# COMPLETENESS OF n-TUPLES OF PROJECTIONS IN $C^{*}$-ALGEBRAS 

SHANWEN HU and YIFENG XUE

Communicated by Şerban Strătilă
Abstract. Let $\left(P_{1}, \ldots, P_{n}\right)$ be an $n$-tuple of projections in a unital $C^{*}$-algebra $\mathcal{A}$. We say $\left(P_{1}, \ldots, P_{n}\right)$ is complete in $\mathcal{A}$ if $\mathcal{A}$ is the linear direct sum of the closed subspaces $P_{1} \mathcal{A}, \ldots, P_{n} \mathcal{A}$. In this paper, we give some necessary and sufficient conditions for the completeness of $\left(P_{1}, \ldots, P_{n}\right)$ and discuss the perturbation problem and connectivity of the set of all complete $n$-tuple of projections in $\mathcal{A}$.

Keywords: Projection, idempotent, complete $n$-tuple of projections.
MSC (2010): 46L05, 47B65.

## INTRODUCTION

Throughout the paper, we always assume that $\mathcal{A}$ is a $C^{*}$-algebra with the unit 1. The theory of $C^{*}$-algebras could be refered to Dixmier's book [5]. It is wellknown that $\mathcal{A}$ has a faithful representation $\left(\psi, H_{\psi}\right)$ with $\psi(1)=I$ (cf. Theorem 2.6.1 of [5] or Theorem 1.6.17 of [9] or Theorem 1.5.36 of [19]). Let $H$ be a complex Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and $B(H)$ be the $C^{*}$-algebra of all bounded linear operators on $H$. For $T \in B(H)$, let $\operatorname{Ran}(T)$ (respectively $\operatorname{Ker}(T)$ ) denote the range (respectively kernel) of $T$.

Let $V_{1}, V_{2}$ be closed subspaces in $H$ such that

$$
H=V_{1} \dot{+} V_{2}=V_{1}^{\perp} \dot{+} V_{2},
$$

that is, $V_{1}$ and $V_{2}$ are in generic position (cf. [7]). Let $P_{i}$ be the projection of $H$ onto $V_{i}, i=1,2$. Then

$$
H=\operatorname{Ran}\left(P_{1}\right) \dot{+} \operatorname{Ran}\left(P_{2}\right)=\operatorname{Ran}\left(I-P_{1}\right) \dot{+} \operatorname{Ran}\left(P_{2}\right) .
$$

In this case, Halmos gave very useful matrix representations of $P_{1}$ and $P_{2}$ in [7]. Following Halmos' work on two closed subspaces which are in generic position, Sunder investigated in [15] the $n$-tuple of closed subspaces $\left(V_{1}, \ldots, V_{n}\right)$ in $H$ which satisfy the condition $H=V_{1} \dot{+} \cdots \dot{+} V_{n}$ ( $H$ is the direct sum of
$V_{1}, \ldots, V_{n}$ ), that is, for any $\xi \in H$, there are unique $\xi_{i} \in V_{i}, i=1, \ldots, n$ such that $\xi=\xi_{1}+\cdots+\xi_{n}$. Some natural generalizations of [7] were presented in [15]. If we let $P_{i}$ be the projection of $H$ onto $V_{i}, i=1, \ldots, n$, then the condition $H=V_{1} \dot{+} \cdots \dot{+} V_{n}$ is equivalent to $H=\operatorname{Ran}\left(P_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(P_{n}\right)$.

Now the question yields: when does the relation $H=\operatorname{Ran}\left(P_{1}\right) \dot{+} \cdots \dot{+}$ $\operatorname{Ran}\left(P_{n}\right)$ hold for an $n$-tuple of projections $\left(P_{1}, \ldots, P_{n}\right)$ ? When $n=2$, Buckholdtz proved in [3] that $\operatorname{Ran}\left(P_{1}\right) \dot{+} \operatorname{Ran}\left(P_{2}\right)=H$ if and only if $P_{1}-P_{2}$ is invertible in $B(H)$ if and only if $I-P_{1} P_{2}$ is invertible in $B(H)$ and if and only if $P_{1}+P_{2}-P_{1} P_{2}$ is invertible in $B(H)$. More information about two projections can be found in [2]. Koliha and Rakočević generalized Buckholdtz's work to the set of $C^{*}$-algebras and rings. They gave some equivalent conditions for decomposition $\mathfrak{R}=P \mathfrak{R}+Q \mathfrak{R}$ or $\mathfrak{R}=\mathfrak{R} P+\mathfrak{R} Q$ in [11] and [12] for idempotent elements $P$ and $Q$ in a unital ring $\Re$. They also characterized the Fredholmness of the difference of projections on $H$ in [13]. For $n \geqslant 3$, the question remains unknown so far. But there are some works concerning this problem. For example, the estimation of the spectrum of the finite sum of projections on $H$ is given in [1] and the $C^{*}$-algebra generated by certain projections is investigated in [14] and [16], etc.

Let $\mathbf{P}_{n}(\mathcal{A})$ denote the set of $n$-tuples $(n \geqslant 2)$ of non-trivial projections in $\mathcal{A}$ and put

$$
\mathbf{P C}_{n}(\mathcal{A})=\left\{\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A}): P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}=\mathcal{A}\right\}
$$

It is worth to note that if $\mathcal{A}=B(H)$ and $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(B(H))$, then $\left(P_{1}, \ldots, P_{n}\right)$ $\in \mathbf{P C}_{n}(B(H))$ if and only if $\operatorname{Ran}\left(P_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(P_{n}\right)=H$ (see Theorem 1.2 below).

In this paper, we will investigate the set $\mathrm{PC}_{n}(\mathcal{A})$ for $n \geqslant 3$. The paper consists of four sections. In Section 1, we give some necessary and sufficient conditions that make $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ be in $\mathbf{P C}_{n}(\mathcal{A})$. In Section 2, using some equivalent conditions for $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ obtained in Section 1, we obtain an explicit expression of $P_{i_{1}} \vee \cdots \vee P_{i_{k}}$ for $\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$. In Section 3, we discuss the perturbation problems for $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$. We find an interesting result: if $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ with $A=\sum_{i=1}^{n} P_{i}$ invertible in $\mathcal{A}$, then $\left\|P_{i} A^{-1} P_{j}\right\|<\left[(n-1)\left\|A^{-1}\right\|\|A\|^{2}\right]^{-1}, i \neq j$ implies $P_{i} A^{-1} P_{j}=0, i \neq j$, $i, j=1, \ldots, n$. We show in this section that for given $\varepsilon \in(0,1)$, if $\left(P_{1}, \ldots, P_{n}\right) \in$ $\mathbf{P}_{n}(\mathcal{A})$ satisfies the condition $\left\|P_{i} P_{j}\right\|<\varepsilon$, then there exists an $n$-tuple of mutually orthogonal projections $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P}_{n}(\mathcal{A})$ such that $\left\|P_{i}-P_{i}^{\prime}\right\| \leqslant(n-1) \varepsilon, i=$ $1, \ldots, n$, which improves a conventional estimate: $\left\|P_{i}-P_{i}^{\prime}\right\|<(12)^{n-1} n!\varepsilon, i=$ $1, \ldots, n$ (cf. [9]). In the final section, we will study the connectivity of $\mathrm{PC}_{n}(\mathcal{A})$.

1. EQUIVALENT CONDITIONS FOR COMPLETE $n$-TUPLES OF PROJECTIONS IN $C^{*}$-ALGEBRAS

Let $\mathcal{A}_{+}$denote the set of all positive elements in $\mathcal{A}$ and $G L(\mathcal{A})$ (respectively $U(\mathcal{A})$ ) denote the group of all invertible (respectively unitary) elements in $\mathcal{A}$. Let
$\mathrm{M}_{k}(\mathcal{A})$ denote matrix algebra of all $k \times k$ matrices over $\mathcal{A}$. For any $a \in \mathcal{A}$, we set $a \mathcal{A}=\{a x: x \in \mathcal{A}\} \subset \mathcal{A}$.

DEFINITION 1.1. An $n$-tuple of projections $\left(P_{1}, \ldots, P_{n}\right)$ in $\mathcal{A}$ is called complete in $\mathcal{A}$ if $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$.

THEOREM 1.2. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$. Then the following statements are equivalent:
(i) $\left(P_{1}, \ldots, P_{n}\right)$ is complete in $\mathcal{A}$.
(ii) $H_{\psi}=\operatorname{Ran}\left(\psi\left(P_{1}\right)\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(\psi\left(P_{n}\right)\right)$ for any faithful representation $\left(\psi, H_{\psi}\right)$ of $\mathcal{A}$ with $\psi(1)=I$.
(iii) $H_{\psi}=\operatorname{Ran}\left(\psi\left(P_{1}\right)\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(\psi\left(P_{n}\right)\right)$ for some faithful representation $\left(\psi, H_{\psi}\right)$ of $\mathcal{A}$ with $\psi(1)=I$.
(iv) $\lambda\left(\sum_{j \neq i} P_{j}\right)+P_{i} \in G L(\mathcal{A})$ for $1 \leqslant i \leqslant n$ and all $\lambda \in \mathbb{C} \backslash\{0\}$.
(v) $\sum_{j \neq i} P_{j}+\lambda P_{i} \in G L(\mathcal{A}), i=1,2, \ldots, n$ and $\forall \lambda \in[1-n, 0)$.
(vi) $A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ and $P_{i} A^{-1} P_{i}=P_{i}, i=1, \ldots, n$.
(vii) $A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ and $P_{i} A^{-1} P_{j}=0, i \neq j, i, j=1, \ldots, n$.
(vii) $A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ and $E_{i}=P_{i} A^{-1} \in \mathcal{A}$ are idempotent elements with the properties: $E_{i} E_{j}=0, i \neq j, i, j=1, \ldots, n$ and $\sum_{i=1}^{n} E_{i}=1$.
(ix) There is an n-tuple of idempotent elements $\left(E_{1}, \ldots, E_{n}\right)$ in $\mathcal{A}$ such that $E_{i} P_{i}=$ $P_{i}, P_{i} E_{i}=E_{i}, i=1, \ldots, n$ and $E_{i} E_{j}=0, i \neq j, i, j=1, \ldots, n, \sum_{i=1}^{n} E_{i}=1$.

In order to show Theorem 1.2, we need the following lemmas.
Lemma 1.3. Let $B, C \in \mathcal{A}_{+} \backslash\{0\}$ and suppose that $\lambda B+C$ is invertible in $\mathcal{A}$ for every $\lambda \in \mathbb{R} \backslash\{0\}$. Then there is a non-trivial orthogonal projection $P \in \mathcal{A}$ such that

$$
B=(B+C)^{1 / 2} P(B+C)^{1 / 2}, \quad C=(B+C)^{1 / 2}(1-P)(B+C)^{1 / 2}
$$

Proof. Put $D=B+C$ and $D_{\lambda}=\lambda B+C, \forall \lambda \in \mathbb{R} \backslash\{0\}$. Then $D \geqslant 0, D$ and $D_{\lambda}$ are all invertible in $\mathcal{A}, \forall \lambda \in \mathbb{R} \backslash\{0\}$.

Put $B_{1}=D^{-1 / 2} B D^{-1 / 2}, C_{1}=D^{-1 / 2} C D^{-1 / 2}$. Then $B_{1}+C_{1}=1$ and

$$
D^{-1 / 2} D_{\lambda} D^{-1 / 2}=\lambda B_{1}+C_{1}=\lambda+(1-\lambda) C_{1}=(1-\lambda)\left(\lambda(1-\lambda)^{-1}+C_{1}\right)
$$

is invertible in $\mathcal{A}$ for any $\lambda \in \mathbb{R} \backslash\{0,1\}$. Since $\lambda \mapsto \lambda /(1-\lambda)$ is a homeomorphism from $\mathbb{R} \backslash\{0,1\}$ onto $\mathbb{R} \backslash\{-1,0\}$, it follows that $\sigma\left(C_{1}\right) \subset\{0,1\}$. Note that $B_{1}$ and $C_{1}$ are all non-zero. So $\sigma\left(C_{1}\right)=\{0,1\}=\sigma\left(B_{1}\right)$ and hence $P=B_{1}$ is a non-zero projection in $\mathcal{A}$ and $B=D^{1 / 2} P D^{1 / 2}, C=D^{1 / 2}(1-P) D^{1 / 2}$.

Lemma 1.4. Let $B, C \in \mathcal{A}_{+} \backslash\{0\}$. Then the following statements are equivalent:
(i) For any non-zero real number $\lambda, \lambda B+C$ is invertible in $\mathcal{A}$.
(ii) $B+C$ is invertible in $\mathcal{A}$ and $B(B+C)^{-1} B=B$.
(iii) $B+C$ is invertible in $\mathcal{A}$ and $B(B+C)^{-1} C=0$.
(iv) $B+C$ is invertible in $\mathcal{A}$ and for any $B^{\prime}, C^{\prime} \in \mathcal{A}_{+}$with $B^{\prime} \leqslant B$ and $C^{\prime} \leqslant C$, $B^{\prime}(B+C)^{-1} C^{\prime}=0$.

Proof. (i) $\Rightarrow$ (ii) By Lemma 1.3 , there is a non-zero projection $P$ in $\mathcal{A}$ such that $B=D^{1 / 2} P D^{1 / 2}, C=D^{1 / 2}(1-P) D^{1 / 2}$, where $D=B+C \in G L(\mathcal{A})$. So

$$
B(B+C)^{-1} B=D^{1 / 2} P D^{1 / 2} D^{-1} D^{1 / 2} P D^{1 / 2}=B
$$

The assertion (ii) $\Leftrightarrow$ (iii) follows from

$$
B(B+C)^{-1} B=B(B+C)^{-1}(B+C-C)=B-B(B+C)^{-1} C .
$$

(iii) $\Rightarrow$ (iv) For any $C^{\prime}$ with $0 \leqslant C^{\prime} \leqslant C$,

$$
0 \leqslant B(B+C)^{-1} C^{\prime}(B+C)^{-1} B \leqslant B(B+C)^{-1} C(B+C)^{-1} B=0
$$

we have $B(B+C)^{-1} C^{\prime}=B(B+C)^{-1} C^{\prime 1 / 2} C^{1 / 2}=0$. This implies that $C^{\prime}(B+$ C) ${ }^{-1} B=0$.

In the same way, we also obtain that for any $B^{\prime}$ with $0 \leqslant B^{\prime} \leqslant B, C^{\prime}(B+$ C) ${ }^{-1} B^{\prime}=0$.
(iv) $\Rightarrow$ (iii) is obvious.
(ii) $\Rightarrow$ (i) Set $X=(B+C)^{-1 / 2} B$ and $Y=(B+C)^{-1 / 2} C$. Then $X, Y \in \mathcal{A}$ and $X^{*} X=B, X+Y=(B+C)^{1 / 2}$. Thus, for any $\lambda \in \mathbb{R} \backslash\{0\}$,

$$
\begin{aligned}
X+\lambda Y & =(B+C)^{-1 / 2}(B+\lambda C) \\
(X+\lambda Y)^{*}(X+\lambda Y) & =\left((1-\lambda) X+\lambda(B+C)^{1 / 2}\right)^{*}\left((1-\lambda) X+\lambda(B+C)^{1 / 2}\right) \\
& =(1-\lambda)^{2} B+2 \lambda(1-\lambda) B+\lambda^{2}(B+C)=B+\lambda^{2} C
\end{aligned}
$$

and consequently, $(X+\lambda Y)^{*}(X+\lambda Y) \geqslant B+C$ if $|\lambda|>1$ and

$$
(X+\lambda Y)^{*}(X+\lambda Y) \geqslant \lambda^{2}(B+C)
$$

when $|\lambda|<1$. This indicates that $(X+\lambda Y)^{*}(X+\lambda Y)$ is invertible in $\mathcal{A}$. Noting that $B+C \geqslant\left\|(B+C)^{-1}\right\|^{-1} \cdot 1$, we have, for any $\lambda \in \mathbb{R} \backslash\{0\}$,

$$
(B+\lambda C)^{2}=(X+\lambda Y)^{*}(B+C)(X+\lambda Y) \geqslant\left\|(B+C)^{-1}\right\|^{-1}(X+\lambda Y)^{*}(X+\lambda Y)
$$

Therefore, $B+\lambda C$ is invertible in $\mathcal{A}, \forall \lambda \in \mathbb{R} \backslash\{0\}$.
Lemma 1.5. Let $P \in \mathcal{A}$ be a non-trivial projection and $A \in \mathcal{A}_{+}$. If $A+P$ is invertible in $\mathcal{A}$, then $A+\lambda P$ is invertible in $\mathcal{A}$ for all $\lambda<-\|A\|$.

Proof. Put

$$
A_{1}=P(A+P) P, \quad A_{2}=P(A+P)(1-P), \quad A_{4}=(1-P)(A+P)(1-P)
$$

and express $A+\lambda P$ as the form $A+\lambda P=\left[\begin{array}{cc}A_{1}+(\lambda-1) P & A_{2} \\ A_{2}^{*} & A_{4}\end{array}\right]$.

Since $A+P \geqslant\left\|(A+P)^{-1}\right\|^{-1} \cdot 1$, we have $A_{4} \geqslant\left\|(A+P)^{-1}\right\|^{-1}(1-P)$ and so that $A_{4}$ is invertible in $(1-P) \mathcal{A}(1-P)$. Thus, from the following equation

$$
(A+P)\left[\begin{array}{cc}
P & 0 \\
-A_{4}^{-1} A_{2}^{*} & 1-P
\end{array}\right]=\left[\begin{array}{cc}
A_{1}-A_{2} A_{4}^{-1} A_{2}^{*}+(\lambda-1) P & A_{2} \\
0 & A_{4}
\end{array}\right],
$$

we get that $A+\lambda P$ is invertible if and only if $A_{1}-A_{2} A_{4}^{-1} A_{2}^{*}+(\lambda-1) P$ is invertible in $P \mathcal{A} P$. Since $A_{1} \leqslant P\|A+P\| P \leqslant(1+\|A\|) P$, it follows that

$$
-A_{1}+A_{2} A_{4}^{-1} A_{2}^{*}-(\lambda-1) P \geqslant(-\|A\|-\lambda) P+A_{2} A_{4}^{-1} A_{2}^{*} \geqslant(-\|A\|-\lambda) P>0
$$

when $\lambda<-\|A\|$. Therefore, $A+\lambda P$ is invertible in $\mathcal{A}$ for $\lambda<-\|A\|$.
The next lemma comes from Lemma 1 of [4] and Lemma 3.5.5 of [19]:
Lemma 1.6. Let $P \in \mathcal{A}$ be an idempotent element. Then
(i) $P+P^{*}-1 \in G L(\mathcal{A})$.
(ii) $R=P\left(P+P^{*}-1\right)^{-1}$ is a projection in $\mathcal{A}$ satisfying $P R=R$ and $R P=P$.

Moreover, if $R^{\prime} \in \mathcal{A}$ is a projection such that $P R^{\prime}=R^{\prime}$ and $R^{\prime} P=P$, then $R^{\prime}=R$.

Now we begin to prove Theorem 1.2 .
Proof of Theorem 1.2 (i) $\Rightarrow$ (vi) Statement (i) implies that there are $b_{1}, \ldots, b_{n}$ $\in \mathcal{A}$ such that $1=\sum_{i=1}^{n} P_{i} b_{i}$. Put $\widehat{I}=\left[\begin{array}{ccc}1 & & \\ & 0 & \\ & & \ddots \\ & & \\ & & 0\end{array}\right], X=\left[\begin{array}{ccc}P_{1} & \cdots & P_{n} \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right]$ and $Y=\left[\begin{array}{cccc}b_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & 0 & \cdots & 0\end{array}\right]$. Then
$\widehat{I}=X Y=X Y Y^{*} X^{*} \leqslant\|Y\|^{2} X X^{*}=\|Y\|^{2}\left[\begin{array}{cccc}\sum_{i=1}^{n} P_{i} & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0\end{array}\right]$
and so that $A=\sum_{i=1}^{n} P_{i}$ is invertible in $\mathcal{A}$. Therefore, $P_{i}$ has two expressions

$$
\begin{align*}
P_{i} & =P_{1} A^{-1} P_{i}+\cdots+P_{i} A^{-1} P_{i}+\cdots+P_{n} A^{-1} P_{i}  \tag{1.1}\\
& =\underbrace{0+\cdots+0}_{i-1}+P_{i}+\underbrace{0+\cdots+0}_{n-i}, \tag{1.2}
\end{align*}
$$

$i=1, \ldots, n$. Since $\mathcal{A}=P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}$, the expression of $P_{i}$ must be unique. So we have $P_{i}=P_{i} A^{-1} P_{i}$ from 1.1 and $1.2, i=1, \ldots, n$.
(ii) $\Rightarrow$ (iii) is obvious.
(iii) $\Rightarrow$ (iv) Set $Q_{i}=\psi\left(P_{i}\right), i=1, \ldots, n . \operatorname{From} \operatorname{Ran}\left(Q_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(Q_{n}\right)$ $=H_{\psi}$, we obtain idempotent operators $F_{1}, \ldots, F_{n}$ in $B\left(H_{\psi}\right)$ such that $\sum_{i=1}^{n} F_{i}=I$, $F_{i} F_{j}=0, i \neq j$ and $F_{i} H_{\psi}=Q_{i} H_{\psi}, i, j=1, \ldots, n$. So $F_{i} Q_{i}=Q_{i}, Q_{i} F_{i}=F_{i}$ and $F_{j} Q_{i}=0, i \neq j, 1 \leqslant i, j \leqslant n$. Using these relations, it is easy to check that

$$
\left(\sum_{i=1}^{n} \lambda_{i} Q_{i}\right)\left(\sum_{i=1}^{n} \lambda_{i}^{-1} F_{i}^{*} F_{i}\right)=\sum_{i=1}^{n} F_{i}=I, \quad\left(\sum_{i=1}^{n} \lambda_{i}^{-1} F_{i}^{*} F_{i}\right)\left(\sum_{i=1}^{n} \lambda_{i} Q_{i}\right)=\sum_{i=1}^{n} F_{i}^{*}=I
$$

for any non-zero complex numbers $\lambda_{i}, i=1, \ldots, n$. Particularly, for any $\lambda \in$ $\mathbb{C} \backslash\{0\}$,

$$
\left(\lambda\left(\sum_{j \neq i} Q_{j}\right)+Q_{i}\right)^{-1}=\lambda^{-1} \sum_{j \neq i} F_{j}^{*} F_{j}+F_{i}^{*} F_{i}
$$

in $B\left(H_{\psi}\right)$. So $\lambda\left(\sum_{j \neq i} Q_{j}\right)+Q_{i}$ is invertible in $\psi(\mathcal{A}), 1 \leqslant i \leqslant n$ by Corollary 1.5.8 of [19] and so $\lambda\left(\sum_{j \neq i} P_{j}\right)+P_{i} \in G L(\mathcal{A})$ since $\psi$ is faithful and $\psi(i)=I$.
(iv) $\Rightarrow$ (v) Obviously.
(v) $\Rightarrow$ (vi) Put $A_{i}(\lambda)=\sum_{j \neq i} P_{j}+\lambda P_{i}, i=1, \ldots, n, \lambda \in \mathbb{R} \backslash\{0\}$, then

$$
\begin{aligned}
\left(A_{i}(\lambda)\right)^{2} & \leqslant 2\left(\sum_{j \neq i} P_{j}\right)^{2}+2 \lambda^{2} P_{i} \leqslant 2(n-1) \sum_{j \neq i} P_{j}+2 \lambda^{2} P_{i} \\
& \leqslant 2 \max \left\{n-1, \lambda^{2}\right\}\left(P_{1}+\cdots+P_{n}\right) .
\end{aligned}
$$

So $A_{i}(\lambda)$ is invertible in $\mathcal{A}, \forall \lambda \in[1-n, 0)$ means that $A=P_{1}+\cdots+P_{n}$ is invertible in $\mathcal{A}$. Note that $A_{i}(\lambda) \geqslant \max \{1, \lambda\} A$ when $\lambda>0$. Thus, $A_{i}(\lambda)$ is invertible in $\mathcal{A}$ for $\lambda>0, \forall 1 \leqslant i \leqslant n$. When $\lambda<1-n \leqslant-\left\|\sum_{j \neq i} P_{j}\right\|, A_{i}(\lambda)$ is also invertible in $\mathcal{A}$ by Lemma 1.5 Therefore, $A(\lambda)$ is invertible in $\mathcal{A}$ for all $\lambda \in$ $\mathbb{R} \backslash\{0\}$. Applying Lemma 1.4 to $\sum_{j \neq i} P_{j}$ and $P_{i}, i=1, \ldots, n$, we get the assertion.
(vi) $\Rightarrow$ (vii) Set $C_{i}=\sum_{j \neq i} P_{j}, i=1, \ldots, n$. Since $P_{i}\left(C_{i}+P_{i}\right)^{-1} P_{i}=P_{i}$ and $P_{j} \leqslant C_{i}, j \neq i, i, j=1, \ldots, n$, it follows from Lemma 1.4 that $P_{i} A^{-1} P_{j}=0, i \neq j$, $i, j=1, \ldots, n$.
(vii) $\Rightarrow$ (viii) By the assumption, we have $P_{i} A^{-1}\left(\sum_{j \neq i} P_{j}\right)=0, i=1, \ldots, n$. So $P_{i} A^{-1} P_{i}=P_{i}, i=1, \ldots, n$, by Lemma 1.4 Set $E_{i}=P_{i} A^{-1}, i=1 \cdots, n$. Then $E_{i}$ are idempotent elements in $\mathcal{A}$ and $E_{i} E_{j}=0, i \neq j, i, j=1, \ldots, n$. It is obvious that $\sum_{i=1}^{n} E_{i}=A A^{-1}=1$.
(viii) $\Rightarrow$ (ix) Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ with $A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ such that $E_{i}=P_{i} A^{-1} \in \mathcal{A}$ are idempotent and $E_{i} E_{j}=0, \sum_{i=1}^{n} E_{i}=1, i \neq j, i, j=1, \ldots, n$. Clearly, $P_{i} E_{i}=E_{i}, i=1, \ldots, n$. From $P_{i} A^{-1}=E_{i}=E_{i}^{2}=P_{i} A^{-1} P_{i} A^{-1}$, we get that $P_{i}=P_{i} A^{-1} P_{i}$ and hence $E_{i} P_{i}=P_{i}, i=1, \ldots, n$.
(ix) $\Rightarrow$ (i) Let $E_{1}, \ldots, E_{n}$ be idempotent elements in $\mathcal{A}$ such that $E_{i} E_{j}=\delta_{i j} E_{i}$, $\sum_{i=1}^{n} E_{i}=1$ and $E_{i} P_{i}=P_{i}, P_{i} E_{i}=E_{i}, i, j=1, \ldots, n$. Then $E_{i} \mathcal{A}=P_{i} \mathcal{A}, i=1, \ldots, n$ and $\mathcal{A}=E_{1} \mathcal{A} \dot{+} \cdots \dot{+} E_{n} \mathcal{A}=P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}$.
(ix) $\Rightarrow$ (ii) Let $E_{1}, \ldots, E_{n}$ be idempotent elements in $\mathcal{A}$ such that $E_{i} E_{j}=$ $\delta_{i j} E_{i}, \sum_{i=1}^{n} E_{i}=1$ and $E_{i} P_{i}=P_{i}, P_{i} E_{i}=E_{i}, i, j=1, \ldots, n$. Let $\left(\psi, H_{\psi}\right)$ be any faithful representation of $\mathcal{A}$ with $\psi(i)=I$. Put $E_{i}^{\prime}=\psi\left(E_{i}\right)$ and $Q_{i}=\psi\left(P_{i}\right)$, $i=1, \ldots, n$. Then $E_{i}^{\prime} E_{j}^{\prime}=\delta_{i j} E_{i}^{\prime}, \sum_{i=1}^{n} E_{i}^{\prime}=I$ and $\operatorname{Ran}\left(E_{i}^{\prime}\right)=\operatorname{Ran}\left(Q_{i}\right), i, j=1, \ldots, n$. Consequently, $H_{\psi}=\operatorname{Ran}\left(Q_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(Q_{n}\right)$.

REMARK 1.7. Statement (iii) in Theorem 1.2 cannot be replaced by "for any $i \in\{1, \ldots, n\}, P_{i}-\sum_{j \neq i} P_{j}$ is invertible".

For example, let $H^{(4)}=\stackrel{4}{\oplus} \underset{i=1}{4} H$ and put $\mathcal{A}=B\left(H^{(4)}\right)$,

$$
P_{1}=\left[\begin{array}{llll}
I & & & \\
& I & & \\
& & 0 & \\
& & & 0
\end{array}\right], \quad P_{2}=\left[\begin{array}{llll}
I & & & \\
& 0 & & \\
& & I & \\
& & & 0
\end{array}\right], \quad P_{3}=\left[\begin{array}{llll}
I & & & \\
& 0 & & \\
& & 0 & \\
& & & I
\end{array}\right]
$$

Clearly, $P_{i}-\sum_{j \neq i} P_{j}$ is invertible, $1 \leqslant i \leqslant 3$, but $P_{2}+P_{3}-2 P_{1}$ is not invertible, that is, $\left(P_{1}, P_{2}, P_{3}\right)$ is not complete in $\mathcal{A}$.

Corollary 1.8 ([3], Theorem 1). Let $P_{1}, P_{2}$ be non-trivial projections in $B(H)$. Then $H=\operatorname{Ran}\left(P_{1}\right)+\operatorname{Ran}\left(P_{2}\right)$ if and only if $P_{1}-P_{2}$ is invertible in $B(H)$.

Proof. By Theorem 1.2. $H=\operatorname{Ran}\left(P_{1}\right)+\operatorname{Ran}\left(P_{2}\right)$ implies that $P_{1}-P_{2} \in$ $G L(B(H))$.

Conversely, if $P_{1}-P_{2} \in G L(B(H))$, then from

$$
2\left(P_{1}+P_{2}\right) \geqslant\left(P_{1}-P_{2}\right)^{2}
$$

we get that $P_{1}+P_{2} \in G L(B(H))$ and so that for any $\lambda>1, P_{1}-\lambda P_{2}, P_{2}-\lambda P_{1} \in$ $G L(B(H))$ by Lemma 1.5 Thus, for any $\lambda \in(0,1], P_{1}-\lambda P_{2}$ and $P_{2}-\lambda P_{1}$ are all invertible in $B(H)$. Consequently, $H=\operatorname{Ran}\left(P_{1}\right) \dot{+} \operatorname{Ran}\left(P_{2}\right)$ by Theorem 1.2

We first state a lemma which is frequently used in this section and the later sections.

Lemma 2.1. Let $B \in \mathcal{A}_{+}$such that $0 \in \sigma(B)$ is an isolated point. Then there is a unique element $B^{\dagger} \in \mathcal{A}_{+}$such that

$$
\begin{equation*}
B B^{\dagger} B=B, \quad B^{\dagger} B B^{\dagger}=B^{\dagger}, \quad B B^{\dagger}=B^{\dagger} B . \tag{2.1}
\end{equation*}
$$

Proof. Define a continuous function $f(t)$ on $\sigma(B)$ by

$$
f(t)= \begin{cases}0 & t=0 \\ 1 & t \in \sigma(B) \backslash\{0\}\end{cases}
$$

and set $B^{\dagger}=f(B) \in \mathcal{A}$. Then $B^{\dagger} \in \mathcal{A}_{+}$and it is easy to check that 2.1) is satisfied.
If there is another $B^{\prime} \in \mathcal{A}_{+}$such that $B B^{\prime} B=B, B^{\prime} B B^{\prime}=B^{\prime}$ and $B B^{\prime}=B^{\prime} B$, then we have

$$
B B^{\prime}=B B^{\dagger} B B^{\prime}=B^{\dagger} B B^{\prime} B=B^{\dagger} B \quad \text { and } \quad B^{\prime}=B^{\prime} B B^{\prime}=B^{\dagger} B B^{\prime}=B^{\dagger} B B^{\dagger}=B^{\dagger}
$$ that is, such $B^{\dagger}$ is unique.

Remark 2.2. The element $B^{\dagger}$ in the above lemma is called the MoorePenrose inverse of $B$. When $0 \notin \sigma(B), B^{+}$is defined to be $B^{-1}$. The detailed information can be found in [19].

Let $\left(P_{1}, \ldots, P_{n}\right) \in \operatorname{PC}_{n}(\mathcal{A})$ and put $A=\sum_{i=1}^{n} P_{i}$. By Theorem 1.2. $A \in G L(\mathcal{A})$ and $E_{i}=P_{i} A^{-1}, 1 \leqslant i \leqslant n$, are idempotent elements satisfying the conditions

$$
E_{i} E_{j}=0, \quad i \neq j ; \quad E_{i} P_{i}=P_{i}, \quad P_{i} E_{i}=E_{i}, \quad i=1, \ldots, n ; \quad \text { and } \quad \sum_{i=1}^{n} E_{i}=1 .
$$

By Lemma 1.6, $P_{i}=E_{i}\left(E_{i}^{*}+E_{i}-1\right)^{-1}, 1 \leqslant i \leqslant n$. So the $C^{*}$-algebra $C^{*}\left(P_{1}, \ldots, P_{n}\right)$ generated by $P_{1}, \ldots, P_{n}$ is equal to the $C^{*}$-algebra $C^{*}\left(E_{1}, \ldots, E_{n}\right)$ generated by $E_{1}, \ldots, E_{n}$.

Put $Q_{i}=A^{-1 / 2} P_{i} A^{-1 / 2}, i=1, \ldots, n$. Then $Q_{i} Q_{j}=\delta_{i j} Q_{i}$ by Theorem 1.2 $i, j=1, \ldots, n$ and $\sum_{i=1}^{n} Q_{i}=1$. Thus,

$$
\begin{equation*}
P_{i}=A^{1 / 2} Q_{i} A^{1 / 2} \quad \text { and } \quad E_{i}=P_{i} A^{-1}=A^{1 / 2} Q_{i} A^{-1 / 2}, \quad i=1, \ldots, n \tag{2.2}
\end{equation*}
$$

Proposition 2.3. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ with $A=\sum_{i=1}^{n} P_{i}$. Then for any $\lambda_{i} \neq 0, i=1, \ldots, n,\left(\sum_{i=1}^{n} \lambda_{i} P_{i}\right)^{-1}=A^{-1}\left(\sum_{i=1}^{n} \lambda_{i}^{-1} P_{i}\right) A^{-1}$.

Proof. Keeping the symbols as above, we have

$$
\sum_{i=1}^{n} \lambda_{i} P_{i}=A^{1 / 2}\left(\sum_{i=1}^{n} \lambda_{i} Q_{i}\right) A^{1 / 2}
$$

Thus,

$$
\left(\sum_{i=1}^{n} \lambda_{i} P_{i}\right)^{-1}=A^{-1 / 2}\left(\sum_{i=1}^{n} \lambda_{i}^{-1} Q_{i}\right) A^{-1 / 2}=A^{-1}\left(\sum_{i=1}^{n} \lambda_{i}^{-1} P_{i}\right) A^{-1}
$$

Now for $i_{1}, i_{2}, \ldots, i_{k} \in\{1,2, \ldots, n\}$ with $i_{1}<i_{2}<\cdots<i_{k}$, put $A_{0}=$ $\sum_{r=1}^{k} P_{i_{r}}$ and $Q_{0}=\sum_{r=1}^{k} Q_{i_{r}}$. Then $A_{0}, Q_{0} \in \mathcal{A}$ and $Q_{0}$ is a projection. From 2.2, $A_{0}=A^{1 / 2} Q_{0} A^{1 / 2}$. Thus, $\sigma\left(A_{0}\right) \backslash\{0\}=\sigma\left(Q_{0} A Q_{0}\right) \backslash\{0\}$ (cf. Proposition 1.4.14 of [19]). Since $A A^{-1}=1=A^{1 / 2} A^{-1} A^{1 / 2}$ and $A^{-1} \leqslant\left\|A^{-1}\right\|$, it follows that $\left\|A^{-1}\right\| A \geqslant 1$ and hence $Q_{0} A Q_{0} \geqslant\left\|A^{-1}\right\|^{-1} Q_{0}$. It implies that $Q_{0} A Q_{0}$ is invertible in $Q_{0} \mathcal{A} Q_{0}$. Thus $0 \in \sigma\left(Q_{0} A Q_{0}\right)$ is an isolated point and so that $0 \in \sigma\left(A_{0}\right)$ is also an isolated point. So we can define $P_{i_{1}} \vee \cdots \vee P_{i_{k}}$ to be the projection $A_{0}^{\dagger} A_{0} \in \mathcal{A}$ by Lemma 2.1. This definition is reasonable: if $P \in \mathcal{A}$ is a projection such that $P \geqslant P_{i_{r}}, r=1, \ldots, k$, then $P A_{0}=A_{0}$ and hence $P A_{0} A_{0}^{+}=A_{0} A_{0}^{+}$, i.e., $P \geqslant P_{i_{1}} \vee \cdots \vee P_{i_{k}}$. Since $A_{0} \geqslant P_{i_{r}}$, we have

$$
0=\left(1-A_{0}^{\dagger} A_{0}\right) A_{0}\left(1-A_{0}^{\dagger} A_{0}\right) \geqslant\left(1-A_{0}^{\dagger} A_{0}\right) P_{i_{r}}\left(1-A_{0}^{\dagger} A_{0}\right)
$$

and consequently, $P_{i_{r}}\left(1-A_{0}^{\dagger} A_{0}\right)=0$, that is, $P_{i_{r}} \leqslant P_{i_{1}} \vee \cdots \vee P_{i_{k}}, i=1, \ldots, k$.
Proposition 2.4. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ with $A=\sum_{i=1}^{n} P_{i}$. Let $i_{1}, \ldots, i_{k}$ be as above and $\left\{j_{1}, \ldots, j_{l}\right\}=\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ with $j_{1}<\cdots<j_{l}$. Then

$$
\begin{align*}
P_{i_{1}} \vee \cdots \vee P_{i_{k}} & =A^{1 / 2}\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\right]^{-1} A^{1 / 2}  \tag{2.3}\\
& =\left(\sum_{r=1}^{k} P_{i_{r}}\right)\left[\left(\sum_{r=1}^{k} P_{i_{r}}\right)^{2}+\sum_{t=1}^{l} P_{j_{t}}\right]^{-1}\left(\sum_{r=1}^{k} P_{i_{r}}\right),
\end{align*}
$$

where $\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\right]^{-1}$ stands for the inverse of $\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)$ in $\left(\sum_{r=1}^{k} Q_{i_{r}}\right) \mathcal{A}\left(\sum_{r=1}^{k} Q_{i_{r}}\right)$.

Proof. Using the symbols $P_{i}, Q_{i}, E_{i}$ as above, and according to (2.2),

$$
\sum_{r=1}^{k} P_{i_{r}}=A^{1 / 2}\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A^{1 / 2}, \quad \sum_{r=1}^{k} E_{i_{r}}=A^{1 / 2}\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A^{-1 / 2}
$$

Thus $\left(\sum_{r=1}^{k} E_{i_{r}}\right)\left(\sum_{r=1}^{k} P_{i_{r}}\right)=\sum_{r=1}^{k} P_{i_{r}}$ and $\sum_{r=1}^{k} E_{i_{r}}=\left(\sum_{r=1}^{k} P_{i_{r}}\right) A^{-1}$. Then we have

$$
\left(\sum_{r=1}^{k} E_{i_{r}}\right) P_{i_{1}} \vee \cdots \vee P_{i_{k}}=P_{i_{1}} \vee \cdots \vee P_{i_{k}}, \quad P_{i_{1}} \vee \cdots \vee P_{i_{k}}\left(\sum_{r=1}^{k} E_{i_{r}}\right)=\sum_{r=1}^{k} E_{i_{r}}
$$

according to the definition of $P_{i_{1}} \vee \cdots \vee P_{i_{k}}$.
Since $\sum_{r=1}^{k} E_{i_{r}}$ is an idempotent element in $\mathcal{A}$, it follows from Lemma 1.6 that

$$
\begin{equation*}
P_{i_{1}} \vee \cdots \vee P_{i_{k}}=\left(\sum_{r=1}^{k} E_{i_{r}}\right)\left[\sum_{r=1}^{k}\left(E_{i_{r}}^{*}+E_{i_{r}}\right)-1\right]^{-1} \in \mathcal{A} \tag{2.4}
\end{equation*}
$$

Noting that $\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)$ is invertible in $\left(\left(\sum_{r=1}^{k} Q_{i_{r}}\right) \mathcal{A}\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\right)$ and $\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{k} Q_{j_{t}}\right)$ is invertible in $\left(\sum_{t=1}^{k} Q_{j_{t}}\right) \mathcal{A}\left(\sum_{t=1}^{k} Q_{j_{t}}\right)$ and

$$
\begin{aligned}
\sum_{r=1}^{k}\left(E_{i_{r}}^{*}+E_{i_{r}}\right)-1 & =A^{-1 / 2}\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A+A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)-A\right] A^{-1 / 2} \\
& =A^{-1 / 2}\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)-\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{l} Q_{j_{t}}\right)\right] A^{-1 / 2},
\end{aligned}
$$

we obtain that

$$
\left[\sum_{r=1}^{k}\left(E_{i_{r}}^{*}+E_{i_{r}}\right)-1\right]^{-1}=A^{1 / 2}\left[\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\right]^{-1}-\left[\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A\left(\sum_{t=1}^{l} Q_{j_{t}}\right)\right]^{-1}\right] A^{1 / 2} .
$$

Combining this with 2.4 , we can get 2.3 .
Note that $\sum_{r=1}^{k} P_{i_{r}}=A^{1 / 2}\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A^{1 / 2}, \sum_{t=1}^{l} P_{j_{t}}=A^{1 / 2}\left(\sum_{t=1}^{l} Q_{j_{t}}\right) A^{1 / 2}$ and $\left(\sum_{r=1}^{k} P_{i_{r}}\right)^{2}=A^{1 / 2}\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A^{1 / 2}$. Therefore,

$$
\begin{aligned}
\left(\sum_{r=1}^{k} P_{i_{r}}\right) & {\left[\left(\sum_{r=1}^{k} P_{i_{r}}\right)^{2}+\sum_{t=1}^{l} P_{j_{t}}\right]^{-1}\left(\sum_{r=1}^{k} P_{i_{r}}\right) } \\
& =A^{1 / 2}\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\left(\left[\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A\left(\sum_{r=1}^{k} Q_{i_{r}}\right)\right]^{-1}+\sum_{t=1}^{l} Q_{j_{t}}\right)\left(\sum_{r=1}^{k} Q_{i_{r}}\right) A^{1 / 2} \\
& =P_{i_{1}} \vee \cdots \vee P_{i_{k}}
\end{aligned}
$$

by 2.3.

## 3. PERTURBATIONS OF A COMPLETE $n$-TUPLE OF PROJECTIONS

Let $X$ be a Banach space and let $C$ be a bounded linear operator acting in $X$. According to Chapter IV, Section 5 of [10], the reduced minimum modulus $\gamma(C)$ is given by

$$
\gamma(C)= \begin{cases}\inf \{\|C x\|: \operatorname{dist}(x, \operatorname{Ker} T)=1, x \in X\} & C \neq 0 \\ +\infty & C=0\end{cases}
$$

We list some properties of the reduced minimum modulus in the lemma that follows.

Lemma 3.1 (cf. [19]). Let $C$ be in $B(H) \backslash\{0\}$. Then
(i) $\gamma(C)=\inf \left\{\|C x\|: x \in(\operatorname{Ker} C)^{\perp},\|x\|=1\right\}$.
(ii) $\|C x\| \geqslant \gamma(C)\|x\|, \forall x \in(\operatorname{Ker}(C))^{\perp}$.
(iii) $\gamma(C)=\inf \{\lambda: \lambda \in \sigma(|C|) \backslash\{0\}\}$, where $|C|=\left(C^{*} C\right)^{1 / 2}$.
(iv) $\gamma(C)>0$ if and only if $\operatorname{Ran}(C)$ is closed if and only if 0 is an isolated point of $\sigma(|C|)$ if $0 \in \sigma(|C|)$.
(v) $\gamma(C)=\left\|C^{-1}\right\|^{-1}$ when $C$ is invertible.
(vi) $\gamma(C) \geqslant\|B\|^{-1}$ when $C B C=C$ for $B \in B(H) \backslash\{0\}$.

For $a \in \mathcal{A}_{+}$, put $\beta(a)=\inf \{\lambda: \lambda \in \sigma(a) \backslash\{0\}\}$. Combining Lemma 3.1 with the faithful representation of $\mathcal{A}$, we can obtain

Corollary 3.2. Let $a \in \mathcal{A}_{+}$. Then
(i) $\beta(a)>0$ if and only if $0 \in \sigma(a)$ is isolated when $a \notin G L(\mathcal{A})$.
(ii) $\beta(a) \geqslant\|c\|^{-1}$ when aca $=$ a for some $c \in \mathcal{A}_{+} \backslash\{0\}$.

Let $\mathcal{E}$ be a $C^{*}$-subalgebra of $B(H)$ with the unit $I$. Let $\left(T_{1}, \ldots, T_{n}\right)$ be an $n$ tuple of positive operators in $\mathcal{E}$ with $\operatorname{Ran}\left(T_{i}\right)$ closed, $i=1, \ldots, n$. Put $\widehat{H}=\bigoplus_{i=1}^{n} H$, $H_{0}=\bigoplus_{i=1}^{n} \operatorname{Ran}\left(T_{i}\right)$ and $H_{1}=\bigoplus_{i=1}^{n} \operatorname{Ker}\left(T_{i}\right)$. Since $H=\operatorname{Ran}\left(T_{i}\right) \oplus \operatorname{Ker}\left(T_{i}\right), i=1, \ldots, n$, it follows that $H_{0} \oplus H_{1}=\widehat{H}$. Put $T_{i j}=\left.T_{i} T_{j}\right|_{\operatorname{Ran}\left(T_{j}\right)}, i, j=1, \ldots, n$ and set

$$
\begin{align*}
& T=\left[\begin{array}{cccc}
T_{1}^{2} & T_{1} T_{2} & \cdots & T_{1} T_{n} \\
T_{2} T_{1} & T_{2}^{2} & \cdots & T_{2} T_{n} \\
\cdots & \cdots & \cdots & \cdots \\
T_{n} T_{1} & T_{2} T_{2} & \cdots & T_{n}^{2}
\end{array}\right] \in \mathrm{M}_{n}(\mathcal{E}),  \tag{3.1}\\
& \widehat{T}=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right] \in B\left(H_{0}\right) .
\end{align*}
$$

Clearly, $H_{1} \subset \operatorname{Ker}(T)$ and it is easy to check that $\operatorname{Ker}(T)=H_{1}$ when $\operatorname{Ker}(\widehat{T})=$ $\{0\}$. Thus, in this case, $T$ can be expressed as $T=\left[\begin{array}{ll}\widehat{T} & 0 \\ 0 & 0\end{array}\right]$ with respect to the orthogonal decomposition $\widehat{H}=H_{0} \oplus H_{1}$ and consequently, $\sigma(T)=\sigma(\widehat{T}) \cup\{0\}$.

LEMMA 3.3. Let $\left(T_{1}, \ldots, T_{n}\right)$ be an n-tuple of positive operators in $\mathcal{E}$ with $\operatorname{Ran}\left(T_{i}\right)$ closed, $i=1, \ldots, n$. Let $H_{0}, H_{1}, \widehat{H}$ be as above and $T, \widehat{T}$ be given in 3.1. Suppose that $\widehat{T}$ is invertible in $B\left(H_{0}\right)$. Then
(i) $\sigma(\widehat{T})=\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right) \backslash\{0\}$.
(ii) 0 is an isolated point in $\sigma\left(\sum_{i=1}^{n} T_{i}\right)$ if $0 \in \sigma\left(\sum_{i=1}^{n} T_{i}\right)$.
(iii) $\left\{T_{1} a_{1}, \ldots, T_{n} a_{n}\right\}$ is linearly independent for any $a_{1}, \ldots, a_{n} \in \mathcal{E}$ with $T_{i} a_{i} \neq 0$, $i=1, \ldots, n$.

Proof. (i) Put $Z=\left[\begin{array}{ccc}T_{1} & \cdots & T_{n} \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right] \in \mathrm{M}_{n}(\mathcal{E})$. Then $Z^{*} Z=T$ and $Z Z^{*}=$ $\left[\begin{array}{cccc}\sum_{i=1}^{n} T_{i}^{2} & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0\end{array}\right]$. Thus, $\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right) \backslash\{0\}=\sigma(T) \backslash\{0\}=\sigma(\widehat{T})$.
(ii) According to (i), 0 is an isolated point of $\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right)$ if $\sum_{i=1}^{n} T_{i}^{2}$ is not invertible in $\mathcal{E}$. So by Lemma 2.1, there is $G \in \mathcal{E}_{+}$such that

$$
\left(\sum_{i=1}^{n} T_{i}^{2}\right) G\left(\sum_{i=1}^{n} T_{i}^{2}\right)=\sum_{i=1}^{n} T_{i}^{2}, \quad G\left(\sum_{i=1}^{n} T_{i}^{2}\right) G=G, \quad\left(\sum_{i=1}^{n} T_{i}^{2}\right) G=G\left(\sum_{i=1}^{n} T_{i}^{2}\right)
$$

Put $P_{0}=I-\left(\sum_{i=1}^{n} T_{i}^{2}\right) G \in \mathcal{E}$. Then $P_{0}$ is a projection with $\operatorname{Ran}\left(P_{0}\right)=\operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}^{2}\right)$. Noting that $\operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}^{2}\right)=\operatorname{Ker}\left(\sum_{i=1}^{n} T_{i}\right)=\bigcap_{i=1}^{n} \operatorname{Ker}\left(T_{i}\right), \sum_{i=1}^{n} T_{i}^{2} \in G L\left(\left(I-P_{0}\right) \mathcal{E}(I-\right.$ $\left.P_{0}\right)$ ) with the inverse $G$ and $\sum_{i=1}^{n} T_{i}^{2} \leqslant\left(\max _{1 \leqslant i \leqslant n}\left\|T_{i}\right\|\right) \sum_{i=1}^{n} T_{i}$, we get that $\sum_{i=1}^{n} T_{i}$ is invertible in $\left(I-P_{0}\right) \mathcal{E}\left(I-P_{0}\right)$. Thus, 0 is an isolated point of $\sigma\left(\sum_{i=1}^{n} T_{i}\right)$ when $0 \in \sigma\left(\sum_{i=1}^{n} T_{i}\right)$.
(iii) By Lemma 3.1 (iii) and Lemma 2.1, there is $T_{i}^{\dagger} \in \mathcal{E}_{+}$such that $T_{i} T_{i}^{+} T_{i}=$ $T_{i}, T_{i}^{\dagger} T_{i} T_{i}^{\dagger}=T_{i}^{\dagger}, T_{i}^{\dagger} T_{i}=T_{i} T_{i}^{\dagger}, i=1, \ldots, n$. Thus, $\operatorname{Ran}\left(T_{i}\right)=\operatorname{Ran}\left(T_{i} T_{i}^{\dagger}\right), i=$ $1, \ldots, n$.

Let $a_{1}, \ldots, a_{n} \in \mathcal{E}$ with $T_{i} a_{i} \neq 0, i=1, \ldots, n$ such that $\sum_{i=1}^{n} \lambda_{i} T_{i} a_{i}=0$ for some $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. For any $\xi \in H$, put $x=\bigoplus_{i=1}^{n} \lambda_{i} T_{i} T_{i}^{\dagger} a_{i} \xi \in H_{0}$. Then $\widehat{T} x=0$ and $x=0$ since $\widehat{T}$ is invertible. Thus, $\lambda_{i} T_{i} T_{i}^{\dagger} a_{i} \xi=0, \forall \xi \in H$ and hence $\lambda_{i}=0$, $i=1, \ldots, n$.

The following result due to Levy and Desplanques is very useful in matrix theory:

LEMMA 3.4 (cf. [8]). Suppose the complex $n \times n$ self-adjoint matrix $C=\left[c_{i j}\right]_{n \times n}$ is strictly diagonally dominant, that is, $\sum_{j \neq i}\left|c_{i j}\right|<c_{i i}, i=1, \ldots, n$. Then $C$ is invertible and positive.

Proposition 3.5. Let $T_{1}, \ldots, T_{n} \in \mathcal{A}_{+}$. Assume that
(i) $\gamma=\min \left\{\beta\left(T_{1}\right), \ldots, \beta\left(T_{n}\right)\right\}>0$ and
(ii) there exists $\rho \in(0, \gamma]$ such that $\eta=\max \left\{\left\|T_{i} T_{j}\right\|: i \neq j, i, j=1, \ldots, n\right\}<$ $(n-1)^{-1} \rho^{2}$.

Then for any $\delta \in\left[\eta,(n-1)^{-1} \rho^{2}\right)$, we have
(a) $\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right) \backslash\{0\} \subset\left[\rho^{2}-(n-1) \delta, \rho^{2}+(n-1) \delta\right]$.
(b) 0 is an isolated point of $\sigma\left(\sum_{i=1}^{n} T_{i}\right)$ if $0 \in \sigma\left(\sum_{i=1}^{n} T_{i}\right)$.
(c) $\left(\sum_{i=1}^{n} T_{i}\right) \mathcal{A}=T_{1} \mathcal{A} \dot{+} \cdots+T_{n} \mathcal{A}$.

Proof. (a) Let $\left(\psi, H_{\psi}\right)$ be a faithful representation of $\mathcal{A}$ with $\psi(i)=I$. We may assume that $H=H_{\psi}$ and $\mathcal{E}=\psi(\mathcal{A})$. Put $S_{i}=\psi\left(T_{i}\right), S_{i j}=\left.S_{i} S_{j}\right|_{\operatorname{Ran}\left(S_{j}\right)}$, $i, j=1, \ldots, n$. Then $\max \left\{\left\|S_{i} S_{j}\right\|: 1 \leqslant i \neq j \leqslant n\right\}=\eta$ and $\gamma\left(S_{i}\right)=\beta\left(T_{i}\right)$ by Lemma 3.1, $1 \leqslant i \leqslant n$. Set $H_{0}=\bigoplus_{i=1}^{n} \operatorname{Ran}\left(S_{i}\right)$ and

$$
\widehat{S}=\left[\begin{array}{llll}
S_{11} & S_{12} & \cdots & S_{1 n} \\
S_{21} & S_{22} & \cdots & S_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
S_{n 1} & S_{n 2} & \cdots & S_{n n}
\end{array}\right] \in B\left(H_{0}\right), \quad S_{0}=\left[\begin{array}{cccc}
\rho^{2}-\lambda & -\left\|S_{12}\right\| & \cdots & -\left\|S_{1 n}\right\| \\
-\left\|S_{21}\right\| & \rho^{2}-\lambda & \cdots & -\left\|S_{2 n}\right\| \\
\cdots & \cdots & \cdots & \cdots \\
-\left\|S_{n 1}\right\| & -\left\|S_{n 2}\right\| & \cdots & \rho^{2}-\lambda
\end{array}\right] .
$$

Then for any $\lambda<\rho^{2}-(n-1) \delta$, we have $\sum_{j \neq i}\left\|S_{i j}\right\| \leqslant(n-1) \eta<\rho^{2}-\lambda$. It follows from Lemma 3.4 that $S_{0}$ is positive and invertible. Therefore the quadratic form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\rho^{2}-\lambda\right) x_{i}^{2}-2 \sum_{1 \leqslant i<j \leqslant n}\left\|S_{i j}\right\| x_{i} x_{j}
$$

is positive definite and hence there is $\alpha>0$ such that for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
f\left(x_{1}, \ldots, x_{n}\right) \geqslant \alpha\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)
$$

So for any $\xi=\bigoplus_{i=1}^{n} \xi_{i} \in H_{0},\left\|S_{i} \xi_{i}\right\| \geqslant \gamma\left(S_{i}\right)\left\|\xi_{i}\right\| \geqslant \rho\left\|\xi_{i}\right\|, \xi_{i} \in \operatorname{Ran}\left(S_{i}\right)=$ $\left(\operatorname{Ker}\left(S_{i}\right)\right)^{\perp}, i=1, \ldots, n$, by Lemma 3.1 and

$$
\begin{aligned}
\langle(\widehat{S}-\lambda I) \xi, \xi\rangle & =\sum_{i=1}^{n}\left\|S_{i} \xi_{i}\right\|^{2}-\sum_{i}^{n} \lambda\left\|\xi_{i}\right\|^{2}+\sum_{1 \leqslant i<j \leqslant n}\left(\left\langle S_{i j} \xi_{j}, \xi_{i}\right\rangle+\left\langle S_{i j}^{*} \xi_{i}, \xi_{j}\right\rangle\right) \\
& \geqslant \sum_{i=1}^{n}\left(\rho^{2}-\lambda\right)\left\|\xi_{i}\right\|^{2}-2 \sum_{1 \leqslant i<j \leqslant n}\left\|S_{i j}\right\|\left\|\xi_{i}\right\|\left\|\xi_{j}\right\| \\
& =f\left(\left\|\xi_{1}\right\|, \ldots,\left\|\xi_{k}\right\|\right) \geqslant \alpha \sum_{i=1}^{k}\left\|\xi_{i}\right\|^{2}
\end{aligned}
$$

Therefore, $\widehat{S}-\lambda I$ is invertible.
Similarly, for any $\lambda>\rho^{2}+(n-1) \delta$, we can obtain that $\lambda I-\widehat{S}$ is invertible. So $\sigma(\widehat{S}) \subset\left[\rho^{2}-(n-1) \delta, \rho^{2}+(n-1) \delta\right] \subset\left(0, \rho^{2}+(n-1) \delta\right]$ and consequently,

$$
\sigma\left(\sum_{i=1}^{n} T_{i}^{2}\right) \backslash\{0\}=\sigma\left(\sum_{i=1}^{n} S_{i}^{2}\right) \backslash\{0\} \subset\left[\rho^{2}-(n-1) \delta, \rho^{2}+(n-1) \delta\right]
$$

by Lemma 3.3 .
(b) Since $\sigma\left(\sum_{i=1}^{n} T_{i}\right)=\sigma\left(\sum_{i=1}^{n} S_{i}\right)$, the assertion follows from Lemma 3.3(ii).
(c) By (b) and Lemma 2.1, $\left(\sum_{i=1}^{n} T_{i}\right)^{\dagger} \in \mathcal{A}$ exists. Set $E=\left(\sum_{i=1}^{n} T_{i}\right)\left(\sum_{i=1}^{n} T_{i}\right)^{\dagger}$. Obviously, $E \mathcal{A}=\left(\sum_{i=1}^{n} T_{i}\right) \mathcal{A} \subset T_{1} \mathcal{A}+\cdots+T_{n} \mathcal{A}$ for $E\left(\sum_{i=1}^{n} T_{i}\right)=\sum_{i=1}^{n} T_{i}$.

From $T_{i} \leqslant \sum_{i=1}^{n} T_{i}$, we get that

$$
(1-E) T_{i}(1-E) \leqslant(1-E)\left(\sum_{i=1}^{n} T_{i}\right)(1-E)=0
$$

i.e., $T_{i}=E T_{i}, i=1, \ldots, n$. So $T_{i} \mathcal{A} \subset E \mathcal{A}, i=1, \ldots, n$ and hence

$$
T_{1} \mathcal{A}+\cdots+T_{n} \mathcal{A} \subset E \mathcal{A}=\left(\sum_{i=1}^{n} T_{i}\right) \mathcal{A} \subset T_{1} \mathcal{A}+\cdots+T_{n} \mathcal{A}
$$

Since for any $a_{i} \in \mathcal{A}$ with $T_{i} a_{i} \neq 0,1 \leqslant i \leqslant n,\left\{S_{1} \psi\left(a_{i}\right), \ldots, S_{n} \psi\left(a_{n}\right)\right\}$ is linearly independent in $\mathcal{E}$ by Lemma 3.3. we have $\left\{T_{1} a_{1}, \ldots, T_{n} a_{n}\right\}$ is linearly independent in $\mathcal{A}$. Therefore,

$$
\left(\sum_{i=1}^{n} T_{i}\right) \mathcal{A}=E \mathcal{A}=T_{1} \mathcal{A} \dot{+} \cdots+T_{n} \mathcal{A}
$$

Let $P_{1}, P_{2}$ be projections on $H$. Buckholtz shows in [3] that $H=\operatorname{Ran}\left(P_{1}\right) \dot{+}$ $\operatorname{Ran}\left(P_{2}\right)$ if and only if $\left\|P_{1}+P_{2}-I\right\|<1$. For $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$, we have

Corollary 3.6. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ satisfying $\left\|\sum_{i=1}^{n} P_{i}-1\right\|<(n-$ $1)^{-2}$. Then $\left(P_{1}, \ldots, P_{n}\right)$ is complete in $\mathcal{A}$.

Proof. For any $i \neq j$,

$$
\left\|P_{i} P_{j}\right\|^{2}=\left\|P_{i} P_{j} P_{i}\right\| \leqslant\left\|P_{i}\left(\sum_{k \neq i} P_{k}\right) P_{i}\right\|=\left\|P_{i}\left(\sum_{k=1}^{n} P_{k}-1\right) P_{i}\right\| \leqslant\left\|\sum_{k=1}^{n} P_{k}-1\right\|<\frac{1}{(n-1)^{2}} .
$$

Thus $\left\|P_{i} P_{j}\right\|<(n-1)^{-1}$. Noting that

$$
\rho=\min \left\{\beta\left(P_{1}\right), \ldots, \beta\left(P_{n}\right)\right\}=1, \quad \eta=\max \left\{\left\|P_{i} P_{j}\right\|: 1 \leqslant i<j \leqslant n\right\}<\frac{1}{n-1},
$$

we have $\left(\sum_{i=1}^{n} P_{i}\right) \mathcal{A}=P_{1} \mathcal{A}+\cdots+P_{n} \mathcal{A}$ by Proposition 3.5 .
From $\left\|\sum_{i=1}^{n} P_{i}-1\right\|<(n-1)^{-2}$, we have $\sum_{i=1}^{n} P_{i}$ is invertible in $\mathcal{A}$ and so $\mathcal{A}=P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}$. Thus, $\left(P_{1}, \ldots, P_{n}\right)$ is complete in $\mathcal{A}$.

Combing Corollary 3.6 with Theorem 1.2 (iii), we have
Corollary 3.7. Let $P_{1}, \ldots, P_{n}$ be non-trivial projections in $B(H)$ with $\| \sum_{i=1}^{n} P_{i}$ $-I \|<(n-1)^{-2}$. Then $H=\operatorname{Ran}\left(P_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(P_{n}\right)$.

Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$. A well-known statement says: "for any $\varepsilon>0$, there is $\delta>0$ such that if $\left\|P_{i} P_{j}\right\|<\delta, i \neq j, i, j=1, \ldots, n$, then there are mutually orthogonal projections $P_{1}^{\prime}, \ldots, P_{n}^{\prime} \in \mathcal{A}$ with $\left\|P_{i}-P_{i}^{\prime}\right\|<\varepsilon, i=1, \ldots, n^{\prime \prime}$. It may appeared first in Glimm's paper [6]. By using the induction on $n$, he gave its proof. But how $\delta$ depends on $\varepsilon$ is not given. Lemma 2.5.6 of [9] states this statement and the author gives a slightly different proof. We can find from the proof of Lemma 2.5.6 of [9] that the relation between $\delta$ and $\varepsilon$ is $\delta=\varepsilon /(12)^{(n-1)} n$ !.

The next corollary will give a new proof of this statement with the relation $\delta=\varepsilon /(n-1)$ for $\varepsilon \in(0,1)$.

COROLLARY 3.8. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ and $\varepsilon \in(0,1)$. If $P_{1}, \ldots, P_{n}$ satisfy the condition $\left\|P_{i} P_{j}\right\|<\delta=\varepsilon /(n-1), 1 \leqslant i<j \leqslant n$, then there are mutually orthogonal projections $P_{1}^{\prime}, \ldots, P_{n}^{\prime} \in \mathcal{A}$ such that $\left\|P_{i}-P_{i}^{\prime}\right\| \leqslant \varepsilon, i=1, \ldots, n$.

Proof. Set $A=\sum_{i=1}^{n} P_{i}$. Noting that $\gamma=\min \left\{\beta\left(P_{1}\right), \ldots, \beta\left(P_{n}\right)\right\}=1,\left\|P_{i} P_{j}\right\|<$ $1 /(n-1), 1 \leqslant i<j \leqslant n$ and taking $\rho=1$, we have $\sigma(A) \backslash\{0\} \subset[1-(n-1) \delta, 1+$ $(n-1) \delta$ ] by Proposition 3.5 (i). So the positive element $A^{\dagger}$ exists by Lemma 2.1 . Set $P=A^{\dagger} A=A A^{\dagger} \in \mathcal{A}$. From $A A^{\dagger} A=A$ and $A^{\dagger} A A^{\dagger}=A^{\dagger}$, we get that $P_{i} \leqslant P, i=1, \ldots, n$ and $A P=P A=A, A^{\dagger} P=P A^{\dagger}=A^{\dagger}$. So $A \in G L(P \mathcal{A} P)$ with the inverse $A^{+} \in P \mathcal{A} P$.

Now, by Proposition 3.5, $P \mathcal{A}=A \mathcal{A}=P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}$. Thus, by using $P_{i} \leqslant$ $P, i=1, \ldots, n$, we have $P \overline{\mathcal{A} P}=P_{1}(P \mathcal{A} P) \dot{+} \cdots \dot{+} P_{n}(P \mathcal{A} P)$, that is, $\left(P_{1}, \ldots, P_{n}\right) \in$ $\mathbf{P C}_{n}(P \mathcal{A} P)$ and then $P_{i} A^{\dagger} P_{j}=\delta_{i j} P_{i}, i, j=1, \ldots, n$ by Theorem 1.2. Put $P_{i}^{\prime}=$ $\left(A^{\dagger}\right)^{1 / 2} P_{i}\left(A^{\dagger}\right)^{1 / 2} \in \mathcal{A}, i=1, \ldots, n$. Then $P_{1}^{\prime}, \ldots, P_{n}^{\prime}$ are mutually orthogonal projections with $P_{i}=A^{1 / 2} P_{i}^{\prime} A^{1 / 2}$ and moreover, for $1 \leqslant i \leqslant n$,

$$
\begin{align*}
\left\|P_{i}^{\prime}-P_{i}\right\| & \leqslant\left\|A^{1 / 2} P_{i}^{\prime} A^{1 / 2}-P_{i}^{\prime} A^{1 / 2}\right\|+\left\|P_{i}^{\prime} A^{1 / 2}-P_{i}^{\prime}\right\| \\
& \leqslant\left(\left\|A^{1 / 2}\right\|+1\right)\left\|A^{1 / 2}-P\right\| . \tag{3.2}
\end{align*}
$$

By the spectrum mapping theorem, we get that

$$
\left\|A^{1 / 2}\right\| \leqslant(1+(n-1) \delta)^{1 / 2}, \quad\left\|P-A^{1 / 2}\right\| \leqslant(1+(n-1) \delta)^{1 / 2}-1
$$

Thus $\left\|P_{i}^{\prime}-P_{i}\right\| \leqslant(n-1) \delta=\varepsilon, i=1, \ldots, n$, by 3.2.
REMARK 3.9. Corollary 3.8 provides that $\delta=O\left(n^{-1}\right)$ when $n \rightarrow \infty$ and Lemma 2.5 .6 of [9] showed that $\delta=o\left(n^{-k}\right)$ for any $k \geqslant 1$ when $n \rightarrow \infty$. We do not know if $\delta=\varepsilon /(n-1)$ is the largest one that satisfies the assertion of Corollary 3.8, but Corollary 3.8 actually provides a better $\delta$. We also do not know if the $\delta$ in Corollary 3.8 can be improved as $\delta=O\left(n^{-s}\right)(n \rightarrow \infty)$ for certain $s \in[0,1)$.

Applying Theorem 1.2 and Corollary 3.8 to an $n$-tuple of linear independent unit vectors, we have:

COROLLARY 3.10. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an $n$-tuple of linear independent unit vectors in Hilbert space $H$.
(i) There is an invertible, positive operator $K$ in $B(H)$ and an $n$-tuple of mutually orthogonal unit vectors $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ in $H$ such that $\gamma_{i}=K \alpha_{i}, i=1, \ldots, n$.
(ii) Given $\varepsilon \in(0,1)$, if $\left|\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right|<\varepsilon / 2(n-1), 1 \leqslant i<j \leqslant n$, then there exists an n-tuple of mutually orthogonal unit vectors $\left(\beta_{1}, \ldots, \beta_{n}\right)$ in $H$ such that $\left\|\alpha_{i}-\beta_{j}\right\|<\varepsilon$, $i=1, \ldots, n$.

Proof. Set $H_{1}=\operatorname{span}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $P_{i} \xi=\left\langle\xi, \alpha_{i}\right\rangle \alpha_{i}, \forall \xi \in H_{1}, i=1, \ldots, n$. Then $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}\left(B\left(H_{1}\right)\right)$ and $\operatorname{Ran}\left(P_{1}\right) \dot{+} \cdots \dot{+} \operatorname{Ran}\left(P_{n}\right)=H_{1}$.

By Theorem 1.2 $A_{0}=\sum_{i=1}^{n} P_{i}$ is invertible in $B\left(H_{1}\right)$ and $P_{i} A_{0}^{-1} P_{j}=\delta_{i j} P_{i}$, $i, j=1, \ldots, n$. Put $K=A_{0}^{-1 / 2}+P_{0}$ and $\gamma_{i}=A_{0}^{-1 / 2} \alpha_{i}, i=1, \ldots, n$, where $P_{0}$ is the projection of $H$ onto $H_{1}^{\perp}$. It is easy to check that $K$ is invertible and positive in $B(H)$ with $\gamma_{i}=K \alpha_{i}, i=1, \ldots, n$ and $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is an $n$-tuple of mutually orthogonal unit vectors. This proves (i).
(ii) Note that $\left\|P_{i} P_{j}\right\|=\left|\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right|<\varepsilon / 2(n-1), 1 \leqslant i<j \leqslant n$. Thus, by Corollary 3.8 there are mutually orthogonal projections $P_{1}^{\prime}, \ldots, P_{n}^{\prime} \in \mathcal{A}$ such that $\left\|P_{i}-P_{i}^{\prime}\right\|<\varepsilon / 2, i=1, \ldots, n$. Put $\beta_{i}^{\prime}=P_{i}^{\prime} \alpha_{i}, i=1, \ldots, n$. Then $\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}$ are mutually orthogonal and $\left\|\alpha_{i}-\beta_{i}^{\prime}\right\|<\varepsilon / 2, i=1, \ldots, n$. Set $\beta_{i}=\left\|\beta_{i}^{\prime}\right\|^{-1} \beta_{i}^{\prime}$,
$i=1, \ldots, n$. Then $\left\langle\beta_{i}, \beta_{j}\right\rangle=\delta_{i j} \beta_{i}, i, j=1, \ldots, n$ and

$$
\left\|\alpha_{i}-\beta_{i}\right\| \leqslant\left\|\alpha_{i}-\beta_{i}^{\prime}\right\|+\left|1-\left\|\beta_{i}^{\prime}\right\|\right|<\varepsilon
$$

for $i=1, \ldots, n$.
Now we give a simple characterization of the completeness of a given $n$ tuple of projections in $C^{*}$-algebra $\mathcal{A}$ as follows.

THEOREM 3.11. Let $P_{1}, \ldots, P_{n}$ be projections in $\mathcal{A}$. Then $\left(P_{1}, \ldots, P_{n}\right)$ is complete if and only if $A=\sum_{i=1}^{n} P_{i}$ is invertible in $\mathcal{A}$ and

$$
\left\|P_{i} A^{-1} P_{j}\right\|<\left[(n-1)\left\|A^{-1}\right\|\|A\|^{2}\right]^{-1}, \quad \forall i \neq j, i, j=1, \ldots, n
$$

Proof. If $\left(P_{1}, \ldots, P_{n}\right)$ is complete, then by Theorem 1.2. $A$ is invertible in $\mathcal{A}$ and $P_{i} A^{-1} P_{j}=0, \forall i \neq j, i, j=1, \ldots, n$.

Now we prove the converse.
Put $T_{i}=A^{-1 / 2} P_{i} A^{-1 / 2}, i=1, \ldots, n$. Then $\sum_{i=1}^{n} T_{i}=1$. Since $T_{i}=T_{i}\left(A^{1 / 2} P_{i} A^{1 / 2}\right) T_{i}$, we have $\beta\left(T_{i}\right) \geqslant\left\|A^{1 / 2} P_{i} A^{1 / 2}\right\|^{-1} \geqslant\|A\|^{-1}, i=1, \ldots, n$ by Corollary 3.2 Put $\rho=\|A\|^{-1}$. Then for $i \neq j, i, j=1, \ldots, n$,

$$
\left\|T_{i} T_{j}\right\| \leqslant\left\|A^{-1}\right\|\left\|P_{i} A^{-1} P_{j}\right\|<\left[(n-1)\|A\|^{2}\right]^{-1}=\frac{\rho^{2}}{n-1} .
$$

Thus by Proposition 3.5 (iii), $\mathcal{A}=T_{1} \mathcal{A} \dot{+} \cdots \dot{+} T_{n} \mathcal{A}$. Note that $T_{i} \mathcal{A}=A^{-1 / 2}\left(P_{i} \mathcal{A}\right)$, $i=1, \ldots, n$. Thus $P_{1} \mathcal{A} \dot{+} \cdots \dot{+} P_{n} \mathcal{A}=A^{1 / 2} \mathcal{A}=\mathcal{A}$, i.e., $\left(P_{1}, \ldots, P_{n}\right) \in \operatorname{PC}_{n}(\mathcal{A})$.

Corollary 3.12. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ and let $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P}_{n}(\mathcal{A})$. Assume that $\left\|P_{i}-P_{i}^{\prime}\right\|<\left[4 n^{2}(n-1)\left\|A^{-1}\right\|^{2}\left(n\left\|A^{-1}\right\|+1\right)\right]^{-1}, i=1, \ldots, n$, where $A=\sum_{i=1}^{n} P_{i}$, then $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P C}_{n}(\mathcal{A})$.

Proof. Set $B=\sum_{i=1}^{n} P_{i}^{\prime}$. Since $n\left\|A^{-1}\right\| \geqslant\|A\|\left\|A^{-1}\right\| \geqslant 1$, it follows that $\| A-$ $B\|<1 / 2\| A^{-1} \|$. Thus $B$ is invertible in $\mathcal{A}$ with

$$
\left\|B^{-1}\right\| \leqslant \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|A-B\|}<2\left\|A^{-1}\right\|, \quad\left\|B^{-1}-A^{-1}\right\|<2\left\|A^{-1}\right\|^{2}\|A-B\|
$$

Note that $P_{i} A^{-1} P_{j}=0, i \neq j, i, j=1, \ldots, n$, we have

$$
\begin{aligned}
\left\|P_{i}^{\prime} B^{-1} P_{j}^{\prime}\right\| & \leqslant\left\|P_{i}^{\prime}\left(B^{-1}-A^{-1}\right) P_{j}^{\prime}\right\|+\left\|\left(P_{i}^{\prime}-P_{i}\right) A^{-1} P_{j}^{\prime}\right\|+\left\|P_{i} A^{-1}\left(P_{j}-P_{j}^{\prime}\right)\right\| \\
& \leqslant 2\left\|A^{-1}\right\|^{2}\|A-B\|+\left\|A^{-1}\right\|\left\|P_{i}-P_{i}^{\prime}\right\|+\left\|A^{-1}\right\|\left\|P_{j}-P_{j}^{\prime}\right\| \\
& <\frac{1}{2 n^{2}(n-1)\left\|A^{-1}\right\|}<\frac{1}{(n-1)\left\|B^{-1}\right\|\|B\|^{2}} .
\end{aligned}
$$

So $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$ is complete in $\mathcal{A}$ by Theorem 3.11.

## 4. THE CONNECTIVITY OF $\mathbf{P C}_{n}(\mathcal{A})$

Let $\mathcal{A}$ be a $C^{*}$-algebra with the unit 1 and let $G L_{0}(\mathcal{A})$ (respectively $U_{0}(\mathcal{A})$ ) be the connected component of 1 in $G L(\mathcal{A})$ (respectively in $U(\mathcal{A})$ ).

Proposition 4.1. For $\mathbf{P}_{n}(\mathcal{A})$ and $\mathbf{P C}_{n}(\mathcal{A})$, we have
(i) $\mathbf{P C}_{n}(\mathcal{A})$ is open in $\mathbf{P}_{n}(\mathcal{A})$.
(ii) $\mathbf{P C}_{n}(\mathcal{A})$ is locally connected. So every connected component of $\mathbf{P C}_{n}(\mathcal{A})$ is pathconnected.

Proof. (i) Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$. Then there is $\delta>0$ such that for any $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P}_{n}(\mathcal{A})$ with $\left\|P_{i}^{\prime}-P_{i}\right\|<\delta, i=1, \ldots, n$, we have $\left(P_{1}^{\prime}, \ldots, P_{n}\right) \in$ $\mathbf{P C}_{n}(\mathcal{A})$ by Corollary 3.12 This means that $\mathbf{P C}_{n}(\mathcal{A})$ is open in $\mathbf{P}_{n}(\mathcal{A})$.
(ii) Let $\left(P_{1}, \ldots, P_{n}\right) \in \operatorname{PC}_{n}(\mathcal{A})$. Then by Corollary 3.12, there is $\delta \in(0,1 / 2)$ such that for any $\left(R_{1}, \ldots, R_{n}\right) \in \mathbf{P}_{n}(\mathcal{A})$ with $\left\|P_{i}-R_{i}\right\|<\delta, 1 \leqslant i \leqslant n$, we have $\left(R_{1}, \ldots, R_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$.

Let $\left(R_{1}, \ldots, R_{n}\right) \in \operatorname{PC}_{n}(\mathcal{A})$ with $\left\|P_{j}-R_{j}\right\|<\delta, i=1, \ldots, n$. Put $P_{i}(t)=P_{i}$, $R_{i}(t)=R_{i}$ and $a_{i}(t)=(1-t) P_{i}+t R_{i}, \forall t \in[0,1], i=1, \ldots, n$. Then $P_{i}, R_{i}, a_{i}$ are self-adjoint elements in $C([0,1], \mathcal{A})=\mathcal{B}$ and $\left\|P_{i}-a_{i}\right\|=\max _{t \in[0,1]}\left\|P_{i}-a_{i}(t)\right\|<$ $\delta, i=1, \ldots, n$. It follows from Lemm 6.5.9(1) of [19] that there is a projection $f_{i} \in C^{*}\left(a_{i}\right)$ (the $C^{*}$-subalgebra of $\mathcal{B}$ generated by $a_{i}$ ) such that $\left\|P_{i}-f_{i}\right\| \leqslant \| P_{i}-$ $a_{i} \|<\delta, i=1, \ldots, n$. So $\left\|P_{i}-f_{i}(t)\right\|<\delta, i=1, \ldots, n$ and consequently, $F(t)=$ $\left(f_{1}(t), \ldots, f_{n}(t)\right)$ is a continuous mapping of $[0,1]$ into $\operatorname{PC}_{n}(\mathcal{A})$. Since $a_{i}(0)=P_{i}$, $a_{i}(1)=R_{i}$ and $f_{i}(t) \in C^{*}\left(a_{i}(t)\right), \forall t \in[0,1]$, we have $f(0)=\left(P_{1}, \ldots, P_{n}\right)$ and $f(1)=\left(R_{1}, \ldots, R_{n}\right)$. This means that $\mathbf{P C}_{n}(\mathcal{A})$ is locally path-connected.

DEFINITION 4.2. Let $\left(P_{1}, \ldots, P_{n}\right),\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P C}_{n}(\mathcal{A})$. We say that $\left(P_{1}, \ldots, P_{n}\right)$ and $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$ are homotopically equivalent, denoted by $\left(P_{1}, \ldots, P_{n}\right)$ $\sim_{\mathrm{h}}\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$, if there is a continuous mapping $F:[0,1] \rightarrow \mathbf{P C}_{n}(\mathcal{A})$ such that $F(0)=\left(P_{1}, \ldots, P_{n}\right)$ and $F(1)=\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$.

Clearly, according to Proposition 4.1 (ii), two elements in $\mathrm{PC}_{n}(\mathcal{A})$ are in the same connected component if and only if they are homotopically equivalent.

LEMMA 4.3. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ and $C$ be a positive and invertible element in $\mathcal{A}$ with $P_{i} C^{2} P_{i}=P_{i}, i=1, \ldots, n$. Then $\left(C P_{1} C, \ldots, C P_{n} C\right) \in \mathbf{P C}_{n}(\mathcal{A})$ and $\left(P_{1}, \ldots, P_{n}\right) \sim_{h}\left(C P_{1} C, \ldots, C P_{n} C\right)$ in $\mathbf{P C}_{n}(\mathcal{A})$.

Proof. From $\left(C P_{i} C\right)^{2}=C P_{i} C^{2} P_{i} C=C P_{i} C, 1 \leqslant i \leqslant n$, we have $\left(C P_{1} C, \ldots, C P_{n} C\right)$ $\in \mathbf{P}_{n}(\mathcal{A}) .\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ implies that $A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ and $P_{i} A^{-1} P_{i}=$ $P_{i}, 1 \leqslant i \leqslant n$ by Theorem 1.2 . So

$$
\left(C P_{i} C\right)\left(\sum_{i=1}^{n}\left(C P_{i} C\right)\right)^{-1}\left(C P_{i} C\right)=C P_{i} A^{-1} P_{i} C
$$

and hence $\left(C P_{1} C, \ldots, C P_{n} C\right) \in \mathbf{P C}_{n}(\mathcal{A})$ by Theorem 1.2

Put $A_{i}(t)=C^{t} P_{i} C^{t}, B_{i}(t)=C^{-t} P_{i} C^{-t}$ and $Q_{i}(t)=A_{i}(t) B_{i}(t), \forall t \in[0,1]$, $i=1, \ldots, n$. Then $Q_{i}(t)=C^{t} P_{i} C^{-t}$ is idempotent and $A_{i}(t)=A_{i}(t) B_{i}(t) A_{i}(t)$, $\forall t \in[0,1], i=1, \ldots, n$. Thus $A_{i}(t) \mathcal{A}=Q_{i}(t) \mathcal{A}, \forall t \in[0,1], i=1, \ldots, n$.

By Lemma 1.6, $P_{i}(t)=Q_{i}(t)\left(Q_{i}(t)+\left(Q_{i}(t)\right)^{*}-1\right)^{-1}$ is a projection in $\mathcal{A}$ satisfying $Q_{i}(t) P_{i}(t)=P_{i}(t)$ and $P_{i}(t) Q_{i}(t)=Q_{i}(t), \forall t \in[0,1], i=1, \ldots, n$. Clearly, $A_{i}(t) \mathcal{A}=Q_{i}(t) \mathcal{A}=P_{i}(t) \mathcal{A}, \forall t \in[0,1]$ and $t \mapsto P_{i}(t)$ is a continuous mapping from $[0,1]$ into $\mathcal{A}, i=1, \ldots, n$. Thus, from

$$
\left(C^{t} P_{1} C^{t}\right) \mathcal{A} \dot{+} \cdots \dot{+}\left(C^{t} P_{n} C^{t}\right) \mathcal{A}=\mathcal{A}, \quad \forall t \in[0,1]
$$

we get that $F(t)=\left(P_{1}(t), \ldots, P_{n}(t)\right) \in \mathbf{P C}_{n}(\mathcal{A}), \forall t \in[0,1]$. Note that $F:[0,1] \rightarrow$ $\mathrm{PC}_{n}(\mathcal{A})$ is continuous with $F(0)=\left(P_{1}, \ldots, P_{n}\right)$. Note that $A_{i}(1)=C P_{i} C$ is a projection with $A_{i}(1) Q_{i}(1)=C P_{i} C C P_{i} C^{-1}=Q_{i}(1)$ and $Q_{i}(1) A_{i}(1)=A_{i}(1)$, $i=1, \ldots, n$. So $P_{i}(1)=A_{i}(1), i=1, \ldots, n$ and $F(1)=\left(C P_{1} C, \ldots, C P_{n} C\right)$. The assertion follows.

$$
\text { Set } \mathbf{P O}_{n}(\mathcal{A})=\left\{\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P}_{n}(\mathcal{A}): \sum_{i=1}^{n} P_{i}=1, P_{i} P_{j}=\delta_{i j}, i, j=1, \ldots, n\right\}
$$

Then $\mathbf{P O}_{n}(\mathcal{A}) \subset \mathbf{P C}_{n}(\mathcal{A})$. For $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A}), A=\sum_{i=1}^{n} P_{i} \in G L(\mathcal{A})$ and $Q_{i}=A^{-1 / 2} P_{i} A^{-1 / 2}$ is a projection with $Q_{i} Q_{j}=0, i \neq j, i, j=1, \ldots, n$ (see Theorem 1.2, that is, $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathbf{P O}_{n}(\mathcal{A})$. Since $C=A^{-1 / 2}$ satisfies the condition given in Lemma 4.3. we have the following:

Corollary 4.4. Let $\left(P_{1}, \ldots, P_{n}\right) \in \mathbf{P C}_{n}(\mathcal{A})$ and let $\left(Q_{1}, \ldots, Q_{n}\right)$ be as above. Then $\left(P_{1}, \ldots, P_{n}\right) \sim_{h}\left(Q_{1}, \ldots, Q_{n}\right)$ in $\mathbf{P C}_{n}(\mathcal{A})$.

Proposition 4.5. Let $\left(P_{1}, \ldots, P_{n}\right),\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \operatorname{PC}_{n}(\mathcal{A})$. Then they are in the same connected component if and only if there is $D \in G L_{0}(\mathcal{A})$ such that $P_{i}=$ $D^{*} P_{i}^{\prime} D, i=1, \ldots, n$.

Proof. There is a continuous path $P(t)=\left(P_{1}(t), \ldots, P_{n}(t)\right)$ in $\mathbf{P C}_{n}(\mathcal{A}), \forall t \in$ $[0,1]$ such that $P(0)=\left(P_{1}, \ldots, P_{n}\right)$ and $P(1)=\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$. By Corollary 5.2.9 of [17], there is a continuous mapping $t \mapsto U_{i}(t)$ of $[0,1]$ into $U(\mathcal{A})$ with $U_{i}(0)=1$ such that $P_{i}(t)=U_{i}(t) P_{i} U_{i}^{*}(t), \forall t \in[0,1]$ and $i=1, \ldots, n$. Set

$$
\begin{aligned}
& W(t)=\left(\sum_{i=1}^{n} P_{i}\right)^{-1 / 2}\left(\sum_{i=1}^{n} P_{i} U_{i}^{*}(t) P_{i}(t)\right)\left(\sum_{i=1}^{n} U_{i}(t) P_{i} U_{i}^{*}(t)\right)^{-1 / 2}, \\
& D(t)=\left(\sum_{i=1}^{n} P_{i}\right)^{-1 / 2} W(t)\left(\sum_{i=1}^{n} U_{i}(t) P_{i} U_{i}^{*}(t)\right)^{1 / 2}, \quad \forall t \in[0,1] .
\end{aligned}
$$

Using the relations

$$
P_{i}(t)\left(\sum_{i=1}^{n} P_{i}(t)\right)^{-1} P_{j}(t)=\delta_{i j}, \quad i, j=1, \ldots, n, t \in[0,1],
$$

we can obtain that $W(t) \in U(\mathcal{A})$ with $W(0)=1, D(t) \in G L(\mathcal{A})$ with $D(0)=1$ and $W(t), D(t)$ are all continuous on $[0,1]$ with $D^{*}(t) P_{i} D(t)=P_{i}(t), \forall t \in[0,1]$ and $i=1, \ldots, n$. Put $D=D(1)$. Then $D \in G L_{0}(\mathcal{A})$ and $D^{*} P_{i} D=P_{i}^{\prime}, i=1, \ldots, n$.

Conversely, if there is $D \in G L_{0}(\mathcal{A})$ such that $D^{*} P_{i} D=P_{i}^{\prime}, i=1, \ldots, n$, then $U=\left(D D^{*}\right)^{-1 / 2} D \in U_{0}(\mathcal{A})$ and $P_{i} D D^{*} P_{i}=P_{i}, U P_{i}^{\prime} U^{*}=\left(D D^{*}\right)^{1 / 2} P_{i}\left(D D^{*}\right)^{1 / 2}$, $i=1, \ldots, n$. Thus,

$$
\begin{aligned}
& \left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \sim_{\mathrm{h}}\left(U P_{1}^{\prime} U^{*}, \ldots, U P_{n}^{\prime} U^{*}\right) \text { and } \\
& \left(\left(D D^{*}\right)^{1 / 2} P_{1}\left(D D^{*}\right)^{1 / 2}, \ldots,\left(D D^{*}\right)^{1 / 2} P_{n}\left(D D^{*}\right)^{1 / 2}\right) \sim_{\mathrm{h}}\left(P_{1}, \ldots, P_{n}\right)
\end{aligned}
$$

by Lemma 4.3 Consequently, $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \sim_{h}\left(P_{1}, \ldots, P_{n}\right)$.
As ending of this section, we consider the following example:
Example 4.6. Let $H$ be a separable complex Hilbert space and $\mathcal{K}(H)$ be the $C^{*}$-algebra of all compact operators in $B(H)$. Let $\mathcal{A}=B(H) / \mathcal{K}(H)$ be the Calkin algebra and $\pi: B(H) \rightarrow \mathcal{A}$ be the quotient mapping. Then we have
(i) $\mathbf{P C}_{n}(B(H)$ is not connected. In fact, choose non-trivial projections $P_{1}, \ldots, P_{n}$ and $P_{1}^{\prime}, \ldots, P_{n}^{\prime}$ in $B(H)$ such that $\operatorname{dim} \operatorname{Ran}\left(P_{1}\right)=1, \operatorname{dim} \operatorname{Ran}\left(P_{1}^{\prime}\right)=2$ and

$$
\begin{aligned}
& P_{i} P_{j}=P_{i}^{\prime} P_{j}^{\prime}=\delta_{i j}, \quad i, j=1, \ldots, n \\
& \sum_{i=1}^{n} P_{i}=\sum_{i=1}^{n} P_{i}^{\prime}=I
\end{aligned}
$$

Clearly, $\left(P_{1}, \ldots, P_{n}\right)$ and $\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$ belong to $\mathbf{P C}_{n}(B(H))$, but they are not in the same component by Proposition 4.5 .
(ii) $\operatorname{PC}_{n}(\mathcal{A})$ is path-connected. In fact, if $\left(P_{1}, \ldots, P_{n}\right),\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \in \mathbf{P C}_{n}(\mathcal{A})$, then we can find $\left(Q_{1}, \ldots, Q_{n}\right),\left(Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right) \in \mathbf{P O}_{n}(\mathcal{A})$ such that

$$
\left(P_{1}, \ldots, P_{n}\right) \sim_{\mathrm{h}}\left(Q_{1}, \ldots, Q_{n}\right) \quad \text { and } \quad\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right) \sim_{\mathrm{h}}\left(Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right)
$$

by Corollary 4.4 Since $B(H)$ is of real rank zero, it follows from Corollary B.2.2 of [19] or Lemma 3.2 of [18] that there are projections $R_{1}, \ldots, R_{n}$ and $R_{1}^{\prime}, \ldots, R_{n}^{\prime}$ in $B(H)$ such that $\pi\left(R_{i}\right)=Q_{i}, \pi\left(R_{i}^{\prime}\right)=Q_{i}^{\prime}, i=1, \ldots, n$ and

$$
\begin{aligned}
R_{i} R_{j} & =\delta_{i j} R_{i}, \quad R_{i}^{\prime} R_{j}^{\prime}=\delta_{i j} R_{i}^{\prime}, \quad i, j=1, \ldots, n \\
\sum_{i=1}^{n} R_{i} & =\sum_{i=1}^{n} R_{i}^{\prime}=I
\end{aligned}
$$

Note that $R_{1}, \ldots, R_{n}, R_{1}^{\prime}, \ldots, R_{n}^{\prime} \notin \mathcal{K}(H)$. So there are partial isometries $V_{1}, \ldots, V_{n}$ in $B(H)$ such that $V_{i}^{*} V_{i}=R_{i}, V_{i} V_{i}^{*}=R_{i}^{\prime}, i=1, \ldots, n$.

$$
\begin{aligned}
& \text { Put } V=\sum_{i=1}^{n} V_{i} \text {. Then } \\
& \qquad V \in U(B(H)) \text { and } V R_{i} V^{*}=R_{i}^{\prime}, i=1, \ldots, n .
\end{aligned}
$$

Put $U=\pi(V) \in U(\mathcal{A})$. Then $\left(U Q_{1} U^{*}, \ldots, U Q_{n} U^{*}\right)=\left(Q_{1}^{\prime}, \ldots, Q_{n}\right)$ in $\mathbf{P O}_{n}(\mathcal{A})$. Since $U(B(H))$ is path-connected, we have $\left(Q_{1}, \ldots, Q_{n}\right) \sim_{h}\left(Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right)$ in $\operatorname{PC}_{n}(\mathcal{A})$. Finally, $\left(P_{1}, \ldots, P_{n}\right) \sim_{h}\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$. This means that $\mathrm{PC}_{n}(\mathcal{A})$ is pathconnected.

Acknowledgements. The authors thank to Professor Huaxin Lin and the referee for their helpful comments and suggestions. This paper was partially supported by Natural Science Foundation of China (Grant no. 10771069).

## REFERENCES

[1] P.E. Bjørstad, J. Mandel, On the spectra of sums of orthogonal projections with applications to parallel computing, BIT 31(1991), 76-88.
[2] A. Bottcher, I.M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432(2010), 1412-1459.
[3] D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128(2000), 1415-1418.
[4] G. CHEN, Y. XUE, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces, Linear Algebra Appl. 285(1998), 1-6.
[5] J. Dixmier, C*-Alebras, North-Holland, Amsterdam 1977.
[6] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95(1960), 318-340.
[7] P. Halmos, Two subspace, Trans. Amer. Math. Soc. 144(1969), 381-389.
[8] R.A. Horn, R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1986.
[9] H. Lin, An Introduction to the Classification of Amenable C*-Algebras, World Sci. Publ., River Edge, NJ 2001.
[10] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York 1984.
[11] J.J. Koliha, V. RaKOČEvić, Invertibility of the sum of idempotents, Linear and Multilinear Algebra 50(2002), 285-292.
[12] J.J. KOLIHA, V. RAKOČEVIĆ, Invertibility of the difference of idempotents, Linear and Multilinear Algebra 51(2003), 97-110.
[13] J.J. KOLIHA, V. RAKOČEvić, Fredholm properties of the difference of orthogonal projections in a Hilbert space, Integral Equations Operator Theory 52(2005), 125-134.
[14] T. Shulman, On universal $C^{*}$-algebras generated by $n$ projections with scalar sum, Proc. Amer. Math. Soc. 137(2009), 115-122.
[15] V.S. Sunder, N subspaces, Canad. J. Math. 40(1988), 38-54.
[16] N.L. VASILEVSKI, C*-algebras generated by orthogonal projections and their applications, Integral Equations Operator Theory 31(1998), 113-132.
[17] N.E. Wegge-Olsen, K-Theory and C*-Algebras, A Friendly Approach, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York 1993.
[18] Y. Xue, The reduced minimum modulus in $C^{*}$-algebras, Integral Equations Operator Theory 59(2007), 269-280.
[19] Y. Xue, Stable Perturbations of Operators and Related Topics, World Sci. Publ., Hackensack, NJ 2012.

SHANWEN HU, Research Center for Operator Algebras, East China Normal University, Shanghai 200241, P.R. China<br>E-mail address: swhu@math.ecnu.edu.cn<br>Yifeng XUe, Department of Mathematics, Research Center for Operator Algebras and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P.R. China<br>E-mail address: yfxue@math.ecnu.edu.cn

Received September 10, 2012; revised May 12, 2013; posted on July 30, 2014.

