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ABSTRACT. For an infinite network consisting of a graph with edge weights
prescribed by a given conductance function c, we consider the effects of re-
placing these weights with a new function b that satisfies b 6 c on each edge.
In particular, we compare the corresponding energy spaces and the spectra of
the Laplace operators acting on these spaces. We use these results to derive es-
timates for effective resistance on the two networks, and to compute a spectral
invariant for the canonical embedding of one energy space into the other.

KEYWORDS: Dirichlet form, graph energy, unbounded discrete Laplacian, weighted
graph, spectral graph theory, effective resistance, harmonic analysis, Hilbert space,
reproducing kernels.

MSC (2010): Primary 47B32; Secondary 31C20, 37A30, 39A12, 46E22, 58C40.

1. INTRODUCTION

Motivated by recent work on the analysis of large networks, we consider
the natural (discrete) Laplace operator on the network. If the weights on the
edges of the network are given by a (conductance) function c, we denote this
operator by ∆ c. In this paper, we study the dependence of the spectrum of ∆ c
on c. In addition to operator theory and spectral theory, we use tools from metric
geometry and variational calculus. Our main result (Theorem 3.20) deals with
monotonicity of the spectrum of ∆ c. We illustrate this with explicit models on the
binary tree, and on a 1-dimensional lattice.

We begin with a network structure defined by a set of vertices G and a con-
ductance function c : G×G → R+ which specifies the both the adjacency relation
and the edge weights; two vertices x and y are neighbours if and only if cxy > 0.
The case of primary interest is when G is infinite, in which case the Hilbert space
HE (comprised of functions of finite Dirichlet energy) has a rich structure and the
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Laplace operator ∆ corresponding to the network may be an unbounded oper-
ator on HE . (Precise definitions of these terms may be found in Definition 2.2,
Definition 2.3, and Definition 2.4.)

The Hilbert spaceHE has a rather different geometry than the more familiar
`2(G), and depends crucially on the choice of conductance function c. The same
is true for the Laplacian ∆ as a linear operator on HE . In this paper, we use the
framework developed in earlier projects (see [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15]) to compute certain spectral theoretic information; as well as resistance
metrics on the underlying vertex set. In particular, we explore how certain quan-
tities depend on the choice of c, in comparison to another conductance function,
which we denote by b. It will be assumed that both b and c yield a connected
weighted graph, although we allow for the case when cxy > 0 and bxy = 0 (so
that x and y are neighbours in (G, c) but not in (G, b)). The data, defined from b
and c, to be compared are as follows:

(i) the energy forms E (b) and E (c), and the respective energy Hilbert spaces
HE (b) andHE (c) that they define;

(ii) the systems of dipole vectors that form reproducing kernels for the two
Hilbert spaces; see Definition 2.6;

(iii) the respective Laplace operators ∆ (b) and ∆ (c), and their spectra;
(iv) the spaces of finite-energy harmonic functions onHE (b) andHE (c) ; and
(v) the effective resistance metrics onHE (b) andHE (c) .

We focus our study on the case when one of the two energy-Hilbert spaces
is contractively contained in the other, which corresponds to the inequality b 6 c.
In this case, we believe that our results have applications to percolation theory
and the study of random walks in random environments, as well as to dilation
theory (see [1]) and the contractive inclusion of Hilbert spaces (see [20]).

Of special operator theoretic significance is the adjoint of the contractive
inclusion mapping. The issues involved with the adjoint operator are subtle as
the computation of the adjoint operator depends on the Hilbert-inner products
used. It is the adjoint operator that allows one to compute the respective systems
of dipole vectors that form reproducing kernels for the two Hilbert spaces; see
Definition 2.6. We further derive an invariant (involving induced linear maps
between the respective spaces of finite-energy harmonic functions) which distin-
guishes two networks when G is fixed and the conductance functions vary.

We also give a necessary and sufficient condition on a fixed conductance
function c having its energy Hilbert space E (c) boundedly contained inHE (b) (b =
1); i.e., contractive containment in the “flat” energy Hilbert space corresponding
to constant conductance b. The significance of this is that computations in HE (b)
are typically much easier, and that the conclusions obtained there may then be
transferred toHE (c) .

The use of analysis on infinite discrete systems and spectral theory of asso-
ciated Laplace operators is of relevance to operator algebras, and to mathematics
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of computation: sampling, approximation, learning theory, and more; see for ex-
ample [2], [4], [5], [21], [22], [23], [26].

2. BASIC TERMS AND PREVIOUS RESULTS

In this section, we introduce the key notions used throughout this paper:
resistance networks, the energy form E , the Laplace operator ∆ , and their ele-
mentary properties.

DEFINITION 2.1. A (resistance) network is a connected graph (G, c), where
G is a graph with vertex set G0, and c is the conductance function which defines
adjacency by x ∼ y if and only if cxy > 0, for x, y ∈ G0. We assume cxy = cyx ∈
[0, ∞), and write c(x) := ∑

y∼x
cxy. We require that the graph is locally finite, i.e.,

that every vertex has only finitely many neighbors.

In this definition, connected means simply that for any x, y ∈ G0, there is
a finite sequence {xi}n

i=0 with x = x0, y = xn, and cxi−1xi > 0, i = 1, . . . , n. We
may assume there is at most one edge from x to y, as two conductors c1

xy and
c2

xy connected in parallel can be replaced by a single conductor with conductance
cxy = c1

xy + c2
xy. Also, we assume cxx = 0 so that no vertex has a loop.

Since the edge data of (G, c) is carried by the conductance function, we will
henceforth simplify notation and write x ∈ G to indicate that x is a vertex. For any
network, one can fix a reference vertex, which we shall denote by o (for “origin”).
It will always be apparent that our calculations depend in no way on the choice
of o.

DEFINITION 2.2. The Laplacian on G is the linear difference operator which
acts on a function v : G → C by

(2.1) (∆ v)(x) := ∑
y∼x

cxy(v(x)− v(y)).

The domain of ∆ is discussed in detail in (3.3), below. A function v : G → C is
harmonic if and only if ∆ v(x) = 0 for each x ∈ G.

It is clear from (2.1) that ∆ commutes with complex conjugation and there-
fore the subspace of real-valued functions is invariant under ∆ .

We have adopted the physics convention (so that the spectrum is nonneg-
ative) and thus our Laplacian is the negative of the one commonly found in the
PDE literature. The network Laplacian (2.1) should not be confused with the
stochastically renormalized Laplace operator c−1∆ which appears in the proba-
bility literature, or with the spectrally renormalized Laplace operator c−1/2∆ c−1/2

which appears in the literature on spectral graph theory (e.g., [3]).
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DEFINITION 2.3. The energy of functions u, v : G → C is given by the
(closed, bilinear) Dirichlet form

E(u, v) :=
1
2 ∑

x,y∈G
cxy(u(x)− u(y))(v(x)− v(y)),(2.2)

with the energy of u given by E(u) := E(u, u). The domain of the energy form is

(2.3) dom E = {u : G → C : E(u) < ∞}.
Note that (2.2) converges if and only if it converges absolutely, by the

Schwarz inequality, so this summation is well defined. Since cxy = cyx and
cxy = 0 for nonadjacent vertices, the initial factor of 1/2 in (2.2) implies there
is exactly one term in the sum for each edge in the network.

2.1. THE ENERGY SPACE HE . The energy form E is sesquilinear and conjugate
symmetric on dom E and would be an inner product if it were positive definite.

DEFINITION 2.4. Let 1 denote the constant function with value 1 and recall
that ker E = C1. Then HE := dom E/C1 is a Hilbert space with inner product
and corresponding norm given by

(2.4) 〈u, v〉E := E(u, v) and ‖u‖E := E(u, u)1/2.

We callHE the energy (Hilbert) space.

REMARK 2.5. Since G is connected, it is possible to show (with the use of
Fatou’s lemma) that dom E/C1 is complete; see [10], [12] for further details re-
garding this point.

DEFINITION 2.6. Let vx be defined to be the unique element ofHE for which

(2.5) 〈vx, u〉E = u(x)− u(o), for every u ∈ HE .

The existence and uniqueness of vx for each x ∈ G is implied by the Riesz lemma.
It follows from (2.5) that {vx}x∈G forms a reproducing kernel for HE (called the
energy kernel; see Corollary 2.7 of [10]) and that span{vx}x∈G is dense inHE .

Note that vo corresponds to a constant function, since 〈vo, u〉E = 0 for every
u ∈ HE . Therefore, vo may often be safely ignored or omitted during calculations.

DEFINITION 2.7. A dipole is any v ∈ HE satisfying the pointwise identity
∆ v = δx − δy for some vertices x, y ∈ G. One can check that ∆ vx = δx − δo; cf.
Lemma 2.13 of [10].

Note that dipoles always exist for any pair of vertices x, y ∈ G, by Riesz’s
lemma, as in Definition 2.6.

DEFINITION 2.8. For v ∈ HE , one says that v has finite support if and only
if there is a finite set F ⊆ G for which v(x) = k ∈ C for all x /∈ F. The set of
functions of finite support inHE is denoted span{δx}, where δx is the Dirac mass
at x, i.e., the element ofHE containing the characteristic function of the singleton
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{x}. It is immediate from (2.2) that E(δx) = c(x), whence δx ∈ HE . Define F in to
be the closure of span{δx} with respect to E .

DEFINITION 2.9. The set of harmonic functions of finite energy is denoted

(2.6) Harm := {v ∈ HE : ∆ v(x) = 0, for all x ∈ G}.

It may be the case that the only harmonic functions of finite energy are constant
(and hence trivial inHE ). This is true, for example, on any finite network.

LEMMA 2.10 ([10], 2.11). For any x ∈ G, one has 〈δx, u〉E = ∆ u(x).

The next result follows easily from Lemma 2.10; cf. Theorem 2.15 of [10].

THEOREM 2.11 (Royden decomposition). HE = F in
⊕Harm.

REMARK 2.12. The Royden decomposition illustrates one of the advantages
of working with 〈u, v〉E , as opposed to the inner product on `2(G) or the grounded
energy product 〈u, v〉o := 〈u, v〉E + u(o)v(o). Another advantage is the follow-
ing: by combining (2.5) and the conclusion of Lemma 2.10, one can reconstruct
the network (G, c) (or equivalently, the corresponding Laplacian) from the dual
systems (i) (δx)x∈X and (ii) (vx)x∈X . Indeed, from (ii), we obtain the (relative)
reproducing kernel Hilbert spaceHE and from (ii), we get an associated operator
(∆ u)(x) = 〈δx, u〉E for u ∈ HE .

DEFINITION 2.13. Denote the (free) effective resistance from x to y by

R(x, y) := RF(x, y) = E(vx − vy) = ‖vx − vy‖2
E .(2.7)

This quantity represents the voltage drop measured when one unit of current
is passed into the network at x and removed at y, and the central equality in
(2.7) is proved in [6] and elsewhere in the literature; see [18], [19] for different
formulations.

The following results will be useful in the sequel; for further details, please
see [6], [7], [8], [10] and [12].

LEMMA 2.14 ([10], Lemma 2.23). Every vx is R-valued, with vx(y)− vx(o) > 0
for all y 6= o.

LEMMA 2.15 ([8], Lemma 6.9). Every vx is bounded. In particular, if we define

‖u‖∞ := sup
x,y∈G

|u(x)− u(y)|.(2.8)

then we always have ‖vx‖∞ 6 R(x, o).

LEMMA 2.16 ([8], Lemma 6.8). If v ∈ HE is bounded, then PF in v is also bounded.

DEFINITION 2.17. Let p(x, y) := cxy/c(x) so that p(x, y) defines a random
walk on the network, with transition probabilities weighted by the conductances.
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Then let

P[x → y] := Px(τy < τ+
x )(2.9)

be the probability that the random walk started at x reaches y before returning to
x. In (2.9), τz is the hitting time of the vertex z and τ+

z := min{τz, 1}.

COROLLARY 2.18 ([6], Corollary 3.13 and Corollary 3.15). For any x 6= o, one
has

(2.10) P[x → o] =
1

c(x)R(x, o)
.

3. COMPARING DIFFERENT CONDUCTANCE FUNCTIONS

In our proofs, we will make use of tools from the theory of unbounded
operators, and readers may find the reference [16] helpful. Similarly, we refer to
[24] for graphs and networks.

Given a network (G, c), we will be interested in comparing its energy space
HE = HE (c) and Laplace operator ∆ = ∆ (c) with those corresponding to a differ-
ent conductance function b. To clarify dependence on the conductance functions,
we use scripts to distinguish between objects corresponding to different underly-
ing conductance functions. For example, ∆ (c) = ∆ in (2.1) and E (c) = E in (2.2),
as opposed to

(3.1) (∆ (b)v)(x) := ∑
y∼x

bxy(v(x)− v(y)),

and

Eb(u, v) = 〈u, v〉E (b) =
1
2 ∑

x,y∈G
bxy(u(x)− u(y))(v(x)− v(y)),(3.2)

with domain dom E (b) = {u : G → C : E (b)(u) < ∞}. It is clear that HE (b)
also depends on b, and so too does the energy kernel {v(b)x }x∈G. We will take the
domains to be

dom ∆ (b) = span{v(b)x }x∈G and dom ∆ (c) = span{v(c)x }x∈G.(3.3)

REMARK 3.1. Given a network (G, c) and a new conductance function b 6 c,
it may be that bxy = 0 even though cxy > 0, and consequently the edge structure
of (G, b) may be very different from (G, c). However, we will always make the
assumption that (G, b) is connected, so that Lemma 3.5 may be applied.

DEFINITION 3.2. Let b : G0×G0→ [0, ∞) be a symmetric function satisfying

bxy 6 cxy, for all x, y ∈ G0.

In this case, we write b 6 c. Note that we will always assume (G, b) is connected;
see Remark 3.1.
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LEMMA 3.3. Inclusion gives natural contractive embedding I : HE (c) ↪→ HE (b) .
Proof. Since b 6 c, one has

E (b)(u) = 1
2 ∑

x,y∈G
bxy|u(x)− u(y)|2 6

1
2 ∑

x,y∈G
cxy|u(x)− u(y)|2 = E (c)(u)(3.4)

for any function u : G → R, and hence ‖Iu‖E (b) 6 ‖u‖E (c) .

LEMMA 3.4. I(F in (c)) ↪→ F in (b), and I?(Harm(b)) ↪→ Harm(c).

Proof. The first follows from the fact that I(δx) = δx, whence the second
follows because adjoints preserve the orthocomplements (see Theorem 2.11), i.e.,

I?(Harm(b)) = I?((F in (b))⊥) ⊆ (F in (c))⊥ = Harm(c).

Lemma 3.5 clarifies the nature of the blanket assumption that (G, b) is con-
nected; see Remark 3.1.

LEMMA 3.5. If (G, c) is a network and b 6 c, then the following are equivalent:
(i) (G, b) is connected.

(ii) ker E (b) = ker E (c) = C1.
(iii) ker I = 0.

Proof. To see (i)⇔ (ii), observe that E (b)(u) is given by a sum of nonnegative
terms and hence vanishes if and only if each summand does. Thus E (b)(u) = 0
if and only if u is locally constant. For (ii) ⇒ (iii), note that I(u) = 0 implies
‖u‖E (b) = 0 and hence that u is a constant function, whence u = 0 in HE (b) . For
(iii)⇒ (ii), suppose (G, b) is not connected, and define u = 1 on one component
and u = 0 on the complement. Then ‖I(u)‖E (b) = 0 but u 6= 0 inHE (c) .

LEMMA 3.6. I?v(b)x = v(c)x , and for general u ∈ HE (b) , one can compute I? via

(I?u)(x)− (I?u)(y) =
bxy

cxy
(u(x)− u(y)).(3.5)

Proof. For u ∈ HE (c) ⊆ HE (b) ,

〈I?v(b)x , u〉E (c) = 〈v
(b)
x , Iu〉E (b) = u(x)− u(o) = 〈v(c)x , u〉E (c) .

Now for u ∈ HE (b) and v ∈ HE (c) , the latter claim follows from the fact that

〈u, Iv〉E (b) =
1
2 ∑

x,y∈G
bxy(u(x)− u(y))(v(x)− v(y))

is equal to

〈I?u, v〉E (c) =
1
2 ∑

x,y∈G
cxy((I?u)(x)− (I?u)(y))(v(x)− v(y)).

COROLLARY 3.7. I is injective.
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Proof. ker I = {0} because span{v(c)x } = ran I? is dense inHE (c) .

LEMMA 3.8. If δxy is the Kronecker delta, then

(3.6) 〈v(b)x , ∆ (b)v(b)y 〉E (b) = δxy + 1 = 〈v(c)x , ∆ (c)v(c)y 〉E (c) , ∀x, y ∈ G \ {o}.
Proof. Note that

〈v(b)x , ∆ (b)v(b)y 〉E (b) = (∆ (b)v(b)y )(x)− (∆ (b)v(b)y )(o) = 〈δx, v(b)y 〉E (b) − 〈δo, v(b)y 〉E (b) ,

because δx ∈ HE (b) and 〈δx, u〉E (b) = ∆ (b)u(x). Now the result follows via

〈δx, v(b)y 〉E (b) − 〈δo, v(b)y 〉E (b) = (δx(y)− δx(o))− (δo(y)− δo(o)) = δxy + 1,

since x, y 6= o.

LEMMA 3.9. For 1 < b 6 c, one has ∆ (b) = I∆ (c)I?.

Proof. Applying Lemma 3.8 and Lemma 3.6,

〈v(b)x , ∆ (b)v(b)y 〉E (b) = 〈v
(c)
x , ∆ (c)v(c)y 〉E (c) = 〈I

?v(b)x , ∆ (c)I?v(b)y 〉E (c)

= 〈v(b)x , I∆ (c)I?v(b)y 〉E (c) .

Thus we have a commuting square

HE (c)

∆ (c)

��

HE (b)
I?oo

∆ (b)=I∆ (c)I?
��

HE (c) I
// HE (b)

(3.7)

Note that one can recover the dipole property of v(b)x from Lemma 3.6 and Lem-
ma 3.9: ∆ (b)v(b)x = I∆ (c)I?v(b)x = I∆ (c)v(c)x = I(δx − δo) = δx − δo.

COROLLARY 3.10. I? ∈ Hom(Harm(b),Harm(c)) is a spectral invariant.

The proof is basically a restatement of Lemma 3.4.
This spectral invariant is also apparent from the formula ∆ (b) = I∆ (c)I?

of Lemma 3.9. While I is not a norm-preserving map, it is standard from spec-
tral theory that one can write I in terms of its polar decomposition as I = UP
and then ∆ (b) = I∆ (c)I? implies that a unitary equivalence is given by ∆ (b) =

U∆ (c)U?.
In the case when dimHarm(b) = dimHarm(c) = 1, the spectral invariant

of Corollary 3.10 is just a number. This is computed explicitly for the geometric
integers in Example 5.1.

REMARK 3.11 (Open Question). For a fixed conductance function b : G0 ×
G0 → [0, ∞), what are the closed subspaces K ⊆ HE (b) such that K ∼= HE (c) for
some conductance functions c with b 6 c?
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COROLLARY 3.12. If b 6 c and ∆ (c) is bounded on HE (c) , then ∆ (b) is bounded
onHE (b) .

Proof. Lemma 3.9 immediately implies

‖∆ (b)‖H
E(b)
→H

E(b)
6 ‖∆ (c)‖H

E(c)
→H

E(c)
.

COROLLARY 3.13. If c ≡ 1 and ∆ (c) is bounded on HE (c) , then ∆ (b) is bounded
onHE (b) for any bounded conductance function b.

Proof. Writing ‖b‖∞ for the supremum of b, we have

bxy 6 ‖b‖∞cxy = ‖b‖∞,

so Corollary 3.12 applies to the network with conductances all equal to ‖b‖∞.

THEOREM 3.14. Let c be an arbitrary conductance function, and let 1 be the con-
ductance function which assigns a conductance of 1 to every edge. Then HE (c) is con-
tained in HE (1) if and only if there is an ε > 0 such that cxy > ε for all x, y ∈ G with
cxy > 0.

Proof. For the forward direction, suppose K < ∞ satisfies ‖u‖2
E (1) 6K‖u‖2

E (c) ,

for all u ∈ HE (c) . Note that E (c)(δx) = c(x) follows directly from (2.2), so

c(x) = ‖δx‖2
E (c) >

1
K
‖δx‖2

E (1) >
1
K

since ‖δx‖E (1) > 1 by the connectedness of the network.
For the converse,

‖u‖2
E (1) =

1
2 ∑

x,y∈G
(u(x)− u(y))2 6

1
2 ∑

x,y∈G

cxy

ε
(u(x)− u(y))2 =

1
ε
‖u‖2

E (c) ,

so I : HE (c) → HE (1) is a bounded operator with ‖I‖H
E(c)
→H

E(1)
6 1/

√
ε.

EXAMPLE 3.15 (Horizontally connected binary tree). This example shows
that the boundedness of the conductance function is not sufficient to imply bound-
edness of the Laplacian, and illustrates the interplay between spectral reciprocity
and effective resistance (see also [9]). To begin, let (G, b) be the binary tree where
every edge has conductance cxy = 1. Now let (G, c) be the network obtained by
connecting all vertices at level k with an edge of conductance ck as in Figure 1.
The resulting network is no longer a tree, but we call it the horizontally connected
binary tree for lack of a better name. Note that b 6 c.

Suppose that ck = 1 for each k, so cxy is globally constant on G1. However,
c(x) = 2k + 2 for x in level k, so c(x) is clearly unbounded on G0. (As usual, level
k consists of all vertices in (G, b) for which the shortest path to o contains exactly
k edges.) Let Kn be the complete graph on n vertices. Using Schur complements
(for example, as in [6], [12] or [17], [18]), one can compute RKn(x, y) = 21−n for
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... ... ... ...

o

G1

G2

G2

level 1

level 2

level 3

o

c1

c2

c3

FIGURE 1. Construction of the “horizontally connected binary
tree” of Example 3.15.

any x, y ∈ Kn. Consequently, it is easy to see that RF
(G,c)(x, y) can be made arbi-

trarily small by choosing x, y in level k, for sufficiently large k. By spectral reci-
procity (see [9]), this implies that ∆ (c) is unbounded onHE (c) . Thus, this network
provides an example of how boundedness of cxy does not imply boundedness of
∆ (c). For an example of how boundedness of cxy does not imply boundedness of
∆ on other spaces, see [25].

Suppose that we choose ck so as to make c(x) bounded on G0. Then we must
have ck = O(2−k) as k→ ∞, so define ck = 2−k. Using this, one can compute that
RGk (x, y) = 1 for x, y in level k of Gk, for every k.

LEMMA 3.16. Suppose b 6 c. If ∆ (c) is self-adjoint, then ∆ (b) is self-adjoint also.

Proof. Take adjoints on both sides of ∆ (b) = I∆ (c)I? (see Lemma 3.9). Note
that the domains are as in (3.3).

EXAMPLE 3.17 (Geometric integers). For a fixed constant c > 1, let (Z, cn)
denote the network with integers for vertices, and with geometrically increas-
ing conductances defined by cn−1,n = cmax{|n|,|n−1|} so that the network under
consideration is

· · · c3
−2 c2

−1 c 0 c 1 c2
2 c3

3 c4
· · ·

as in Example 6.2 of [10], and fix o = 0. It is shown in Section 4.2 of [9] that ∆ (c)

is not self-adjoint, and a defect vector ϕ ∈ HE (c) is constructed which satisfies

∆ (c)ϕ = −ϕ.(3.8)
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However, for b ≡ 1, ∆ (b) is bounded and Hermitian, and thus clearly self-adjoint.
This example shows that the converse of Lemma 3.16 does not hold. Using
Fourier theory, one can show that HE (b) ∼= L2((−π, π), sin2(t/2)); see Section 6.3
of [13], for example.

So Lemma 3.9 gives ∆ (b) = I∆ (c)I?, where ∆ (b) is bounded and ∆ (c) is
unbounded and not self-adjoint. The inclusion I : HE (c) → HE (b) indicates that

HE (b) = HE (c) ⊕H
⊥
E (c) ,

whereH⊥E (c) = HE (b) 	HE (c) , and that ∆ (c) is a matrix corner of ∆ (b):

∆ (b) =

[
∆ (c) A
A? B

]
.(3.9)

This gives another way to relate the operators ∆ (b) and ∆ (c).

3.1. THE ADJOINT OF ∆ (b) WITH RESPECT TO E (c) . For the results in this section
we consider the adjoint of ∆ (b) with respect to E (c)and denote it by ∆ (b)

F[2]c , in
other words, we are interested in

〈∆ (b)
F[2]c

u, v〉E (c) = 〈u, ∆ (b)v〉E (c) .

It will be helpful to know the action of I? on F in , as given in Lemma 3.18; this
result also generalizes the dipole property ∆ v = δx − δy of Definition 2.7.

LEMMA 3.18. For 1 < b 6 c, one has span{v(c)x } ⊆ dom ∆ (b)
F[2]c and

∆ (b)
F[2]c

v(c)x = I?(δx − δo).(3.10)

Proof. For any fixed x ∈ G and u ∈ HE (c) , we have the estimate

〈v(c)x , ∆ (b)u〉E (c) = ∆ (b)u(x)−∆ (b)u(o) = 〈δx − δo, u〉E (b) 6 ‖δx − δo‖E (b) · ‖u‖E (b) ,

by Lemma 2.10 followed by (2.5). This shows span{v(c)x } ⊆ dom ∆ (b)
F[2]c and

〈v(c)x , ∆ (b)u〉E (c) = 〈δx − δo, u〉E (b) , which gives (3.10).

For Theorem 3.20, we need to define ∆ (c)−1
via the spectral theorem. To this

end, we introduce the following blanket assumption (which remains in place for
the remainder of this paper).

ASSUMPTION 3.19. Suppose a conductance function c has been fixed. If the
corresponding Laplace operator ∆ (c) is not self-adjoint, then we replace it by the
Friedrichs extension as described in [13].

With Assumption 3.19 in place, we can work with ∆ (c) as a self-adjoint op-
erator. Then by the spectral theorem: for any u ∈ HE (c) , there is a Borel measure
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µ
(c)
u on [0, ∞) such that

〈u, ψ(∆ (c))u〉E (c) =
∞∫

0

ψ(λ)dµ
(c)
u (λ) =

∞∫
0

ψ(u)‖P(dλ)u‖2
E (c) ,(3.11)

where P is the projection-valued measure in the spectral resolution of ∆ (c). This
will be useful for Theorem 4.2. Furthermore, we also have that

∆ (c)−1
:=

∞∫
0

e−λ∆ (c)
dλ.(3.12)

This definition of the inverse is a standard application of the spectral theorem,

and is based on the fact that
∞∫
0

e−λt dλ = 1/t.

THEOREM 3.20. For 1 < b 6 c, one has ∆ (b)
F[2]c

= ∆ (c)−1
∆ (b)∆ (c), where

∆ (c)−1
is the inverse of the Friedrichs extension, defined as in (3.12).

Proof. We will first show ∆ (c)∆ (b)
F[2]c

= ∆ (b)∆ (c), which is equivalent to

I(∆ (c)∆ (b)
F[2]c −∆ (b)∆ (c)) = 0 by Corollary 3.7. Applying Lemma 3.18 and Lem-

ma 3.9, one has

∆ (c)∆ (b)
F[2]c

v(c)x = I∆ (c)∆ (b)
F[2]c

v(c)x = I∆ (c)I?(δx − δo) = ∆ (b)(δx − δo).

Then using the dipole property ∆ (c)v(c)x = δx − δo yields

∆ (b)(δx − δo) = ∆ (b)(∆ (c)v(c)x ) = ∆ (b)(∆ (c)v(c)x ) = ∆ (b)∆ (c)(v(c)x ).

Now we have ∆ (c)∆ (b)
F[2]c

(v(c)x ) = ∆ (b)∆ (c)(v(c)x ) for any x, whence ∆ (c)∆ (b)
F[2]c

= ∆ (b)∆ (c) follows by the density of span{v(c)x } in HE (c) . It follows from the

preceding argument that ∆ (b)∆ (c)(span{v(c)x }) ⊆ dom ∆ (c)−1
, and so the proof is

complete.

4. MOMENTS OF ∆ (c) AND MONOTONICITY OF SPECTRAL MEASURES

Note that we continue to assume ∆ (c) is a self-adjoint operator as discussed
in Assumption 3.19.

LEMMA 4.1. For u = v(c)x − v(c)y and ψ(λ) = λk, k = 0, 1, 2, we have

k = 0 : 〈u, u〉E (c) = RF(x, y),

k = 1 : 〈u, ∆ (c)u〉E (c) = 2− 2δxy,

k = 2 : 〈v(c)x , ∆ (c)2
v(c)x 〉E (c) = c(x) + 2cxy + c(y).
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Proof. The case k = 0 follows immediately from (2.7). For k = 1, (3.6) gives

〈v(c)x , ∆ (c)v(c)x 〉E (c) − 〈v
(c)
x , ∆ (c)v(c)y 〉E (c) − 〈v

(c)
y , ∆ (c)v(c)x 〉E (c) + 〈v

(c)
y , ∆ (c)v(c)y 〉E (c)

= 2− (δxy + 1)− (δxy + 1) + 2.

For k = 2, we use the fact that the Friedrichs extension is self-adjoint and the
dipole property (2.5) to compute

〈v(c)x , ∆ (c)2
v(c)x 〉E (c) = 〈∆

(c)v(c)x , ∆ (c)v(c)x 〉E (c) = 〈δx − δy, δx − δy〉E (c)
= c(x) + 2cxy + c(y).

For the last step, we used E(δx) = c(x), which is immediate from (2.2).

In Theorem 4.2, we use µ
(c)
u as given by (3.11). Also, let

m(c)
k (u) :=

∞∫
0

λk dµ
(c)
u(4.1)

be the kth moment of µ
(c)
u , and similarly for µ

(b)
u . We now consider the moments

of ∆ via spectral theory.

THEOREM 4.2 (Monotonicity of spectral measures). Let (G, c) be a given net-
work, and let b 6 c. Then

m(b)
1 (u) = m(c)

1 (I?u) and m(b)
2 (u) 6 m(c)

2 (I?u).(4.2)

Proof. First, note that Lemma 3.9 gives

m(b)
1 = 〈u, ∆ (b)u〉E (b) = 〈u, I∆ (c)I?u〉E (b) = 〈I

?u, ∆ (c)I?u〉E (c) = m(c)
1 .

For the second moments, using Lemma 3.9 again gives

m(b)
2 = 〈u, (∆ (b))2u〉E (b) = 〈u, I∆ (c)I?I∆ (c)I?u〉E (b)

= 〈∆ (c)?I?u, I?I∆ (c)I?u〉E (c) .

Since I?I is contractive by Lemma 3.3,

〈∆ (c)?I?u, I?I∆ (c)I?u〉E (c) 6 ‖I
?I‖ · 〈∆ (c)?I?u, ∆ (c)I?u〉E (c)

6 〈u, I(∆ (c))2I?u〉E (c) ,

whence m(b)
2 6 m(c)

2 .

REMARK 4.3. If bxy < cxy for some edge (xy), then m(b)
2 (v(b)x )<m(c)

2 (I?v(b)x ).
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5. EXAMPLE

EXAMPLE 5.1 (Geometric integers). Let (Z, cn) be the network whose ver-
tices are the integers with conductances given by

cm,n =

{
cmax{|m|,|n|} |m− n| = 1,
0 else,

as in the following diagram:

· · · c4

•
−3

c3

•
−2

c2

•
−1

c

•
0

c

•
1

c2

•
2

c3

•
3

c4
· · ·

It is known that Harm is 1-dimensional for this network; see [10]. It was also
shown in [9] that ∆ is not essentially self-adjoint (as an operator on HE ) for this
network.

We compare (Z, bn) and (Z, cn), where 1 < b 6 c. In this case, dimHarm(b)

= dimHarm(c) = 1 and we can compute the (numerical) spectral invariant of
Corollary 3.10. Choose unit vectors hb ∈ Harm(b) and hc ∈ Harm(c):

hb(n) =
sgn(n)

2
√

b− 1

(
1− 1

b|n|

)
, hc(n) =

sgn(n)
2
√

c− 1

(
1− 1

c|n|

)
.(5.1)

Now since 〈I?hb, u〉E (c) = 〈hb, u〉E (b) for all u ∈ HE (c) , we have

〈hb, v(c)n 〉E (b) = 〈I
?hb, v(c)n 〉E (c) = 〈Khc, v(c)n 〉E (c) = K〈hc, v(c)n 〉E (c) ,(5.2)

following the ansatz that I? should be just a numerical constant (scaling factor).
Suppose for simplicity that n > 0, as the other computation is similar. On the left
side of (5.2), we can compute directly from (2.2):

〈hb, v(c)n 〉E (b) = 2
∞

∑
j=1

bj
( 1− b−j

2
√

b− 1
− 1− b1−j

2
√

b− 1

)
(v(c)n (j)− v(b)n (j− 1))

=
√

b− 1v(c)n (n) =
√

b− 1
n

∑
j=1

1
cn =

√
b− 1

1− c−n

c− 1
.(5.3)

Meanwhile, on the right side of (5.2), the reproducing property gives

〈hc, v(c)n 〉E (c) = hc(n)− [2]hc(o) =
1

2
√

c− 1

(
1− 1

cn

)
.(5.4)

Substituting (5.3) and (5.4) into (5.2) gives
√

b− 1
1− c−n

c− 1
= K

1
2
√

c− 1

(
1− 1

cn

)
,

and so the corresponding spectral invariant is

K = ‖I?|Harm(b)‖ =
√

1− b
1− c

,
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and this is the factor by which I? scales the basis vector hb; see Corollary 3.10.
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