran(Ti) and H1 =

n⊕
i=1

Ker(Ti). Since H = Ran(Ti)⊕Ker(Ti), i=1, . . . , n,

it follows that H0 ⊕ H1= Ĥ. Put Tij =TiTj|Ran(Tj)
, i, j = 1, . . . , n and set

(3.1)

T =


T2

1 T1T2 · · · T1Tn
T2T1 T2

2 · · · T2Tn
· · · · · · · · · · · ·

TnT1 T2T2 · · · T2
n

 ∈ Mn(E),

T̂ =


T11 T12 · · · T1n
T21 T22 · · · T2n
· · · · · · · · · · · ·
Tn1 Tn2 · · · Tnn

 ∈ B(H0).
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Clearly, H1 ⊂ Ker(T) and it is easy to check that Ker(T) = H1 when Ker(T̂) =

{0}. Thus, in this case, T can be expressed as T =

[
T̂ 0
0 0

]
with respect to the

orthogonal decomposition Ĥ = H0 ⊕ H1 and consequently, σ(T) = σ(T̂) ∪ {0}.

LEMMA 3.3. Let (T1, . . . , Tn) be an n-tuple of positive operators in E with Ran(Ti)

closed, i = 1, . . . , n. Let H0, H1, Ĥ be as above and T, T̂ be given in (3.1). Suppose that
T̂ is invertible in B(H0). Then

(i) σ(T̂) = σ
( n

∑
i=1

T2
i

)
\{0}.

(ii) 0 is an isolated point in σ
( n

∑
i=1

Ti

)
if 0 ∈ σ

( n
∑

i=1
Ti

)
.

(iii) {T1a1, . . . , Tnan} is linearly independent for any a1, . . . , an ∈ E with Tiai 6= 0,
i = 1, . . . , n.

Proof. (i) Put Z =


T1 · · · Tn
0 · · · 0
...

. . .
...

0 · · · 0

 ∈ Mn(E). Then Z∗Z = T and ZZ∗ =


n
∑

i=1
T2

i

0
. . .

0

. Thus, σ
( n

∑
i=1

T2
i

)
\{0} = σ(T)\{0} = σ(T̂).

(ii) According to (i), 0 is an isolated point of σ
( n

∑
i=1

T2
i

)
if

n
∑

i=1
T2

i is not invert-

ible in E . So by Lemma 2.1, there is G ∈ E+ such that( n

∑
i=1

T2
i

)
G
( n

∑
i=1

T2
i

)
=

n

∑
i=1

T2
i , G

( n

∑
i=1

T2
i

)
G = G,

( n

∑
i=1

T2
i

)
G = G

( n

∑
i=1

T2
i

)
.

Put P0 = I−
( n

∑
i=1

T2
i

)
G ∈ E . Then P0 is a projection with Ran(P0) = Ker

( n
∑

i=1
T2

i

)
.

Noting that Ker
( n

∑
i=1

T2
i

)
= Ker

( n
∑

i=1
Ti

)
=

n⋂
i=1

Ker(Ti),
n
∑

i=1
T2

i ∈ GL((I− P0)E(I−

P0)) with the inverse G and
n
∑

i=1
T2

i 6
(

max
16i6n

‖Ti‖
) n

∑
i=1

Ti, we get that
n
∑

i=1
Ti is

invertible in (I − P0)E(I − P0). Thus, 0 is an isolated point of σ
( n

∑
i=1

Ti

)
when

0 ∈ σ
( n

∑
i=1

Ti

)
.

(iii) By Lemma 3.1(iii) and Lemma 2.1, there is T†
i ∈ E+ such that TiT†

i Ti =

Ti, T†
i TiT†

i = T†
i , T†

i Ti = TiT†
i , i = 1, . . . , n. Thus, Ran(Ti) = Ran(TiT†

i ), i =
1, . . . , n.
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Let a1, . . . , an ∈ E with Tiai 6= 0, i = 1, . . . , n such that
n
∑

i=1
λiTiai = 0 for

some λ1, . . . , λn ∈ C. For any ξ ∈ H, put x =
n⊕

i=1
λiTiT†

i aiξ ∈ H0. Then T̂x = 0

and x = 0 since T̂ is invertible. Thus, λiTiT†
i aiξ = 0, ∀ ξ ∈ H and hence λi = 0,

i = 1, . . . , n.

The following result due to Levy and Desplanques is very useful in matrix
theory:

LEMMA 3.4 (cf. [8]). Suppose the complex n× n self-adjoint matrix C = [cij]n×n
is strictly diagonally dominant, that is, ∑

j 6=i
|cij| < cii, i = 1, . . . , n. Then C is invertible

and positive.

PROPOSITION 3.5. Let T1, . . . , Tn ∈ A+. Assume that
(i) γ = min{β(T1), . . . , β(Tn)} > 0 and

(ii) there exists ρ ∈ (0, γ] such that η = max{‖TiTj‖ : i 6= j, i, j = 1, . . . , n} <

(n− 1)−1ρ2.
Then for any δ ∈ [η, (n− 1)−1ρ2), we have

(a) σ
( n

∑
i=1

T2
i

)
\{0} ⊂ [ρ2 − (n− 1)δ, ρ2 + (n− 1)δ].

(b) 0 is an isolated point of σ
( n

∑
i=1

Ti

)
if 0 ∈ σ

( n
∑

i=1
Ti

)
.

(c)
( n

∑
i=1

Ti

)
A = T1Au · · ·u TnA.

Proof. (a) Let (ψ, Hψ) be a faithful representation of A with ψ(i) = I. We
may assume that H = Hψ and E = ψ(A). Put Si = ψ(Ti), Sij = SiSj|Ran(Sj)

,
i, j = 1, . . . , n. Then max{‖SiSj‖ : 1 6 i 6= j 6 n} = η and γ(Si) = β(Ti) by

Lemma 3.1, 1 6 i 6 n. Set H0 =
n⊕

i=1
Ran(Si) and

Ŝ=


S11 S12 · · · S1n
S21 S22 · · · S2n
· · · · · · · · · · · ·
Sn1 Sn2 · · · Snn

∈B(H0), S0=


ρ2 − λ −‖S12‖ · · · −‖S1n‖
−‖S21‖ ρ2 − λ · · · −‖S2n‖
· · · · · · · · · · · ·
−‖Sn1‖ −‖Sn2‖ · · · ρ2 − λ

 .

Then for any λ < ρ2 − (n− 1)δ, we have ∑
j 6=i
‖Sij‖ 6 (n− 1)η < ρ2 − λ. It follows

from Lemma 3.4 that S0 is positive and invertible. Therefore the quadratic form

f (x1, x2, . . . , xn) =
n

∑
i=1

(ρ2 − λ)x2
i − 2 ∑

16i<j6n
‖Sij‖xixj

is positive definite and hence there is α > 0 such that for any (x1, . . . , xn) ∈ Rn,

f (x1, . . . , xn) > α(x2
1 + · · ·+ x2

n).
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So for any ξ =
n⊕

i=1
ξi ∈ H0, ‖Siξi‖ > γ(Si)‖ξi‖ > ρ‖ξi‖, ξi ∈ Ran(Si) =

(Ker(Si))
⊥, i = 1, . . . , n, by Lemma 3.1 and

〈(Ŝ− λI)ξ, ξ〉 =
n

∑
i=1
‖Siξi‖2 −

n

∑
i

λ‖ξi‖2 + ∑
16i<j6n

(〈Sijξ j, ξi〉+ 〈S∗ijξi, ξ j〉)

>
n

∑
i=1

(ρ2 − λ)‖ξi‖2 − 2 ∑
16i<j6n

‖Sij‖‖ξi‖‖ξ j‖

= f (‖ξ1‖, . . . , ‖ξk‖) > α
k

∑
i=1
‖ξi‖2.

Therefore, Ŝ− λI is invertible.
Similarly, for any λ > ρ2 + (n− 1)δ, we can obtain that λI − Ŝ is invertible.

So σ(Ŝ) ⊂ [ρ2 − (n− 1)δ, ρ2 + (n− 1)δ] ⊂ (0, ρ2 + (n− 1)δ] and consequently,

σ
( n

∑
i=1

T2
i

)
\{0} = σ

( n

∑
i=1

S2
i

)
\{0} ⊂ [ρ2 − (n− 1)δ, ρ2 + (n− 1)δ]

by Lemma 3.3.

(b) Since σ
( n

∑
i=1

Ti

)
= σ

( n
∑

i=1
Si

)
, the assertion follows from Lemma 3.3(ii).

(c) By (b) and Lemma 2.1,
( n

∑
i=1

Ti

)†
∈ A exists. Set E =

( n
∑

i=1
Ti

)( n
∑

i=1
Ti

)†
.

Obviously, EA =
( n

∑
i=1

Ti

)
A ⊂ T1A+ · · ·+ TnA for E

( n
∑

i=1
Ti

)
=

n
∑

i=1
Ti.

From Ti 6
n
∑

i=1
Ti, we get that

(1− E)Ti(1− E) 6 (1− E)
( n

∑
i=1

Ti

)
(1− E) = 0,

i.e., Ti = ETi, i = 1, . . . , n. So TiA ⊂ EA, i = 1, . . . , n and hence

T1A+ · · ·+ TnA ⊂ EA =
( n

∑
i=1

Ti

)
A ⊂ T1A+ · · ·+ TnA.

Since for any ai ∈ A with Tiai 6= 0, 1 6 i 6 n, {S1ψ(ai), . . . , Snψ(an)}
is linearly independent in E by Lemma 3.3, we have {T1a1, . . . , Tnan} is linearly
independent in A. Therefore,( n

∑
i=1

Ti

)
A = EA = T1Au · · ·u TnA.

Let P1, P2 be projections on H. Buckholtz shows in [3] that H = Ran(P1)u
Ran(P2) if and only if ‖P1 + P2 − I‖ < 1. For (P1, . . . , Pn) ∈ Pn(A), we have
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COROLLARY 3.6. Let (P1, . . . , Pn) ∈ Pn(A) satisfying
∥∥∥ n

∑
i=1

Pi − 1
∥∥∥ < (n −

1)−2. Then (P1, . . . , Pn) is complete in A.

Proof. For any i 6= j,

‖PiPj‖2=‖PiPjPi‖6
∥∥∥Pi

(
∑
k 6=i

Pk

)
Pi

∥∥∥=∥∥∥Pi

( n

∑
k=1

Pk−1
)

Pi

∥∥∥6∥∥∥ n

∑
k=1

Pk−1
∥∥∥< 1

(n−1)2 .

Thus ‖PiPj‖ < (n− 1)−1. Noting that

ρ = min{β(P1), . . . , β(Pn)} = 1, η = max{‖PiPj‖ : 1 6 i < j 6 n} < 1
n− 1

,

we have
( n

∑
i=1

Pi

)
A = P1Au · · ·u PnA by Proposition 3.5.

From
∥∥∥ n

∑
i=1

Pi − 1
∥∥∥ < (n − 1)−2, we have

n
∑

i=1
Pi is invertible in A and so

A = P1Au · · ·u PnA. Thus, (P1, . . . , Pn) is complete in A.

Combing Corollary 3.6 with Theorem 1.2(iii), we have

COROLLARY 3.7. Let P1, . . . , Pn be non-trivial projections in B(H) with
∥∥∥ n

∑
i=1

Pi

−I
∥∥∥ < (n− 1)−2. Then H = Ran(P1)u · · ·u Ran(Pn).

Let (P1, . . . , Pn) ∈ Pn(A). A well-known statement says: “for any ε > 0,
there is δ > 0 such that if ‖PiPj‖ < δ, i 6= j, i, j = 1, . . . , n, then there are mutually
orthogonal projections P′1, . . . , P′n ∈ Awith ‖Pi− P′i ‖ < ε, i = 1, . . . , n". It may ap-
peared first in Glimm’s paper [6]. By using the induction on n, he gave its proof.
But how δ depends on ε is not given. Lemma 2.5.6 of [9] states this statement and
the author gives a slightly different proof. We can find from the proof of Lemma
2.5.6 of [9] that the relation between δ and ε is δ = ε/(12)(n−1)n!.

The next corollary will give a new proof of this statement with the relation
δ = ε/(n− 1) for ε ∈ (0, 1).

COROLLARY 3.8. Let (P1, . . . , Pn) ∈ Pn(A) and ε ∈ (0, 1). If P1, . . . , Pn satisfy
the condition ‖PiPj‖ < δ = ε/(n− 1), 1 6 i < j 6 n, then there are mutually
orthogonal projections P′1, . . . , P′n ∈ A such that ‖Pi − P′i ‖ 6 ε, i = 1, . . . , n.

Proof. Set A =
n
∑

i=1
Pi. Noting that γ = min{β(P1), . . . , β(Pn)} = 1, ‖PiPj‖ <

1/(n− 1), 1 6 i < j 6 n and taking ρ = 1, we have σ(A)\{0} ⊂ [1− (n− 1)δ, 1+
(n− 1)δ] by Proposition 3.5(i). So the positive element A† exists by Lemma 2.1.
Set P = A† A = AA† ∈ A. From AA† A = A and A† AA† = A†, we get that
Pi 6 P, i = 1, . . . , n and AP = PA = A, A†P = PA† = A†. So A ∈ GL(PAP) with
the inverse A† ∈ PAP.
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Now, by Proposition 3.5, PA = AA = P1Au · · ·uPnA. Thus, by using Pi 6
P, i = 1, . . . , n, we have PAP = P1(PAP)u · · ·u Pn(PAP), that is, (P1, . . . , Pn) ∈
PCn(PAP) and then Pi A†Pj = δijPi, i, j = 1, . . . , n by Theorem 1.2. Put P′i =

(A†)1/2Pi(A†)1/2 ∈ A, i = 1, . . . , n. Then P′1, . . . , P′n are mutually orthogonal
projections with Pi = A1/2P′i A1/2 and moreover, for 1 6 i 6 n,

‖P′i − Pi‖ 6 ‖A1/2P′i A1/2 − P′i A1/2‖+ ‖P′i A1/2 − P′i ‖

6 (‖A1/2‖+ 1)‖A1/2 − P‖.(3.2)

By the spectrum mapping theorem, we get that

‖A1/2‖ 6 (1 + (n− 1)δ)1/2, ‖P− A1/2‖ 6 (1 + (n− 1)δ)1/2 − 1.

Thus ‖P′i − Pi‖ 6 (n− 1)δ = ε, i = 1, . . . , n, by (3.2).

REMARK 3.9. Corollary 3.8 provides that δ = O(n−1) when n → ∞ and
Lemma 2.5.6 of [9] showed that δ = o(n−k) for any k > 1 when n → ∞. We
do not know if δ = ε/(n− 1) is the largest one that satisfies the assertion of
Corollary 3.8, but Corollary 3.8 actually provides a better δ. We also do not know
if the δ in Corollary 3.8 can be improved as δ = O(n−s) (n → ∞) for certain
s ∈ [0, 1).

Applying Theorem 1.2 and Corollary 3.8 to an n-tuple of linear independent
unit vectors, we have:

COROLLARY 3.10. Let (α1, . . . , αn) be an n-tuple of linear independent unit vec-
tors in Hilbert space H.

(i) There is an invertible, positive operator K in B(H) and an n-tuple of mutually
orthogonal unit vectors (γ1, . . . , γn) in H such that γi = Kαi, i = 1, . . . , n.

(ii) Given ε ∈ (0, 1), if |〈αi, αj〉| < ε/2(n− 1), 1 6 i < j 6 n, then there exists an
n-tuple of mutually orthogonal unit vectors (β1, . . . , βn) in H such that ‖αi − β j‖ < ε,
i = 1, . . . , n.

Proof. Set H1 = span{α1, . . . , αn} and Piξ = 〈ξ, αi〉αi, ∀ ξ ∈ H1, i = 1, . . . , n.
Then (P1, . . . , Pn) ∈ Pn(B(H1)) and Ran(P1)u · · ·u Ran(Pn) = H1.

By Theorem 1.2, A0 =
n
∑

i=1
Pi is invertible in B(H1) and Pi A−1

0 Pj = δijPi,

i, j = 1, . . . , n. Put K = A−1/2
0 + P0 and γi = A−1/2

0 αi, i = 1, . . . , n, where P0 is
the projection of H onto H⊥1 . It is easy to check that K is invertible and positive
in B(H) with γi = Kαi, i = 1, . . . , n and (γ1, . . . , γn) is an n-tuple of mutually
orthogonal unit vectors. This proves (i).

(ii) Note that ‖PiPj‖ = |〈αi, αj〉| < ε/2(n− 1), 1 6 i < j 6 n. Thus, by
Corollary 3.8, there are mutually orthogonal projections P′1, . . . , P′n ∈ A such that
‖Pi − P′i ‖ < ε/2, i = 1, . . . , n. Put β′i = P′i αi, i = 1, . . . , n. Then β′1, . . . , β′n
are mutually orthogonal and ‖αi − β′i‖ < ε/2, i = 1, . . . , n. Set βi = ‖β′i‖−1β′i,
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i = 1, . . . , n. Then 〈βi, β j〉 = δijβi, i, j = 1, . . . , n and

‖αi − βi‖ 6 ‖αi − β′i‖+ |1− ‖β′i‖| < ε

for i = 1, . . . , n.

Now we give a simple characterization of the completeness of a given n-
tuple of projections in C∗-algebra A as follows.

THEOREM 3.11. Let P1, . . . , Pn be projections inA. Then (P1, . . . , Pn) is complete

if and only if A =
n
∑

i=1
Pi is invertible in A and

‖Pi A−1Pj‖ < [(n− 1)‖A−1‖‖A‖2]−1, ∀ i 6= j, i, j = 1, . . . , n.

Proof. If (P1, . . . , Pn) is complete, then by Theorem 1.2, A is invertible in A
and Pi A−1Pj = 0, ∀ i 6= j, i, j = 1, . . . , n.

Now we prove the converse.

Put Ti=A−1/2Pi A−1/2, i=1, . . . , n. Then
n
∑

i=1
Ti=1. Since Ti=Ti(A1/2Pi A1/2)Ti,

we have β(Ti) > ‖A1/2Pi A1/2‖−1 > ‖A‖−1, i = 1, . . . , n by Corollary 3.2. Put
ρ = ‖A‖−1. Then for i 6= j, i, j = 1, . . . , n,

‖TiTj‖ 6 ‖A−1‖‖Pi A−1Pj‖ < [(n− 1)‖A‖2]−1 =
ρ2

n− 1
.

Thus by Proposition 3.5(iii),A = T1Au · · ·u TnA. Note that TiA = A−1/2(PiA),
i = 1, . . . , n. Thus P1Au · · ·u PnA = A1/2A = A, i.e., (P1, . . . , Pn) ∈ PCn(A).

COROLLARY 3.12. Let (P1, . . . , Pn) ∈ PCn(A) and let (P′1, . . . , P′n) ∈ Pn(A).
Assume that ‖Pi − P′i ‖ < [4n2(n− 1)‖A−1‖2(n‖A−1‖+ 1)]−1, i = 1, . . . , n, where

A =
n
∑

i=1
Pi, then (P′1, . . . , P′n) ∈ PCn(A).

Proof. Set B =
n
∑

i=1
P′i . Since n‖A−1‖ > ‖A‖‖A−1‖ > 1, it follows that ‖A−

B‖ < 1/2‖A−1‖. Thus B is invertible in A with

‖B−1‖ 6 ‖A−1‖
1− ‖A−1‖‖A− B‖ < 2‖A−1‖, ‖B−1 − A−1‖ < 2‖A−1‖2‖A− B‖.

Note that Pi A−1Pj = 0, i 6= j, i, j = 1, . . . , n, we have

‖P′i B−1P′j‖ 6 ‖P′i (B−1 − A−1)P′j‖+ ‖(P′i − Pi)A−1P′j‖+ ‖Pi A−1(Pj − P′j )‖

6 2‖A−1‖2‖A− B‖+ ‖A−1‖‖Pi − P′i ‖+ ‖A−1‖‖Pj − P′j‖

<
1

2n2(n− 1)‖A−1‖ <
1

(n− 1)‖B−1‖‖B‖2 .

So (P′1, . . . , P′n) is complete in A by Theorem 3.11.
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4. THE CONNECTIVITY OF PCn(A)

Let A be a C∗-algebra with the unit 1 and let GL0(A) (respectively U0(A))
be the connected component of 1 in GL(A) (respectively in U(A)).

PROPOSITION 4.1. For Pn(A) and PCn(A), we have
(i) PCn(A) is open in Pn(A).

(ii) PCn(A) is locally connected. So every connected component of PCn(A) is path-
connected.

Proof. (i) Let (P1, . . . , Pn) ∈ PCn(A). Then there is δ > 0 such that for any
(P′1, . . . , P′n) ∈ Pn(A) with ‖P′i − Pi‖ < δ, i = 1, . . . , n, we have (P′1, . . . , Pn) ∈
PCn(A) by Corollary 3.12. This means that PCn(A) is open in Pn(A).

(ii) Let (P1, . . . , Pn) ∈ PCn(A). Then by Corollary 3.12, there is δ ∈ (0, 1/2)
such that for any (R1, . . . , Rn) ∈ Pn(A) with ‖Pi − Ri‖ < δ, 1 6 i 6 n, we have
(R1, . . . , Rn) ∈ PCn(A).

Let (R1, . . . , Rn) ∈ PCn(A) with ‖Pj − Rj‖ < δ, i = 1, . . . , n. Put Pi(t) = Pi,
Ri(t) = Ri and ai(t) = (1− t)Pi + tRi, ∀ t ∈ [0, 1], i = 1, . . . , n. Then Pi, Ri, ai
are self-adjoint elements in C([0, 1],A) = B and ‖Pi − ai‖ = max

t∈[0,1]
‖Pi − ai(t)‖ <

δ, i = 1, . . . , n. It follows from Lemm 6.5.9(1) of [19] that there is a projection
fi ∈ C∗(ai) (the C∗-subalgebra of B generated by ai) such that ‖Pi − fi‖ 6 ‖Pi −
ai‖ < δ, i = 1, . . . , n. So ‖Pi − fi(t)‖ < δ, i = 1, . . . , n and consequently, F(t) =
( f1(t), . . . , fn(t)) is a continuous mapping of [0, 1] into PCn(A). Since ai(0) = Pi,
ai(1) = Ri and fi(t) ∈ C∗(ai(t)), ∀ t ∈ [0, 1], we have f (0) = (P1, . . . , Pn) and
f (1) = (R1, . . . , Rn). This means that PCn(A) is locally path-connected.

DEFINITION 4.2. Let (P1, . . . , Pn), (P′1, . . . , P′n) ∈ PCn(A). We say that
(P1, . . . , Pn) and (P′1, . . . , P′n) are homotopically equivalent, denoted by (P1, . . . , Pn)
∼h (P′1, . . . , P′n), if there is a continuous mapping F : [0, 1] → PCn(A) such that
F(0) = (P1, . . . , Pn) and F(1) = (P′1, . . . , P′n).

Clearly, according to Proposition 4.1(ii), two elements in PCn(A) are in the
same connected component if and only if they are homotopically equivalent.

LEMMA 4.3. Let (P1, . . . , Pn) ∈ PCn(A) and C be a positive and invertible ele-
ment in A with PiC2Pi = Pi, i = 1, . . . , n. Then (CP1C, . . . , CPnC) ∈ PCn(A) and
(P1, . . . , Pn) ∼h (CP1C, . . . , CPnC) in PCn(A).

Proof. From (CPiC)2=CPiC2PiC=CPiC, 16 i6n, we have (CP1C, . . . , CPnC)

∈ Pn(A). (P1, . . . , Pn) ∈ PCn(A) implies that A =
n
∑

i=1
Pi ∈ GL(A) and Pi A−1Pi =

Pi, 1 6 i 6 n by Theorem 1.2. So

(CPiC)
( n

∑
i=1

(CPiC)
)−1

(CPiC) = CPi A−1PiC

and hence (CP1C, . . . , CPnC) ∈ PCn(A) by Theorem 1.2.
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Put Ai(t) = CtPiCt, Bi(t) = C−tPiC−t and Qi(t) = Ai(t)Bi(t), ∀ t ∈ [0, 1],
i = 1, . . . , n. Then Qi(t) = CtPiC−t is idempotent and Ai(t) = Ai(t)Bi(t)Ai(t),
∀ t ∈ [0, 1], i = 1, . . . , n. Thus Ai(t)A = Qi(t)A, ∀ t ∈ [0, 1], i = 1, . . . , n.

By Lemma 1.6, Pi(t) = Qi(t)(Qi(t) + (Qi(t))∗ − 1)−1 is a projection in A
satisfying Qi(t)Pi(t) = Pi(t) and Pi(t)Qi(t) = Qi(t), ∀ t ∈ [0, 1], i = 1, . . . , n.
Clearly, Ai(t)A = Qi(t)A = Pi(t)A, ∀ t ∈ [0, 1] and t 7→ Pi(t) is a continuous
mapping from [0, 1] into A, i = 1, . . . , n. Thus, from

(CtP1Ct)Au · · ·u (CtPnCt)A = A, ∀ t ∈ [0, 1],

we get that F(t) = (P1(t), . . . , Pn(t)) ∈ PCn(A), ∀ t ∈ [0, 1]. Note that F : [0, 1] →
PCn(A) is continuous with F(0) = (P1, . . . , Pn). Note that Ai(1) = CPiC is a
projection with Ai(1)Qi(1) = CPiCCPiC−1 = Qi(1) and Qi(1)Ai(1) = Ai(1),
i = 1, . . . , n. So Pi(1) = Ai(1), i = 1, . . . , n and F(1) = (CP1C, . . . , CPnC). The
assertion follows.

Set POn(A) =
{
(P1, . . . , Pn) ∈ Pn(A) :

n
∑

i=1
Pi = 1, PiPj = δij, i, j = 1, . . . , n

}
.

Then POn(A) ⊂ PCn(A). For (P1, . . . , Pn) ∈ PCn(A), A =
n
∑

i=1
Pi ∈ GL(A) and

Qi = A−1/2Pi A−1/2 is a projection with QiQj = 0, i 6= j, i, j = 1, . . . , n (see
Theorem 1.2), that is, (Q1, . . . , Qn) ∈ POn(A). Since C = A−1/2 satisfies the
condition given in Lemma 4.3, we have the following:

COROLLARY 4.4. Let (P1, . . . , Pn) ∈ PCn(A) and let (Q1, . . . , Qn) be as above.
Then (P1, . . . , Pn) ∼h (Q1, . . . , Qn) in PCn(A).

PROPOSITION 4.5. Let (P1, . . . , Pn), (P′1, . . . , P′n) ∈ PCn(A). Then they are in
the same connected component if and only if there is D ∈ GL0(A) such that Pi =
D∗P′i D, i = 1, . . . , n.

Proof. There is a continuous path P(t) = (P1(t), . . . , Pn(t)) in PCn(A), ∀ t ∈
[0, 1] such that P(0) = (P1, . . . , Pn) and P(1) = (P′1, . . . , P′n). By Corollary 5.2.9 of
[17], there is a continuous mapping t 7→ Ui(t) of [0, 1] into U(A) with Ui(0) = 1
such that Pi(t) = Ui(t)PiU∗i (t), ∀ t ∈ [0, 1] and i = 1, . . . , n. Set

W(t) =
( n

∑
i=1

Pi

)−1/2( n

∑
i=1

PiU∗i (t)Pi(t)
)( n

∑
i=1

Ui(t)PiU∗i (t)
)−1/2

,

D(t) =
( n

∑
i=1

Pi

)−1/2
W(t)

( n

∑
i=1

Ui(t)PiU∗i (t)
)1/2

, ∀ t ∈ [0, 1].

Using the relations

Pi(t)
( n

∑
i=1

Pi(t)
)−1

Pj(t) = δij, i, j = 1, . . . , n, t ∈ [0, 1],
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we can obtain that W(t) ∈ U(A) with W(0) = 1, D(t) ∈ GL(A) with D(0) = 1
and W(t), D(t) are all continuous on [0, 1] with D∗(t)PiD(t) = Pi(t), ∀ t ∈ [0, 1]
and i = 1, . . . , n. Put D = D(1). Then D ∈ GL0(A) and D∗PiD = P′i , i = 1, . . . , n.

Conversely, if there is D ∈ GL0(A) such that D∗PiD = P′i , i = 1, . . . , n, then
U = (DD∗)−1/2D ∈ U0(A) and PiDD∗Pi = Pi, UP′i U∗ = (DD∗)1/2Pi(DD∗)1/2,
i = 1, . . . , n. Thus,

(P′1, . . . , P′n) ∼h (UP′1U∗, . . . , UP′nU∗) and

((DD∗)1/2P1(DD∗)1/2, . . . , (DD∗)1/2Pn(DD∗)1/2) ∼h (P1, . . . , Pn)

by Lemma 4.3. Consequently, (P′1, . . . , P′n) ∼h (P1, . . . , Pn).

As ending of this section, we consider the following example:

EXAMPLE 4.6. Let H be a separable complex Hilbert space andK(H) be the
C∗-algebra of all compact operators in B(H). Let A = B(H)/K(H) be the Calkin
algebra and π : B(H)→ A be the quotient mapping. Then we have

(i) PCn(B(H) is not connected. In fact, choose non-trivial projections
P1, . . . , Pn and P′1, . . . , P′n in B(H) such that dim Ran(P1) = 1, dim Ran(P′1) = 2
and

PiPj = P′i P′j = δij, i, j = 1, . . . , n;
n

∑
i=1

Pi =
n

∑
i=1

P′i = I.

Clearly, (P1, . . . , Pn) and (P′1, . . . , P′n) belong to PCn(B(H)), but they are not in the
same component by Proposition 4.5.

(ii) PCn(A) is path-connected. In fact, if (P1, . . . , Pn), (P′1, . . . , P′n) ∈ PCn(A),
then we can find (Q1, . . . , Qn), (Q′1, . . . , Q′n) ∈ POn(A) such that

(P1, . . . , Pn) ∼h (Q1, . . . , Qn) and (P′1, . . . , P′n) ∼h (Q′1, . . . , Q′n)

by Corollary 4.4. Since B(H) is of real rank zero, it follows from Corollary B.2.2
of [19] or Lemma 3.2 of [18] that there are projections R1, . . . , Rn and R′1, . . . , R′n in
B(H) such that π(Ri) = Qi, π(R′i) = Q′i, i = 1, . . . , n and

RiRj = δijRi, R′iR
′
j = δijR′i, i, j = 1, . . . , n;

n

∑
i=1

Ri =
n

∑
i=1

R′i = I.

Note that R1, . . . , Rn, R′1, . . . , R′n 6∈ K(H). So there are partial isometries V1, . . . , Vn
in B(H) such that V∗i Vi = Ri, ViV∗i = R′i, i = 1, . . . , n.

Put V =
n
∑

i=1
Vi. Then

V ∈ U(B(H)) and VRiV∗ = R′i, i = 1, . . . , n.
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Put U = π(V) ∈ U(A). Then (UQ1U∗, . . . , UQnU∗) = (Q′1, . . . , Qn) in
POn(A). Since U(B(H)) is path-connected, we have (Q1, . . . , Qn)∼h (Q′1, . . . , Q′n)
in PCn(A). Finally, (P1, . . . , Pn) ∼h (P′1, . . . , P′n). This means that PCn(A) is path-
connected.
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