COMPLETENESS OF *n*-TUPLES OF PROJECTIONS IN *C**-ALGEBRAS

SHANWEN HU and YIFENG XUE

Communicated by Şerban Strătilă

ABSTRACT. Let (P_1, \ldots, P_n) be an *n*-tuple of projections in a unital C^* -algebra \mathcal{A} . We say (P_1, \ldots, P_n) is complete in \mathcal{A} if \mathcal{A} is the linear direct sum of the closed subspaces $P_1\mathcal{A}, \ldots, P_n\mathcal{A}$. In this paper, we give some necessary and sufficient conditions for the completeness of (P_1, \ldots, P_n) and discuss the perturbation problem and connectivity of the set of all complete *n*-tuple of projections in \mathcal{A} .

KEYWORDS: Projection, idempotent, complete n-tuple of projections.

MSC (2010): 46L05, 47B65.

INTRODUCTION

Throughout the paper, we always assume that \mathcal{A} is a C^* -algebra with the unit 1. The theory of C^* -algebras could be referred to Dixmier's book [5]. It is well-known that \mathcal{A} has a faithful representation (ψ, H_{ψ}) with $\psi(1) = I$ (cf. Theorem 2.6.1 of [5] or Theorem 1.6.17 of [9] or Theorem 1.5.36 of [19]). Let H be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and B(H) be the C^* -algebra of all bounded linear operators on H. For $T \in B(H)$, let $\operatorname{Ran}(T)$ (respectively $\operatorname{Ker}(T)$) denote the range (respectively kernel) of T.

Let V_1 , V_2 be closed subspaces in H such that

$$H = V_1 + V_2 = V_1^{\perp} + V_2,$$

that is, V_1 and V_2 are in generic position (cf. [7]). Let P_i be the projection of H onto V_i , i = 1, 2. Then

$$H = \operatorname{Ran}(P_1) \dotplus \operatorname{Ran}(P_2) = \operatorname{Ran}(I - P_1) \dotplus \operatorname{Ran}(P_2).$$

In this case, Halmos gave very useful matrix representations of P_1 and P_2 in [7]. Following Halmos' work on two closed subspaces which are in generic position, Sunder investigated in [15] the *n*-tuple of closed subspaces (V_1, \ldots, V_n) in *H* which satisfy the condition $H = V_1 + \cdots + V_n$ (*H* is the direct sum of

 V_1, \ldots, V_n), that is, for any $\xi \in H$, there are unique $\xi_i \in V_i$, $i = 1, \ldots, n$ such that $\xi = \xi_1 + \cdots + \xi_n$. Some natural generalizations of [7] were presented in [15]. If we let P_i be the projection of H onto V_i , $i = 1, \ldots, n$, then the condition $H = V_1 + \cdots + V_n$ is equivalent to $H = \text{Ran}(P_1) + \cdots + \text{Ran}(P_n)$.

Now the question yields: when does the relation $H = \operatorname{Ran}(P_1) \dotplus \cdots \dashv$ Ran (P_n) hold for an *n*-tuple of projections (P_1, \ldots, P_n) ? When n = 2, Buckholdtz proved in [3] that Ran $(P_1) \dotplus \operatorname{Ran}(P_2) = H$ if and only if $P_1 - P_2$ is invertible in B(H) if and only if $I - P_1P_2$ is invertible in B(H) and if and only if $P_1 + P_2 - P_1P_2$ is invertible in B(H). More information about two projections can be found in [2]. Koliha and Rakočević generalized Buckholdtz's work to the set of C^* -algebras and rings. They gave some equivalent conditions for decomposition $\mathfrak{R} = P \mathfrak{R} \dotplus Q \mathfrak{R}$ or $\mathfrak{R} = \mathfrak{R} P \dotplus \mathfrak{R} Q$ in [11] and [12] for idempotent elements P and Q in a unital ring \mathfrak{R} . They also characterized the Fredholmness of the difference of projections on H in [13]. For $n \ge 3$, the question remains unknown so far. But there are some works concerning this problem. For example, the estimation of the spectrum of the finite sum of projections on H is given in [1] and the C^* -algebra generated by certain projections is investigated in [14] and [16], etc.

Let $\mathbf{P}_n(\mathcal{A})$ denote the set of *n*-tuples ($n \ge 2$) of non-trivial projections in \mathcal{A} and put

$$\mathbf{PC}_n(\mathcal{A}) = \{ (P_1, \dots, P_n) \in \mathbf{P}_n(\mathcal{A}) : P_1\mathcal{A} \dotplus \cdots \dotplus P_n\mathcal{A} = \mathcal{A} \}.$$

It is worth to note that if $\mathcal{A} = B(H)$ and $(P_1, \ldots, P_n) \in \mathbf{P}_n(B(H))$, then $(P_1, \ldots, P_n) \in \mathbf{PC}_n(B(H))$ if and only if $\operatorname{Ran}(P_1) \dotplus \cdots \dotplus \operatorname{Ran}(P_n) = H$ (see Theorem 1.2 below).

In this paper, we will investigate the set $\mathbf{PC}_n(\mathcal{A})$ for $n \ge 3$. The paper consists of four sections. In Section 1, we give some necessary and sufficient conditions that make $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$ be in $\mathbf{PC}_n(\mathcal{A})$. In Section 2, using some equivalent conditions for $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ obtained in Section 1, we obtain an explicit expression of $P_{i_1} \lor \cdots \lor P_{i_k}$ for $\{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$. In Section 3, we discuss the perturbation problems for $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$. We find an interesting result: if $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$ with $A = \sum_{i=1}^n P_i$ invertible in \mathcal{A} , then $\|P_iA^{-1}P_j\| < [(n-1)\|A^{-1}\|\|A\|^2]^{-1}$, $i \neq j$ implies $P_iA^{-1}P_j = 0$, $i \neq j$, $i, j = 1, \ldots, n$. We show in this section that for given $\varepsilon \in (0, 1)$, if $(P_1, \ldots, P_n) \in$ $\mathbf{P}_n(\mathcal{A})$ satisfies the condition $\|P_iP_j\| < \varepsilon$, then there exists an *n*-tuple of mutually orthogonal projections $(P'_1, \ldots, P'_n) \in \mathbf{P}_n(\mathcal{A})$ such that $\|P_i - P'_i\| \leq (n-1)\varepsilon$, i = $1, \ldots, n$, which improves a conventional estimate: $\|P_i - P'_i\| < (12)^{n-1}n!\varepsilon$, i = $1, \ldots, n$ (cf. [9]). In the final section, we will study the connectivity of $\mathbf{PC}_n(\mathcal{A})$.

1. EQUIVALENT CONDITIONS FOR COMPLETE *n*-TUPLES OF PROJECTIONS IN C*-ALGEBRAS

Let \mathcal{A}_+ denote the set of all positive elements in \mathcal{A} and $GL(\mathcal{A})$ (respectively $U(\mathcal{A})$) denote the group of all invertible (respectively unitary) elements in \mathcal{A} . Let

 $M_k(\mathcal{A})$ denote matrix algebra of all $k \times k$ matrices over \mathcal{A} . For any $a \in \mathcal{A}$, we set $a \mathcal{A} = \{ax : x \in \mathcal{A}\} \subset \mathcal{A}$.

DEFINITION 1.1. An *n*-tuple of projections (P_1, \ldots, P_n) in \mathcal{A} is called *complete in* \mathcal{A} if $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$.

THEOREM 1.2. Let $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$. Then the following statements are equivalent:

(i) (P_1, \ldots, P_n) is complete in \mathcal{A} .

(ii) $H_{\psi} = \operatorname{Ran}(\psi(P_1)) \dotplus \cdots \dashv \operatorname{Ran}(\psi(P_n))$ for any faithful representation (ψ, H_{ψ}) of \mathcal{A} with $\psi(1) = I$.

(iii) $H_{\psi} = \operatorname{Ran}(\psi(P_1)) \dotplus \cdots \dashv \operatorname{Ran}(\psi(P_n))$ for some faithful representation (ψ, H_{ψ}) of \mathcal{A} with $\psi(1) = I$.

(iv)
$$\lambda \left(\sum_{j \neq i} P_j\right) + P_i \in GL(\mathcal{A}) \text{ for } 1 \leq i \leq n \text{ and all } \lambda \in \mathbb{C} \setminus \{0\}.$$

(v) $\sum_{j \neq i} P_j + \lambda P_i \in GL(\mathcal{A}), i = 1, 2, ..., n \text{ and } \forall \lambda \in [1 - n, 0).$
(vi) $A = \sum_{i=1}^n P_i \in GL(\mathcal{A}) \text{ and } P_i A^{-1} P_i = P_i, i = 1, ..., n.$
(vii) $A = \sum_{i=1}^n P_i \in GL(\mathcal{A}) \text{ and } P_i A^{-1} P_j = 0, i \neq j, i, j = 1, ..., n.$
(vii) $A = \sum_{i=1}^n P_i \in GL(\mathcal{A}) \text{ and } E_i = P_i A^{-1} \in \mathcal{A} \text{ are idempotent elements with the}$

properties: $E_i E_j = 0, i \neq j, i, j = 1, ..., n \text{ and } \sum_{i=1}^n E_i = 1.$

(ix) There is an n-tuple of idempotent elements (E_1, \ldots, E_n) in \mathcal{A} such that $E_i P_i = P_i$, $P_i E_i = E_i$, $i = 1, \ldots, n$ and $E_i E_j = 0$, $i \neq j$, $i, j = 1, \ldots, n$, $\sum_{i=1}^n E_i = 1$.

In order to show Theorem 1.2, we need the following lemmas.

LEMMA 1.3. Let B, $C \in A_+ \setminus \{0\}$ and suppose that $\lambda B + C$ is invertible in A for every $\lambda \in \mathbb{R} \setminus \{0\}$. Then there is a non-trivial orthogonal projection $P \in A$ such that

$$B = (B+C)^{1/2}P(B+C)^{1/2}, \quad C = (B+C)^{1/2}(1-P)(B+C)^{1/2}.$$

Proof. Put D = B + C and $D_{\lambda} = \lambda B + C$, $\forall \lambda \in \mathbb{R} \setminus \{0\}$. Then $D \ge 0$, D and D_{λ} are all invertible in $\mathcal{A}, \forall \lambda \in \mathbb{R} \setminus \{0\}$.

Put
$$B_1 = D^{-1/2}BD^{-1/2}$$
, $C_1 = D^{-1/2}CD^{-1/2}$. Then $B_1 + C_1 = 1$ and

$$D^{-1/2}D_{\lambda}D^{-1/2} = \lambda B_1 + C_1 = \lambda + (1-\lambda)C_1 = (1-\lambda)(\lambda(1-\lambda)^{-1} + C_1)$$

is invertible in \mathcal{A} for any $\lambda \in \mathbb{R} \setminus \{0,1\}$. Since $\lambda \mapsto \lambda/(1-\lambda)$ is a homeomorphism from $\mathbb{R} \setminus \{0,1\}$ onto $\mathbb{R} \setminus \{-1,0\}$, it follows that $\sigma(C_1) \subset \{0,1\}$. Note that B_1 and C_1 are all non-zero. So $\sigma(C_1) = \{0,1\} = \sigma(B_1)$ and hence $P = B_1$ is a non-zero projection in \mathcal{A} and $B = D^{1/2}PD^{1/2}$, $C = D^{1/2}(1-P)D^{1/2}$.

LEMMA 1.4. Let $B, C \in A_+ \setminus \{0\}$. Then the following statements are equivalent:

(i) For any non-zero real number λ , $\lambda B + C$ is invertible in A.

(ii) B + C is invertible in A and $B(B + C)^{-1}B = B$.

(iii) B + C is invertible in A and $B(B + C)^{-1}C = 0$.

(iv) B + C is invertible in A and for any B', $C' \in A_+$ with $B' \leq B$ and $C' \leq C$, $B'(B+C)^{-1}C' = 0$.

Proof. (i) \Rightarrow (ii) By Lemma 1.3, there is a non-zero projection *P* in A such that $B = D^{1/2}PD^{1/2}$, $C = D^{1/2}(1-P)D^{1/2}$, where $D = B + C \in GL(A)$. So

$$B(B+C)^{-1}B = D^{1/2}PD^{1/2}D^{-1}D^{1/2}PD^{1/2} = B.$$

The assertion (ii) \Leftrightarrow (iii) follows from

$$B(B+C)^{-1}B = B(B+C)^{-1}(B+C-C) = B - B(B+C)^{-1}C.$$

(iii) \Rightarrow (iv) For any *C*' with $0 \leq C' \leq C$,

$$0 \leq B(B+C)^{-1}C'(B+C)^{-1}B \leq B(B+C)^{-1}C(B+C)^{-1}B = 0,$$

we have $B(B+C)^{-1}C' = B(B+C)^{-1}C'^{1/2}C'^{1/2} = 0$. This implies that $C'(B+C)^{-1}B = 0$.

In the same way, we also obtain that for any B' with $0 \leq B' \leq B$, $C'(B + C)^{-1}B' = 0$.

 $(iv) \Rightarrow (iii)$ is obvious.

(ii) \Rightarrow (i) Set $X = (B + C)^{-1/2}B$ and $Y = (B + C)^{-1/2}C$. Then $X, Y \in A$ and $X^*X = B, X + Y = (B + C)^{1/2}$. Thus, for any $\lambda \in \mathbb{R} \setminus \{0\}$,

$$X + \lambda Y = (B + C)^{-1/2} (B + \lambda C),$$

(X + \lambda Y)*(X + \lambda Y) = ((1 - \lambda) X + \lambda (B + C)^{1/2})*((1 - \lambda) X + \lambda (B + C)^{1/2})
= (1 - \lambda)^2 B + 2\lambda (1 - \lambda) B + \lambda^2 (B + C) = B + \lambda^2 C,

and consequently, $(X + \lambda Y)^*(X + \lambda Y) \ge B + C$ if $|\lambda| > 1$ and

$$(X + \lambda Y)^* (X + \lambda Y) \ge \lambda^2 (B + C)$$

when $|\lambda| < 1$. This indicates that $(X + \lambda Y)^*(X + \lambda Y)$ is invertible in \mathcal{A} . Noting that $B + C \ge ||(B + C)^{-1}||^{-1} \cdot 1$, we have, for any $\lambda \in \mathbb{R} \setminus \{0\}$,

$$(B + \lambda C)^2 = (X + \lambda Y)^* (B + C)(X + \lambda Y) \ge ||(B + C)^{-1}||^{-1} (X + \lambda Y)^* (X + \lambda Y).$$

Therefore, $B + \lambda C$ is invertible in $\mathcal{A}, \forall \lambda \in \mathbb{R} \setminus \{0\}.$

LEMMA 1.5. Let $P \in A$ be a non-trivial projection and $A \in A_+$. If A + P is invertible in A, then $A + \lambda P$ is invertible in A for all $\lambda < -||A||$.

Proof. Put

$$A_{1} = P(A+P)P, \quad A_{2} = P(A+P)(1-P), \quad A_{4} = (1-P)(A+P)(1-P),$$

and express $A + \lambda P$ as the form $A + \lambda P = \begin{bmatrix} A_{1} + (\lambda - 1)P & A_{2} \\ A_{2}^{*} & A_{4} \end{bmatrix}.$

Since $A + P \ge ||(A + P)^{-1}||^{-1} \cdot 1$, we have $A_4 \ge ||(A + P)^{-1}||^{-1}(1 - P)$ and so that A_4 is invertible in $(1 - P)\mathcal{A}(1 - P)$. Thus, from the following equation

$$(A+P)\begin{bmatrix} P & 0\\ -A_4^{-1}A_2^* & 1-P \end{bmatrix} = \begin{bmatrix} A_1 - A_2A_4^{-1}A_2^* + (\lambda-1)P & A_2\\ 0 & A_4 \end{bmatrix}$$

we get that $A + \lambda P$ is invertible if and only if $A_1 - A_2 A_4^{-1} A_2^* + (\lambda - 1)P$ is invertible in *P*AP. Since $A_1 \leq P ||A + P||P \leq (1 + ||A||)P$, it follows that

$$-A_1 + A_2 A_4^{-1} A_2^* - (\lambda - 1)P \ge (-\|A\| - \lambda)P + A_2 A_4^{-1} A_2^* \ge (-\|A\| - \lambda)P > 0$$

when $\lambda < -\|A\|$. Therefore, $A + \lambda P$ is invertible in \mathcal{A} for $\lambda < -\|A\|$.

The next lemma comes from Lemma 1 of [4] and Lemma 3.5.5 of [19]:

LEMMA 1.6. Let $P \in A$ be an idempotent element. Then

(i) $P + P^* - 1 \in GL(\mathcal{A})$.

(ii) $R = P(P + P^* - 1)^{-1}$ is a projection in A satisfying PR = R and RP = P.

Moreover, if $R' \in A$ is a projection such that PR' = R' and R'P = P, then R' = R.

Now we begin to prove Theorem 1.2.

Proof of Theorem 1.2. (i) \Rightarrow (vi) Statement (i) implies that there are b_1, \ldots, b_n

$$\in \mathcal{A} \text{ such that } 1 = \sum_{i=1}^{n} P_{i}b_{i}. \text{ Put } \widehat{I} = \begin{bmatrix} 1 & & \\ & 0 & \\ & \ddots & \\ & & 0 \end{bmatrix}, X = \begin{bmatrix} P_{1} & \cdots & P_{n} \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \text{ and }$$
$$Y = \begin{bmatrix} b_{1} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ b_{n} & 0 & \cdots & 0 \end{bmatrix}. \text{ Then }$$
$$\widehat{I} = XY = XYY^{*}X^{*} \leq ||Y||^{2}XX^{*} = ||Y||^{2} \begin{bmatrix} \sum_{i=1}^{n} P_{i} & \\ & 0 & \\ & & \ddots & \\ & & & 0 \end{bmatrix}$$

and so that $A = \sum_{i=1}^{n} P_i$ is invertible in A. Therefore, P_i has two expressions

(1.1)
$$P_i = P_1 A^{-1} P_i + \dots + P_i A^{-1} P_i + \dots + P_n A^{-1} P_i$$

(1.2)
$$= \underbrace{0 + \dots + 0}_{i} + P_i + \underbrace{0 + \dots + 0}_{i},$$

i-1

i = 1, ..., n. Since $\mathcal{A} = P_1 \mathcal{A} + \cdots + P_n \mathcal{A}$, the expression of P_i must be unique. So we have $P_i = P_i \mathcal{A}^{-1} P_i$ from (1.1) and (1.2), i = 1, ..., n.

n-i

(ii) \Rightarrow (iii) is obvious.

,

(iii) \Rightarrow (iv) Set $Q_i = \psi(P_i)$, i = 1, ..., n. From $\operatorname{Ran}(Q_1) \dotplus \cdots \dotplus \operatorname{Ran}(Q_n)$ = H_{ψ} , we obtain idempotent operators $F_1, ..., F_n$ in $B(H_{\psi})$ such that $\sum_{i=1}^n F_i = I$, $F_iF_j = 0, i \neq j$ and $F_iH_{\psi} = Q_iH_{\psi}, i, j = 1, ..., n$. So $F_iQ_i = Q_i, Q_iF_i = F_i$ and $F_jQ_i = 0, i \neq j, 1 \leq i, j \leq n$. Using these relations, it is easy to check that

$$\left(\sum_{i=1}^{n} \lambda_{i} Q_{i}\right) \left(\sum_{i=1}^{n} \lambda_{i}^{-1} F_{i}^{*} F_{i}\right) = \sum_{i=1}^{n} F_{i} = I, \quad \left(\sum_{i=1}^{n} \lambda_{i}^{-1} F_{i}^{*} F_{i}\right) \left(\sum_{i=1}^{n} \lambda_{i} Q_{i}\right) = \sum_{i=1}^{n} F_{i}^{*} = I,$$

for any non-zero complex numbers λ_i , i = 1, ..., n. Particularly, for any $\lambda \in \mathbb{C} \setminus \{0\}$,

$$\left(\lambda\left(\sum_{j\neq i}Q_j\right)+Q_i\right)^{-1}=\lambda^{-1}\sum_{j\neq i}F_j^*F_j+F_i^*F_i$$

in $B(H_{\psi})$. So $\lambda \left(\sum_{j \neq i} Q_{j}\right) + Q_{i}$ is invertible in $\psi(\mathcal{A})$, $1 \leq i \leq n$ by Corollary 1.5.8 of [19] and so $\lambda \left(\sum_{j \neq i} P_{j}\right) + P_{i} \in GL(\mathcal{A})$ since ψ is faithful and $\psi(i) = I$.

(iv) \Rightarrow (v) Obviously. (v) \Rightarrow (vi) Put $A_i(\lambda) = \sum_{j \neq i} P_j + \lambda P_i, i = 1, ..., n, \lambda \in \mathbb{R} \setminus \{0\}$, then

$$(A_i(\lambda))^2 \leq 2\left(\sum_{j\neq i} P_j\right)^2 + 2\lambda^2 P_i \leq 2(n-1)\sum_{j\neq i} P_j + 2\lambda^2 P_i$$
$$\leq 2\max\{n-1,\lambda^2\}(P_1+\dots+P_n).$$

So $A_i(\lambda)$ is invertible in \mathcal{A} , $\forall \lambda \in [1 - n, 0)$ means that $A = P_1 + \dots + P_n$ is invertible in \mathcal{A} . Note that $A_i(\lambda) \ge \max\{1, \lambda\}A$ when $\lambda > 0$. Thus, $A_i(\lambda)$ is invertible in \mathcal{A} for $\lambda > 0$, $\forall 1 \le i \le n$. When $\lambda < 1 - n \le -\left\|\sum_{j \ne i} P_j\right\|$, $A_i(\lambda)$ is

also invertible in \mathcal{A} by Lemma 1.5. Therefore, $A(\lambda)$ is invertible in \mathcal{A} for all $\lambda \in \mathbb{R} \setminus \{0\}$. Applying Lemma 1.4 to $\sum_{i \neq i} P_i$ and P_i , i = 1, ..., n, we get the assertion.

(vi)
$$\Rightarrow$$
 (vii) Set $C_i = \sum_{j \neq i} P_j$, $i = 1, ..., n$. Since $P_i(C_i + P_i)^{-1}P_i = P_i$ and

 $P_j \leq C_i, j \neq i, i, j = 1, ..., n$, it follows from Lemma 1.4 that $P_i A^{-1} P_j = 0, i \neq j$, i, j = 1, ..., n.

(vii) \Rightarrow (viii) By the assumption, we have $P_i A^{-1} \left(\sum_{j \neq i} P_j \right) = 0, i = 1, ..., n$. So $P_i A^{-1} P_i = P_i, i = 1, ..., n$, by Lemma 1.4. Set $E_i = P_i A^{-1}, i = 1 \cdots, n$. Then E_i are idempotent elements in \mathcal{A} and $E_i E_j = 0, i \neq j, i, j = 1, ..., n$. It is obvious that $\sum_{i=1}^{n} E_i = A A^{-1} = 1$. (viii) \Rightarrow (ix) Let $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$ with $A = \sum_{i=1}^n P_i \in GL(\mathcal{A})$ such that $E_i = P_i A^{-1} \in \mathcal{A}$ are idempotent and $E_i E_j = 0$, $\sum_{i=1}^n E_i = 1$, $i \neq j$, $i, j = 1, \ldots, n$. Clearly, $P_i E_i = E_i$, $i = 1, \ldots, n$. From $P_i A^{-1} = E_i = E_i^2 = P_i A^{-1} P_i A^{-1}$, we get that $P_i = P_i A^{-1} P_i$ and hence $E_i P_i = P_i$, $i = 1, \ldots, n$.

(ix) \Rightarrow (i) Let E_1, \ldots, E_n be idempotent elements in \mathcal{A} such that $E_i E_j = \delta_{ij} E_i$, $\sum_{i=1}^n E_i = 1$ and $E_i P_i = P_i$, $P_i E_i = E_i$, $i, j = 1, \ldots, n$. Then $E_i \mathcal{A} = P_i \mathcal{A}$, $i = 1, \ldots, n$ and $\mathcal{A} = E_1 \mathcal{A} + \cdots + E_n \mathcal{A} = P_1 \mathcal{A} + \cdots + P_n \mathcal{A}$.

(ix) \Rightarrow (ii) Let E_1, \ldots, E_n be idempotent elements in \mathcal{A} such that $E_i E_j = \delta_{ij} E_i$, $\sum_{i=1}^n E_i = 1$ and $E_i P_i = P_i$, $P_i E_i = E_i$, $i, j = 1, \ldots, n$. Let (ψ, H_{ψ}) be any faithful representation of \mathcal{A} with $\psi(i) = I$. Put $E'_i = \psi(E_i)$ and $Q_i = \psi(P_i)$, $i = 1, \ldots, n$. Then $E'_i E'_j = \delta_{ij} E'_i$, $\sum_{i=1}^n E'_i = I$ and $\operatorname{Ran}(E'_i) = \operatorname{Ran}(Q_i)$, $i, j = 1, \ldots, n$. Consequently, $H_{\psi} = \operatorname{Ran}(Q_1) + \cdots + \operatorname{Ran}(Q_n)$.

REMARK 1.7. Statement (iii) in Theorem 1.2 cannot be replaced by "for any $i \in \{1, ..., n\}, P_i - \sum_{j \neq i} P_j$ is invertible".

For example, let
$$H^{(4)} = \bigoplus_{i=1}^{4} H$$
 and put $\mathcal{A} = B(H^{(4)})$,

$$P_{1} = \begin{bmatrix} I & & & \\ & I & & \\ & & 0 & \\ & & & 0 \end{bmatrix}, P_{2} = \begin{bmatrix} I & & & \\ & 0 & & \\ & & I & \\ & & & 0 \end{bmatrix}, P_{3} = \begin{bmatrix} I & & & \\ & 0 & & \\ & & 0 & \\ & & & I \end{bmatrix}.$$

Clearly, $P_i - \sum_{j \neq i} P_j$ is invertible, $1 \le i \le 3$, but $P_2 + P_3 - 2P_1$ is not invertible, that is, (P_1, P_2, P_3) is not complete in A.

COROLLARY 1.8 ([3], Theorem 1). Let P_1 , P_2 be non-trivial projections in B(H). Then $H = \text{Ran}(P_1) \dotplus \text{Ran}(P_2)$ if and only if $P_1 - P_2$ is invertible in B(H).

Proof. By Theorem 1.2, $H = \operatorname{Ran}(P_1) + \operatorname{Ran}(P_2)$ implies that $P_1 - P_2 \in GL(B(H))$.

Conversely, if $P_1 - P_2 \in GL(B(H))$, then from

$$2(P_1+P_2) \ge (P_1-P_2)^2$$
,

we get that $P_1 + P_2 \in GL(B(H))$ and so that for any $\lambda > 1$, $P_1 - \lambda P_2$, $P_2 - \lambda P_1 \in GL(B(H))$ by Lemma 1.5. Thus, for any $\lambda \in (0, 1]$, $P_1 - \lambda P_2$ and $P_2 - \lambda P_1$ are all invertible in B(H). Consequently, $H = \text{Ran}(P_1) + \text{Ran}(P_2)$ by Theorem 1.2.

2. SOME REPRESENTATIONS CONCERNING THE COMPLETE n-TUPLE OF PROJECTIONS

We first state a lemma which is frequently used in this section and the later sections.

LEMMA 2.1. Let $B \in A_+$ such that $0 \in \sigma(B)$ is an isolated point. Then there is a unique element $B^{\dagger} \in A_+$ such that

(2.1)
$$BB^{\dagger}B = B, \quad B^{\dagger}BB^{\dagger} = B^{\dagger}, \quad BB^{\dagger} = B^{\dagger}B.$$

Proof. Define a continuous function f(t) on $\sigma(B)$ by

$$f(t) = \begin{cases} 0 & t = 0, \\ 1 & t \in \sigma(B) \setminus \{0\}, \end{cases}$$

and set $B^{\dagger} = f(B) \in A$. Then $B^{\dagger} \in A_{+}$ and it is easy to check that (2.1) is satisfied.

If there is another $B' \in A_+$ such that BB'B = B, B'BB' = B' and BB' = B'B, then we have

$$BB' = BB^{\dagger}BB' = B^{\dagger}BB'B = B^{\dagger}B$$
 and $B' = B'BB' = B^{\dagger}BB' = B^{\dagger}BB^{\dagger} = B^{\dagger}$,

that is, such B^{\dagger} is unique.

REMARK 2.2. The element B^{\dagger} in the above lemma is called the Moore– Penrose inverse of *B*. When $0 \notin \sigma(B)$, B^{\dagger} is defined to be B^{-1} . The detailed information can be found in [19].

Let $(P_1, ..., P_n) \in \mathbf{PC}_n(\mathcal{A})$ and put $A = \sum_{i=1}^n P_i$. By Theorem 1.2, $A \in GL(\mathcal{A})$ and $E_i = P_i A^{-1}$, $1 \leq i \leq n$, are idempotent elements satisfying the conditions

$$E_i E_j = 0$$
, $i \neq j$; $E_i P_i = P_i$, $P_i E_i = E_i$, $i = 1, ..., n$; and $\sum_{i=1}^n E_i = 1$.

By Lemma 1.6, $P_i = E_i(E_i^* + E_i - 1)^{-1}$, $1 \le i \le n$. So the C*-algebra $C^*(P_1, \ldots, P_n)$ generated by P_1, \ldots, P_n is equal to the C*-algebra $C^*(E_1, \ldots, E_n)$ generated by E_1, \ldots, E_n .

Put $Q_i = A^{-1/2} P_i A^{-1/2}$, i = 1, ..., n. Then $Q_i Q_j = \delta_{ij} Q_i$ by Theorem 1.2, i, j = 1, ..., n and $\sum_{i=1}^n Q_i = 1$. Thus,

(2.2)
$$P_i = A^{1/2}Q_iA^{1/2}$$
 and $E_i = P_iA^{-1} = A^{1/2}Q_iA^{-1/2}$, $i = 1, ..., n$.

PROPOSITION 2.3. Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ with $A = \sum_{i=1}^n P_i$. Then for any $\lambda_i \neq 0, i = 1, \ldots, n, \left(\sum_{i=1}^n \lambda_i P_i\right)^{-1} = A^{-1} \left(\sum_{i=1}^n \lambda_i^{-1} P_i\right) A^{-1}$.

Proof. Keeping the symbols as above, we have

$$\sum_{i=1}^n \lambda_i P_i = A^{1/2} \Big(\sum_{i=1}^n \lambda_i Q_i \Big) A^{1/2}.$$

Thus,

$$\left(\sum_{i=1}^{n} \lambda_i P_i\right)^{-1} = A^{-1/2} \left(\sum_{i=1}^{n} \lambda_i^{-1} Q_i\right) A^{-1/2} = A^{-1} \left(\sum_{i=1}^{n} \lambda_i^{-1} P_i\right) A^{-1}.$$

Now for $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$ with $i_1 < i_2 < \cdots < i_k$, put $A_0 = \sum_{r=1}^k P_{i_r}$ and $Q_0 = \sum_{r=1}^k Q_{i_r}$. Then $A_0, Q_0 \in \mathcal{A}$ and Q_0 is a projection. From (2.2), $A_0 = A^{1/2}Q_0A^{1/2}$. Thus, $\sigma(A_0)\setminus\{0\} = \sigma(Q_0AQ_0)\setminus\{0\}$ (cf. Proposition 1.4.14 of [19]). Since $AA^{-1} = 1 = A^{1/2}A^{-1}A^{1/2}$ and $A^{-1} \leq ||A^{-1}||$, it follows that $||A^{-1}||A \ge 1$ and hence $Q_0AQ_0 \ge ||A^{-1}||^{-1}Q_0$. It implies that Q_0AQ_0 is invertible in $Q_0\mathcal{A}Q_0$. Thus $0 \in \sigma(Q_0AQ_0)$ is an isolated point and so that $0 \in \sigma(A_0)$ is also an isolated point. So we can define $P_{i_1} \lor \cdots \lor P_{i_k}$ to be the projection $A_0^{\dagger}A_0 \in \mathcal{A}$ by Lemma 2.1. This definition is reasonable: if $P \in \mathcal{A}$ is a projection such that $P \ge P_{i_r}$, $r = 1, \ldots, k$, then $PA_0 = A_0$ and hence $PA_0A_0^{\dagger} = A_0A_0^{\dagger}$, i.e., $P \ge P_{i_1} \lor \cdots \lor P_{i_k}$. Since $A_0 \ge P_{i_r}$, we have

$$0 = (1 - A_0^{\dagger} A_0) A_0 (1 - A_0^{\dagger} A_0) \ge (1 - A_0^{\dagger} A_0) P_{i_r} (1 - A_0^{\dagger} A_0)$$

and consequently, $P_{i_r}(1 - A_0^{\dagger}A_0) = 0$, that is, $P_{i_r} \leq P_{i_1} \vee \cdots \vee P_{i_k}$, $i = 1, \ldots, k$.

PROPOSITION 2.4. Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ with $A = \sum_{i=1}^n P_i$. Let i_1, \ldots, i_k be as above and $\{j_1, \ldots, j_l\} = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$ with $j_1 < \cdots < j_l$. Then

$$(2.3) P_{i_1} \vee \cdots \vee P_{i_k} = A^{1/2} \Big[\Big(\sum_{r=1}^k Q_{i_r} \Big) A \Big(\sum_{r=1}^k Q_{i_r} \Big) \Big]^{-1} A^{1/2} \\ = \Big(\sum_{r=1}^k P_{i_r} \Big) \Big[\Big(\sum_{r=1}^k P_{i_r} \Big)^2 + \sum_{t=1}^l P_{j_t} \Big]^{-1} \Big(\sum_{r=1}^k P_{i_r} \Big), \\ where \ \Big[\Big(\sum_{r=1}^k Q_{i_r} \Big) A \Big(\sum_{r=1}^k Q_{i_r} \Big) \Big]^{-1} \ stands \ for \ the \ inverse \ of \ \Big(\sum_{r=1}^k Q_{i_r} \Big) A \Big(\sum_{r=1}^k Q_{i_r} \Big) \ in \\ \Big(\sum_{r=1}^k Q_{i_r} \Big) A \Big(\sum_{r=1}^k Q_{i_r} \Big). \end{aligned}$$

Proof. Using the symbols P_i , Q_i , E_i as above, and according to (2.2),

$$\sum_{r=1}^{k} P_{i_r} = A^{1/2} \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A^{1/2}, \quad \sum_{r=1}^{k} E_{i_r} = A^{1/2} \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A^{-1/2}.$$

Thus
$$\left(\sum_{r=1}^{k} E_{i_r}\right)\left(\sum_{r=1}^{k} P_{i_r}\right) = \sum_{r=1}^{k} P_{i_r}$$
 and $\sum_{r=1}^{k} E_{i_r} = \left(\sum_{r=1}^{k} P_{i_r}\right)A^{-1}$. Then we have
 $\left(\sum_{r=1}^{k} E_{i_r}\right)P_{i_1} \lor \cdots \lor P_{i_k} = P_{i_1} \lor \cdots \lor P_{i_k}, \quad P_{i_1} \lor \cdots \lor P_{i_k}\left(\sum_{r=1}^{k} E_{i_r}\right) = \sum_{r=1}^{k} E_{i_r},$

according to the definition of $P_{i_1} \vee \cdots \vee P_{i_k}$.

Since $\sum_{r=1}^{k} E_{i_r}$ is an idempotent element in A, it follows from Lemma 1.6 that

(2.4)
$$P_{i_1} \vee \cdots \vee P_{i_k} = \left(\sum_{r=1}^k E_{i_r}\right) \left[\sum_{r=1}^k (E_{i_r}^* + E_{i_r}) - 1\right]^{-1} \in \mathcal{A}.$$

Noting that $\left(\sum_{r=1}^{k} Q_{i_r}\right) A\left(\sum_{r=1}^{k} Q_{i_r}\right)$ is invertible in $\left(\left(\sum_{r=1}^{k} Q_{i_r}\right) A\left(\sum_{r=1}^{k} Q_{i_r}\right)\right)$ and $\left(\sum_{t=1}^{l} Q_{j_t}\right) A\left(\sum_{t=1}^{k} Q_{j_t}\right)$ is invertible in $\left(\sum_{t=1}^{k} Q_{j_t}\right) A\left(\sum_{t=1}^{k} Q_{j_t}\right)$ and $\sum_{r=1}^{k} (E_{i_r}^* + E_{i_r}) - 1 = A^{-1/2} \left[\left(\sum_{r=1}^{k} Q_{i_r}\right) A + A\left(\sum_{r=1}^{k} Q_{i_r}\right) - A\right] A^{-1/2}$ $= A^{-1/2} \left[\left(\sum_{r=1}^{k} Q_{i_r}\right) A\left(\sum_{r=1}^{k} Q_{i_r}\right) - \left(\sum_{t=1}^{l} Q_{j_t}\right) A\left(\sum_{t=1}^{l} Q_{j_t}\right)\right] A^{-1/2},$

we obtain that

$$\left[\sum_{r=1}^{k} (E_{i_{r}}^{*} + E_{i_{r}}) - 1\right]^{-1} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right) \right]^{-1} - \left[\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{l} Q_{j_{t}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right) \right]^{-1} - \left[\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{l} Q_{j_{t}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right) \right]^{-1} - \left[\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{l} Q_{j_{t}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) \right]^{-1} - \left[\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}}\right) \right]^{-1} \right] A^{1/2} = A^{1/2} \left[\left[\left(\sum_{r=1}^{l} Q_{i_{r}}\right) A\left(\sum_{r=1}^{l} Q_{i_{r}$$

Combining this with (2.4), we can get (2.3).

Note that
$$\sum_{r=1}^{k} P_{i_r} = A^{1/2} \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A^{1/2}$$
, $\sum_{t=1}^{l} P_{j_t} = A^{1/2} \Big(\sum_{t=1}^{l} Q_{j_t} \Big) A^{1/2}$ and
 $\Big(\sum_{r=1}^{k} P_{i_r} \Big)^2 = A^{1/2} \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A^{1/2}$. Therefore,
 $\Big(\sum_{r=1}^{k} P_{i_r} \Big) \Big[\Big(\sum_{r=1}^{k} P_{i_r} \Big)^2 + \sum_{t=1}^{l} P_{j_t} \Big]^{-1} \Big(\sum_{r=1}^{k} P_{i_r} \Big)$
 $= A^{1/2} \Big(\sum_{r=1}^{k} Q_{i_r} \Big) \Big(\Big[\Big(\sum_{r=1}^{k} Q_{i_r} \Big) A \Big(\sum_{r=1}^{k} Q_{i_r} \Big) \Big]^{-1} + \sum_{t=1}^{l} Q_{j_t} \Big) \Big(\sum_{r=1}^{k} Q_{i_r} \Big) A^{1/2}$
 $= P_{i_1} \lor \cdots \lor P_{i_k}$

by (2.3).

3. PERTURBATIONS OF A COMPLETE n-TUPLE OF PROJECTIONS

Let *X* be a Banach space and let *C* be a bounded linear operator acting in *X*. According to Chapter IV, Section 5 of [10], the reduced minimum modulus $\gamma(C)$ is given by

$$\gamma(C) = \begin{cases} \inf\{\|Cx\| : \operatorname{dist}(x, \operatorname{Ker} T) = 1, x \in X\} & C \neq 0, \\ +\infty & C = 0. \end{cases}$$

We list some properties of the reduced minimum modulus in the lemma that follows.

LEMMA 3.1 (cf. [19]). Let C be in $B(H) \setminus \{0\}$. Then (i) $\gamma(C) = \inf\{\|Cx\| : x \in (\operatorname{Ker}C)^{\perp}, \|x\| = 1\}$. (ii) $\|Cx\| \ge \gamma(C)\|x\|, \forall x \in (\operatorname{Ker}(C))^{\perp}$. (iii) $\gamma(C) = \inf\{\lambda : \lambda \in \sigma(|C|) \setminus \{0\}\}$, where $|C| = (C^*C)^{1/2}$. (iv) $\gamma(C) > 0$ if and only if $\operatorname{Ran}(C)$ is closed if and only if 0 is an isolated point of $\sigma(|C|)$ if $0 \in \sigma(|C|)$. (v) $\gamma(C) = \|C^{-1}\|^{-1}$ when C is invertible.

(v) $\gamma(C) \ge ||B||^{-1}$ when CBC = C for $B \in B(H) \setminus \{0\}$.

For $a \in A_+$, put $\beta(a) = \inf\{\lambda : \lambda \in \sigma(a) \setminus \{0\}\}$. Combining Lemma 3.1 with the faithful representation of A, we can obtain

COROLLARY 3.2. Let $a \in A_+$. Then (i) $\beta(a) > 0$ if and only if $0 \in \sigma(a)$ is isolated when $a \notin GL(A)$. (ii) $\beta(a) \ge ||c||^{-1}$ when aca = a for some $c \in A_+ \setminus \{0\}$.

Let \mathcal{E} be a C^* -subalgebra of B(H) with the unit I. Let (T_1, \ldots, T_n) be an ntuple of positive operators in \mathcal{E} with $\operatorname{Ran}(T_i)$ closed, $i = 1, \ldots, n$. Put $\widehat{H} = \bigoplus_{i=1}^n H_i$, $H_0 = \bigoplus_{i=1}^n \operatorname{Ran}(T_i)$ and $H_1 = \bigoplus_{i=1}^n \operatorname{Ker}(T_i)$. Since $H = \operatorname{Ran}(T_i) \oplus \operatorname{Ker}(T_i)$, $i = 1, \ldots, n$,

it follows that $H_0 \oplus H_1 = \widehat{H}$. Put $T_{ij} = T_i T_j|_{\text{Ran}(T_i)}$, i, j = 1, ..., n and set

(3.1)

$$T = \begin{bmatrix} T_1^2 & T_1 T_2 & \cdots & T_1 T_n \\ T_2 T_1 & T_2^2 & \cdots & T_2 T_n \\ \cdots & \cdots & \cdots & \cdots \\ T_n T_1 & T_2 T_2 & \cdots & T_n^2 \end{bmatrix} \in \mathbf{M}_n(\mathcal{E}),$$

$$\widehat{T} = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1n} \\ T_{21} & T_{22} & \cdots & T_{2n} \\ \cdots & \cdots & \cdots \\ T_{n1} & T_{n2} & \cdots & T_{nn} \end{bmatrix} \in B(H_0).$$

Clearly, $H_1 \subset \text{Ker}(T)$ and it is easy to check that $\text{Ker}(T) = H_1$ when $\text{Ker}(\hat{T}) = \{0\}$. Thus, in this case, T can be expressed as $T = \begin{bmatrix} \hat{T} & 0 \\ 0 & 0 \end{bmatrix}$ with respect to the orthogonal decomposition $\hat{H} = H_0 \oplus H_1$ and consequently, $\sigma(T) = \sigma(\hat{T}) \cup \{0\}$.

LEMMA 3.3. Let (T_1, \ldots, T_n) be an n-tuple of positive operators in \mathcal{E} with $\text{Ran}(T_i)$ closed, $i = 1, \ldots, n$. Let H_0, H_1, \hat{H} be as above and T, \hat{T} be given in (3.1). Suppose that \hat{T} is invertible in $B(H_0)$. Then

(i)
$$\sigma(\widehat{T}) = \sigma\left(\sum_{i=1}^{n} T_i^2\right) \setminus \{0\}.$$

(ii) 0 is an isolated point in $\sigma\left(\sum_{i=1}^{n} T_{i}\right)$ if $0 \in \sigma\left(\sum_{i=1}^{n} T_{i}\right)$. (iii) $\left(T_{i} = \sum_{i=1}^{n} T_{i}\right)$ is linearly independent for any σ .

(iii) $\{T_1a_1, \ldots, T_na_n\}$ is linearly independent for any $a_1, \ldots, a_n \in \mathcal{E}$ with $T_ia_i \neq 0$, $i = 1, \ldots, n$.

Proof. (i) Put
$$Z = \begin{bmatrix} T_1 & \cdots & T_n \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \in M_n(\mathcal{E})$$
. Then $Z^*Z = T$ and $ZZ^* = \begin{bmatrix} \sum_{i=1}^n T_i^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$. Thus, $\sigma\left(\sum_{i=1}^n T_i^2\right) \setminus \{0\} = \sigma(T) \setminus \{0\} = \sigma(\widehat{T})$.

(ii) According to (i), 0 is an isolated point of $\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right)$ if $\sum_{i=1}^{n} T_{i}^{2}$ is not invertible in \mathcal{E} . So by Lemma 2.1, there is $G \in \mathcal{E}_{+}$ such that

$$\left(\sum_{i=1}^{n} T_{i}^{2}\right) G\left(\sum_{i=1}^{n} T_{i}^{2}\right) = \sum_{i=1}^{n} T_{i}^{2}, \quad G\left(\sum_{i=1}^{n} T_{i}^{2}\right) G = G, \quad \left(\sum_{i=1}^{n} T_{i}^{2}\right) G = G\left(\sum_{i=1}^{n} T_{i}^{2}\right).$$
Put $P_{0} = I - \left(\sum_{i=1}^{n} T_{i}^{2}\right) G \in \mathcal{E}.$ Then P_{0} is a projection with $\operatorname{Ran}(P_{0}) = \operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}^{2}\right).$
Noting that $\operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}^{2}\right) = \operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}\right) = \bigcap_{i=1}^{n} \operatorname{Ker}(T_{i}), \sum_{i=1}^{n} T_{i}^{2} \in GL((I - P_{0})\mathcal{E}(I - P_{0}))$
with the inverse G and $\sum_{i=1}^{n} T_{i}^{2} \leq \left(\max_{1 \leq i \leq n} \|T_{i}\|\right) \sum_{i=1}^{n} T_{i},$ we get that $\sum_{i=1}^{n} T_{i}$ is invertible in $(I - P_{0})\mathcal{E}(I - P_{0}).$ Thus, 0 is an isolated point of $\sigma\left(\sum_{i=1}^{n} T_{i}\right)$ when $0 \in \sigma\left(\sum_{i=1}^{n} T_{i}\right).$

(iii) By Lemma 3.1(iii) and Lemma 2.1, there is $T_i^{\dagger} \in \mathcal{E}_+$ such that $T_i T_i^{\dagger} T_i = T_i$, $T_i^{\dagger} T_i T_i^{\dagger} = T_i^{\dagger}$, $T_i^{\dagger} T_i = T_i T_i^{\dagger}$, i = 1, ..., n. Thus, $\operatorname{Ran}(T_i) = \operatorname{Ran}(T_i T_i^{\dagger})$, i = 1, ..., n.

Let $a_1, \ldots, a_n \in \mathcal{E}$ with $T_i a_i \neq 0$, $i = 1, \ldots, n$ such that $\sum_{i=1}^n \lambda_i T_i a_i = 0$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. For any $\xi \in H$, put $x = \bigoplus_{i=1}^n \lambda_i T_i T_i^{\dagger} a_i \xi \in H_0$. Then $\widehat{T}x = 0$ and x = 0 since \widehat{T} is invertible. Thus, $\lambda_i T_i T_i^{\dagger} a_i \xi = 0$, $\forall \xi \in H$ and hence $\lambda_i = 0$, $i = 1, \ldots, n$.

The following result due to Levy and Desplanques is very useful in matrix theory:

LEMMA 3.4 (cf. [8]). Suppose the complex $n \times n$ self-adjoint matrix $C = [c_{ij}]_{n \times n}$ is strictly diagonally dominant, that is, $\sum_{j \neq i} |c_{ij}| < c_{ii}$, i = 1, ..., n. Then C is invertible and positive.

PROPOSITION 3.5. Let $T_1, \ldots, T_n \in A_+$. Assume that

(i) $\gamma = \min\{\beta(T_1), ..., \beta(T_n)\} > 0$ and

(ii) there exists $\rho \in (0, \gamma]$ such that $\eta = \max\{\|T_iT_j\| : i \neq j, i, j = 1, ..., n\} < (n-1)^{-1}\rho^2$.

Then for any
$$\delta \in [\eta, (n-1)^{-1}\rho^2)$$
, we have
(a) $\sigma\left(\sum_{i=1}^n T_i^2\right) \setminus \{0\} \subset [\rho^2 - (n-1)\delta, \rho^2 + (n-1)\delta].$
(b) 0 is an isolated point of $\sigma\left(\sum_{i=1}^n T_i\right)$ if $0 \in \sigma\left(\sum_{i=1}^n T_i\right)$.
(c) $\left(\sum_{i=1}^n T_i\right) \mathcal{A} = T_1 \mathcal{A} + \cdots + T_n \mathcal{A}.$

Proof. (a) Let (ψ, H_{ψ}) be a faithful representation of \mathcal{A} with $\psi(i) = I$. We may assume that $H = H_{\psi}$ and $\mathcal{E} = \psi(\mathcal{A})$. Put $S_i = \psi(T_i)$, $S_{ij} = S_i S_j|_{\text{Ran}(S_j)}$, i, j = 1, ..., n. Then $\max\{||S_iS_j|| : 1 \le i \ne j \le n\} = \eta$ and $\gamma(S_i) = \beta(T_i)$ by Lemma 3.1, $1 \le i \le n$. Set $H_0 = \bigoplus_{i=1}^n \text{Ran}(S_i)$ and

$$\widehat{S} = \begin{bmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ S_{n1} & S_{n2} & \cdots & S_{nn} \end{bmatrix} \in B(H_0), \quad S_0 = \begin{bmatrix} \rho^2 - \lambda & -\|S_{12}\| & \cdots & -\|S_{1n}\| \\ -\|S_{21}\| & \rho^2 - \lambda & \cdots & -\|S_{2n}\| \\ \cdots & \cdots & \cdots & \cdots \\ -\|S_{n1}\| & -\|S_{n2}\| & \cdots & \rho^2 - \lambda \end{bmatrix}.$$

Then for any $\lambda < \rho^2 - (n-1)\delta$, we have $\sum_{j \neq i} ||S_{ij}|| \leq (n-1)\eta < \rho^2 - \lambda$. It follows from Lemma 3.4 that S_0 is positive and invertible. Therefore the quadratic form

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n (\rho^2 - \lambda) x_i^2 - 2 \sum_{1 \le i < j \le n} \|S_{ij}\| x_i x_j$$

is positive definite and hence there is $\alpha > 0$ such that for any $(x_1, \ldots, x_n) \in \mathbb{R}^n$,

$$f(x_1,\ldots,x_n) \ge \alpha(x_1^2 + \cdots + x_n^2).$$

So for any $\xi = \bigoplus_{i=1}^{n} \xi_i \in H_0$, $||S_i\xi_i|| \ge \gamma(S_i)||\xi_i|| \ge \rho ||\xi_i||$, $\xi_i \in \operatorname{Ran}(S_i) = (\operatorname{Ker}(S_i))^{\perp}$, i = 1, ..., n, by Lemma 3.1 and

$$\begin{split} \langle (\widehat{S} - \lambda I)\xi, \xi \rangle &= \sum_{i=1}^{n} \|S_{i}\xi_{i}\|^{2} - \sum_{i}^{n} \lambda \|\xi_{i}\|^{2} + \sum_{1 \leq i < j \leq n} (\langle S_{ij}\xi_{j}, \xi_{i} \rangle + \langle S_{ij}^{*}\xi_{i}, \xi_{j} \rangle) \\ &\geqslant \sum_{i=1}^{n} (\rho^{2} - \lambda) \|\xi_{i}\|^{2} - 2 \sum_{1 \leq i < j \leq n} \|S_{ij}\| \|\xi_{i}\| \|\xi_{j}\| \\ &= f(\|\xi_{1}\|, \dots, \|\xi_{k}\|) \geqslant \alpha \sum_{i=1}^{k} \|\xi_{i}\|^{2}. \end{split}$$

Therefore, $\widehat{S} - \lambda I$ is invertible.

Similarly, for any $\lambda > \rho^2 + (n-1)\delta$, we can obtain that $\lambda I - \hat{S}$ is invertible. So $\sigma(\hat{S}) \subset [\rho^2 - (n-1)\delta, \rho^2 + (n-1)\delta] \subset (0, \rho^2 + (n-1)\delta]$ and consequently,

$$\sigma\Big(\sum_{i=1}^{n} T_i^2\Big) \setminus \{0\} = \sigma\Big(\sum_{i=1}^{n} S_i^2\Big) \setminus \{0\} \subset [\rho^2 - (n-1)\delta, \rho^2 + (n-1)\delta]$$

by Lemma 3.3.

(b) Since $\sigma\left(\sum_{i=1}^{n} T_{i}\right) = \sigma\left(\sum_{i=1}^{n} S_{i}\right)$, the assertion follows from Lemma 3.3(ii). (c) By (b) and Lemma 2.1, $\left(\sum_{i=1}^{n} T_{i}\right)^{\dagger} \in \mathcal{A}$ exists. Set $E = \left(\sum_{i=1}^{n} T_{i}\right) \left(\sum_{i=1}^{n} T_{i}\right)^{\dagger}$. Obviously, $E\mathcal{A} = \left(\sum_{i=1}^{n} T_{i}\right)\mathcal{A} \subset T_{1}\mathcal{A} + \dots + T_{n}\mathcal{A}$ for $E\left(\sum_{i=1}^{n} T_{i}\right) = \sum_{i=1}^{n} T_{i}$. From $T_{i} \leq \sum_{i=1}^{n} T_{i}$, we get that $(1 - E)T_{i}(1 - E) \leq (1 - E)\left(\sum_{i=1}^{n} T_{i}\right)(1 - E) = 0$.

$$(1-L)I_i(1-L) \leqslant (1-L)(\sum_{i=1}^{L}I_i)(1-L) = 0,$$

i.e., $T_i = ET_i$, i = 1, ..., n. So $T_i A \subset EA$, i = 1, ..., n and hence

$$T_1\mathcal{A} + \cdots + T_n\mathcal{A} \subset E\mathcal{A} = \Big(\sum_{i=1}^n T_i\Big)\mathcal{A} \subset T_1\mathcal{A} + \cdots + T_n\mathcal{A}.$$

Since for any $a_i \in A$ with $T_i a_i \neq 0, 1 \leq i \leq n, \{S_1\psi(a_i), \ldots, S_n\psi(a_n)\}$ is linearly independent in \mathcal{E} by Lemma 3.3, we have $\{T_1a_1, \ldots, T_na_n\}$ is linearly independent in \mathcal{A} . Therefore,

$$\left(\sum_{i=1}^{n} T_{i}\right) \mathcal{A} = E \mathcal{A} = T_{1} \mathcal{A} \dotplus \cdots \dotplus T_{n} \mathcal{A}.$$

Let P_1, P_2 be projections on H. Buckholtz shows in [3] that $H = \text{Ran}(P_1) \dotplus$ Ran (P_2) if and only if $||P_1 + P_2 - I|| < 1$. For $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$, we have COROLLARY 3.6. Let $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$ satisfying $\left\|\sum_{i=1}^n P_i - 1\right\| < (n-1)^{-2}$. Then (P_1, \ldots, P_n) is complete in \mathcal{A} .

Proof. For any $i \neq j$,

$$\|P_iP_j\|^2 = \|P_iP_jP_i\| \le \left\|P_i\left(\sum_{k\neq i} P_k\right)P_i\right\| = \left\|P_i\left(\sum_{k=1}^n P_k - 1\right)P_i\right\| \le \left\|\sum_{k=1}^n P_k - 1\right\| < \frac{1}{(n-1)^2}$$

Thus $||P_iP_j|| < (n-1)^{-1}$. Noting that

$$\rho = \min\{\beta(P_1), \dots, \beta(P_n)\} = 1, \quad \eta = \max\{\|P_iP_j\| : 1 \le i < j \le n\} < \frac{1}{n-1},$$

we have $\left(\sum_{i=1}^{n} P_{i}\right)\mathcal{A} = P_{1}\mathcal{A} + \dots + P_{n}\mathcal{A}$ by Proposition 3.5. From $\left\|\sum_{i=1}^{n} P_{i} - 1\right\| < (n-1)^{-2}$, we have $\sum_{i=1}^{n} P_{i}$ is invertible in \mathcal{A} and so $\mathcal{A} = P_{1}\mathcal{A} + \dots + P_{n}\mathcal{A}$. Thus, (P_{1}, \dots, P_{n}) is complete in \mathcal{A} .

Combing Corollary 3.6 with Theorem 1.2(iii), we have

COROLLARY 3.7. Let P_1, \ldots, P_n be non-trivial projections in B(H) with $\left\|\sum_{i=1}^n P_i - I\right\| < (n-1)^{-2}$. Then $H = \operatorname{Ran}(P_1) \dotplus \cdots \dotplus \operatorname{Ran}(P_n)$.

Let $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$. A well-known statement says: "for any $\varepsilon > 0$, there is $\delta > 0$ such that if $||P_iP_j|| < \delta$, $i \neq j, i, j = 1, \ldots, n$, then there are mutually orthogonal projections $P'_1, \ldots, P'_n \in \mathcal{A}$ with $||P_i - P'_i|| < \varepsilon, i = 1, \ldots, n$ ". It may appeared first in Glimm's paper [6]. By using the induction on n, he gave its proof. But how δ depends on ε is not given. Lemma 2.5.6 of [9] states this statement and the author gives a slightly different proof. We can find from the proof of Lemma 2.5.6 of [9] that the relation between δ and ε is $\delta = \varepsilon/(12)^{(n-1)} n!$.

The next corollary will give a new proof of this statement with the relation $\delta = \varepsilon/(n-1)$ for $\varepsilon \in (0, 1)$.

COROLLARY 3.8. Let $(P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A})$ and $\varepsilon \in (0, 1)$. If P_1, \ldots, P_n satisfy the condition $||P_iP_j|| < \delta = \varepsilon/(n-1)$, $1 \leq i < j \leq n$, then there are mutually orthogonal projections $P'_1, \ldots, P'_n \in \mathcal{A}$ such that $||P_i - P'_i|| \leq \varepsilon$, $i = 1, \ldots, n$.

Proof. Set $A = \sum_{i=1}^{n} P_i$. Noting that $\gamma = \min\{\beta(P_1), \dots, \beta(P_n)\} = 1$, $||P_iP_j|| < 1/(n-1)$, $1 \le i < j \le n$ and taking $\rho = 1$, we have $\sigma(A) \setminus \{0\} \subset [1 - (n-1)\delta, 1 + (n-1)\delta]$ by Proposition 3.5(i). So the positive element A^{\dagger} exists by Lemma 2.1. Set $P = A^{\dagger}A = AA^{\dagger} \in A$. From $AA^{\dagger}A = A$ and $A^{\dagger}AA^{\dagger} = A^{\dagger}$, we get that $P_i \le P, i = 1, \dots, n$ and $AP = PA = A, A^{\dagger}P = PA^{\dagger} = A^{\dagger}$. So $A \in GL(PAP)$ with the inverse $A^{\dagger} \in PAP$.

Now, by Proposition 3.5, $PA = AA = P_1A + \cdots + P_nA$. Thus, by using $P_i \leq P, i = 1, ..., n$, we have $PAP = P_1(PAP) + \cdots + P_n(PAP)$, that is, $(P_1, ..., P_n) \in \mathbf{PC}_n(PAP)$ and then $P_iA^{\dagger}P_j = \delta_{ij}P_i$, i, j = 1, ..., n by Theorem 1.2. Put $P'_i = (A^{\dagger})^{1/2}P_i(A^{\dagger})^{1/2} \in A$, i = 1, ..., n. Then $P'_1, ..., P'_n$ are mutually orthogonal projections with $P_i = A^{1/2}P'_iA^{1/2}$ and moreover, for $1 \leq i \leq n$,

(3.2)
$$\begin{split} \|P'_i - P_i\| &\leq \|A^{1/2}P'_iA^{1/2} - P'_iA^{1/2}\| + \|P'_iA^{1/2} - P'_i\| \\ &\leq (\|A^{1/2}\| + 1)\|A^{1/2} - P\|. \end{split}$$

By the spectrum mapping theorem, we get that

 $\|A^{1/2}\| \leq (1+(n-1)\delta)^{1/2}, \quad \|P-A^{1/2}\| \leq (1+(n-1)\delta)^{1/2} - 1.$

Thus $||P'_i - P_i|| \le (n-1)\delta = \varepsilon, i = 1, ..., n$, by (3.2).

REMARK 3.9. Corollary 3.8 provides that $\delta = O(n^{-1})$ when $n \to \infty$ and Lemma 2.5.6 of [9] showed that $\delta = o(n^{-k})$ for any $k \ge 1$ when $n \to \infty$. We do not know if $\delta = \varepsilon/(n-1)$ is the largest one that satisfies the assertion of Corollary 3.8, but Corollary 3.8 actually provides a better δ . We also do not know if the δ in Corollary 3.8 can be improved as $\delta = O(n^{-s})$ $(n \to \infty)$ for certain $s \in [0, 1)$.

Applying Theorem 1.2 and Corollary 3.8 to an *n*-tuple of linear independent unit vectors, we have:

COROLLARY 3.10. Let $(\alpha_1, ..., \alpha_n)$ be an *n*-tuple of linear independent unit vectors in Hilbert space *H*.

(i) There is an invertible, positive operator K in B(H) and an n-tuple of mutually orthogonal unit vectors $(\gamma_1, ..., \gamma_n)$ in H such that $\gamma_i = K\alpha_i$, i = 1, ..., n.

(ii) Given $\varepsilon \in (0, 1)$, if $|\langle \alpha_i, \alpha_j \rangle| < \varepsilon/2(n-1)$, $1 \le i < j \le n$, then there exists an *n*-tuple of mutually orthogonal unit vectors $(\beta_1, \ldots, \beta_n)$ in H such that $||\alpha_i - \beta_j|| < \varepsilon$, $i = 1, \ldots, n$.

Proof. Set $H_1 = \text{span}\{\alpha_1, \ldots, \alpha_n\}$ and $P_i\xi = \langle \xi, \alpha_i \rangle \alpha_i, \forall \xi \in H_1, i = 1, \ldots, n$. Then $(P_1, \ldots, P_n) \in \mathbf{P}_n(B(H_1))$ and $\text{Ran}(P_1) \dotplus \cdots \dotplus \text{Ran}(P_n) = H_1$.

By Theorem 1.2, $A_0 = \sum_{i=1}^{n} P_i$ is invertible in $B(H_1)$ and $P_i A_0^{-1} P_j = \delta_{ij} P_i$, i, j = 1, ..., n. Put $K = A_0^{-1/2} + P_0$ and $\gamma_i = A_0^{-1/2} \alpha_i$, i = 1, ..., n, where P_0 is the projection of H onto H_1^{\perp} . It is easy to check that K is invertible and positive in B(H) with $\gamma_i = K\alpha_i$, i = 1, ..., n and $(\gamma_1, ..., \gamma_n)$ is an n-tuple of mutually orthogonal unit vectors. This proves (i).

(ii) Note that $||P_iP_j|| = |\langle \alpha_i, \alpha_j \rangle| < \varepsilon/2(n-1), 1 \leq i < j \leq n$. Thus, by Corollary 3.8, there are mutually orthogonal projections $P'_1, \ldots, P'_n \in \mathcal{A}$ such that $||P_i - P'_i|| < \varepsilon/2, i = 1, \ldots, n$. Put $\beta'_i = P'_i\alpha_i, i = 1, \ldots, n$. Then $\beta'_1, \ldots, \beta'_n$ are mutually orthogonal and $||\alpha_i - \beta'_i|| < \varepsilon/2, i = 1, \ldots, n$. Set $\beta_i = ||\beta'_i||^{-1}\beta'_i$,

$$i = 1, \dots, n$$
. Then $\langle \beta_i, \beta_j \rangle = \delta_{ij}\beta_i, i, j = 1, \dots, n$ and
 $\|\alpha_i - \beta_i\| \leq \|\alpha_i - \beta'_i\| + |1 - \|\beta'_i\|| < \varepsilon$

for i = 1, ..., n.

Now we give a simple characterization of the completeness of a given *n*-tuple of projections in C^* -algebra A as follows.

THEOREM 3.11. Let P_1, \ldots, P_n be projections in \mathcal{A} . Then (P_1, \ldots, P_n) is complete if and only if $A = \sum_{i=1}^n P_i$ is invertible in \mathcal{A} and $\|P_i A^{-1} P_j\| < [(n-1)\|A^{-1}\|\|A\|^2]^{-1}, \quad \forall i \neq j, i, j = 1, \ldots, n.$

Proof. If $(P_1, ..., P_n)$ is complete, then by Theorem 1.2, A is invertible in A and $P_i A^{-1} P_j = 0, \forall i \neq j, i, j = 1, ..., n$.

Now we prove the converse.

Put
$$T_i = A^{-1/2} P_i A^{-1/2}$$
, $i=1,...,n$. Then $\sum_{i=1}^n T_i = 1$. Since $T_i = T_i (A^{1/2} P_i A^{1/2}) T_i$,
we have $\beta(T_i) \ge \|A^{1/2} P_i A^{1/2}\|^{-1} \ge \|A\|^{-1}$, $i = 1,...,n$ by Corollary 3.2. Put $\rho = \|A\|^{-1}$. Then for $i \ne j$, $i, j = 1,...,n$,

44

$$||T_iT_j|| \leq ||A^{-1}|| ||P_iA^{-1}P_j|| < [(n-1)||A||^2]^{-1} = \frac{\rho^2}{n-1}$$

Thus by Proposition 3.5(iii), $\mathcal{A} = T_1 \mathcal{A} + \cdots + T_n \mathcal{A}$. Note that $T_i \mathcal{A} = A^{-1/2}(P_i \mathcal{A})$, i = 1, ..., n. Thus $P_1 \mathcal{A} + \cdots + P_n \mathcal{A} = A^{1/2} \mathcal{A} = \mathcal{A}$, i.e., $(P_1, ..., P_n) \in \mathbf{PC}_n(\mathcal{A})$.

COROLLARY 3.12. Let $(P_1, ..., P_n) \in \mathbf{PC}_n(\mathcal{A})$ and let $(P'_1, ..., P'_n) \in \mathbf{P}_n(\mathcal{A})$. Assume that $||P_i - P'_i|| < [4n^2(n-1)||\mathcal{A}^{-1}||^2(n||\mathcal{A}^{-1}||+1)]^{-1}$, i = 1, ..., n, where $A = \sum_{i=1}^n P_i$, then $(P'_1, ..., P'_n) \in \mathbf{PC}_n(\mathcal{A})$.

Proof. Set $B = \sum_{i=1}^{n} P'_i$. Since $n ||A^{-1}|| \ge ||A|| ||A^{-1}|| \ge 1$, it follows that $||A - B|| < 1/2 ||A^{-1}||$. Thus *B* is invertible in A with

$$\|B^{-1}\| \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|A - B\|} < 2\|A^{-1}\|, \quad \|B^{-1} - A^{-1}\| < 2\|A^{-1}\|^2 \|A - B\|.$$

Note that $P_i A^{-1} P_j = 0, i \neq j, i, j = 1, ..., n$, we have

$$\begin{split} \|P_i'B^{-1}P_j'\| &\leq \|P_i'(B^{-1} - A^{-1})P_j'\| + \|(P_i' - P_i)A^{-1}P_j'\| + \|P_iA^{-1}(P_j - P_j')\| \\ &\leq 2\|A^{-1}\|^2\|A - B\| + \|A^{-1}\|\|P_i - P_i'\| + \|A^{-1}\|\|P_j - P_j'\| \\ &< \frac{1}{2n^2(n-1)\|A^{-1}\|} < \frac{1}{(n-1)\|B^{-1}\|\|B\|^2}. \end{split}$$

So (P'_1, \ldots, P'_n) is complete in \mathcal{A} by Theorem 3.11.

4. THE CONNECTIVITY OF $\mathbf{PC}_n(\mathcal{A})$

Let \mathcal{A} be a C^* -algebra with the unit 1 and let $GL_0(\mathcal{A})$ (respectively $U_0(\mathcal{A})$) be the connected component of 1 in $GL(\mathcal{A})$ (respectively in $U(\mathcal{A})$).

PROPOSITION 4.1. For $\mathbf{P}_n(\mathcal{A})$ and $\mathbf{PC}_n(\mathcal{A})$, we have

(i) $\mathbf{PC}_n(\mathcal{A})$ is open in $\mathbf{P}_n(\mathcal{A})$.

(ii) $\mathbf{PC}_n(\mathcal{A})$ is locally connected. So every connected component of $\mathbf{PC}_n(\mathcal{A})$ is pathconnected.

Proof. (i) Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$. Then there is $\delta > 0$ such that for any $(P'_1, \ldots, P'_n) \in \mathbf{P}_n(\mathcal{A})$ with $||P'_i - P_i|| < \delta$, $i = 1, \ldots, n$, we have $(P'_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ by Corollary 3.12. This means that $\mathbf{PC}_n(\mathcal{A})$ is open in $\mathbf{P}_n(\mathcal{A})$.

(ii) Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$. Then by Corollary 3.12, there is $\delta \in (0, 1/2)$ such that for any $(R_1, \ldots, R_n) \in \mathbf{P}_n(\mathcal{A})$ with $||P_i - R_i|| < \delta, 1 \leq i \leq n$, we have $(R_1, \ldots, R_n) \in \mathbf{PC}_n(\mathcal{A})$.

Let $(R_1, \ldots, R_n) \in \mathbf{PC}_n(\mathcal{A})$ with $||P_j - R_j|| < \delta$, $i = 1, \ldots, n$. Put $P_i(t) = P_i$, $R_i(t) = R_i$ and $a_i(t) = (1 - t)P_i + tR_i$, $\forall t \in [0, 1]$, $i = 1, \ldots, n$. Then P_i, R_i, a_i are self-adjoint elements in $C([0, 1], \mathcal{A}) = \mathcal{B}$ and $||P_i - a_i|| = \max_{t \in [0, 1]} ||P_i - a_i(t)|| < t$

 δ , i = 1, ..., n. It follows from Lemm 6.5.9(1) of [19] that there is a projection $f_i \in C^*(a_i)$ (the *C**-subalgebra of \mathcal{B} generated by a_i) such that $||P_i - f_i|| \leq ||P_i - a_i|| < \delta$, i = 1, ..., n. So $||P_i - f_i(t)|| < \delta$, i = 1, ..., n and consequently, $F(t) = (f_1(t), ..., f_n(t))$ is a continuous mapping of [0, 1] into $\mathbf{PC}_n(\mathcal{A})$. Since $a_i(0) = P_i$, $a_i(1) = R_i$ and $f_i(t) \in C^*(a_i(t))$, $\forall t \in [0, 1]$, we have $f(0) = (P_1, ..., P_n)$ and $f(1) = (R_1, ..., R_n)$. This means that $\mathbf{PC}_n(\mathcal{A})$ is locally path-connected.

DEFINITION 4.2. Let (P_1, \ldots, P_n) , $(P'_1, \ldots, P'_n) \in \mathbf{PC}_n(\mathcal{A})$. We say that (P_1, \ldots, P_n) and (P'_1, \ldots, P'_n) are homotopically equivalent, denoted by $(P_1, \ldots, P_n) \sim_{\mathrm{h}} (P'_1, \ldots, P'_n)$, if there is a continuous mapping $F \colon [0, 1] \to \mathbf{PC}_n(\mathcal{A})$ such that $F(0) = (P_1, \ldots, P_n)$ and $F(1) = (P'_1, \ldots, P'_n)$.

Clearly, according to Proposition 4.1(ii), two elements in $PC_n(A)$ are in the same connected component if and only if they are homotopically equivalent.

LEMMA 4.3. Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ and C be a positive and invertible element in \mathcal{A} with $P_i C^2 P_i = P_i$, $i = 1, \ldots, n$. Then $(CP_1 C, \ldots, CP_n C) \in \mathbf{PC}_n(\mathcal{A})$ and $(P_1, \ldots, P_n) \sim_h (CP_1 C, \ldots, CP_n C)$ in $\mathbf{PC}_n(\mathcal{A})$.

Proof. From $(CP_iC)^2 = CP_iC^2P_iC = CP_iC$, $1 \le i \le n$, we have $(CP_1C, \ldots, CP_nC) \in \mathbf{P}_n(\mathcal{A})$. $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ implies that $A = \sum_{i=1}^n P_i \in GL(\mathcal{A})$ and $P_iA^{-1}P_i = P_i$, $1 \le i \le n$ by Theorem 1.2. So

$$(CP_iC)\Big(\sum_{i=1}^n (CP_iC)\Big)^{-1}(CP_iC) = CP_iA^{-1}P_iC$$

and hence $(CP_1C, \ldots, CP_nC) \in \mathbf{PC}_n(\mathcal{A})$ by Theorem 1.2.

Put $A_i(t) = C^t P_i C^t$, $B_i(t) = C^{-t} P_i C^{-t}$ and $Q_i(t) = A_i(t) B_i(t)$, $\forall t \in [0, 1]$, i = 1, ..., n. Then $Q_i(t) = C^t P_i C^{-t}$ is idempotent and $A_i(t) = A_i(t) B_i(t) A_i(t)$, $\forall t \in [0, 1], i = 1, ..., n$. Thus $A_i(t) A = Q_i(t) A$, $\forall t \in [0, 1], i = 1, ..., n$.

By Lemma 1.6, $P_i(t) = Q_i(t)(Q_i(t) + (Q_i(t))^* - 1)^{-1}$ is a projection in \mathcal{A} satisfying $Q_i(t)P_i(t) = P_i(t)$ and $P_i(t)Q_i(t) = Q_i(t)$, $\forall t \in [0,1]$, i = 1, ..., n. Clearly, $A_i(t)\mathcal{A} = Q_i(t)\mathcal{A} = P_i(t)\mathcal{A}$, $\forall t \in [0,1]$ and $t \mapsto P_i(t)$ is a continuous mapping from [0,1] into \mathcal{A} , i = 1, ..., n. Thus, from

$$(C^t P_1 C^t) \mathcal{A} \dotplus \cdots \dotplus (C^t P_n C^t) \mathcal{A} = \mathcal{A}, \quad \forall t \in [0, 1],$$

we get that $F(t) = (P_1(t), \ldots, P_n(t)) \in \mathbf{PC}_n(\mathcal{A}), \forall t \in [0, 1]$. Note that $F: [0, 1] \rightarrow \mathbf{PC}_n(\mathcal{A})$ is continuous with $F(0) = (P_1, \ldots, P_n)$. Note that $A_i(1) = CP_iC$ is a projection with $A_i(1)Q_i(1) = CP_iCCP_iC^{-1} = Q_i(1)$ and $Q_i(1)A_i(1) = A_i(1)$, $i = 1, \ldots, n$. So $P_i(1) = A_i(1), i = 1, \ldots, n$ and $F(1) = (CP_1C, \ldots, CP_nC)$. The assertion follows.

Set
$$\mathbf{PO}_n(\mathcal{A}) = \Big\{ (P_1, \ldots, P_n) \in \mathbf{P}_n(\mathcal{A}) : \sum_{i=1}^n P_i = 1, P_i P_j = \delta_{ij}, i, j = 1, \ldots, n \Big\}.$$

Then $\mathbf{PO}_n(\mathcal{A}) \subset \mathbf{PC}_n(\mathcal{A})$. For $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$, $A = \sum_{i=1}^n P_i \in GL(\mathcal{A})$ and $Q_i = A^{-1/2}P_iA^{-1/2}$ is a projection with $Q_iQ_j = 0$, $i \neq j$, $i, j = 1, \ldots, n$ (see Theorem 1.2), that is, $(Q_1, \ldots, Q_n) \in \mathbf{PO}_n(\mathcal{A})$. Since $C = A^{-1/2}$ satisfies the condition given in Lemma 4.3, we have the following:

COROLLARY 4.4. Let $(P_1, \ldots, P_n) \in \mathbf{PC}_n(\mathcal{A})$ and let (Q_1, \ldots, Q_n) be as above. Then $(P_1, \ldots, P_n) \sim_h (Q_1, \ldots, Q_n)$ in $\mathbf{PC}_n(\mathcal{A})$.

PROPOSITION 4.5. Let (P_1, \ldots, P_n) , $(P'_1, \ldots, P'_n) \in \mathbf{PC}_n(\mathcal{A})$. Then they are in the same connected component if and only if there is $D \in GL_0(\mathcal{A})$ such that $P_i = D^*P'_iD$, $i = 1, \ldots, n$.

Proof. There is a continuous path $P(t) = (P_1(t), \ldots, P_n(t))$ in **PC**_{*n*}(\mathcal{A}), $\forall t \in [0, 1]$ such that $P(0) = (P_1, \ldots, P_n)$ and $P(1) = (P'_1, \ldots, P'_n)$. By Corollary 5.2.9 of [17], there is a continuous mapping $t \mapsto U_i(t)$ of [0, 1] into $U(\mathcal{A})$ with $U_i(0) = 1$ such that $P_i(t) = U_i(t)P_iU_i^*(t)$, $\forall t \in [0, 1]$ and $i = 1, \ldots, n$. Set

$$W(t) = \left(\sum_{i=1}^{n} P_{i}\right)^{-1/2} \left(\sum_{i=1}^{n} P_{i}U_{i}^{*}(t)P_{i}(t)\right) \left(\sum_{i=1}^{n} U_{i}(t)P_{i}U_{i}^{*}(t)\right)^{-1/2},$$

$$D(t) = \left(\sum_{i=1}^{n} P_{i}\right)^{-1/2} W(t) \left(\sum_{i=1}^{n} U_{i}(t)P_{i}U_{i}^{*}(t)\right)^{1/2}, \quad \forall t \in [0,1].$$

Using the relations

$$P_i(t)\Big(\sum_{i=1}^n P_i(t)\Big)^{-1}P_j(t) = \delta_{ij}, \quad i, j = 1, \dots, n, t \in [0, 1],$$

we can obtain that $W(t) \in U(\mathcal{A})$ with W(0) = 1, $D(t) \in GL(\mathcal{A})$ with D(0) = 1and W(t), D(t) are all continuous on [0,1] with $D^*(t)P_iD(t) = P_i(t)$, $\forall t \in [0,1]$ and i = 1, ..., n. Put D = D(1). Then $D \in GL_0(\mathcal{A})$ and $D^*P_iD = P'_i$, i = 1, ..., n.

Conversely, if there is $D \in GL_0(A)$ such that $D^*P_iD = P'_i$, i = 1, ..., n, then $U = (DD^*)^{-1/2}D \in U_0(A)$ and $P_iDD^*P_i = P_i$, $UP'_iU^* = (DD^*)^{1/2}P_i(DD^*)^{1/2}$, i = 1, ..., n. Thus,

$$(P'_1, \dots, P'_n) \sim_h (UP'_1U^*, \dots, UP'_nU^*)$$
 and
 $((DD^*)^{1/2}P_1(DD^*)^{1/2}, \dots, (DD^*)^{1/2}P_n(DD^*)^{1/2}) \sim_h (P_1, \dots, P_n)$

by Lemma 4.3. Consequently, $(P'_1, \ldots, P'_n) \sim_h (P_1, \ldots, P_n)$.

As ending of this section, we consider the following example:

EXAMPLE 4.6. Let *H* be a separable complex Hilbert space and $\mathcal{K}(H)$ be the *C**-algebra of all compact operators in B(H). Let $\mathcal{A} = B(H)/\mathcal{K}(H)$ be the Calkin algebra and $\pi: B(H) \to \mathcal{A}$ be the quotient mapping. Then we have

(i) $\mathbf{PC}_n(B(H))$ is not connected. In fact, choose non-trivial projections P_1, \ldots, P_n and P'_1, \ldots, P'_n in B(H) such that dim $\operatorname{Ran}(P_1) = 1$, dim $\operatorname{Ran}(P'_1) = 2$ and

$$P_i P_j = P'_i P'_j = \delta_{ij}, \quad i, j = 1, ..., n;$$

 $\sum_{i=1}^n P_i = \sum_{i=1}^n P'_i = I.$

Clearly, $(P_1, ..., P_n)$ and $(P'_1, ..., P'_n)$ belong to **PC**_{*n*}(*B*(*H*)), but they are not in the same component by Proposition 4.5.

(ii) $\mathbf{PC}_n(\mathcal{A})$ is path-connected. In fact, if $(P_1, \ldots, P_n), (P'_1, \ldots, P'_n) \in \mathbf{PC}_n(\mathcal{A})$, then we can find $(Q_1, \ldots, Q_n), (Q'_1, \ldots, Q'_n) \in \mathbf{PO}_n(\mathcal{A})$ such that

$$(P_1,\ldots,P_n)\sim_{\mathbf{h}}(Q_1,\ldots,Q_n)$$
 and $(P'_1,\ldots,P'_n)\sim_{\mathbf{h}}(Q'_1,\ldots,Q'_n)$

by Corollary 4.4. Since B(H) is of real rank zero, it follows from Corollary B.2.2 of [19] or Lemma 3.2 of [18] that there are projections R_1, \ldots, R_n and R'_1, \ldots, R'_n in B(H) such that $\pi(R_i) = Q_i, \pi(R'_i) = Q'_i, i = 1, \ldots, n$ and

$$R_i R_j = \delta_{ij} R_i, \quad R'_i R'_j = \delta_{ij} R'_i, \quad i, j = 1, \dots, n;$$
$$\sum_{i=1}^n R_i = \sum_{i=1}^n R'_i = I.$$

Note that $R_1, \ldots, R_n, R'_1, \ldots, R'_n \notin \mathcal{K}(H)$. So there are partial isometries V_1, \ldots, V_n in B(H) such that $V_i^* V_i = R_i, V_i V_i^* = R'_i, i = 1, \ldots, n$.

Put
$$V = \sum_{i=1}^{n} V_i$$
. Then
 $V \in U(B(H))$ and $VR_iV^* = R'_i, i = 1, ..., n$.

Put $U = \pi(V) \in U(\mathcal{A})$. Then $(UQ_1U^*, \dots, UQ_nU^*) = (Q'_1, \dots, Q_n)$ in **PO**_{*n*}(\mathcal{A}). Since U(B(H)) is path-connected, we have $(Q_1, \dots, Q_n) \sim_h (Q'_1, \dots, Q'_n)$ in **PC**_{*n*}(\mathcal{A}). Finally, $(P_1, \dots, P_n) \sim_h (P'_1, \dots, P'_n)$. This means that **PC**_{*n*}(\mathcal{A}) is path-connected.

Acknowledgements. The authors thank to Professor Huaxin Lin and the referee for their helpful comments and suggestions. This paper was partially supported by Natural Science Foundation of China (Grant no. 10771069).

REFERENCES

- [1] P.E. BJØRSTAD, J. MANDEL, On the spectra of sums of orthogonal projections with applications to parallel computing, *BIT* **31**(1991), 76–88.
- [2] A. BOTTCHER, I.M. SPITKOVSKY, A gentle guide to the basics of two projections theory, *Linear Algebra Appl.* 432(2010), 1412–1459.
- [3] D. BUCKHOLTZ, Hilbert space idempotents and involutions, *Proc. Amer. Math. Soc.* 128(2000), 1415–1418.
- [4] G. CHEN, Y. XUE, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces, *Linear Algebra Appl.* **285**(1998), 1–6.
- [5] J. DIXMIER, C*-Alebras, North-Holland, Amsterdam 1977.
- [6] J. GLIMM, On a certain class of operator algebras, *Trans. Amer. Math. Soc.* 95(1960), 318–340.
- [7] P. HALMOS, Two subspace, Trans. Amer. Math. Soc. 144(1969), 381-389.
- [8] R.A. HORN, R. JOHNSON, Matrix Analysis, Cambridge Univ. Press, Cambridge 1986.
- [9] H. LIN, An Introduction to the Classification of Amenable C*-Algebras, World Sci. Publ., River Edge, NJ 2001.
- [10] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, New York 1984.
- [11] J.J. KOLIHA, V. RAKOČEVIĆ, Invertibility of the sum of idempotents, *Linear and Mul*tilinear Algebra 50(2002), 285–292.
- [12] J.J. KOLIHA, V. RAKOČEVIĆ, Invertibility of the difference of idempotents, *Linear and Multilinear Algebra* 51(2003), 97–110.
- [13] J.J. KOLIHA, V. RAKOČEVIĆ, Fredholm properties of the difference of orthogonal projections in a Hilbert space, *Integral Equations Operator Theory* 52(2005), 125–134.
- [14] T. SHULMAN, On universal C*-algebras generated by *n* projections with scalar sum, *Proc. Amer. Math. Soc.* 137(2009), 115–122.
- [15] V.S. SUNDER, N subspaces, Canad. J. Math. 40(1988), 38–54.
- [16] N.L. VASILEVSKI, C*-algebras generated by orthogonal projections and their applications, *Integral Equations Operator Theory* **31**(1998), 113–132.
- [17] N.E. WEGGE-OLSEN, K-Theory and C*-Algebras, A Friendly Approach, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York 1993.

- [18] Y. XUE, The reduced minimum modulus in C*-algebras, *Integral Equations Operator Theory* **59**(2007), 269–280.
- [19] Y. XUE, Stable Perturbations of Operators and Related Topics, World Sci. Publ., Hackensack, NJ 2012.

SHANWEN HU, RESEARCH CENTER FOR OPERATOR ALGEBRAS, EAST CHINA NORMAL UNIVERSITY, SHANGHAI 200241, P.R. CHINA *E-mail address*: swhu@math.ecnu.edu.cn

YIFENG XUE, DEPARTMENT OF MATHEMATICS, RESEARCH CENTER FOR OPER-ATOR ALGEBRAS *and* SHANGHAI KEY LABORATORY OF PMMP, EAST CHINA NORMAL UNIVERSITY, SHANGHAI 200241, P.R. CHINA *E-mail address*: yfxue@math.ecnu.edu.cn

Received September 10, 2012; revised May 12, 2013; posted on July 30, 2014.