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ABSTRACT. The von Neumann double commutant theorem states that ifN is
a weak-operator topology closed unital, selfadjoint subalgebra of the set B(H)
of all bounded linear operators acting on a Hilbert space H, and if N ′ :=
{T ∈ B(H) : TN = NT for all N ∈ N} denotes the commutant of N , then
N ′′ = N . In this paper, we continue the analysis of not necessarily selfadjoint
subalgebras S of B(H) whose second commutant S ′′ agrees with S . More
specifically, we examine the case where S = D +R, where R is a bimodule
over a masaM in B(H) and D is a unital subalgebra ofM.
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1. INTRODUCTION

Let H be a complex Hilbert space and denote by B(H) the algebra of all
bounded linear operators on H. For a non-empty subset S ⊆ B(H), the com-
mutant of S is the weak operator topology (WOT) closed algebra S ′ := {T ∈
B(H) : TS = ST for all S ∈ S}. The second (or double) commutant of S is sim-
ply S ′′ := (S ′)′. It is a trivial consequence of the definition that S ⊆ S ′′ for all
∅ 6= S ⊆ B(H).

A classic theorem in operator theory is von Neumann’s double commutant
theorem, which states that if A ⊆ B(H) is a self-adjoint algebra of operators
whose kernel kerA :=

⋂
A∈A

ker A = {0}, then the weak-operator topology clo-

sure of A, WOT-CL(A), coincides with A′′. It is remarkable in that it relates a
purely topological property, namely the WOT-closure of a set, to a purely alge-
braic property, namely the set’s double commutant. In particular, if A is a WOT-
closed, unital C∗-subalgebra of B(H), then A = A′′.

In this paper we examine the question of determining which non-selfadjoint
subalgebras of B(H) have the property that A = A′′. We shall say that such
algebras satisfy the double commutant property (DCP). We first concentrate on the
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case whereM⊆ B(H) is a fixed maximal abelian selfadjoint subalgebra of B(H)
(that is, M is a masa), and A = CI +R, where R ⊆ B(H) is a M-bimodule
which is “block-generated" (in a sense to made precise below). In this case, we
give a complete characterization of those subalgebras which satisfy the (DCP).
When dimH < ∞, we extend these results to the case where A = D +R, where
D ⊆ B(H) is a C∗-algebra whose central projections lie in M, and R is an M-
bimodule.

The study of subalgebras of B(H) which have the double commutant prop-
erty is not new. For singly-generated algebras, the question may be rephrased
as asking whether or not the weak-operator topology closed algebra AT gener-
ated by an operator T ∈ B(H) satisfies AT = {T}′′ . In this case, we say that
T belongs to the class (dc). Ruston [14] showed that every algebraic operator
in B(H) belongs to (dc) (see also [20], [21]). Brown and Halmos [2] then showed
that the unilateral shift operator lies in (dc), while Shields and Wallen [17] proved
that every unilateral weighted shift lies in (dc). Turner [20] observed that a nor-
mal operator N lies in (dc) if and only if N is reductive, that is, every invari-
ant subspace of N is invariant for N∗ as well. (Indeed, by Fuglede’s theorem,
{N

′}′ = (C∗(N))
′′
= W∗(N), the von Neumann algebra generated by N. By a

result of Sarason [16], AN = W∗(N) if and only if N is reductive.) From this it
follows that every hermitian operator belongs to (dc). In the same article, Turner
also showed that (dc) includes every non-unitary isometry. Later, Conway and
Wu [3] showed that if Q ∈ B(H) is quasi-normal (i.e., if Q = V|Q| is the po-
lar decomposition of Q, then V|Q| = |Q|V), and if Q does not admit a direct
summand which is normal, then Q ∈ (dc). A result of Deddens and Wogen [6]
implies that T ∈ (dc) when f (T) is normal and lies in (dc), where f is a func-
tion which is analytic in a neighbourhood of the polynomially convex hull of the
spectrum of T, and f is non-constant on each component of its domain. In this
case, {T}′′ = WOT-CL(Alg(T, { f (T)}′′})). It was demonstrated by Feintuch [7]
that the Volterra operator V lies in (dc). Together with Lambert [10], Turner
proved that (dc) includes operator weighted shifts whose operator weights form
a uniformly bounded sequence of invertible operators. Wogen [23] constructed
a (pure) subnormal operator of infinite cyclic multiplicity S so that AS = {S}′ ,
whence AS = {S}′′ . Despite this lengthy list of examples, we are not aware of a
complete characterization of (dc).

For non-selfadjoint and non-singly-generated algebras, we mention the re-
sults of Davidson and Pitts [5] and of Popescu [12], who showed that if n >
1 and Ln denotes the non-commutative analytic Toeplitz algebra generated by the
left-regular representation of the free semigroup F+

n on n generators acting on
`2(F+

n ) via λ(w)ξv = ξwv for all w, v ∈ F+
n , then L′n = Rn (the algebra generated

by the right-regular representation) andR′n = Ln, so thatL′′n = Ln has the (DCP).
The case where n = 1 reduces to the usual analytic Toeplitz algebra, the singly-
generated algebra generated by the unilateral shift (see the result of Brown and
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Halmos quoted above). Kribs [9] has a related result pertaining to a “weighted"
analogue of Ln: more specifically, he defines an n-tuple T = (T1, T2, . . . , Tn) to be
a multi-variate weighted shift if there exists a set Λ = {λi,w : w ∈ F+

n , 1 6 i 6 n}
of scalars such that Tiξw = λi,wξiw for all i, w. He then sets LΛ to be the weak-
operator topology closed, unital subalgebra of B(H) generated by T1, T2, . . . , Tn
and shows that if LΛ satisfies a certain growth condition on the weights (which
he refers to as “condition (6)"), then L′′Λ = LΛ. In a completely different direction,
Blecher and Solel [1] have looked at an abstract operator algebraic version of this
question. Instead of regarding the algebra A ⊆ B(H) as a fixed subalgebra of a
fixed B(H), they consider it simply as a carrier of the operator algebra structure
of A. They show that there exist certain classes of completely isometric repre-
sentations π : A → B(K) for which π(A)′′ = WOT-CL(π(A)). If A is a “dual
operator algebra", then they show there exist classes of completely isometric rep-
resentations π : A → B(K) such that π(A)

′′
= π(A). Finally, we also point out

that an asymptotic version of the commutant and double commutant has been
developed by Hadwin [8], whereby the approximate double commutant appr(S)′′

of a set S ⊆ B(H) is defined as the set of those operators T ∈ B(H) such that
lim

n
‖TAn − AnT‖ = 0 whenever (An)n is a bounded sequence of operators sat-

isfying lim
n
‖SAn − AnS‖ = 0 for all S ∈ S . The appropriate topology for this

notion is the norm topology, and among the many results obtained in [8] are the
fact that if S is the unilateral shift operator, then appr({S})′′ = B(S), the norm-
closed unital algebra generated by S, which of course is isomorphic to the disk
algebra A(D), and that if N is normal, then appr(T)

′′
= C∗(T).

1.1. We begin by introducing some terminology and notation. LetH be a Hilbert
space as above. If {Xα}α is a collection of subsets of H (respectively of B(H)),
then we denote by

∨
α
Xα the norm-closed linear span of {Xα}α in H (respectively

the WOT-closed linear span of {Xα}α in B(H)). In a standard abuse of notation,
given a collection {Pα}α of orthogonal projections B(H), we also denote by

∨
α

Pα

the supremum of the family {Pα}α, which of course is just the orthogonal projec-
tion onto

∨{ranPα}α. Here, as usual, for T ∈ B(H), ranT denotes the range of
T. In fact, all projections considered in this paper will be orthogonal projections,
and thus we shall drop the adjective “orthogonal" from now on. Next, given
projections P and Q in B(H), we define the P, Q-block of B(H) as follows:

RP,Q := QB(H)P = {QTP : T ∈ B(H)}.

IfM⊆ B(H) is a masa and {Pγ, Qγ}γ∈Γ is a collection of projections inM, then
we shall say that a subspaceR of B(H) is block-generated overM if

R =
∨
{RPγ ,Qγ

: γ ∈ Γ}.
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Without loss of generality, we may (and we do) assume that each Pγ 6= 0 6=
Qγ. It is clear that if the masa M is atomic, then any M-bimodule is automat-
ically block-generated (by one-dimensional blocks corresponding to projections
onto the atoms ofM). In particular, in the finite-dimensional setting, everyM-
bimodule is block-generated.

ForW ⊆ B(H), we define the annihilator ofW to be

W⊥ = {T ∈ B(H) : TW = 0 = WT for all W ∈ W}.

The following definition is from [11]. (The reader is warned that our defini-
tion of RP,Q in the present manuscript is different from that used in [11], which
accounts for the apparent discrepancy between the next definition and the one
found in [11].)

DEFINITION 1.1. LetM⊆ B(H) be a masa and letR =
∨{RPγ ,Qγ

: γ ∈ Γ}
be a block-generated bimodule for some family of projections {Pγ, Qγ}γ∈Γ ⊆
M. We say that R is disconnected if there exist Γ1 6= ∅ 6= Γ2 subsets of Γ, and
projections E1, F1, E2, F2 ∈ M so that:

(i) Γ = Γ1 ∪ Γ2;
(ii) {0} 6= ∨{RPγ ,Qγ

: γ ∈ Γk} ⊆ REk ,Fk , k = 1, 2;
(iii) E1 ∨ F1 is perpendicular to E2 ∨ F2.

Otherwise we shall say thatR is connected.

If D ∈ M∩R′ is a projection and γ ∈ Γ, then a routine calculation shows
that either DRPγ ,Qγ

D = 0 or (I − D)RPγ ,Qγ
(I − D) = 0. Thus, we may alterna-

tively say thatR =
∨{RPγ ,Qγ

: γ ∈ Γ} is disconnected if there exist Γ1 6= ∅ 6= Γ2

as above and a projection D ∈ M∩R′ so that DRD 6= 0 6= (I − D)R(I − D).
Indeed, one may take D = E1 ∨ F1 from the above definition. In this case we
shall also say that ranD disconnects R. (Spaces which disconnect R need not be
unique.)

The terminology is motivated by the following. Suppose that H is a finite-
dimensional Hilbert space and that the masa M is identified with the algebra
Dn ⊆ Mn(C) ' B(H) of diagonal matrices with respect to a fixed basis
{e1, e2, . . . , en} of H. If each RPγ ,Qγ

above is a Dn-bimodule, so is R. In this
case, we can associate a graph GR to R, where the vertices of GR are the ba-
sis vectors e1, e2, . . . , en. We define an edge from ej to ei in GR if and only if
ei,j := ei ⊗ e∗j ∈ R. (For x, y ∈ H, we denote by x ⊗ y∗ the rank-one operator
on H given by x ⊗ y∗(z) := 〈z, y〉x. To say that R is a Dn-bimodule amounts to
saying that for each R = [ri,j] ∈ R, we have that ri,jei ⊗ e∗j ∈ R.)

The space R is connected precisely when GR is a connected graph. When
GR is disconnected, the space K spanned by the vertices of a component of the
graph disconnects R. Of course, in this finite-dimensional setting, it suffices to
consider the case where the index set Γ is finite.
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EXAMPLE 1.2. Let {e1, e2, . . . , e5} be a basis forC5,M = D5 denote the masa
consisting of all diagonal 5× 5 matrices relative to this basis, and letR ⊆M5(C)
be the space spanned by {e1,3, e3,4, e1,4}, where {ei,j = ei ⊗ e∗j : 1 6 i, j 6 5} is the
set of matrix units of M5(C). ThenR is a connected subspace of M5(C).

The space S:=span{e1,3, e2,4}⊆M5(C) is disconnected, and K:=span{e1, e3}
disconnects S , as does L := span{e1, e3, e5}.

EXAMPLE 1.3. From the comments above, we see that if P and Q are pro-
jections in B(H), then RP,Q is a connected subspace of B(H). This can also be
deduced from an application of Theorem 1.6(ii) below.

If A ⊆ B(H), then we denote by C∗(A) (respectively W∗(A)) the C∗-sub-
algebra (respectively the von Neumann subalgebra) of B(H) generated by A.
Observe that a projection E = E∗ = E2 lies in R′ if and only if E ∈ C∗(R)′ if and
only if E ∈W∗(R)′.

DEFINITION 1.4. LetM ⊆ B(H) be a masa in B(H), and R =
∨{RPγ ,Qγ

:
γ ∈ Γ} be a block-generated M-bimodule over the masa M. We say that a
projection E = E2 = E∗ ∈ M∩R′ is distinguished if, whenever we decompose
E = E1 + E2 with E1, E2 (necessarily mutually orthogonal) projections inM∩R′,
it follows that either E1 = 0 or E2 = 0.

Of course, any graph may be partitioned into a disjoint union of its compo-
nents. The following result is the analogue of this for block-generated modules
over a masa.

PROPOSITION 1.5. LetM⊆ B(H) be a masa and letR =
∨{RPγ ,Qγ

: γ ∈ Γ}
be a block-generated M-bimodule for some family of projections {Pγ, Qγ}γ∈Γ ⊆ M.
Then there is a partition {Γi : i ∈ I} of Γ so that the subspaces Ri =

∨
λ∈Γi

RPλ ,Qλ
are

connected for each i ∈ I, and i 6= j ∈ I implies thatRi ∨Rj is disconnected.

Proof. Fix γ0 ∈ Γ, and 0 6= xγ0 ∈ ranPγ0 . Then, as is well-known and
easy to verify,Hγ0 := W∗(R)xγ0 is a reducing subspace for W∗(R), and thus the
projection Exγ0

ofH ontoHγ0 lies in W∗(R)′. We claim that Exγ0
∈ M as well.

Indeed, suppose that γ ∈ Γ and that x ∈ H. Then W∗(RPγ ,Qγ
) = FγB(H)Fγ,

where Fγ = Pγ ∨Qγ ∈ M. If Fγx = 0, then W∗(RPγ ,Qγ
)x = 0, and so the projec-

tion Eγ,x ofH onto W∗(RPγ ,Qγ
)x equals 0, which obviously lies inM. If Fγx 6= 0,

then
W∗(RPγ ,Qγ

)x = ranFγ,

so that again, Eγ,x = Fγ ∈ M.
Next, if α, β∈Γ and x∈H, then either Fβx=0 and W∗(RPα ,Qα

)W∗(RPβ ,Qβ
)x=

0, or

W∗(RPα ,Qα
)W∗(RPβ ,Qβ

)x = W∗(RPα ,Qα
)Eβ,xH =

∨
{Eα,z : z ∈ Eβ,xH}.

But then Eα,z ∈ M for all α, z and so
∨{Eα,z : z ∈ Eβ,xH} ∈ M.
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Similarly, (W∗(RPα ,Qα
)+W∗(cRPβ ,Qβ

))x = Eα,xH+Eβ,xH = (Eα,x ∨ Eβ,x)H,
and Eα,x ∨ Eβ,x ∈ M.

An elementary but tedious induction argument shows that the projection
onto

alg{W∗(RPγ ,Qγ
) : γ ∈ Γ}x

lies inM, and hence the projection onto Ex := W∗(R)x lies inM.
LetHe := W∗(R)H. Then the projection Ee ofH ontoHe is

Ee :=
∨

x∈H
Ex ∈ M∩R′.

Without loss of generality, therefore, we may restrict our attention to He, where
W∗(R) acts non-degenerately.

Suppose that Exγ0
= E1 + E2, where E1, E2 ∈W∗(R)′ are projections.

Now Pγ0 ∈ W∗(RPγ0 ,Qγ0
) ⊆ W∗(R) and so xγ0 = Pγ0 xγ0 ∈ W∗(R)xγ0 =

Hγ0 . Since xγ0 = Exγ0
xγ0 = E1xγ0 + E2xγ0 , either E1xγ0 6= 0 or E2xγ0 6= 0.

Without loss of generality, we assume that E1xγ0 6= 0.
Next, Pγ0 E1 = E1Pγ0 as Pγ0 ∈W∗(R) while E1 ∈W∗(R)′. Thus

0 6= E1xγ0 = E1Pγ0 xγ0 = Pγ0 E1xγ0 ∈ ranPγ0 .

Since Pγ0B(H)Pγ0 ⊆ W∗(R) and 0 6= E1xγ0 , any invariant subspace for
W∗(R) which contains E1xγ0 must contain ranPγ0 and thus must contain xγ0 . But
then ranE1 ⊆ W∗(R)xγ0 = ranExγ0

, i.e. E1 > Exγ0
. This implies that E1 = Exγ0

and that E2 = 0, so that Exγ0
is a distinguished projection. Observe that the same

argument implies that for any E ∈ R′ and any γ ∈ Γ, either ERPγ ,Qγ
E = 0 or

ERPγ ,Qγ
E = RPγ ,Qγ

.
Let J = {{Eβ}β∈B ⊆ M∩W∗(R)′ : each {Eβ} is a family of mutually

orthogonal distinguished projections}, and partially order J by inclusion. Since
{0} ∈ J , J 6= ∅. Let C = {CB}B∈Ω be a chain in J . Let C :=

⋃
B∈Ω

CB. Then

E1, E2 ∈ C imply that there exist B0 ∈ Ω so that E1, E2 ∈ B0 in which case E1, E2
are mutually orthogonal distinguished projections inM∩W∗(R)′. Thus C ∈ J
and clearly C is an upper bound for C. By Zorn’s lemma, J admits a maximal
elementM = {Ei}i∈I. Let F := SOT-∑i∈I Ei. Clearly F ∈ M∩W∗(R)′ since each
Ei ∈ M∩W∗(R)′, and the latter is a von Neumann algebra. We claim that F = I.

Otherwise, the fact that W∗(R) acts non-degenerately on H implies that
there exists y ∈ ran(I − F) so that Hy := W∗(R)y 6= 0. But then the projection
Ey of H onto Hy is distinguished by the argument above and is orthogonal to F
whence orthogonal to each Ei, ∈ I. Thus thenM∪{Ey} >M, contradicting the
maximality of the familyM.

For i ∈ I, we set Γi = {γ ∈ Γ : EiRPγ ,Qγ
Ei 6= {0}}. The maximality of the

family {Ei : i ∈ I} implies that each Ri =
∨

γ∈Γi

RPγ ,Qγ
is a connected subspace of

B(H). The fact that I = SOT-∑i∈I Ei ensures that
⋃
i∈I

Γi = Γ.



NON-SELFADJOINT DOUBLE COMMUTANT THEOREMS 93

Finally, let i ∈ I. ThenRi =
∨

γ∈Γi

RPγ ,Qγ
and, from above, γ ∈ Γi implies that

EiRPγ ,Qγ
Ei = RPγ ,Qγ

so that EiRiEi = Ri. If i 6= j ∈ I, then Ri = EiRiEi and
Rj = EjRjEj. But Ei is orthogonal to Ej, showing that Ri ∨ Rj is disconnected
(by ranEi, for example).

Again, when H is finite-dimensional, this simply corresponds to letting Ri
be the space spanned by the matrix units corresponding to the vertices in the ith

component of the graph GR.
The following result, taken from the same paper as before, will prove useful

in the next section.

THEOREM 1.6 ([11], Proposition 5.4, Theorem 5.9). LetM⊆ B(H) be a masa
and letR =

∨{RPγ ,Qγ
: γ ∈ Γ} be a block-generated bimodule overM with Pγ 6= 0 6=

Qγ for all γ. Then
(i) the annihilatorR⊥ ofR satisfies

R⊥ = RQ⊥0 ,P⊥0
,

where P0 =
∨
γ

Pγ and Q0 =
∨
γ

Qγ.

(ii)R is connected if and only ifR′ = R⊥ +CI.

2. THE SINGULAR CASE OF THE SCALAR DIAGONAL

2.1. Let H be a Hilbert space and let M be a masa in B(H). In our search for
subalgebras of B(H) which satisfy the DCP, we shall begin by considering alge-
bras S ⊆ B(H) of the form S = CI +R, whereR is a block-generated bimodule
overM. As we have seen in Proposition 1.5, we can decompose R into a direct
sumR =

⊕
i
Ri, where eachRi is a connected subspace of B(H).

We begin with a simple but useful observation.

DEFINITION 2.1. LetM ⊆ B(H) be a masa and let R be a block-generated
bimodule overM. Let R =

∨
i∈I
Ri be the decomposition of R into its connected

components as in Proposition 1.5. For each i ∈ I, let

Ei :=
∨
{Pγ : γ ∈ Γi}, Fi :=

∨
{Qγ : γ ∈ Γi}.

We shall refer toREi ,Fi as the block closure ofRi, and toRc =
⊕
i∈I
REi ,Fi as the block

closure ofR.

REMARK 2.2. Clearly Ri ⊆ REi ,Fi and REi ,Fi is the smallest block-subspace
containing Ri in the sense that if Ei 6 Ei and Fi 6 Fi are such that Ri ⊆ REi ,Fi

,
then Ei = Ei and Fi = Fi for each i ∈ I.
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Since (Ei ∨ Fi) ⊥ (Ej ∨ Fj) whenever i 6= j ∈ I, we may write

R =
⊕
i∈I
Ri ⊆

⊕
i∈I
REi ,Fi = Rc.

Now R′ = (
⊕

i∈IRi)
′ =

⋂
i∈I
R′i. But each Ri is a connected subspace, and

so as in Theorem 1.6,

R′i = CI +RF⊥i ,E⊥i
= (REi ,Fi )

′,

from which it follows that R′ = ⋂
i
R′i =

⋂
i
(REi ,Fi )

′ = R′c. In other words, the

commutant (and a fortiori the second commutant) cannot distinguish betweenR
and its block closure.

Let D ⊆ M be a subspace and suppose that S := D +R satisfies the DCP.
Then

S ′ = (D +R)′ = D′ ∩R′ = D′ ∩R′c ⊆ R′c,

from which it follows that

S = S ′′ ⊇ R′′c ⊇ Rc.

SinceR ⊆ Rc, we find that S = D+R = D+Rc. Obviously, this last argument
does not depend upon the inclusion D ⊆ M, but this is the only case where we
shall apply it.

Because of these observations, we shall turn our attention to characterizing
those block-closed (block-generated) bimodules R for which S := D +R satisfies
the DCP. That is, we shall consider modules of the form

R =
⊕

i
REi ,Fi ,

where, for all i ∈ I, Ei 6= 0 6= Fi. The notation is meant to imply that (Ei ∨ Fi) ⊥
(Ej ∨ Fj) if i 6= j.

Our first result concerns the case where there is only one such summand;
that is, whenR is already a connected subspace of B(H).

THEOREM 2.3. Let H be a Hilbert space, M ⊆ B(H) be a masa. Suppose that
0 6= R ⊆ B(H) is a block-generated bimodule over M. Suppose also that R is con-
nected, and let S = CI +R. The following are equivalent:

(i) S satisfies the DCP, i.e. S = S ′′;
(ii) either S = B(H) or there exist projections E 6= I 6= F in M so that S =

CI +RE,F.

Proof. (i) implies (ii). It follows from Remarks 2.2 that we may assume that
R = Rc is block-closed. A block-closed, connected space is of the form RE,F for
some choice of projections E, F ∈ M, and hence S = CI +RE,F. SinceR 6= 0, we
have that E 6= 0 6= F.
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There remains only to show that we can not have E = I 6= F, nor F = I 6= E.
Now if E = I or F = I, thenRF⊥ ,E⊥ = 0, and soR′E,F = CI. But then

(CI +RE,F)
′′ = (R′E,F)

′ = (CI)′ = B(H),

and so F = I = E.
(ii) implies (i). If S = B(H), then clearly S ′′ = B(H)′′ = (CI)′ = B(H), so

S satisfies the DCP. If E 6= I 6= F, then

S ′′ = (CI +RE,F)
′′ = (CI +RF⊥ ,E⊥)

′ = (RF⊥ ,E⊥)
′ = CI +RE,F = S ,

by Theorem 1.6.

Note that D +R = D +Rc need not imply that R = Rc, even when S =
D +R satisfies the DCP. For example, in M2(C), we may have

R =

[
∗ ∗
∗ 0

]
,

so that E = I = F and Rc = RE,F = M2(C). On the other hand, suppose that
E 6= I 6= F and that CI +R = CI +RE,F. Clearly R ⊆ RE,F. Since E 6= I 6= F,
we can choose 0 6= e ∈ E⊥H with ‖e‖ = 1. For any X ∈ RE,F, we have that
X ∈ R + CI, and so we can find R ∈ R, κ ∈ C so that X = R + κ I. But then
0 = Xe = Re + κ Ie = κe, so we must have κ = 0. That is, X = R ∈ R. Hence
RE,F ⊆ R, from which equality follows.

There is a second minor pathology which we must keep in mind, namely:
even when R is block-closed, it is possible that M ⊆ D +R although M 6⊆
R. For example, let R = C ⊕ 0 and note that S = CI +R can be viewed as
S = CI + (RP1,P1 ⊕RP2,P2) where Pi denotes the orthogonal projection onto Cei,
i = 1, 2. The problem lies in that the decomposition of S as a sum ofD (in this case
D = C) with a block-closed, block-generated bimodule is not unique. In general,
the difference between any two such block-closed bimodules is at most diagonal
blocks corresponding to atoms of the masa, and when D = CI, we can add or
subtract at most one such block. To circumvent this issue in the next proposition,
we assume that ifM⊆ CI +R, thenM⊆ R.

PROPOSITION 2.4. LetH be a Hilbert space andM⊆ B(H) be a masa. Suppose
that {0} 6= R ⊆ B(H) is a block-closed bimodule overM, say

R =
⊕
REi ,Fi : i ∈ I,

with the understanding that ifM⊆ S := CI +R, thenM⊆ R. If S = S ′′, then the
following are equivalent:

(i) ∑
i

Ei = I (convergence being in the SOT).

(ii) ∑
i

Fi = I (convergence being in the SOT).

Furthermore, if either of these conditions hold, then Ei = Fi for all i ∈ I.
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Conversely, if {Ei}i∈I is a mutually orthogonal family of projections for which
∑
i

Ei = I, and ifR =
⊕

i
REi ,Ei , then S = CI +R = R satisfies the DCP.

Proof. (i) implies (ii). Let Ri = REi ,Fi , i ∈ I, and observe that this implies
that

(i) (Ei ∨ Fi) ⊥ (Ej ∨ Fj) if i 6= j, and hence
(ii) I > ∑

i
(Ei ∨ Fi) > ∑

i
Ei = I,

from which we deduce that Fi 6 Ei for all i ∈ I.
For each i ∈ I,Ri is a connected space, and so by Theorem 1.6

R′i = R⊥i +CI.

In particular, R′i|ranEi = CI|ranEi .
From this it follows that

R′ =
⋂

i
R′i ⊆ ∩{T ∈ B(H) : T|ran Ei is scalar} ⊆

⊕
i
CEi.

HenceR′′ ⊇ ⊕
i

EiB(H)Ei. In particular,R′′ = S ′′ = S containsM. Our hypoth-

esis then ensures thatR ⊇M. ThusR = S ⊇ ⊕
i

EiB(H)Ei.

Now,R =
⊕

i
REi ,Fi , and so for each k ∈ I,

Ek

(⊕
i
EiB(H)Ei

)
Ek = EkB(H)Ek ⊆ Ek

(⊕
i
REi ,Fi

)
Ek.

But Ek ⊥ Ei if i 6= k, so that

EkB(H)Ek ⊆ REk ,Fk ,

which implies that Fk > Ek for all k ∈ I. Thus Fk = Ek for all k ∈ I.
(ii) implies (i). The argument is similar to that of (i) implies (ii). Alter-

natively, one may simply take adjoints of all the spaces involved and apply (i)
implies (ii) in that setting.

As for the last statement, if {Ei}i∈I is a mutually orthogonal family of pro-
jections for which ∑

i
Ei = I, and if R =

⊕
i
REi ,Ei , then S = R is a unital von

Neumann algebra, and hence by von Neumann’s double commutant theorem,
S ′′ = S .

PROPOSITION 2.5. LetH be a Hilbert space andM⊆ B(H) be a masa. Suppose
that 0 6= R ⊆ B(H) is a block-closed bimodule overM, say

R =
⊕

i
REi ,Fi

where (Ei ∨ Fi) ⊥ (Ej ∨ Fj) if i 6= j.
If ∑

i
Ei 6= I 6= ∑

i
Fi, and ifM⊆ CI +R implies thatM⊆ R, then S := CI +R

satisfies the DCP.
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Proof. The case where I is a singleton set is handled by Theorem 2.3 above.
Suppose, therefore, that |I| > 1. Then, applying Theorem 1.6 to the con-

nected componentsREi ,Fi ofR, we get

S ′ = R′ =
⋂

i
R′Ei ,Fi

=
⋂

i
(CI +R⊥Ei ,Fi

) =
⋂

i
(CI +RF⊥i ,E⊥i

).

Thus

S ′ ⊇
⋂

i
RF⊥i ,E⊥i

= RF⊥0 ,E⊥0

where E0 =
∨
i

Ei and F0 =
∨
i

Fi. By our hypothesis, the families {Ei}i and {Fi}i

are mutually orthogonal and ∑
i

Ei 6= I and ∑
i

Fi 6= I. Hence E0 6= I and similarly

F0 6= I. Since RF⊥0 ,E⊥0
is a non-trivial, connected subspace of B(H), we then have

S ′′ ⊆ (RF⊥0 ,E⊥0
)′ = R⊥F⊥0 ,E⊥0

+CI = RE0,F0 +CI.

Thus if X ∈ S ′′, then X = F0X0E0 + κX I for some X0 ∈ B(H) and κX ∈ C.
For each i ∈ I, set Di denote the orthogonal projection ofH onto ran(Ei ∨ Fi),

and set D0 = I − ∑
i

Di. Then the collection {Di}i∈I ∪ {D0} consists of mutually

orthogonal projections with Ei, Fi 6 Di for all i ∈ I.
Now, it is clear that Di ∈ S ′ for each i ∈ I, and so X ∈ S ′′ implies that

XDi = DiX for all i ∈ I∪ {0}. Hence we may write

X = ∑
i∈I∪{0}

Xi,

where each Xi = DiXDi. Then

Xi = DiXDi = Di(F0X0E0 + κX I)Di = FiX0Ei + κXDi,

and thus

X = ∑ FiX0Ei + κX

(
∑
i∈I

Di

)
+ κXD0.

In particular, X ∈ S .
Thus S ′′ ⊆ S ⊆ S ′′, and we are done.

We illustrate where the problem lies when ∑
i

Ei = I in the next example.

EXAMPLE 2.6. Consider R1 =
[ ∗ ∗ ∗

0 0 0
0 0 0

]
⊆ M3(C). Then R1 is a connected,

block-closed space, and clearly the masa D3 of 3× 3 diagonal matrices does not
lie in S1 := CI +R, while S ′1 = CI and S ′′1 = M3(C) 6= S1. In this example,
E1 = I 6= F1 = e1 ⊗ e∗1 .
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Let R2 =
[

0 ∗
0 0
]
, and observe that R := R1 ⊕R2 is still block-closed and

again we have that D5 6⊆ S2 := CI +R. Nevertheless,

S ′2 =


α 0 0 0 0
0 α 0 0 0
0 0 α 0 0
0 ∗ ∗ β ∗
0 0 0 0 β

 ,

and S ′′2 = S2.
In particular, having a connected component which does not satisfy the

DCP on the space upon which it acts does not prevent S from satisfying the
DCP. We shall return to this in the next section.

By combining the above results, we obtain the main result of this section:

THEOREM 2.7. Let H be a Hilbert space andM be a masa in B(H). Let R be a
block-generated bimodule overM, and let S = CI +R. Suppose thatM ⊆ CI +R
implies thatM⊆ R. Then the following are equivalent:

(i) S satisfies the DCP;
(ii) S = CI +R = CI +Rc, and either

(a) there exist mutually orthogonal projections {Ei}i∈I such that ∑
i

Ei = I and

Rc =
⊕
i∈I
REi ,Ei , or

(b)Rc =
⊕
i∈I
REi ,Fi is block-closed and ∑

i
Ei 6= I 6= ∑

i
Fi.

Proof. Note that R ⊆ Rc means that if M ⊆ CI +Rc = CI +R, then
M⊆ R ⊆ Rc.

(i) implies (ii). Suppose that S = S ′′. By Remarks 2.2, S = CI +R = CI +
Rc, whereRc is the block closure ofR. WritingRc =

⊕
i
REi ,Fi as in Definition 2.1,

either ∑
i

Ei = I, in which case by Proposition 2.4 Fi = Ei for all i ∈ I and so

Rc =
⊕

i
REi ,Ei , or — by Proposition 2.4 once again — ∑

i
Ei 6= I 6= ∑

i
Fi.

(ii) implies (i). If S = CI +R = CI +Rc and Rc =
⊕

i
REi ,Ei where ∑

i
Ei =

I, then by Proposition 2.4, S = S ′′. If Rc =
⊕

i
REi ,Fi is block-closed and ∑

i
Ei 6=

I 6= ∑
i

Fi, then S = S ′′ by Proposition 2.5.

3. CONSTRUCTIONS THAT PRESERVE THE DOUBLE COMMUTANT PROPERTY

3.1. In this section we consider constructions on subalgebras of B(H) that pre-
serve the property that a given algebra is equal to its second commutant.
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The following simple result is surely known, and its proof is omitted.

PROPOSITION 3.1. Suppose that H1 and H2 are Hilbert spaces and that A ⊆
B(H1), B ⊆ B(H2) are unital algebras. Then

(i) (A⊕B)′ = (A′ ⊕B′) as a subalgebra of B(H1 ⊕H2).
(ii) In particular, ifA = A′′ and B = B′′, then (A⊕B) = (A⊕B)′′ as a subalgebra

of B(H1 ⊕H2).

PROPOSITION 3.2. Suppose that A ⊆ Mn(C) and B ⊆ Mm(C) are unital alge-
bras. Then

(i) (A⊗B)′ = A′ ⊗B′; and
(ii) if A = A′′ and B = B′′, then (A⊗ B)′′ = A⊗ B as subalgebras of Mn(C)⊗

Mm(C).

Proof. (i) As was the case with direct sums, it is routine to verify that A′ ⊗
B′ ⊆ (A⊗B)′.

Suppose next that U =
r
∑

i=1
Xi ⊗ Yi ∈ (A⊗ B)′. Without loss of generality,

we may assume that the set {Y1, Y2, . . . , Yr} is linearly independent. Let A ∈ A,
and consider A⊗ I ∈ A⊗B. Then

0 = [U, A⊗ I] =
r

∑
i=1

[Xi, A]⊗Yi.

But the linear independence of the Yi’s then implies that [Xi, A] = 0 for all 1 6 i 6
r. Since A ∈ A was arbitrary, this in turn implies that Xi ∈ A′ for all 1 6 i 6 r.

Taking linear combinations of the Xi ⊗Yi’s, we may also write

U =
s

∑
j=1

Wj ⊗ Zj,

with Wj ∈ span{X1, . . . , Xr}⊆A′ linearly independent and Zj ∈ span{Y1, . . . , Yr}
for each 1 6 j 6 s. But then

0 = [U, I ⊗ B] = ∑
j

Wj ⊗ [Z, Bj]

which in turn implies that Zj ∈ B′ for all 1 6 j 6 s. Taken together, we may
conclude that

(A⊗ B)′ ⊆ A′ ⊗B′,
and hence that the two are equal.

(ii) As was the case for Proposition 3.1, under the given assumptions,A and
B are unital algebras.

Hence, by part (i),
(A⊗B)′ = A′ ⊗B′.

Since A′ and B′ are both unital algebras,

(A⊗B)′′ = (A′ ⊗B′)′ = A′′ ⊗B′′ = A⊗B.
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In comparing the statements of Proposition 3.1 and Proposition 3.2, one may
ask why we are required to assume that A and B sit inside finite-dimensional
matrix algebras as opposed their being subalgebras of B(H1) and B(H2) for (po-
tentially infinite-dimensional) Hilbert spaces. The issue lies in our ability to ex-
press an element of B(H1⊗H2) as a finite sum of elementary tensors of the form

U =
r
∑

i=1
Xi ⊗ Yi with Xi ∈ B(H1) and Yi ∈ B(H2). In infinite dimensions,

this fails, and there is no apparent reason why one should be able to even ap-
proximate a fixed element of (A⊗ B)′ by finite sums of elementary tensors from
(A⊗B)′ ∩ (B(H1)⊗B(H2)).

In particular, the question of whether or not Proposition 3.2 holds in the case
whereA and B are von Neumann algebras acting on infinite-dimensional Hilbert
spaces was known as the commutant problem and its solution was a major result
of Tomita [19], (see also [18], [15]) and the original proof (and a number of its sim-
plifications) make use of the theory of unbounded operators (see, however, [13]).

As a simple corollary to these results, we obtain:

COROLLARY 3.3. Let n, m > 1 be integers and suppose that A ⊆Mn(C) satisfies
A = A′′. Then A⊕Mm(C) = (A⊕Mm(C))′′ and A⊗Mm(C) = (A⊗Mm(C))′′.

PROPOSITION 3.4. Suppose that A ⊆ B(H) satisfies the DCP and that P ∈ A
is a projection. If B = PAP|PH, then B satisfies the DCP as a subalgebra of B(PH).

Proof. Since P ∈ A, relative to the decompositionH = PH⊕ P⊥H, we have

A =

[
PAP PAP⊥

P⊥AP P⊥AP⊥

]
.

Let X ∈ A′, and write X =
[

X1 X2
X3 X4

]
relative to the same decomposition. Then

P ∈ A implies that X2 = X3 = 0.
Furthermore, for all A1 ∈ PAP, we have that A =

[
A1 0
0 0

]
∈ A, and so

XA = AX implies that X1 A1 = A1X1. In other words, X1 ∈ (PAP|PH)′, or
equivalently,

PA′P|PH ⊆ (PAP|PH)′.

Now suppose that Z1 ∈ B(PH) satisfies Z1X1 = X1Z1 for all X =
[

X1 0
0 X4

]
∈

A′. Then [
Z1 0
0 0

] [
X1 0
0 X4

]
=

[
X1 0
0 X4

] [
Z1 0
0 0

]
,

and thus
[

Z1 0
0 0

]
∈ A′′ = A. That is to say, Z1 ∈ PA′′P|PH = PAP|PH.

In particular, if Z1 ∈ (PAP|PH)′′, then Z1Y1 = Y1Z1 for all Y1 ∈ (PAP|PH)′,
and hence X1Z1 = Z1X1 for all X =

[
X1 0
0 X4

]
∈ A′.

From above, Z1 ∈ PAP|PH, and so (PAP|PH) ⊇ (PAP|PH)′′.
Since the reverse inclusion is immediate, we obtain the desired equality.
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PROPOSITION 3.5. If A,B ⊆ B(H) satisfy DCP, then so does A∩ B.

Proof. We have (A ∩ B)′′ ⊆ (A′ + B′)′ = A′′ ∩ B′′ = A ∩ B. Since we
always have that (A∩ B)′′ ⊇ A∩ B, we conclude that (A∩ B)′′ = A∩ B.

PROPOSITION 3.6. Suppose that S ⊆ B(H), P is a projection, and that

T = {PSP + P⊥SP⊥ : S ∈ S}

is a subalgebra of S . If S = S ′′, then T = T ′′.

Proof. Note that T = S ∩ (B(PH)⊕B(P⊥H)) and apply Proposition 3.5.

It is worth noting that the converse of this result fails.

EXAMPLE 3.7. Let S = {
[

a b
0 d

]
: a, b, d ∈ C} ⊆ M2(C), and let P =

[
1 0
0 0
]
.

Then T = {PSP + P⊥SP⊥ : S ∈ S} = D2(C), the algebra of 2 × 2 diagonal
matrices. Thus T ′′ = T , while S ′ = CI, and hence S ′′ = M2(C).

We thank the referee for providing us with the following example:

EXAMPLE 3.8. Let S = T3(C), the algebra of 3× 3 upper triangular matrices
over C as a subset of M3(C). Let P = diag(1, 0, 0), Q = diag(0, 1, 0), and R =
diag(0, 0, 1) be the three mutually orthogonal diagonal projections in S . Then
{PSP + QSQ : S ∈ S} and {QSQ + RSR : S ∈ S} satisfy the DCP in M2(C), but
S does not satisfy the DCP in M3(C).

Finally, we point out that the DCP is not stable under homomorphisms.

EXAMPLE 3.9. Suppose that S=
{[

α ∗ 0
0 ∗ 0
0 0 α

]}
=CI+RPQ, where P=diag(0, 1, 0)

and Q = diag(1, 1, 0). Then by Theorem 2.3, S = S ′′. Nevertheless, the map

ϕ : S 7→ T2α γ 0
0 β 0
0 0 α

 7→
[

α γ
0 β

]
is a surjective homomorphism, but ϕ(S)′ = T ′2 = CI, whence ϕ(S)′′ = M2(C) 6=
ϕ(S).

We remark that although this may look like the same kind of compression
that occurs in Proposition 3.4, in the current example, the projection Q onto whose
range we are compressing does not lie in the algebra S .

On the other hand, if we let A := {S⊕ ϕ(S) : S ∈ S} ⊆ M5(C), then it is
routine to verify that

• A is an algebra, and
• A′′ = A.

This raises an interesting question, namely: suppose that T = T ′′ ⊆Mn(C)
for some n > 1 and that ϕ : T → Mm(C) is a homomorphism. Does A :=
{T ⊕ ϕ(T) : T ∈ T } satisfy the DCP?
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We consider a particular instance of this question which not only proves
our assertion about the algebra A ⊆ M5(C) mentioned above, but also allows
us to obtain an alternate proof of a result of Wedderburn, who showed that in
finite dimensions, every singly-generated (unital) algebra satisfies the DCP (see
Section 4.8).

LEMMA 3.10. LetH be a Hilbert space andA ⊆ B(H) be an algebra that satisfies
the DCP. Suppose that M ⊆ H is an invariant subspace for A, and let P denote the
orthogonal projection ofH ontoM. If

B := {T ⊕ (PTP)|ranP : T ∈ A},

then B satisfies the DCP as a subalgebra of B(H⊕M).

Proof. IfM = {0}, there is nothing to prove.
Otherwise, let N = (I − P)H and note that T ∈ A implies that T =

[
T1 T2
0 T4

]
relative to the decomposition H = M⊕N . An arbitrary element of B is of the

form
[

T1 T2 0
0 T4 0
0 0 T1

]
. If Q = IH ⊕ 0 ∈ B(H⊕M), then Q ∈ B′ and hence YQ = QY

for all Y ∈ B′′. This implies that Y ∈ B′′ is of the form
[

Y1 Y2 0
Y4 Y5 0
0 0 Y9

]
relative to the

decompositionM⊕N ⊕M ofH⊕M.
For each X ∈ A′ ⊆ B(H), X⊕ 0 ∈ B′, which implies that

[
Y1 Y2
Y4 Y5

]
commutes

with X, whence
[

Y1 Y2
Y4 Y5

]
∈ A′′ = A. In particular, Y4 = 0. Finally, note that

L :=
[ 0 0 I

0 0 0
0 0 0

]
∈ B′, which implies that YL = LY. From this it follows that Y9 = Y1.

Hence Y ∈ B and thus B satisfies the DCP.

PROPOSITION 3.11. Let A ⊆ B(H) be an algebra that satisfies the DCP and let
s > 1. Suppose thatM1,M2, . . . ,Ms are invariant subspaces of A, and let Pk denote
the orthogonal projection ofH ontoMk, 1 6 k 6 s. Let

B := {T ⊕ (P1TP1)|ranP1 ⊕ (P2TP2)|ranP2 ⊕ · · · ⊕ (PsTPs)|ranPs : T ∈ A}.

Then B ⊆ B(H⊕M1 ⊕M2 ⊕ · · · ⊕Ms) satisfies the DCP.

Proof. Let B0 := A, so that B0 satisfies the DCP, and for 1 6 k 6 s, let

Bk := {T ⊕ (P1TP1)|ranP1 ⊕ (P2TP2)|ranP2 ⊕ · · · ⊕ (PkTPk)|ranPk : T ∈ A}.

Observe thatMk ⊕ {0} (for an appropriately large {0}) is an invariant subspace
of Bk−1, and then apply Lemma 3.10 to conclude that Bk satisfies the DCP. The
result follows by (finite) induction.

In Section 4.8, we use this proposition to prove that every singly generated
matrix algebra satisfies the DCP.
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4. FINITE-DIMENSIONAL ALGEBRAS

4.1. In this section we restrict our attention to the case where dimH < ∞, so
that H ' Cn for some n > 1. We begin by studying the class of algebras of the
form S = D +R which satisfy the DCP, where D ⊆ Dn is a unital algebra and
R is a Dn bimodule. Equipped with a characterization in this setting, we show
how the results of Section 3 may be used to characterize more general algebras
S ⊆Mn(C) which satisfy the DCP.

The issue that arose in Proposition 2.4 and Proposition 2.5 regarding pro-
jections in D +R which do not lie in R resurfaces here. The issue is that our
decomposition S = D +R does not uniquely determine D nor R. In order to
properly state and prove our results, we shall need to describe a specific decom-
position of S which is unique.

4.2. Consider the algebra R = (M2(C)⊕ 0⊕C⊕ 0) ⊆ M5(C). Let D = CI3 ⊕
CI2. Then S = M2 ⊕D3. Observe that R = Rc is already block-closed, and yet
S = D5 +R is a second decomposition of S as the sum of a diagonal algebra with
a block-closed algebra. Alternatively, and for our purposes more importantly, S
is itself aDn-bimodule. In order to circumvent this issue, we turn to the following
device.

4.3. THE STANDARD FORM. LetR ⊆Mn(C) be a bimodule over Dn and let D ⊆
Dn be a unital algebra. Let S = D +R. We define the diagonal completion RS of
R (relative to S) as follows:

RS := span{R, {e⊗ e∗ : e⊗ e∗ ∈ Dn ∩ S}}.

That is, RS is the largest Dn-bimodule contained in S . Clearly R ⊆ RS ⊆ S
implies that S = D +R = D +RS . We say that R is diagonally complete (relative
to S) ifR = RS .

Thus, in the above example, RS = M2 ⊕D3 is the diagonal completion of
R relative to S . Note thatD is still not uniquely determined, since S = 0+RS =
D5 +RS . The final ingredient we shall add to the mix is to remove as much of
RS from D as possible.

Let Z := span{e ⊗ e∗ : e ⊗ e∗ ∈ Dn ∩ RS}, so that Z is the largest di-
agonal projection in RS . Let {D1, D2, . . . , Dt} denote the minimal projections
in D (minimal in terms of the usual order on projections imposed by range in-

clusion), so that DiDj = 0 if i 6= j, and I =
t

∑
i=1

Di. For each 1 6 i 6 t, let

Ci = (I − Z)Di ∈ Dn ∩ S . After reindexing if necessary, we can find 0 6 s 6 t
so that Ci 6= 0 if and only if 1 6 i 6 s. Set DS = span{C1, C2, . . . , Cs}. Then
S = D +RS ⊆ span{DS , Z}+RS = DS +RS = S .

Of course, DS is no longer unital. Observe, moreover, that for each 1 6 i 6
s, rank Ci > 2, otherwise Ci ∈ RS by definition ofRS .
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We shall refer to the unique decomposition

S = DS +RS
as the standard form of the space S .

It is well-known that if X, Y are complex vector spaces, A : X → X and B :
Y → Y are linear maps satisfying AZ = ZB for all linear maps Z : Y → X, then
there exists a scalar λ ∈ C so that A = λIX and B = λIY where IX (respectively
IY) represents the identity operator on X (respectively on Y). This will be used
implicitly in the calculations involved in the next lemma.

LEMMA 4.1. Let 0 6= D, E, F ∈ Dn be projections. Let T ∈ Mn(C) and suppose
that

(i) TD = DT, and
(ii) for all X ∈ RD⊥E,DF, TX = XT.

Then T(DF) = λ(DF) for some λ ∈ C.

Proof. The fact that TD = DT implies that T = A⊕ B relative to the decom-
position Cn = ranD⊕ ranD⊥. Consider the decompositions:

ranD = ran(DEF)⊕ ran(DEF⊥)⊕ ran(DE⊥F)⊕ ran(DE⊥F⊥) and

ranD⊥ = ran(D⊥EF)⊕ ran(D⊥EF⊥)⊕ ran(D⊥E⊥F)⊕ ran(D⊥E⊥F⊥).

Write A = [Ai,j] and B = [Bk,l ] relative to these decompositions. Now, relative to
the decomposition Cn = ranD⊕ ranD⊥, we may write X =

[
0 Z
0 0
]
. The equation

TX = XT thus implies that AZ = ZB, and that furthermore, with respect to the
two decompositions of ranD⊥ and ranD above, Z must be of the form

Z =


Z1,1 Z1,2 0 0

0 0 0 0
Z3,1 Z3,2 0 0

0 0 0 0

 ,

where each of Z1,1, Z1,2, Z3,1 and Z3,3 may be chosen arbitrarily, acting upon their
respective spaces. A routine calculation then shows that there exists λ ∈ C so
that

A1,1 = λ(DEF), B1,1 = λ(D⊥EF), A3,3 = λ(DE⊥F), B3,3 = λ(D⊥E⊥F),

and that A2,1 = A3,1 = A4,1 = A1,3 = A2,3 = A4,3 = 0 = B1,2 = B1,3 = B1,4 =
B3,1 = B3,2 = B3,4. Thus, with a minor abuse of notation, we may write:

A =


λ A1,2 0 A1,4
0 A2,2 0 A2,4
0 A3,2 λ A3,4
0 A4,2 0 A4,4

 ,

and hence T(DF) = A(DF) = λ(DF).

The next lemma will figure in the second half of the proof of Theorem 4.3.
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LEMMA 4.2. Let n > 1 and let {E1, E2, . . . , Er, F1, F2, . . . , Fr} be a family of non-

zero mutually orthogonal diagonal projections in Mn(C). LetR =
r⊕

i=1
REi ,Fi . Then

R′ = RF⊥0 ,E⊥0
+ span{(Ei + Fi) : 1 6 i 6 r},

where E0 =
r
∑

i=1
Ei and F0 =

r
∑

i=1
Fi.

Proof. Suppose that Y ∈ RF⊥0 ,E⊥0
. If X ∈ REi ,Fi , then X = FiXEi, while

Y = E⊥0 YF⊥0 . Thus

XY = XEiE⊥0 Y = X0Y = 0 = Y0X = YF⊥0 FiX = YX.

Also, for each 1 6 j 6 r,

(Ej + Fj)X = (Ej + Fj)FiX = (FjFi)X =

{
0 if i 6= j
X if i = j,

and

X(Ej + Fj) = XEi(Ej + Fj) = X(EiEj) =

{
0 if i 6= j
X if i = j.

ThusRF⊥0 ,E⊥0
+ span{(Ei + Fi) : 1 6 i 6 r} ⊆ R′.

Conversely, let Y ∈ R′ =
r⋂

i=1
(REi ,Fi )

′ = (R⊥Ei ,Fi
+ CI), as each REi ,Fi is a

connected subspace of Mn(C).
Claim. (REi ,Fi )

⊥ +CI = (REi ,Fi )
′ +C(Ei + Fi). Indeed,

I = (I − Ei)(I − Fi) + (Ei + Fi).

Thus I − (Ei + Fi) ∈ R⊥Ei ,Fi
= RF⊥i ,E⊥i

, from which the claim follows.

Thus Y ∈
r⋂

i=1
(RF⊥i ,E⊥i

+ C(Ei + Fi)). For each 1 6 i 6 r, write Y = Yi +

βi(Ei + Fi) with Yi ∈ RF⊥i ,E⊥i
. Set L =

r
∑

k=1
βk(Ek + Fk). Then for each i,

Y− L = Yi + ∑
16k 6=i6r

βk(Ek + Fk).

But for k 6= i, (Ek + Fk) ⊥ Ei + Fi and so (Ek + Fk) ∈ RF⊥i ,E⊥i
. But then Y − L ∈

RF⊥i ,E⊥i
for each 1 6 i 6 r, so that Y− L ∈

r⋂
i=1
RF⊥i ,E⊥i

= RF⊥0 ,E⊥0
.

HenceR′ ⊆ RF⊥0 ,E⊥0
+ span{(Ei + Fi) : 1 6 i 6 r}.

There is one last issue we must address before embarking on the proof of
the main theorem. Let S ⊆ Mn(C). Let D ∈ Dn be an orthogonal projection.
Then DSD|ranD is a subspace of B(ranD). In the second part of the proof below,
we shall need to consider DSD|ranD as a subspace in its own right. For T ⊆
B(ranD), we shall denote by T † the set {A ∈ B(ranD) : AT = TA for all T ∈ T }
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which is the relative commutant of T with respect to B(ranD). We shall denote the
relative annihilator of T with respect to B(ranD) as T ◦ = {A ∈ B(ranD) : AT =
0 = TA}.

THEOREM 4.3. Let D ⊆ Dn be a unital algebra and R ⊆ Mn(C) be a block-
closed Dn-bimodule. Let S = DS +RS be the standard form of S , and write DS =

span{D1, D2, . . . , Ds}, where the Di’s are minimal projections inDS andRS=
r⊕

i=1
REi ,Fi

be the decomposition ofRS in to connected components. The following are equivalent:
(i) S satisfies the DCP, i.e. S = S ′′.

(ii) For each 1 6 j 6 s, Dj 66
r
∑

i=1
Ei and Dj 66

r
∑

i=1
Fi.

Proof. (i) implies (ii). If s = 0, then there is nothing to prove. Assume,

therefore that s > 1. Without loss of generality, it suffices to prove that D1 66
r
∑

i=1
Ei

and D1 66
r
∑

i=1
Fi.

Suppose otherwise, say D1 6
r
∑

i=1
Fi.

If 0 6= D1Ej for some 1 6 j 6 r, then 0 6= D1Ej 6
( r

∑
i=1

Fi

)
Ej = FjEj ∈ Dn.

But D1Ej ∈ Dn as well, so we can find a projection 0 6= e⊗ e∗ ∈ Dn with e⊗ e∗ 6
D1Ej 6 FjEj. Thus e⊗ e∗ ∈ RS ⊆ S . By the minimality of D1, D1 = e⊗ e∗ ∈ RS ,
a contradiction.

Thus D1Ej = 0 for all 1 6 j 6 r. Now S ′ ⊆ D′1 = D1Mn(C)D1 +

(D⊥1 )Mn(C)(D⊥1 ). Furthermore, D1 ∈ S and S is a unital algebra, which implies
that

D⊥1 REj ,Fj D1 = RD⊥1 Ej ,D1Fj
⊆ S .

Let T ∈ S ′. Then TD1 = D1T so that T = T1 + T4, where T1 = D1TD1 and
T4 = D⊥TD⊥. For all X ∈ RD⊥1 Ej ,D1Fj

, we have TX = XT, and thus T1X = XT4.

For each 1 6 j 6 r, let Dj = D1Fj. Observe that our hypothesis says that 0 6=
D1 = D1 + D2 + · · ·+ Dr. By reindexing if necessary, we may assume without
loss of generality that D1 6= 0. An application of Lemma 4.1 shows that for each
j for which Dj 6= 0, we may find αj ∈ C so that TDj = αjDj.

Therefore, with respect to the decomposition Cn = ranD1 ⊕ ranD2 ⊕ · · · ⊕
ranDr ⊕ ranD⊥1 , we may write

T =


α1 0 0 0 0
0 α2 0 0 0

0 0
. . . 0 0

0 0 0 αr 0
0 0 0 0 T4

 .
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Since T ∈ S ′ was arbitrary, this shows that S ′ ⊆ CD1 ⊕ CD2 ⊕ · · · ⊕ CDr ⊕
D⊥1 (Mn(C))D⊥1 . But then D1 ∈ D1(Mn(C))D1 ⊆ S ′′ = S , a contradiction of
D1’s minimality unless r = 1.

If r = 1, then D1 = D1F1 = D1, D1E1 = 0 and RS = RE1,F1 . Since S =
S ′′ = DS +RS , this now implies that D1(Mn(C))D1 ⊆ Dn +RE1,F1 . An easy
calculation shows that these conditions lead to a contradiction unless rank D1 =
1. But this is a contradiction (see the comment at the end of Section 4.3).

(ii) implies (i). Our goal is to show that S = S ′′. Since S ⊆ S ′′ is trivially
true, we show that S ′′ ⊆ S . We begin by setting D0 = I − (D1 + D2 + · · ·+ Ds).
Given 0 6 j, k 6 s, and T ⊆Mn(C) a subalgebra containing {Dk : 0 6 k 6 s}, we
let Tj,k = {DjTDk|ranDk : T ∈ T } ⊆ B(ranDk, ranDj). Since Dk ∈ S ⊆ S ′′ for all
0 6 k 6 s, it suffices to show that S ′′j,k ⊆ Sj,k.

Now we fix 1 6 k 6 s for the remainder of the proof. For each 1 6 i 6 r,
we shall define Ei[k] = EiDk (respectively Fi[k] = FiDk). We also define E0[k]◦ =

Dk −
( r

∑
i=1

Ei[k]
)

and F0[k]◦ = Dk −
r
∑

i=1
Fi[k]. (These are the “relative" versions

of E⊥0 and F⊥0 with respect to the space ranDk.) The hypothesis of (ii) implies

that
r
∑

i=1
Ei[k] 6= Dk 6=

r
∑

i=1
Fi[k], where Dk clearly serves as the identity element of

B(ranDk). We are therefore in a position to apply Proposition 2.5 to conclude that
S††

k,k = Sk,k.
As for S0,0, note that D0Dn ⊆ D0RSD0, and so Ei[0] = Fi[0] whenever one

of these is non-zero, and ∑
Ei [k] 6=0 6=Fi [k]

Ei[0] = D0. By Proposition 2.4, S††
0,0 = S0,0.

Let W ∈ S†
k,k ⊆ B(ranDk). (Recall that k 6= 0.) By Lemma 4.2,

W ∈ RF0[k]◦ ,E0[k]◦ + span{(Ei[k] + Fi[k]) : Ei[k] 6= 0 6= Fi[k]}.

Consider W = W0 + ∑
Ei [k] 6=0 6=Fi [k]

αi(Ei[k] + Fi[k]), where W0 ∈ RF0[k]◦ ,E0[k]◦ . To

reduce the notation a bit, we shall also use the notation W0 for the operator
DkW0Dk ∈ Mn(C), but we shall always explicitly refer to the ambient space in
each statement. Set Y = W0 + ∑

Ei [k] 6=0 6=Fi [k]
αi(Ei ∨ Fi) ∈ Mn(C). We begin by

showing that Y ∈ S ′.
Since each Ei ∨ Fi ∈ S ′, we need only show that W0 ∈ S ′. Now W0 =

DkE0[k]◦W0F0[k]◦Dk. If 1 6 j 6= k 6 s, then DjDk = 0 = DkDj, so that DjW0 =

0 = W0Dj. If 1 6 j = k 6 s, then D2
k = Dk, so DkW0 = W0 = W0Dk. Thus

W0 ∈ D′S .

If X ∈ RS , say X =
r
∑

i=1
FiXEi, then

XW0 =
r

∑
i=1

XEiDkE0[k]◦W0 =
r

∑
i=1

XEi[k]E0[k]◦W0 =
r

∑
i=1

X0W0 = 0,
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and similarly W0X = 0. Thus W0X = XW0. Taken together, these last two para-
graphs show that Y ∈ S ′.

Observe that W0 = DkYDk ∈ B(ranDk), so that DkS ′Dk|ranDk ⊇ S
†
k,k.

Let Z = [Zi,j]06i,j6s ∈ S ′′, the matrix decomposition being relative to the
decomposition Cn = ranD0 ⊕ ranD1 ⊕ ranD2 ⊕ · · · ⊕ Ds. Since Dk ∈ S ⊆ S ′′,
we have that DkZDk ∈ S ′′, and Zk,k = DkZDk|ranDk ∈ B(ranDk). Let Y ∈ S ′.
Then YDj = DjY for all 1 6 j 6 s, and so Y = Y0 ⊕ Y1 ⊕ · · · ⊕ Ys, where Yj =
DjYDj|ranDj , 1 6 j 6 s. Thus YZ = ZY implies that YkZk,k = Zk,kYk. But from
above, DkS ′Dk|ranDk ⊇ S

†
k,k, and so Zk,k ∈ S††

k,k = Sk,k.
Next, consider S0,0 = ∑

Ei [0] 6=0
Ei[0]Mn(C)Ei[0]. An easy computation shows

that S†
0,0 =

⊕
Ei [0] 6=0

CEi[0]. If W ∈ S†
0,0 — say W = ∑

i:Ei [0] 6=0
αiEi[0] — and if we set

Y = ∑
i:Ei [0] 6=0

αi(Ei ∨ Fi), then since each (Ei ∨ Fi) ∈ S ′, it follows that Y ∈ S ′. Also,

D0YD0|ranD0 = W. As before, Z0,0 must commute with Y0 for every Y ∈ S ′, and
so Z0,0 must commute with W, which shows that Z0,0 ∈ S††

0,0 = S0,0.
We have reduced the problem to showing that Zp,q ∈ Sp,q for each 0 6

p 6= q 6 s. For each Y = Y0 ⊕ Y1 ⊕ · · · ⊕ Ys ∈ S ′, ZY = YZ implies that
YpZp,q = Zp,qYq. As before, we first handle the case where p 6= 0 6= q.

To that end, suppose that Wp ∈ RF0[p]◦ ,E0[p]◦ , and Wq ∈ RF0[q]◦ ,E0[q]◦ be
arbitrary. From above, Y := Wp + Wq ∈ S ′ ⊆ Mn(C), and Wp = Yp, while
Wq = Yq. Thus WpZp,q = Zp,qWq. Choosing first Wq = 0 shows that WpZp,q = 0
for all Wp ∈ RF0[p]◦ ,E0[p]◦ , and so Zp,q = F0[p]Zp,q. Similarly, choosing Wp = 0
shows that Zp,q = Zp,qE0[q]. Hence Zp,q = F0[p]Zp,qE0[q] = DpF0Zp,qE0Dq, where

F0 =
r
∑

i=1
Fi and E0 =

r
∑

i=1
Ei.

But Ei ∨ Fi ∈ S ′ ⊆ Mn(C) for all i, and Dp(Ei ∨ Fi) = Ei[p] + Fi[p], Dq(Ei ∨
Fi) = Ei[q] + Fi[q]. In particular, (Ei + Fi)DpZDq = DpZDq(Ei + Fi) implies that
(Ei[p] + Fi[p])Zp,q = Zp,q(Ei[q] + Fi[q]), which in turn implies that

Fi[p]Zp,q = (Ei[p] + Fi[p])F0[p]Zp,q = Zp,qE0[q](Ei[q] + Fi[q]) = Zp,qEi[q].

Since Ei[q]Ej[q] = 0 = Fi[p]Fj[p] if i 6= j, this shows that

Zp,q =
r⊕

i=1

Fi[p]Zp,qEi[q] ∈
r⊕

i=1

FiDpMn(C)DqEi = Dp

( r⊕
i=1

FiMn(C)Ei

)
Dq

= DpRSDq ⊆ S .

At this point there remains only to show that Z0,k and Zk,0 ∈ S . For each
1 6 i 6 r, (Ei ∨ Fi) ∈ S ′, and thus

(Ei ∨ Fi)Z0,k = Z0,k(Ei ∨ Fi).

But Z0,k = D0Z0,k and Ei[0] = Fi[0], so that this implies that Ei[0]Z0,k =Z0,k(Ei[k]+
Fi[k]). Recall from above that Wk ∈ RF0[k]◦ ,E0[k]◦ ⊆ B(ranDk) implies that Y =
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DkWkDk ∈ S ′ ⊆ Mn(C). Thus 0 = Y0Z0,k = Z0,kWk = Z0,kE0[k]◦WkF0[k]◦Dk, so
that Z0,k = Z0,kE0[k].

Hence Fi[0]Z0,k = Z0,kE0[k](Ei[k] + Fi[k]) = Z0,kEi[k], from which we con-

clude that Z0,k ∈
r⊕

i=1
REi [k],Fi [k] ∈ S .

A similar argument shows that Zk,0 ∈ S , completing the proof.

EXAMPLE 4.4. Let

S =


α 0 0 0 0
0 α 0 0 0
0 0 β 0 0
∗ 0 0 β 0
0 ∗ ∗ 0 γ

 .

Then D1 ≡ 1, 2, D2 ≡ 3, 4 and D3 ≡ 5, while P1 = 1, P2 = 2, Q1 = 0 = Q2.
Now

S ′ =


α 0 0 0 0
0 β 0 0 0
0 0 β 0 0
0 0 ∗ α 0
0 0 0 0 β

 , and S ′′ =


∗ 0 0 0 0
0 ∗ ∗ 0 ∗
0 0 α 0 0
∗ 0 0 α 0
0 ∗ ∗ 0 ∗

 .

In this example, S 6= S ′′. This shows why we need the hypotheses of Theo-
rem 4.3.

4.4. THE SKELETON OF A MATRIX SUBALGEBRA. Let A be a unital subalgebra of
Mn. Then the Wedderburn–Malcev decomposition yields A = M +N , where
N = rad(A) is the Jacobson radical of A (consisting of all matrices N ∈ A with
the property that ANB is nilpotent for all A, B ∈ A) andM is the semisimple part
of A. The radical is uniquely determined by this condition, while the semisim-
ple part M ' Mn1 ⊗ Im1 ⊕ · · · ⊕Mnr ⊗ Imr is determined up to simultaneous
similarity by an element of the form I + N, where N ∈ N .

Suppose that we now pick idempotents of rank one: p1 ∈Mn1 , . . . , pr ∈Mnr

and let p = p1 ⊗ Im1 + · · ·+ pr ⊗ Imr .

DEFINITION 4.5. We define the skeleton of A to be

sk(A) = skp(A) = pAp|ranp ⊆Mm1+···+mr .

Our first observation is that, up to similarity, the skeleton of A does not
depend upon the original choice of our rank one idempotents.

PROPOSITION 4.6. The skeleton is independent of the choice of p. More precisely,
if q1 ∈Mn1 , . . . , qr ∈Mnr and q = q1⊗ Im1 + · · ·+ qr ⊗ Imr for another choice of rank
one idempotents q1, . . . , qr, then skp(A) and skq(A) are similar. If we fix the choice of
the semisimple part S of A, then the similarity can be chosen to be a unitary similarity.
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Proof. By the comments from Section 4.4, we may assume without loss of
generality that the semisimple parts from which p and q were chosen are one
and the same. The similarity matrix T : ranp → ranq is then given by T1 ⊗
Im1 + · · · + Tr ⊗ Imr , where each Ti sends ranpi to ranqi (which, without loss
of generality, we may assume to be unitary). Let T̃i ∈ Mni be a unitary ex-
tension of Ti, 1 6 i 6 r so that T̃i(ran(pi)) = ran(qi) and T̃−1

i (ran(qi)) =

ran(pi), and let T̃ = T̃1 ⊗ Im1 + · · · + T̃r ⊗ Imr . Note that T̃, T̃−1 ∈ M ⊆ A,
T = T̃|ran(p) and T−1 = T̃−1|ran(q). Hence Tskp(A)T−1 = T(pAp)|ran(p)T−1 =

(T̃pApT̃−1)|ran(q) = (qT̃AT̃−1q)ran(q) = (qAq)|ran(q) = skq(A). (The equality
T̃AT̃−1 = T̃A = A follows from the fact that T̃ and T̃−1 are invertible elements
of A.)

PROPOSITION 4.7. If p is in Dn = Dn1 ⊗Dm1 ⊕ · · · ⊕ Dnr ⊗Dmr and N is a
Dn-bimodule, then so is pN p|ranp = rad(sk(A)).

The proof is clear. Note also that the requirement that N is a Dn-bimodule
is always satisfied if N is multiplicity-free (that is m1 = · · · = mr = 1), since in
this case Dn ⊆ A.

THEOREM 4.8. Let A ⊆ Mn(C) be an algebra and sk(A) denote the skeleton of
A. Then A satisfies the DCP if and only if sk(A) satisfies the DCP.

Proof. ( =⇒ ). This is a direct consequence of Proposition 3.4.
(⇐=). After applying a similarity if necessary, we may let M = Mn1 ⊗

Im1 ⊕ · · · ⊕Mnr ⊗ Imr be the semisimple part of A, and N = rad(A) denote the
radical of A. Let B = Mn1 ⊕ · · · ⊕Mnk and let Fj denote the projection to the j-th
summand of the underlying vector space. Set P = (p1 ⊗ Im1)⊗ F1 + · · ·+ (pk ⊗
Imk )⊗ Fk and note that A ' P(sk(A)⊗B)P.

Indeed, we write the matrices in the r × r block form. Accordingly N de-

composes as N =
r⊕

i,j=1
Ni,j (as a vector space and as an M-bimodule). Let

us fix (i0, j0) ∈ {1, . . . , r} × {1, . . . , r}. We will examine the structure of Ni0,j0 .
This direct summand (as an M-bimodule) of the radical has the left action of
M given by itsMi0 = Mni0

⊗ Imi0
component and the right action given by its

Mj0 = Mnj0
⊗ Imj0

component. We write the rectangular matrices a ∈ Ni0,j0 in

the mi0 × mj0 block form, so a = (ai,j)
i=mi0 ,j=mj0
i=1,j=1 . Now the key point is the fol-

lowing observation: the only relations between ai,j’s in Ni0,j0 are linear. That is, there

exists linear functions Ls = L(i0,j0)
s : Mmi0×mj0

→ Mmi0×mj0
, s = 1, . . . , k, given by

Ls(x1,1, . . . , xmi0 ,mj0
) = α

(s)
1,1x1,1 + · · · + α

(s)
mi0 ,mj0

xmi0 ,mj0
with α’s suitable complex

numbers such that Ni0,j0 = {a = (ai,j)|L1(a) = · · · = Lk(a) = 0}. Here by Ls(a)

abbreviates ∑ α
(s)
i,j ai,j.
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Now, the skeleton construction can be viewed as “shrinking” the semisim-
ple blocks to 1× 1 size and keeping the same linear relations in the radical given
by the equations L(i0,j0)

s . The equality A = P(sk(A) ⊗ B)P is now verified by
noting that semisimple parts coincide (this is how B and P were chosen), the in-
dependence of “big-blocks” of the radical also survives, and the linear relations
(given by L’s) between “small blocks” of each “big block” get preserved by the
construction.

So, if sk(A) has the DCP, then by Proposition 3.2 so does sk(A)⊗ B, and
hence by Proposition 3.4 A does as well.

4.5. SUMMARY. We have just seen that the question of whether an algebra sat-
isfied a DCP can be translated to the same question for basic algebras (the ones
whose semisimple part is diagonal). We know about two important families of
DCP algebras:

(i) Algebras (whose skeleta are) of the formD⊕R, whereR is aDn-bimodule
of the form described in Theorem 4.3.

(ii) Maximal abelian (not necessarily self-adjoint) algebras. A special case of
these are the “analytic Toeplitz algebras". These are the subalgebras Tpn of Mn(C)
generated by a single n× n Jordan cell. Hence an arbitrary element of Tpn looks
like: 

α0 α1 α2 . . . αn−1
0 α0 α1 . . . αn−2
...

. . . . . . . . .
...

0 0 0 α0 α1
0 0 0 0 α0

 .

When n > 3, these algebras seem to be the ones that are farthest away from
algebras whose radical is a Dn bimodule.

We know that the class of DCP algebras is invariant under compressions
by an idempotent in the algebra, tensor products, intersections, and direct sums.
Among important combination of these operations are skeleta (see 4.5) and pinch-
ings (see 3.6). It is an interesting question whether these operations can produce
all DCP algebras from algebras discussed in (i) and (ii) above.

4.6. A direct computation allows us to enumerate all of the spaces (up to simi-
larity) S ⊆Mn(C) for which S = S ′′ when n = 2 or n = 3:

n=2: S = S ′′ ⊆M2(C) if and only if S ∈
{
CI2,D2, Tp2 :=

[
λ µ
0 λ

]
,M2(C)

}
.

n=3: S=S ′′⊆M3(C) if and only if S belongs to one of the matrix forms below:
• M3(C);
• M2(C)⊕C;
• D3;
• CI2 ⊕C, or Tp2 ⊕C;
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•
[

α ∗ 0
0 β 0
0 0 α

]
,
[ α ∗ ∗

0 β ∗
0 0 α

]
;

•
[

α ∗ 0
0 α 0
0 0 α

]
,
[ α ∗ ∗

0 α 0
0 0 α

]
,
[

α β γ
0 α β
0 0 α

]
, or

[
α ∗ 0
0 α 0
0 0 α

]
.

4.7. OPEN QUESTIONS. (•) Suppose S ⊆ Mn(C) satisfies the DCP and that ϕ :
S →Mk(C) is a homomorphism. Does T = {S⊕ ϕ(S) : S ∈ S} satisfy the DCP?

(•) Can every DCP algebra be obtained from the bimodule case(s) described in
Theorem 4.3, and Toeplitz algebras (see discussion in the Subsection 4.5) by using
direct sums, intersections, compressions, the construction from Proposition 3.11,
and tensor products?

4.8. We would like to thank M. Kotchetov for bringing the book of Curtis and
Reiner [4] to our attention. There the authors study the notion of the double-
centralizer property for pairs (A,M), where A is a ring andM is a left A-module.
This double-centralizer property reduces to our double-commutant property
whenM = H is a Hilbert space and A ⊆ B(H).

In the finite-dimensional setting, a theorem of Wedderburn [22], p. 106 shows
that any singly-generated unital algebra has the DCP. Let us outline a quick proof
of this fact using our methods.

Fix n > 1, and let T ∈ Mn(C). Let AT = alg(T) be the unital algebra
generated by T.

By applying a similarity (which does not affect whether or not AT has the
DCP), we may assume that T is already in its Jordan form. As is well-known
— for example, it follows easily from the functional calculus — if σ(T) = {α1, α2,

. . . , αr} are the distinct eigenvalues of T, then T =
r⊕

k=1
Tk where σ(Tk) = {αk} for

each 1 6 k 6 r, and AT =
r⊕

k=1
ATk . By Proposition 3.1, it suffices to show that

each ATk has the DCP, or equivalently, we shall simply assume hereafter that
σ(T) = {α}. For 1 6 r, let Jr denote the r × r Jordan cell. Note that AJr = Tpr
which, as we saw in paragraph 4.5, has the DCP.

Under the assumption that σ(T) = {α} and T is in Jordan form, we may

write T =
s⊕

k=1
(αImk + Jmk ) where

s
∑

k=1
mk = n. Without loss of generality, we may

assume that m1 > m2 > · · · > ms. Let {e1, e2, . . . , em1} be the orthogonal basis
with respect to which the matrix of Jm1 lives on the superdiagonal, and note that
for 2 6 k 6 s, Mk := span{e1, e2, . . . , emk} is an invariant subspace for Tpm1

.
Moreover,

alg(T) = {R⊕ (P2RP2)|ranP2 ⊕ (P3RP3)|ranP3 ⊕ · · · ⊕ (PsRPs)|ranPs : R ∈ Tpm1
}.

That alg(T) satisfies the DCP now follows from Proposition 3.11.
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