BOUNDEDNESS OF CALDERÓN–ZYGMUND OPERATORS ON WEIGHTED PRODUCT HARDY SPACES

MING-YI LEE

Communicated by Şerban Strătilă

ABSTRACT. Let *T* be a singular integral operator in Journé's class with regularity exponent ε , $w \in A_q$, $1 \leq q < 1 + \varepsilon$, and $q/(1+\varepsilon) . We obtain the <math>H^p_w(\mathbb{R} \times \mathbb{R})$ - $L^p_w(\mathbb{R}^2)$ boundedness of *T* by using R. Fefferman's "trivial lemma" and Journé's covering lemma. Also, using the vector-valued version of the "trivial lemma" and Littlewood–Paley theory, we prove the $H^p_w(\mathbb{R} \times \mathbb{R})$ -boundedness of *T* provided $T^*_1(1) = T^*_2(1) = 0$; that is, the reduced *T*1 theorem on $H^p_w(\mathbb{R} \times \mathbb{R})$. In order to show these two results, we demonstrate a new atomic decomposition of $H^p_w(\mathbb{R} \times \mathbb{R}) \cap L^2_w(\mathbb{R}^2)$, for which the series converges in L^2_w . Moreover, a fundamental principle that the boundedness of operators on the weighted product Hardy space can be obtained simply by the actions of such operators on all atoms is given.

KEYWORDS: Calderón–Zygmund operator, Littlewood–Paley theory, weighted product Hardy space.

MSC (2010): 42B20, 42B30.

1. INTRODUCTION

The product Hardy space was first introduced by Malliavin–Malliavin [13] and Gundy–Stein [9]. Chang–Fefferman [1] provided the atomic decomposition of $H^p(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ and showed the duality H^1 with BMO on the bidisc. R. Fefferman [5] used the rectangle atomic decomposition of $H^p(\mathbb{R}^n \times \mathbb{R}^m)$ and a geometric covering lemma due to Journé [12] to prove the remarkable $H^p(\mathbb{R}^n \times \mathbb{R}^m)$ - $L^p(\mathbb{R}^n \times \mathbb{R}^m)$ boundedness of product singular integrals introduced by Journé [12]. Recently, Han et al. [11] show a reduced T1 type theroem on $H^p(\mathbb{R}^n \times \mathbb{R}^m)$. More precisely, these Journé's product singular integrals T are also bounded on the product $H^p(\mathbb{R}^n \times \mathbb{R}^m)$ for max $\{n/(n+\varepsilon), m/(m+\varepsilon)\} if and only$ $if <math>T_1^*(1) = T_2^*(1) = 0$, where ε is the regularity exponent of the kernel of T. For the weighted norm inequality, R. Fefferman [6] proved that if $w \in A_p(\mathbb{R}^n \times \mathbb{R}^m)$, $1 , then these singular integrals are bounded on <math>L^p_w(\mathbb{R}^{n+m})$. A natural and interesting problem is whether these singular integrals are bounded from $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$ to $L^p_w(\mathbb{R}^{n+m})$ or bounded on $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$. The purpose of the current article is to answer this question. Recently, Ding et al. [3] obtained the boundedness of singular integral operators on weighted product Hardy spaces for $w \in A_{\infty}$. However, these operators are convolution operators with smooth kernels on each variable and with cancellation conditions. Here, we consider non-convolution operators and their kernels require less regularity.

We start with recalling the definition of a Calderón–Zygmund kernel. A continuous complex-valued function K(x, y) defined on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y) : x = y\}$ is called a *Calderón–Zygmund kernel* if there exist constant C > 0 and a regularity exponent $\varepsilon \in (0, 1]$ such that

(i)
$$|K(x,y)| \leq C|x-y|^{-n}$$
;

- (ii) $|K(x,y) K(x',y)| \le C|x x'|^{\varepsilon}|x y|^{-n-\varepsilon}$ if $|x x'| \le |x y|/2$;
- (iii) $|K(x,y) K(x,y')| \leq C|y y'|^{\varepsilon}|x y|^{-n-\varepsilon}$ if $|y y'| \leq |x y|/2$.

The smallest such constant *C* is denoted by $|K|_{CZ}$.

We say that an operator *T* is a *Calderón–Zygmund operator* if the operator *T* is a continuous linear operator from $C_0^{\infty}(\mathbb{R}^n)$ into its dual associated with a Calderón–Zygmund kernel K(x, y) given by

$$\langle Tf,g\rangle = \iint g(x)K(x,y)f(y)\mathrm{d}y\mathrm{d}x$$

for all test functions f and g with disjoint supports and T being bounded on $L^2(\mathbb{R}^n)$. If T is a Calderón–Zygmund operator associated with a kernel K, its Calderón–Zygmund operator norm is defined by $||T||_{CZ} = ||T||_{L^2\mapsto L^2} + |K|_{CZ}$. Of course, in general, one cannot conclude that a singular integral operator T is bounded on $L^2(\mathbb{R}^n)$ because Plancherel's theorem does not work for non-convolution operators. However, if one assumes that T is bounded on $L^2(\mathbb{R}^n)$, then the L^p , $1 , boundedness follows from Caldernón–Zygmund's real variable method. The <math>L^2(\mathbb{R}^n)$ boundedness of non-convolution singular integral operators was finally proved by the remarkable T1 theorem by David and Journé [2], in which they gave a general criterion for the L^2 -boundedness of singular integral operators.

Let \overline{T} be a singular integral operator defined for functions on $\mathbb{R}^n \times \mathbb{R}^m$ by

$$Tf(x_1, x_2) = \iint_{\mathbb{R}^n \times \mathbb{R}^m} K(x_1, x_2, y_1, y_2) f(y_1, y_2) \, \mathrm{d}y_1 \, \mathrm{d}y_2$$

For each $x_1, y_1 \in \mathbb{R}^n$, set $\widetilde{K}^1(x_1, y_1)$ to be the singular integral operator acting on functions on \mathbb{R}^m with the kernel $\widetilde{K}^1(x_1, y_1)(x_2, y_2) = K(x_1, x_2, y_1, y_2)$, and similarly, $\widetilde{K}^2(x_2, y_2)(x_1, y_1) = K(x_1, x_2, y_1, y_2)$. Fefferman [6] proved that singular integral operators are bounded on $L^p_w(\mathbb{R}^{n+m})$ provided $w \in A_p(\mathbb{R}^n \times \mathbb{R}^m)$, 1 . THEOREM 1.1 ([6], Theorem A). Suppose that *T* is bounded on $L^2(\mathbb{R}^{n+m})$ and that for some $0 < \varepsilon \leq 1$ and some finite C > 0 we have

(i)
$$\|\tilde{K}^1(x_1, y_1) - \tilde{K}^1(x_1', y_1)\|_{CZ} \leq C|x_1 - x_1'|^{\varepsilon}/|x_1 - y_1|^{n+\varepsilon}$$
 if $|x_1 - x_1'| < |x_1 - y_1|/2$,

(i) $\|\widetilde{K}^{1}(x_{1},y_{1}) - \widetilde{K}^{1}(x_{1},y_{1}')\|_{CZ} \leq C|y_{1} - y_{1}'|^{\varepsilon}/|x_{1} - y_{1}|^{n+\varepsilon} \text{ if } |y_{1} - y_{1}'| < |x_{1} - y_{1}|/2,$

and similarly for \widetilde{K}^2 . If $w \in A_p(\mathbb{R}^n \times \mathbb{R}^n)$, 1 , then

$$\|T(f)\|_{L^p_w} \leq C \|f\|_{L^p_w}.$$

Here, a weight $w(x_1, x_2)$ defined on $\mathbb{R}^n \times \mathbb{R}^m$ is said to belong to (product) A_p if and only if there exists a constant *C* so that for all rectangles $R = I \times J$ (*I* is a cube in \mathbb{R}^n and *J* a cube in \mathbb{R}^m) we have

$$\Big(\frac{1}{|R|}\int_{R} w(x_1,x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2\Big)\Big(\frac{1}{|R|}\int_{R} w(x_1,x_2)^{-1/(p-1)} \, \mathrm{d}x_1 \mathrm{d}x_2\Big)^{p-1} \leqslant C.$$

DEFINITION 1.2 ([6], Definition). A singular integral operator *T* is said to be in *Journé's class* if the associated kernel $K(x_1, x_2, y_1, y_2)$ satisfies the following conditions. There exist constants C > 0 and $\varepsilon \in (0, 1]$ such that:

(B₁) *T* is bounded on $L^2(\mathbb{R}^{n+m})$;

(B₂) We have

$$\begin{split} &\|\widetilde{K}^{1}(x_{1},y_{1})\|_{CZ} \leqslant C|x_{1}-y_{1}|^{-n}, \\ &\|\widetilde{K}^{1}(x_{1},y_{1})-\widetilde{K}^{1}(x_{1},y_{1}')\|_{CZ} \leqslant C|y_{1}-y_{1}'|^{\varepsilon}|x_{1}-y_{1}|^{-(n+\varepsilon)} \text{ for } |y_{1}-y_{1}'| \leqslant \frac{|x_{1}-y_{1}|}{2}, \\ &\|\widetilde{K}^{1}(x_{1},y_{1})-\widetilde{K}^{1}(x_{1}',y_{1})\|_{CZ} \leqslant C|x_{1}-x_{1}'|^{\varepsilon}|x_{1}-y_{1}|^{-(n+\varepsilon)} \text{ for } |x_{1}-x_{1}'| \leqslant \frac{|x_{1}-y_{1}|}{2}; \end{split}$$

(B₃) We have

$$\begin{split} &\|\widetilde{K}^{2}(x_{2},y_{2})\|_{CZ} \leqslant C|x_{2}-y_{2}|^{-m}, \\ &\|\widetilde{K}^{2}(x_{2},y_{2})-\widetilde{K}^{2}(x_{2},y_{2}')\|_{CZ} \leqslant C|y_{2}-y_{2}'|^{\varepsilon}|x_{2}-y_{2}|^{-(m+\varepsilon)} \text{ for } |y_{2}-y_{2}'| \leqslant \frac{|x_{2}-y_{2}|}{2}, \\ &\|\widetilde{K}^{2}(x_{2},y_{2})-\widetilde{K}^{2}(x_{2}',y_{2})\|_{CZ} \leqslant C|x_{2}-x_{2}'|^{\varepsilon}|x_{2}-y_{2}|^{-(m+\varepsilon)} \text{ for } |x_{2}-x_{2}'| \leqslant \frac{|x_{2}-y_{2}|}{2}. \end{split}$$

In this article, we shall be concerned only with the case n = m = 1. The first main result of this paper is to extend Theorem A of [6] to the H_w^p - L_w^p boundedness.

THEOREM 1.3. Let *T* be a singular integral operator satisfying the assumption in Theorem A of [6], with regularity exponent ε . If $w \in A_q$, $q < 1 + \varepsilon$, then

$$\|T(f)\|_{L^p_w(\mathbb{R}^2)} \leq C \|f\|_{H^p_w(\mathbb{R}\times\mathbb{R})}, \quad \frac{q}{1+\varepsilon}$$

To state the second result, we need some notations and definitions as follows. Given 0 , let

$$C_{0,0}^{\infty}(\mathbb{R}^{n}) = \left\{ \psi \in C^{\infty}(\mathbb{R}^{n}) : \psi \text{ has a compact support} \\ \text{ and } \int_{\mathbb{R}^{n}} \psi(y) y^{\alpha} \, \mathrm{d}y = 0 \text{ for } 0 \leqslant |\alpha| \leqslant N_{p,n} \right\},$$

where $N_{p,n}$ is a large integer depending on p and n. We say that $T_1^*(1) = 0$ if

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^m} K(x_1, x_2, y_1, y_2) \varphi^1(y_1) \varphi^2(y_2) \, \mathrm{d}y_1 \, \mathrm{d}y_2 \, \mathrm{d}x_1 = 0$$

for all $\varphi^1 \in C^{\infty}_{0,0}(\mathbb{R}^n)$, $\varphi^2 \in C^{\infty}_{0,0}(\mathbb{R}^m)$, and $x_2 \in \mathbb{R}^m$. Similarly, $T^*_2(1) = 0$ if

$$\int_{\mathbb{R}^m} \int_{\mathbb{R}^n \times \mathbb{R}^m} K(x_1, x_2, y_1, y_2) \varphi^1(y_1) \varphi^2(y_2) \, \mathrm{d}y_1 \, \mathrm{d}y_2 \, \mathrm{d}x_2 = 0$$

for all $\varphi^1 \in C^{\infty}_{0,0}(\mathbb{R}^n)$, $\varphi^2 \in C^{\infty}_{0,0}(\mathbb{R}^m)$, and $x_1 \in \mathbb{R}^n$.

The H_w^p -boundedness of the sigular integral operators in Journé's class is presented as follows.

THEOREM 1.4. Let T be a singular integral operator in Journé's class with regularity exponent ε . If $w \in A_q$, $q < 1 + \varepsilon$, and $T_1^*(1) = T_2^*(1) = 0$, then

$$\|T(f)\|_{H^p_w(\mathbb{R}\times\mathbb{R})} \leq C \|f\|_{H^p_w(\mathbb{R}\times\mathbb{R})}, \quad \frac{q}{1+\varepsilon}$$

Throughout the article, the letter *C* will denote a positive constant that may vary from line to line but remains independent of the main variables. We also use $a \approx b$ to denote the equivalence of *a* and *b*; that is, there exist two positive constants C_1 , C_2 independent of *a*, *b* such that $C_1a \leq b \leq C_2a$.

2. PRELIMINARIES

Analogous to the clasical product Hardy spaces, the *weighted product Hardy* spaces $H_w^p(\mathbb{R} \times \mathbb{R})$, p > 0, can be defined in terms of Lusin area integrals. A point of $\mathbb{R}^2_+ \times \mathbb{R}^2_+$ will be denoted (y,t) where $y = (y_1, y_2) \in \mathbb{R}^2$ and $t = (t_1, t_2), t_i \ge$ 0, i = 1, 2. We shall often use the following notations: $\psi \in C^{\infty}(\mathbb{R})$ supported on [-1,1] with ψ even and $\int_{-1}^1 \psi(y) dy = 0$; for $t > 0, \psi_t(y) = (1/t)\psi(y/t)$; for $t = (t_1, t_2)$ and $y = (y_1, y_2) \in \mathbb{R}^2$, $\psi_t(y) = \psi_{t_1}(y_1)\psi_{t_2}(y_2)$. Furthermore, for $x = (x_1, x_2) \in \mathbb{R}^2$, we use $\Gamma(x)$ to denote the product cone $\Gamma(x) = \Gamma(x_1) \times \Gamma(x_2)$, where for i = 1, 2, $\Gamma(x_i) = \{(y_i, t_i) \in \mathbb{R}^2_+ : |x_i - y_i| < t_i\}$. Given a function f on \mathbb{R}^2 , we define its *double S-function* by

$$S^2(f) = \iint_{\Gamma(x)} |f * \psi_t(y)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t_1^2 t_2^2}.$$

Then $f \in H^p_w(\mathbb{R} \times \mathbb{R})$ if and only if $S(f) \in L^p_w(\mathbb{R}^2)$ and $||f||_{H^p_w} = ||S(f)||_{L^p_w}$, where w is weight function.

Let $1/2 and <math>w \in A_2$. A weighted p atom is a function $a(x_1, x_2)$ defined on \mathbb{R}^2 whose support is contained in some open set Ω of finite measure such that:

(i) $||a||_{L^{2}_{rm}} \leq w(\Omega)^{1/2-1/p}$;

(ii) *a* can be further decomposed into *weighted p elementary particles* a_R as follows:

(a) $a = \sum_{R \in \mathcal{M}(\Omega)} a_R$, where $\mathcal{M}(\Omega)$ denotes the class of all maximal dyadic

subrectangles of Ω and a_R is supported in the triple of a distinct dyadic rectangle $R \subset \Omega$ (say $R = I \times J$);

(b)
$$\int_{I} a_{R}(x_{1}, \widetilde{x}_{2}) dx_{1} = \int_{J} a_{R}(\widetilde{x}_{1}, x_{2}) dx_{2} = 0 \text{ for each } \widetilde{x}_{1} \in I, \widetilde{x}_{2} \in J;$$

(c)
$$\sum_{R \in \mathcal{M}(\Omega)} \|a_{R}\|_{L^{2}_{w}}^{2} \leq w(\Omega)^{1-2/p}.$$

We first establish a new atomic decomposition for $H_w^p \cap L_w^2$, namely the following atomic decomposition theorem.

THEOREM 2.1. Let $1/2 and <math>w \in A_2$. If $f \in H^p_w(\mathbb{R} \times \mathbb{R}) \cap L^2_w(\mathbb{R}^2)$, then f can be written as $f = \sum \lambda_k a_k$ in L^2_w , where a_k are weighted p atoms and $\lambda_k \geq 0$ satisfy $\sum |\lambda_k|^p \leq C ||f||^p_{H^p_w}$.

Proof. For $k \in \mathbb{Z}$, let

$$\Omega_k = \{ x \in \mathbb{R}^2 : S(f)(x) > 2^k \} \text{ and}$$
$$\mathcal{R}_k = \Big\{ \text{dyadic rectangle } R : w(R \cap \Omega_k) \ge \frac{1}{2}w(R) \text{ and } w(R \cap \Omega_{k+1}) < \frac{1}{2}w(R) \Big\}.$$

For each dyadic rectangle $R = I \times J$, we denote its tent by

$$\widehat{R} = \{(y,t) \in \mathbb{R}^2_+ \times \mathbb{R}^2_+ : y = (y_1, y_2) \in \mathbb{R}^2, |I| < t_1 \leq 2|I|, |J| < t_2 \leq 2|J|\}.$$

By Calderón reproducing formula, we claim

$$f(x) = \iint_{\mathbb{R}^2_+ \times \mathbb{R}^2_+} \psi_t(x-y)\psi_t * f(y) dy \frac{dt}{t_1 t_2} = \sum_{k \in \mathbb{Z}} \sum_{R \in \mathcal{R}_k} \iint_{\widehat{R}} \psi_t(x-y)\psi_t * f(y) dy \frac{dt}{t_1 t_2}$$

Assume the claim for the moment. Let $a_k(x)$ and λ_k be defined by

$$a_k(x) = C^{-1/2} 2^{-k} w(\widetilde{\Omega}_k)^{-1/p} \sum_{R \in \mathcal{R}_k} e_R(x)$$

and $\lambda_k = C^{1/2} 2^k w(\tilde{\Omega}_k)^{1/p}$, where the constant *C* is the same as the one in (2.2) below and

$$e_R(x) = \iint_{\widehat{R}} \psi_t(x-y)\psi_t * f(y) dy \frac{dt}{t_1 t_2}.$$

We first verify that a_k is a weighted *p*-atom. To do this, we define the weighted strong maximal operator $M_{s,w}$ by

$$M_{s,w}(f)(x_1, x_2) = \sup_{(x_1, x_2) \in R} \frac{1}{w(R)} \int_R |f(x_1, x_2)| w(x) dx_1 dx_2,$$

where the supremum is taken over all rectangles *R* which contain (x_1, x_2) . Let $\widetilde{\Omega}_k = \{x \in \mathbb{R}^2 : M_{s,w}(\chi_{\Omega_k}) > 1/2\}$. Then for each $R \in \mathcal{R}_k$ there exists a maximal dyadic subrectangle \widetilde{R} , i.e. $\widetilde{R} \in \mathcal{M}(\widetilde{\Omega}_k)$ such that $R \subset \widetilde{R}$. For each $S \in \mathcal{M}(\widetilde{\Omega}_k)$, set $a_S = C^{-1/2} 2^{-k} w(\widetilde{\Omega}_k)^{-1/p} \sum_{\widetilde{R}=S} e_R$. Then $a_k(x) = \sum_{S \in \mathcal{M}(\widetilde{\Omega}_k)} a_S$. It is easy to see

that a_k is supported on $\tilde{\Omega}$ and a_s is supported on 5*S*. The vanishing moment conditions of a_k follow from the assumption of ψ . To verify the size conditions of atom, by duality between L^2_w and $L^2_{w^{-1}}$.

$$\begin{split} \left\| \sum_{R \in \mathcal{R}_{k}} e_{R} \right\|_{L^{2}_{w}} &= \sup_{\|g\|_{L^{2}_{w^{-1}}} \leq 1} \int \sum_{R \in \mathcal{R}_{k}} e_{R}(x)g(x)dx \\ &= \sup_{\|g\|_{L^{2}_{w^{-1}}} \leq 1} \sum_{R \in \mathcal{R}_{k}} \iiint_{\widehat{R}} \psi_{t}(x-y)\psi_{t} * f(y)dy \frac{dt}{t_{1}t_{2}}g(x)dx \\ &= \sup_{\|g\|_{L^{2}_{w^{-1}}} \leq 1} \sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} \psi_{t} * g(y)\psi_{t} * f(y)dy \frac{dt}{t_{1}t_{2}} \\ &\leq C \sup_{\|g\|_{L^{2}_{w^{-1}}} \leq 1} \sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} |R| |\psi_{t} * f(y)| |\psi_{t} * g(y)|dy \frac{dt}{t_{1}^{2}t_{2}^{2}}, \end{split}$$

where the last inequality is due to the definition of \widehat{R} . Hence, if $(y, t) \in \widehat{R}$, then $|R| \approx t^2$. It is clear that

$$|R| = \int_{R} w(x)^{1/2} w(x)^{-1/2} dx \le w(R)^{1/2} (w^{-1}(R))^{1/2},$$

so

$$\begin{split} \Big\| \sum_{R \in \mathcal{R}_k} e_R \Big\|_{L^2_w} &\leqslant \sup_{\|g\|_{L^2_{w^{-1}}} \leqslant 1} \Big(\sum_{R \in \mathcal{R}_k} \iint_{\widehat{R}} w(R) |\psi_t * f(y)|^2 \mathrm{d}y \frac{\mathrm{d}t}{t_1^2 t_2^2} \Big)^{1/2} \\ & \Big(\sum_{R \in \mathcal{R}_k} \iint_{\widehat{R}} w(R) |\psi_t * g(y)|^2 \mathrm{d}y \frac{\mathrm{d}t}{t_1^2 t_2^2} \Big)^{1/2} \end{split}$$

For any $R \in \mathcal{R}_k$ and $(y, t) \in \hat{R}$, we have $R \subset \{x \in \mathbb{R}^2 : |x_i - y_i| < t_i, i = 1, 2\}$ and hence

$$\begin{split} \sum_{R \in \mathcal{R}_k} \iint_{\hat{R}} w^{-1}(R) |\psi_t * g(y)|^2 \frac{dydt}{t_1^2 t_2^2} \\ &\leqslant \int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}^2} w^{-1}(\{x \in \mathbb{R}^2 : |x_i - y_i| < t_i, i = 1, 2\}) |\psi_t * g(y)|^2 \frac{dydt}{t_1^2 t_2^2} \\ &= \int_{\mathbb{R}^2} \iint_{\Gamma(x)} |\psi_t * g(y)|^2 w^{-1}(x) \frac{dydt}{t_1^2 t_2^2} dx = \int_{\mathbb{R}^2} S(g)^2(x) w^{-1}(x) dx \leqslant C \|g\|_{L^2_{w^{-1}}}. \end{split}$$

Therefore,

(2.1)
$$\left\|\sum_{R\in\mathcal{R}_k}e_R\right\|_{L^2_w} \leqslant C\Big(\iint_{\widehat{R}}w(R)|\psi_t*f(y)|^2\frac{\mathrm{d}y\mathrm{d}t}{t_1^2t_2^2}\Big)^{1/2}.$$

Since $M_{s,w}$ is bounded on L^2_w for $w \in A_2$, it yields $w(\widetilde{\Omega}_k) \leq Cw(\Omega_k)$. Hence

$$\begin{split} 2^{2k+2}w(\widetilde{\Omega}_{k}) & \geqslant \int\limits_{\widetilde{\Omega}_{k}\backslash\Omega_{k+1}} |Sf(x)|^{2}w(x)\mathrm{d}x\\ & = \int\limits_{0}^{\infty}\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{2}}\int\limits_{\mathbb{R}^{2}} |\psi_{t}*f(y)|^{2}\chi_{\{x\in\widetilde{\Omega}_{k}\backslash\Omega_{k+1}:|x_{i}-y_{i}|< t_{i},i=1,2\}}w(x)\frac{\mathrm{d}y\mathrm{d}t}{t_{1}^{2}t_{2}^{2}}\\ & \geqslant \sum_{R\in\mathcal{R}_{k}}\int\limits_{\mathbb{R}^{2}}\int\int\limits_{\widehat{R}} |\psi_{t}*f(y)|^{2}\chi_{\{x\in\widetilde{\Omega}_{k}\backslash\Omega_{k+1}:|x_{i}-y_{i}|< t_{i},i=1,2\}}w(x)\frac{\mathrm{d}y\mathrm{d}t}{t_{1}^{2}t_{2}^{2}}. \end{split}$$

For any $R \in \mathcal{R}_k$ and $(y, t) \in \widehat{R}$, we have $R \subset \widetilde{\Omega}_k$ and $R \subset \{x \in \mathbb{R}^2 : |x - y| < t\}$. That implies

$$\int_{\mathbb{R}^2} \chi_{\{x \in \widetilde{\Omega}_k \setminus \Omega_{k+1} : |x-y| < t\}} w(x) \mathrm{d}x \geqslant w(R \cap (\widetilde{\Omega}_k \setminus \Omega_{k+1})) = w(R) - w(R \cap \Omega_{k+1}) \geqslant \frac{w(R)}{2},$$

and hence

(2.2)
$$\sum_{R \in \mathcal{R}_k} \iint_{\widehat{R}} w(R) |\psi_t * f(y)|^2 \frac{dydt}{t_1^2 t_2^2} \leqslant C 2^{2k} w(\widetilde{\Omega}_k).$$

Both (2.1) and (2.2) give the size condition of a_R as follows

$$\|a_k\|_{L^2_w} = C^{-1/2} 2^{-k} w(\widetilde{\Omega}_k)^{-1/p} \Big\| \sum_{R \in \mathcal{R}_k} e_R \Big\|_{L^2_w} \leq w(\widetilde{\Omega}_k)^{1/2 - 1/p}.$$

To estimate the size condition of weight elementary particle, we have

$$\sum_{S \in \mathcal{M}(\widetilde{\Omega}_k)} \|a_S\|_{L^2_w}^2 = C^{-1} 2^{-2k} w(\widetilde{\Omega}_k)^{-2/p} \left\| \sum_{R=S} e_R \right\|_{L^2_w}$$
$$\leqslant C^{-1} 2^{-2k} w(\widetilde{\Omega}_k)^{-2/p} \left\| \sum_{\widetilde{R} \in \mathcal{R}_k} e_R \right\|_{L^2_w} \leqslant w(\widetilde{\Omega}_k)^{1-2/p}$$

Therefore,

$$\sum_{k\in\mathbb{Z}}|\lambda_k|^p=\sum_{k\in\mathbb{Z}}C^{p/2}2^{pk}w(\widetilde{\Omega}_k)\leqslant C\sum_{k\in\mathbb{Z}}2^{pk}w(\Omega_k)\leqslant C\|S(f)\|_{L^p_w}^p=C\|f\|_{H^p_w}^p.$$

We return to the proof of the claim, which is equivalent to show

$$\Big\|\sum_{|k|>M}\sum_{R\in\mathcal{R}_k}\int_{\widehat{R}}\psi_t(\cdot-y)\psi_t*f(y)\frac{\mathrm{d}y\mathrm{d}t}{t_1t_2}\Big\|_{L^2_w}\to 0\quad\text{as }M\to\infty.$$

By the same proof in (2.1) and (2.2), we obtain

$$\begin{split} \Big\| \sum_{|k|>M} \sum_{R \in \mathcal{R}_k} \int_{\widehat{R}} \psi_t(\cdot - y) \psi_t * f(y) \frac{\mathrm{d}y \mathrm{d}t}{t_1 t_2} \Big\|_{L^2_w} \leqslant C \Big(\sum_{|k|>M} \sum_{R \in \mathcal{R}_k} \int_{\widehat{R}} w(R) |\psi_t * f(y)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t_1^2 t_2^2} \Big)^{1/2} \\ \leqslant \Big(\sum_{|k|>M} 2^{2k} w(\Omega_k) \Big)^{1/2}. \end{split}$$

The last term tends to zero as *M* goes to infinity because

$$\sum_{R\in\mathbb{Z}} 2^{2k} w(\Omega_k) \leqslant C \|f\|_{L^2_w}^2 < \infty.$$

This ends the proof of Theorem 2.1.

It is important and convenient to emphasize that to prove the boundedness of operators defined on H_w^p spaces, it suffices to verify the boundedness of these operators acting on all atoms.

LEMMA 2.2. Let $1/2 and <math>w \in A_2$. For a linear operator T bounded on $L^2_w(\mathbb{R}^2)$, T can be extended to a bounded operator from $H^p_w(\mathbb{R} \times \mathbb{R})$ to $L^p_w(\mathbb{R}^2)$ if and only if there exists an absolute constant C such that

 $||Ta||_{L^{p}_{m}} \leq C$ for any weighted p atom a.

Proof. We only show the sufficiency. Theorem 2.1 shows that, for $f \in H^p_w \cap L^2_w$, we have $f = \sum_{i=1}^{\infty} \lambda_i a_i$ in L^2_w , where a_i 's are weighted *p*-atoms and $\sum |\lambda_i|^p \leq C \|f\|^p_{H^p_v}$. Since *T* is linear and bounded on L^2_w ,

$$\left\|Tf - \sum_{i=1}^{M} \lambda_i Ta_i\right\|_{L^2_w} = \left\|T\left(f - \sum_{i=1}^{M} \lambda_i a_i\right)\right\|_{L^2_w} \leq C \left\|f - \sum_{i=1}^{M} \lambda_i a_i\right\|_{L^2_w} \to 0 \quad \text{as } M \to \infty.$$

Hence, there exists a subsequence (we still write the same indices) such that $Tf = \sum_{i=1}^{\infty} \lambda_i Ta_i$ almost everywhere. Fatou's lemma yields

$$\int_{\mathbb{R}^n} |Tf|^p w(x) \mathrm{d}x \leqslant \liminf_{M \to \infty} \int_{\mathbb{R}^n} \left| \sum_{i=1}^M \lambda_i Ta_i \right|^p w(x) \mathrm{d}x \leqslant \sum_{i=1}^\infty |\lambda_i|^p \int_{\mathbb{R}^n} |Ta_i|^p w(x) \mathrm{d}x \leqslant C \|f\|_{H^p_w}^p$$

Since $H_w^p \cap L_w^2$ is dense in H_w^p , *T* can be extended to a bounded operator from H_w^p to L_w^p .

3. PROOF OF THEOREM 1.3

In this section, we will show Theorem 1.3. We first get a weighted version of the "trivial lemma" in [4].

LEMMA 3.1. Let $\alpha(x_1, x_2)$ be supported in a rectangle $R = I \times J$ and satisfy

$$\int_{I} \alpha(x_{1}, x_{2}) dx_{1} = 0, \text{ for each } x_{2} \in J, \text{ and}$$
$$\int_{J} \alpha(x_{1}, x_{2}) dx_{2} = 0, \text{ for each } x_{1} \in I.$$

Assume that $w \in A_q(\mathbb{R} \times \mathbb{R})$ where $q < 1 + \varepsilon$ and $q/(1 + \varepsilon) . Write <math>E_{\gamma} = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \notin \tilde{I}_{\gamma}\}$, where $\gamma \ge 2$ and \tilde{I}_{γ} is the concentric γ fold enlargement of *I*. Then

$$\int_{E_{\gamma}} |T(\alpha)|^{p} w \mathrm{d}x \leqslant C \gamma^{-\eta} \|\alpha\|_{L^{2}_{w}}^{p} w(R)^{1-p/2} \quad \text{for some } \eta > 0.$$

Proof. We shall assume that *R* is centered at 0. By dilation invariance of the class of singular integrals that we are considering, we may assume *R* to be the unit square. Let $R_{k,j} = \{(x_1, x_2) : 2^k < |x_1| \le 2^{k+1} \text{ and } 2^j < |x_2| \le 2^{j+1}\}$. If $k, j \ge 1$, then on $R_{k,j}$ we get $|T(\alpha)(x_1, x_2)| \le C2^{-k(1+\varepsilon)}2^{-j(1+\varepsilon)} \|\alpha\|_{L^1}$. But $w \in A_q \subseteq A_2$ shows that

$$\|\alpha\|_{L^{1}} \leq C \|\alpha\|_{L^{2}_{w}} (w^{-1}(R))^{1/2} \leq C \|\alpha\|_{L^{2}_{w}} w(R)^{-1/2}$$

and $|T(\alpha)(x_1, x_2)| \leq C2^{-k(1+\varepsilon)}2^{-j(1+\varepsilon)} \|\alpha\|_{L^2_w} w(R)^{-1/2}$. Since $M_s(\chi_R) \approx 2^{-(k+j)}$ on $R_{k,j}$, we have $w(R_{k,j}) \leq C2^{q(k+j)} w(R)$. Therefore,

$$\int_{E_{\gamma} \cap \{(x_1, x_2) : |x_2| > 2\}} |T(\alpha)|^p w dx \leq C \sum_{2^k \ge \gamma, j \ge 1} \int_{R_{k,j}} |T(\alpha)|^p w dx$$
$$\leq C \sum_{2^k \ge \gamma, j \ge 1} 2^{(k+j)[q-p(1+\varepsilon)]} \|\alpha\|_{L^2_w}^p w(R)^{1-p/2}$$

MING-YI LEE

$$\leq C_{\gamma}^{-\eta} \|\alpha\|_{L^2_w}^p w(R)^{1-p/2},$$

where $\eta = p(1 + \varepsilon) - q > 0$. Now we estimate $\int_{R_j} |T(\alpha)|^p w dx$, where $R_j = \int_{R_j} |T(\alpha)|^p w dx$.

 $\{(x_1, x_2): 2^j < |x_1| \leqslant 2^{j+1}, |x_2| \leqslant 2\}.$ We see that

(3.1)
$$\int_{R_j} |T(\alpha)|^p w \mathrm{d}x \leq w(R_j)^{1-p/2} \Big(\int_{R_j} |T(\alpha)|^2 w \mathrm{d}x \Big)^{p/2}.$$

Since $w \in A_q$, $w(R_j) \leq C2^{qj}w(R)$. We use $\#_2$ to denote the sharp operator in the x_2 variable. Then

(3.2)
$$\int_{R_j} |T(\alpha)|^2 w \mathrm{d}x \leqslant \int_{R_j} |T(\alpha)^{\#_2}|^2 w \mathrm{d}x.$$

A same argument in Lemma 1 of [6] yields

$$\int_{R_j} |T(\alpha)^{\#_2}(x_1, x_2)|^2 w \mathrm{d}x_1 \mathrm{d}x_2 \leqslant C \|\alpha\|_{L^2_w}^2 2^{jq-2j(1+\varepsilon)}$$

Combining this with (3.1) gives

$$\int\limits_{R_j} |T(\alpha)|^p w \mathrm{d}x \leqslant Cw(R)^{1-p/2} \|\alpha\|_{L^2_w}^p 2^{jq-jp(1+\varepsilon)}$$

We sum up these estimates over *j* to finish the proof of Lemma 3.1.

To prove Theorem 1.3, we need a weighted version of Journé's covering lemma. Suppose Ω is an open set in \mathbb{R}^2 , and $\mathcal{M}^{(2)}(\Omega)$ denotes the collection of dyadic subrectangles in Ω which are maximal with respect to the x_2 side. If $R = I \times J \in \mathcal{M}^{(2)}(\Omega)$ and \tilde{I} denotes the largest dyadic interval containing I so that $\tilde{I} \times J \subseteq \{M_s(\chi_\Omega) > 1/2\}$. Let $\gamma_1(R) = |\tilde{I}|/|I|$.

LEMMA 3.2 ([6]). If $w \in A_{\infty}(\mathbb{R} \times \mathbb{R})$, then

$$\sum_{R \in \mathcal{M}^{(2)}(\Omega)} w(R)(\gamma_1(R))^{-\eta} \leqslant C_{\eta} w(\Omega) \quad \text{for any} \quad \eta > 0.$$

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.1, it suffices to show $||Ta||_{L_w^p} \leq C$ for any weighted p atom a with constant C independent of the choice of a. Given a weight-ed p atom a with supp $(a) \subseteq \Omega$, let $\tilde{\Omega} = \{M_s(\chi_{\Omega}) > 1/2\}$ and $\tilde{\tilde{\Omega}} = \{M_s(\chi_{\tilde{\Omega}}) > 1/2\}$. Then

$$\int_{\widetilde{\Omega}} |T(a)|^p w \mathrm{d} x \leq ||T(a)||_{L^2_w}^p w(\widetilde{\widetilde{\Omega}})^{1-p/2}.$$

Now, since $w \in A_2$, it follows from Theorem A of [6] that *T* is bounded on L^2_w . Also, since $w \in A_\infty$, $w(\widetilde{\widetilde{\Omega}}) \leq Cw(\Omega)$, so that

$$\int_{\widetilde{\widetilde{\Omega}}} |T(a)|^p w \mathrm{d} x \leq C ||a||_{L^2_w}^p w(\Omega)^{1-p/2} \leq C.$$

For a rectangle $R \in \mathcal{M}(\Omega)$, $R = I \times J$, we denote \widetilde{R} the rectagle $\widetilde{I} \times \widetilde{J}$ obtained by first considering $\widetilde{I} \supseteq I$ maximal so that $\widetilde{I} \times J \subseteq \widetilde{\Omega}$ and then take $\widetilde{J} \supseteq J$ maximal so that $\widetilde{I} \times \widetilde{J} \subseteq \widetilde{\widetilde{\Omega}}$. Also let

$$E_{\gamma_1}(R) = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \notin \tilde{I} \}, \quad E_{\gamma_2}(R) = \{ (x_1, x_2) \in \mathbb{R}^2 : x_2 \notin \tilde{J} \}, \text{ and} \\ \gamma_1(R) = \frac{|\tilde{I}|}{|I|}, \quad \gamma_2(R) = \frac{|\tilde{J}|}{|J|}.$$

Then

$$\begin{split} \int\limits_{(\widetilde{\tilde{\Omega}})^c} |T(a)|^p w \mathrm{d}x &= \sum_{R \in \mathcal{M}(\Omega)} \int\limits_{(\widehat{R})^c} |T(a)|^p w \mathrm{d}x \\ &\leqslant \sum_{R \in \mathcal{M}(\Omega)} \int\limits_{E_{\gamma_1}(R)} |T(a)|^p w \mathrm{d}x + \sum_{R \in \mathcal{M}(\Omega)} \int\limits_{E_{\gamma_2}(R)} |T(a)|^p w \mathrm{d}x := \mathrm{I} + \mathrm{II}. \end{split}$$

By Lemma 3.1,

$$\int_{E_{\gamma_1}} |T(\alpha_R)|^p w \mathrm{d} x \leqslant C(\gamma_1(R))^{-\eta} \|\alpha\|_{L^2_w}^p w(R)^{1-p/2}.$$

Summing over all $R \in \mathcal{M}(\Omega)$, we get, by Hölder's inequality and Lemma 3.2,

$$I \leq C \Big(\sum \|\alpha_R\|_{L^2_w}^2 \Big)^{p/2} \Big(\sum w(R) (\gamma_1(R))^{-2\eta/(2-p)} \Big)^{1-p/2} \\ \leq C w(\Omega)^{(1-2/p)p/2} w(\Omega)^{1-p/2} \leq C.$$

Expression II is handled similarly. The proof of Theorem 1.3 is completed.

4. PROOF OF THEOREM 1.4

To prove Theorem 1.4, we need the product Littlewood–Paley square function as follows. Let $n_1 = n$, $n_2 = m$, $\psi^i \in C_{0,0}^{\infty}(\mathbb{R}^{n_i})$ supported in the unit ball of \mathbb{R}^{n_i} , and ψ^i satisfy

$$\int_{0}^{\infty} |\widehat{\psi}^{i}(t\xi)|^{2} \frac{\mathrm{d}t}{t} = 1 \quad \text{for all } \xi \neq 0, i = 1, 2.$$

For $t_i > 0$ and $(x_1, x_2) \in \mathbb{R}^n \times \mathbb{R}^m$, set $\psi_{t_i}^i(x_i) = t_i^{-n_i}\psi(x_i/t_i)$ and $\psi_{t_1t_2}(x_1, x_2) = \psi_{t_1}^1(x_1)\psi_{t_2}^2(x_2)$. The product Littlewood–Paley square function of $f \in \mathscr{S}'(\mathbb{R}^n \times \mathbb{R}^m)$ is defined by

$$g(f)(x_1, x_2) = \left\{ \int_0^\infty \int_0^\infty |\psi_{t_1 t_2} * f(x_1, x_2)|^2 \frac{\mathrm{d}t_1}{t_1} \frac{\mathrm{d}t_2}{t_2} \right\}^{1/2}$$

It is well known that $w \in A_p(\mathbb{R} \times \mathbb{R})$ if and only if $w(\cdot, x_2) \in A_p$ with bounded A_p constant independently of x_2 and $w(x_1, \cdot) \in A_p$ with bounded A_p constant independently of x_1 (cf. p. 453, Theorem 6.2 of [8]). It is known that if $w \in A_\infty$, then $\|S(f)\|_{L^p_w}$ is equivalent to $\|g(f)\|_{L^p_w}$ for 0 . Hence if $<math>w \in A_p(\mathbb{R}^n \times \mathbb{R}^m)$, $1 , then the <math>L^q_w$ -norms of double S-function and product Littlewood–Paley square function are equivalent for $0 < q \leq 1$. Here we have the following product Littlewood–Paley characterization of $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$

(4.1)
$$||S(f)||_{L^q_w} \approx ||g(f)||_{L^q_w}, \quad 0 < q \le 1 \text{ and } w \in A_p, 1 < p < \infty,$$

We define the Hilbert space \mathcal{H} by

$$\mathcal{H} = \Big\{ \{h_{t,s}\}_{t,s>0} : \|\{h_{t,s}\}\|_{\mathcal{H}} = \Big(\int_{0}^{\infty} \int_{0}^{\infty} |h_{t,s}|^2 \frac{\mathrm{d}t}{t} \frac{\mathrm{d}s}{s} \Big)^{1/2} < \infty \Big\}.$$

Let *T* be a singular integral operator in Journé's class with regularity exponent ε . Set $T_{t,s}(f) = \psi_{t,s} * T(f)$. For $f \in L^2_w(\mathbb{R}^{n+m}) \cap H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$ and $w \in A_2$, by the Calderón reproducing formula in Lemma 3.1 of [10],

(4.2)
$$T_{t,s}(f)(x_1, x_2) = \psi_{t,s} * T\Big(\int_0^\infty \int_0^\infty \psi_{t',s'} * \psi_{t',s'} * f(\cdot, \cdot) \frac{\mathrm{d}t'}{t'} \frac{\mathrm{d}s'}{s'}\Big)(x_1, x_2).$$

By (4.2), the kernel $T_{t,s}(x_1, x_2, y_1, y_2)$ of $T_{t,s}$ is given by

(4.3)

$$T_{t,s}(x_1, x_2, y_1, y_2) = \int_0^\infty \int_0^\infty \int_{\mathbb{R}^n \times \mathbb{R}^m} \int_{\mathbb{R}^n \times \mathbb{R}^m} \psi_{t,s}(x_1 - u_1, x_2 - u_2) K(u_1, u_2, v_1, v_2) \times \psi_{t',s'} * \psi_{t',s'}(v_1 - y_1, v_2 - y_2) du_1 du_2 dv_1 dv_2 \frac{dt'}{t'} \frac{ds'}{s'}.$$

By (4.1), the $H_w^p(\mathbb{R}^n \times \mathbb{R}^m)$ boundedness of *T* is equivalent to the $H_w^p-L_{w,\mathcal{H}}^p(\mathbb{R}^n \times \mathbb{R}^m)$ boundedness of the \mathcal{H} -valued operator \mathcal{L} which maps *f* into $\{T_{t,s}(f)\}_{t,s>0}$. Note that the $L^2(\mathbb{R}^{n+m})$ boundedness of *T* and the product Littlewood–Paley estimate [7] imply that \mathcal{L} is bounded from $L_w^2(\mathbb{R}^{n+m})$ to $L_{w,\mathcal{H}}^2(\mathbb{R}^{n+m})$. Moreover,

THEOREM 4.1 ([11], Theorem B). Let ε be the regularity exponent satisfying (B₂) and (B₃). Then the kernel of $T_{t,s}$, $\{T_{t,s}(x_1, x_2, y_1, y_2)\}_{t,s>0}$, satisfies the following estimates:

(D₁)
$$\|\{T_{t,s}(x_1, x_2, y_1, y_2)\}\|_{\mathcal{H}} \leq C|x_1 - y_1|^{-n}|x_2 - y_2|^{-m};$$

$$\begin{aligned} (\mathsf{D}_{3}) \ for \ \varepsilon' < \varepsilon, \\ \|\{[T_{t,s}(x_{1}, x_{2}, y_{1}, y_{2}) - T_{t,s}(x_{1}, x_{2}, y_{1}', y_{2})] - [T_{t,s}(x_{1}, x_{2}, y_{1}, y_{2}') - T_{t,s}(x_{1}, x_{2}, y_{1}', y_{2}')]\}\|_{\mathcal{H}} \\ &\leqslant C \frac{|y_{1} - y_{1}'|^{\varepsilon'}}{|x_{1} - y_{1}|^{n + \varepsilon'}} \frac{|y_{2} - y_{2}'|^{\varepsilon'}}{|x_{2} - y_{2}|^{m + \varepsilon'}} \quad if \ |y_{1} - y_{1}'| \leqslant \frac{|x_{1} - y_{1}|}{2}, \ |y_{2} - y_{2}'| \leqslant \frac{|x_{2} - y_{2}|}{2}. \end{aligned}$$

The regularity of the operator $T_{t,s}$ mapping from L^2 into $L^2_{\mathcal{H}}$ is demonstrated as follows.

THEOREM 4.2 ([11], Theorem C). Let the kernel of $T_{t,s}$ be defined in (4.3) and ε be the regularity exponent of T. For $\varepsilon' < \varepsilon$,

(i) *if* $|y_1 - x_I| \leq |x_1 - x_I|/2$, then

$$\left\|\left\{\int_{\mathbb{R}^{m}} [T_{t,s}(x_{1},\cdot,y_{1},y_{2}) - T_{t,s}(x_{1},\cdot,x_{I},y_{2})]f(y_{2})dy_{2}\right\}\right\|_{L^{2}_{\mathcal{H}}(\mathbb{R}^{m})} \leq C\frac{|y_{1} - x_{I}|^{\epsilon'}}{|x_{1} - x_{I}|^{n+\epsilon'}} \|f\|_{2};$$

(ii) if $|y_2 - y_J| \leq |x_2 - y_J|/2$, then

$$\left\|\left\{\int_{\mathbb{R}^n} [T_{t,s}(\cdot, x_2, y_1, y_2) - T_{t,s}(\cdot, x_2, y_1, y_j)]f(y_1)dy_1\right\}\right\|_{L^2_{\mathcal{H}}(\mathbb{R}^n)} \leq C \frac{|y_2 - y_j|^{\varepsilon'}}{|x_2 - y_j|^{n+\varepsilon'}} \|f\|_2.$$

Similar to Lemma 3.1, we prove the weighted vector-valued version of the "trivial lemma" in [4].

LEMMA 4.3. Let $T_{t,s}$ be defined in (4.2) and ε be the regularity exponent of T. Suppose that $\alpha(x_1, x_2)$ is supported in a rectangle $R = I \times J$ and satisfies

$$\int_{I} \alpha(x_1, x_2) dx_1 = 0 \quad \text{for each } x_2 \in J, \quad \text{and} \quad \int_{J} \alpha(x_1, x_2) dx_2 = 0 \quad \text{for each } x_1 \in I.$$

For $q < 1 + \varepsilon$ and $q/(1 + \varepsilon) , if <math>w \in A_q(\mathbb{R} \times \mathbb{R})$, then

$$\iint_{E_{\gamma}} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^{p} w \mathrm{d} x \leqslant C \gamma^{-\eta} \|\alpha\|_{L^{2}_{w}}^{p} w(R)^{1-p/2} \quad \text{for some } \eta > 0,$$

where E_{γ} is defined as in Lemma 3.1.

Proof. By dilation invariance of the class of singular integrals which we are considering, we may assume *R* be the unit square. Let $R_{k,j} = \{(x_1, x_2) : 2^k < |x_1| \leq 2^{k+1} \text{ and } 2^j < |x_2| \leq 2^{j+1}\}$. If $k, j \ge 1$, then on $R_{k,j}$ Minkowski's integral inequality and Theorem B of [11] imply

$$\begin{split} \|T(\alpha)(x_1, x_2)\|_{\mathcal{H}} &= \Big\| \iint_R \{ [T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, x_2, 0, y_2)] \\ &- [T_{t,s}(x_1, x_2, y_1, 0) - T_{t,s}(x_1, x_2, 0, 0)] \} \alpha(y_1, y_2) dy_1 dy_2 \Big\|_{\mathcal{H}} \\ &\leqslant \iint_R \| [T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, x_2, 0, y_2)] \\ &- [T_{t,s}(x_1, x_2, y_1, 0) - T_{t,s}(x_1, x_2, 0, 0)] \|_{\mathcal{H}} |\alpha(y_1, y_2)| dy_1 dy_2 \\ &\leqslant C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)} \|\alpha\|_{L^1} \leqslant C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)} \|\alpha\|_{L^2_w} w(R)^{-1/2} \end{split}$$

Now, $w \in A_q$ and $M_{\rm s}(\chi_R) \approx 2^{-(k+j)}$ on $R_{k,j}$, we have

$$w(R_{k,j}) \leqslant C2^{q(k+j)}w(R).$$

Therefore,

$$\begin{split} \iint_{E_{\gamma} \cap \{(x_{1},x_{2}):|x_{2}|>2\}} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^{p}wdx &\leq C \sum_{2^{k} \geq \gamma, j \geq 1} \iint_{R_{k,j}} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^{p}wdx \\ &\leq C \sum_{2^{k} \geq \gamma, j \geq 1} 2^{(k+j)[q-p(1+\varepsilon)]} \|\alpha\|_{L^{2}_{w}}^{p}w(R)^{1-p/2} \\ &\leq C_{\gamma}^{-\eta} \|\alpha\|_{L^{2}_{w}}^{p}w(R)^{1-p/2}, \end{split}$$

where $\eta = p(1 + \varepsilon) - q > 0$. Now we estimate $\iint_{R_j} ||T_{t,s}(\alpha)||_{\mathcal{H}}^p w dx$, where $R_j = \{(x_1, x_2) : 2^j < |x_1| \leq 2^{j+1}, |x_2| \leq 2\}$. We see that

(4.4)
$$\iint_{R_j} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^p w \mathrm{d} x \leqslant w(R_j)^{1-p/2} \Big(\iint_{R_j} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^2 w \mathrm{d} x\Big)^{p/2},$$

since $w \in A_q$, $w(R_j) \leq C2^{qj}w(R)$. By (3.2)

$$\begin{split} \iint_{R_j} \|T_{t,s}(\alpha)\|_{\mathcal{H}}^2 w \mathrm{d}x &= \iint_{R_j} \int_0^\infty \int_0^\infty |T_{t,s}(\alpha)|^2 \frac{\mathrm{d}t}{t} \frac{\mathrm{d}s}{s} w \mathrm{d}x \\ &\leqslant \int_0^\infty \int_0^\infty \iint_{R_j} |T_{t,s}(\alpha)^{\#_2}|^2 w \mathrm{d}x \frac{\mathrm{d}t}{t} \frac{\mathrm{d}s}{s} = \iint_{R_j} \|T_{t,s}(\alpha)^{\#_2}\|_{\mathcal{H}}^2 w \mathrm{d}x. \end{split}$$

We claim

$$\|T(\alpha)^{\#_2}(x_1,x_2)\|_{\mathcal{H}} \leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int_{-1/2}^{1/2} M_2^{(2)}(\alpha)(x_1,x_2) dx_1,$$

where $M_2^{(2)} f(x_1, x_2) = [M^{(2)}(f^2)]^{1/2}$ and $M^{(2)}$ is the Hardy–Littlewood maximal operator for variable x_2 . Assume the claim for the moment. By a same argument in Lemma 1 of [6], we have

$$\iint_{R_j} \|T(\alpha)^{\#_2}(x_1,x_2)\|_{\mathcal{H}}^2 w \mathrm{d} x_1 \mathrm{d} x_2 \leqslant C \|\alpha\|_{L^2_w}^2 2^{jq-2j(1+\varepsilon)}.$$

Combining this with (4.4) gives

$$\int_{R_j} |T(\alpha)|^p w \mathrm{d}x \leqslant C w(R)^{1-p/2} \|\alpha\|_{L^2_w}^p 2^{jq-jp(1+\varepsilon)}.$$

We sum up these estimates over *j* to finish the proof of Lemma 4.3. We now show the claim. By translation invariance, we only prove the pointwise estimate at $x_2 = 0$. Let $\alpha_1(x_1, x_2) = \alpha(x_1, x_2)\chi_{|x_2| < r}$ and

$$I_{t,s}^{r}(x_{1}) = \iint_{|y_{2}|>r} T_{t,s}(x_{1}, x_{2}, y_{2}, y_{2}) \alpha(y_{1}, y_{2}) dy_{1} dy_{2}$$

Then

$$\begin{aligned} r^{-1} & \int\limits_{|x_2| < r/2} |T_{t,s}(\alpha)(x_1, x_2) - I_{t,s}^r(x_1)| dx_2 \\ &\leqslant r^{-1} \int\limits_{|x_2| < 1/2} |T_{t,s}(\alpha_1)(x_1, x_2)| dx_2 \\ &+ \int\limits_{-1/2}^{1/2} \iint\limits_{|x_2| < r < |y_2|} |T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, 0, 0, y_2)| |\alpha(y_1, y_2)| dy_2 dx_2 dy_1, \end{aligned}$$

and hence

$$\begin{split} \|T(\alpha)^{\#_{2}}(x_{1}, x_{2})\|_{\mathcal{H}} \\ &= \left\|\sup_{r>0} r^{-1} \int\limits_{|x_{2}| < r/2} |T_{t,s}(\alpha)(x_{1}, x_{2}) - I_{t,s}^{r}(x_{1})| \mathrm{d}x_{2}\right\|_{\mathcal{H}} \\ &= \sup_{r>0} \left\|r^{-1} \int\limits_{|x_{2}| < r/2} |T_{t,s}(\alpha)(x_{1}, x_{2}) - I_{t,s}^{r}(x_{1})| \mathrm{d}x_{2}\right\|_{\mathcal{H}} \end{split}$$

Ming-Yi Lee

$$\leq \sup_{r>0} \left\| r^{-1} \int_{|x_2| < r/2} |T_{t,s}(\alpha_1)(x_1, x_2)| dx_2 \right\|_{\mathcal{H}} + \sup_{r>0} \left\| \int_{-1/22}^{1/2} \iint_{|T_{t,s}}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, 0, 0, y_2)| |\alpha(y_1, y_2)| dy_2 dx_2 dy_1 \right\|_{\mathcal{H}} := III + IV.$$

For III, Minkowski's integral inequality and Theorem C of [11] imply

$$\begin{split} \text{III} &\leqslant \sup_{r>0} \left\| r^{-1} \int\limits_{|x_2| < r/2} \int\limits_{-1/2}^{1/2} \left\| \int T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, x_2, 0, y_2)(\alpha_1)(y_1, y_2) dy_2 \right\| dy_1 dx_2 \right\|_{\mathcal{H}} \\ &\leqslant \int\limits_{-1/2}^{1/2} \sup_{r>0} r^{-1} \int\limits_{|x_2| < r/2} \left\| \int T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, x_2, 0, y_2)(\alpha_1)(y_1, y_2) dy_2 \right\|_{\mathcal{H}} dx_2 dy_1 \\ &\leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int\limits_{-1/2}^{1/2} \sup_{r>0} r^{-1/2} \|\alpha_1\|_2 dy_1 \leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int\limits_{-1/2}^{1/2} M_2^{(2)}(\alpha)(y_1, 0) dy_1. \end{split}$$

For IV, Minkowski's integral inequality and Theorem B of [11] imply

$$\begin{split} & \text{IV} \leqslant \int_{-1/2}^{1/2} \sup_{|x_2| < r/2} \int_{|x_2| < r/2} \|T_{t,s}(x_1, x_2, y_1, y_2) - T_{t,s}(x_1, 0, 0, y_2)\|_{\mathcal{H}} |\alpha(y_1, y_2)| dy_2 dx_2 dy_1 \\ & \leqslant C \int_{-1/2}^{1/2} \sup_{r > 0} \int_{|x_2| < r/2} \sum_{j=1}^{\infty} \int_{2^j |x_2| < |y_2| \leqslant 2^{j+1} |x_2|} \frac{1}{|x_1|^{1+\varepsilon}} \frac{|x_2|^{\varepsilon}}{|y_2|^{1+\varepsilon}} |\alpha(y_1, y_2)| dy_2 dx_2 dy_1 \\ & \leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int_{-1/2}^{1/2} \sup_{r > 0} \int_{|x_2| < r/2} \sum_{j=1}^{\infty} 2^{-j\varepsilon} (2^j |x_2|)^{-1} \int_{|y_2| \leqslant 2^{j+1} |x_2|} |\alpha(y_1, y_2)| dy_2 dx_2 dy_1 \\ & \leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int_{-1/2}^{1/2} M^{(2)}(\alpha)(y_1, 0) dy_1 \leqslant C \frac{1}{|x_1|^{1+\varepsilon}} \int_{-1/2}^{1/2} M^{(2)}_2(\alpha)(y_1, 0) dy_1, \end{split}$$

since $Mf \leq M_q f$, q > 1, for one variable.

Next, we show that \mathcal{L} is bounded from H^p_w to $L^p_{w,\mathcal{H}}$ if and only if \mathcal{L} is uniformly boubded in H^p_w -norm for all weighted p atoms.

130

LEMMA 4.4. Let $w \in A_2$ and \mathcal{L} be a bounded operator from $L^2_w(\mathbb{R}^n)$ to $L^2_{w,\mathcal{H}}(\mathbb{R}^n)$. Then, for $1/2 , <math>\mathcal{L}$ extends to be a bounded operator from $H^p_w(\mathbb{R}^n)$ to $L^p_{w,\mathcal{H}}(\mathbb{R}^n)$ if and only if $\|\mathcal{L}(a)\|_{L^p_{w,\mathcal{H}}(\mathbb{R}^n)} \leq C$ for any weighted p atom a, where the constant C is independent of a.

Proof. It suffices for us to check the sufficiency. Given $f \in H^p_w \cap L^2_w$, it follows from Theorem 2.1 that $f = \sum_{i=1}^{\infty} \lambda_i a_i$ in L^2_w . Then

$$\psi_t * Tf = \sum_{i=1}^{\infty} \lambda_i \psi_t * Ta_i \text{ in } L^2_w.$$

Hence, there exists a subsequence (we still write the same indices) such that

$$\psi_t * Tf = \sum_{i=1}^{\infty} \lambda_i \psi_t * Ta_i$$
 almost everywhere.

Fatou's lemma and Minkowski's inequality imply

$$g(Tf)(x) = \left(\int_{0}^{\infty} \int_{0}^{\infty} \liminf_{N \to \infty} \left| \sum_{i=1}^{N} \lambda_i \psi_t * Ta_i(y) \right|^2 \frac{\mathrm{d}t}{t} \frac{\mathrm{d}s}{s} \right)^{1/2}$$

$$\leq \liminf_{N \to \infty} \left(\int_{0}^{\infty} \int_{0}^{\infty} \left| \sum_{i=1}^{N} \lambda_i \psi_t * Ta_i(y) \right|^2 \frac{\mathrm{d}t}{t} \frac{\mathrm{d}s}{s} \right)^{1/2} \leq \sum_{i=1}^{\infty} |\lambda_i| g(Ta_i)(x).$$

Hence,

$$\begin{aligned} \|\mathcal{L}(f)\|_{L^p_{w,\mathcal{H}}}^p &= \int_{\mathbb{R}^n} [g(Tf)(x)]^p w(x) \, \mathrm{d}x = \int_{\mathbb{R}^n} \liminf_{N \to \infty} \left(\sum_{i=1}^N |\lambda_i| g(Ta_i)(x) \right)^p w(x) \, \mathrm{d}x \\ &\leqslant \liminf_{N \to \infty} \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\lambda_i| g(Ta_i)(x) \right)^p w(x) \, \mathrm{d}x \\ &\leqslant \sum_{i=1}^\infty |\lambda_i|^p \int_{\mathbb{R}^n} [g(Ta_i)(x)]^p w(x) \, \mathrm{d}x \leqslant C \|f\|_{H^p_w}^p. \end{aligned}$$

Since $H_w^p \cap L_w^2$ is dense in H_w^p , \mathcal{L} can be extended to a bounded operator from H_w^p to $L_{w,\mathcal{H}}^p$.

We now can to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 4.4, it suffices to show $\|\mathcal{L}a\|_{L^p_{w,\mathcal{H}}} \leq C$ for any weighted *p* atom *a* with constant *C* independent of the choice of *a*. Take a weighted *p* atom *a* with supp $(a) \subseteq \Omega$. Let $\widetilde{\Omega} = \{M_s(\chi_\Omega) > 1/2\}$ and $\widetilde{\widetilde{\Omega}} =$ $\{M_{\rm s}(\chi_{\widetilde{O}}) > 1/2\}$. Then

$$\int_{\widetilde{\Omega}} \|\mathcal{L}(a)\|_{\mathcal{H}}^{p} w \mathrm{d} x \leq \|\mathcal{L}(a)\|_{L^{2}_{w}}^{p} w(\widetilde{\widetilde{\Omega}})^{1-p/2}$$

Since $w(\widetilde{\widetilde{\Omega}}) \leq Cw(\Omega)$ for $w \in A_{\infty}$,

$$\int_{\widetilde{\Omega}} |\mathcal{L}(a)|^p w \mathrm{d} x \leqslant C ||a||_{L^2_w}^p w(\Omega)^{1-p/2} \leqslant C.$$

As for $\int_{(\tilde{\tilde{\Omega}})^c} |\mathcal{L}(a)|^p w dx$, we use the same notations as the proof of Theorem 1.3. It

suffices to observe that

$$\int_{(\widetilde{\Omega})^c} |\mathcal{L}(a)|^p w dx = \sum_{R \in \mathcal{M}(\Omega)} \int_{(\widehat{R})^c} |\mathcal{L}(a)|^p w dx$$
$$\leqslant \sum_{R \in \mathcal{M}(\Omega)} \int_{E_{\gamma_1}(R)} |\mathcal{L}(a)|^p w dx + \sum_{R \in \mathcal{M}(\Omega)} \int_{E_{\gamma_2}(R)} |\mathcal{L}(a)|^p w dx := V + VI.$$

By Lemma 4.3,

$$\int_{E_{\gamma_1}} |\mathcal{L}(\alpha_R)|^p w \mathrm{d} x \leqslant C(\gamma_1(R))^{-\eta} \|\alpha\|_{L^2_w}^p w(R)^{1-p/2}.$$

Summing over $R \in \mathcal{M}(\Omega)$, we get, by Hölder's inequality and Lemma 3.2,

$$V \leq C \left(\sum \|\alpha_R\|_{L^2_w}^2 \right)^{p/2} \left(\sum w(R)(\gamma_1(R))^{-2\eta/(2-p)} \right)^{1-p/2} \\ \leq C w(\Omega)^{(1-2/p)p/2} w(\Omega)^{1-p/2} \leq C.$$

The estimate of VI is similar to V and the proof of Theorem 1.4 is completed.

Acknowledgements. Research by author supported by National Science Council, Republic of China under Grant #NSC 102-2115-M-008-006.

REFERENCES

- S.Y. CHANG, R. FEFFERMAN, A continuous version of duality of H¹ with BMO on bidisc, Ann. of Math. 112(1980), 179–201.
- [2] G. DAVID, J.-L. JOURNÉ, A boundedness criterion for generalized Calderón– Zygmund operators, Ann. of Math. 120(1984), 371–397.
- [3] Y. DING, Y. HAN, G. LU, X. WU, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$, *Potential Anal.* **37**(2012), 31–56.
- [4] R. FEFFERMAN, Calderón–Zygmund theory for product domain-H^p theory, Proc. Nat. Acad. Sci. U.S.A. 83(1986), 840–843.

- [5] R. FEFFERMAN, Harmonic analysis on product spaces, Ann. of Math. 126(1987), 103– 130.
- [6] R. FEFFERMAN, A^p weights and singular integrals, Amer. J. Math. 110(1988), 975–987.
- [7] R. FEFFERMAN, E.M. STEIN, Singular integrals on product spaces, Adv. Math. 45(1982), 117–143.
- [8] J. GARCIA-CUERVA, J. RUBIO DE FRANCIA, Weighted Norm Inequalities and Related Topics, Math. Stud., vol. 16, Notas de Matemática, vol. 104, North Holland Publ. Co., Amsterdam 1985.
- [9] R.F. GUNDY, E.M. STEIN, H^p theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76(1979), 1026–1029.
- [10] Y. HAN, M.-Y. LEE, C.-C. LIN, Atomic decomposition and boundedness of operators on weighted Hardy spaces, *Canad. Math. Bull.* 55(2012), 303–314.
- [11] Y. HAN, M.-Y. LEE, C.-C. LIN, Y.-C. LIN, Calderon–Zygmund operators on product Hardy spaces, J. Funct. Anal. 258(2010), 2834–2861.
- [12] J.L. JOURNÉ, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1(1985), 55–91.
- [13] M.P. MALLIAVIN, P. MALLIAVIN, Intégrales de Lusin–Calderón pour les fonctions biharmoniques, *Bull. Sci. Math.* (2) **101**(1977), 357–384.

MING-YI LEE, DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVER-SITY, CHUNG-LI, TAIWAN 320, REPUBLIC OF CHINA *E-mail address*: mylee@math.ncu.edu.tw

Received November 6, 2012; posted on July 30, 2014.