BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS ON WEIGHTED PRODUCT HARDY SPACES

MING-YI LEE

Communicated by Şerban Strătilă

Abstract

Let T be a singular integral operator in Journé's class with regularity exponent $\varepsilon, w \in A_{q}, 1 \leqslant q<1+\varepsilon$, and $q /(1+\varepsilon)<p \leqslant 1$. We obtain the $H_{w}^{p}(\mathbb{R} \times \mathbb{R})-L_{w}^{p}\left(\mathbb{R}^{2}\right)$ boundedness of T by using R. Fefferman's "trivial lemma" and Journé's covering lemma. Also, using the vector-valued version of the "trivial lemma" and Littlewood-Paley theory, we prove the $H_{w}^{p}(\mathbb{R} \times \mathbb{R})$ boundedness of T provided $T_{1}^{*}(1)=T_{2}^{*}(1)=0$; that is, the reduced $T 1$ theorem on $H_{w}^{p}(\mathbb{R} \times \mathbb{R})$. In order to show these two results, we demonstrate a new atomic decomposition of $H_{w}^{p}(\mathbb{R} \times \mathbb{R}) \cap L_{w}^{2}\left(\mathbb{R}^{2}\right)$, for which the series converges in L_{w}^{2}. Moreover, a fundamental principle that the boundedness of operators on the weighted product Hardy space can be obtained simply by the actions of such operators on all atoms is given.

Keywords: Calderón-Zygmund operator, Littlewood-Paley theory, weighted product Hardy space.

MSC (2010): 42B20, 42B30.

1. INTRODUCTION

The product Hardy space was first introduced by Malliavin-Malliavin [13] and Gundy-Stein [9]. Chang-Fefferman [1] provided the atomic decomposition of $H^{p}\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$ and showed the duality H^{1} with BMO on the bidisc. R. Fefferman [5] used the rectangle atomic decomposition of $H^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ and a geometric covering lemma due to Journé [12] to prove the remarkable $H^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ $L^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ boundedness of product singular integrals introduced by Journé [12]. Recently, Han et al. [11] show a reduced $T 1$ type theroem on $H^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. More precisely, these Journé's product singular integrals T are also bounded on the product $H^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for $\max \{n /(n+\varepsilon), m /(m+\varepsilon)\}<p \leqslant 1$ if and only if $T_{1}^{*}(1)=T_{2}^{*}(1)=0$, where ε is the regularity exponent of the kernel of T. For the weighted norm inequality, R. Fefferman [6] proved that if $w \in A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$,
$1<p<\infty$, then these singular integrals are bounded on $L_{w}^{p}\left(\mathbb{R}^{n+m}\right)$. A natural and interesting problem is whether these singular integrals are bounded from $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ to $L_{w}^{p}\left(\mathbb{R}^{n+m}\right)$ or bounded on $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. The purpose of the current article is to answer this question. Recently, Ding et al. [3] obtained the boundedness of singular integral operators on weighted product Hardy spaces for $w \in A_{\infty}$. However, these operators are convolution operators with smooth kernels on each variable and with cancellation conditions. Here, we consider non-convolution operators and their kernels require less regularity.

We start with recalling the definition of a Calderón-Zygmund kernel. A continuous complex-valued function $K(x, y)$ defined on $\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\{(x, y): x=y\}$ is called a Calderón-Zygmund kernel if there exist constant $C>0$ and a regularity exponent $\varepsilon \in(0,1]$ such that
(i) $|K(x, y)| \leqslant C|x-y|^{-n}$;
(ii) $\left|K(x, y)-K\left(x^{\prime}, y\right)\right| \leqslant C\left|x-x^{\prime}\right|^{\varepsilon}|x-y|^{-n-\varepsilon}$ if $\left|x-x^{\prime}\right| \leqslant|x-y| / 2$;
(iii) $\left|K(x, y)-K\left(x, y^{\prime}\right)\right| \leqslant C\left|y-y^{\prime}\right|^{\varepsilon}|x-y|^{-n-\varepsilon}$ if $\left|y-y^{\prime}\right| \leqslant|x-y| / 2$.

The smallest such constant C is denoted by $|K|_{C Z}$.
We say that an operator T is a Calderón-Zygmund operator if the operator T is a continuous linear operator from $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ into its dual associated with a Calderón-Zygmund kernel $K(x, y)$ given by

$$
\langle T f, g\rangle=\iint g(x) K(x, y) f(y) \mathrm{d} y \mathrm{~d} x
$$

for all test functions f and g with disjoint supports and T being bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. If T is a Calderón-Zygmund operator associated with a kernel K, its Calderón-Zygmund operator norm is defined by $\|T\|_{C Z}=\|T\|_{L^{2} \mapsto L^{2}}+|K|_{C Z}$. Of course, in general, one cannot conclude that a singular integral operator T is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ because Plancherel's theorem does not work for nonconvolution operators. However, if one assumes that T is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$, then the $L^{p}, 1<p<\infty$, boundedness follows from Caldernón-Zygmund's real variable method. The $L^{2}\left(\mathbb{R}^{n}\right)$ boundedness of non-convolution singular integral operators was finally proved by the remarkable $T 1$ theorem by David and Journé [2], in which they gave a general criterion for the L^{2}-boundedness of singular integral operators.

Let T be a singular integral operator defined for functions on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ by

$$
T f\left(x_{1}, x_{2}\right)=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{m}} K\left(x_{1}, x_{2}, y_{1}, y_{2}\right) f\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

For each $x_{1}, y_{1} \in \mathbb{R}^{n}$, set $\widetilde{K}^{1}\left(x_{1}, y_{1}\right)$ to be the singular integral operator acting on functions on \mathbb{R}^{m} with the kernel $\widetilde{K}^{1}\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, and similarly, $\widetilde{K}^{2}\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right)=K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Fefferman [6] proved that singular integral operators are bounded on $L_{w}^{p}\left(\mathbb{R}^{n+m}\right)$ provided $w \in A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, $1<p<\infty$.

ThEOREM 1.1 ([6], Theorem A). Suppose that T is bounded on $L^{2}\left(\mathbb{R}^{n+m}\right)$ and that for some $0<\varepsilon \leqslant 1$ and some finite $C>0$ we have
(i) $\left\|\widetilde{K}^{1}\left(x_{1}, y_{1}\right)-\widetilde{K}^{1}\left(x_{1}^{\prime}, y_{1}\right)\right\|_{C Z} \leqslant C\left|x_{1}-x_{1}^{\prime}\right|^{\varepsilon} /\left|x_{1}-y_{1}\right|^{n+\varepsilon}$ if $\left|x_{1}-x_{1}^{\prime}\right|<\mid x_{1}-$ $y_{1} \mid / 2$,
(i) $\left\|\widetilde{K}^{1}\left(x_{1}, y_{1}\right)-\widetilde{K}^{1}\left(x_{1}, y_{1}^{\prime}\right)\right\|_{C Z} \leqslant C\left|y_{1}-y_{1}^{\prime}\right|^{\varepsilon} /\left|x_{1}-y_{1}\right|^{n+\varepsilon}$ if $\left|y_{1}-y_{1}^{\prime}\right|<\mid x_{1}-$ $y_{1} \mid / 2$,
and similarly for \widetilde{K}^{2}. If $w \in A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), 1<p<\infty$, then

$$
\|T(f)\|_{L_{w}^{p}} \leqslant C\|f\|_{L_{w}^{p}} .
$$

Here, a weight $w\left(x_{1}, x_{2}\right)$ defined on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ is said to belong to (product) A_{p} if and only if there exists a constant C so that for all rectangles $R=I \times J(I$ is a cube in \mathbb{R}^{n} and J a cube in \mathbb{R}^{m}) we have

$$
\left(\frac{1}{|R|} \int_{R} w\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}\right)\left(\frac{1}{|R|} \int_{R} w\left(x_{1}, x_{2}\right)^{-1 /(p-1)} \mathrm{d} x_{1} \mathrm{~d} x_{2}\right)^{p-1} \leqslant C .
$$

DEFINITION 1.2 ([6], Definition). A singular integral operator T is said to be in Journé's class if the associated kernel $K\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ satisfies the following conditions. There exist constants $C>0$ and $\varepsilon \in(0,1]$ such that:
$\left(\mathrm{B}_{1}\right) T$ is bounded on $L^{2}\left(\mathbb{R}^{n+m}\right)$;
$\left(B_{2}\right)$ We have

$$
\begin{aligned}
& \left\|\widetilde{K}^{1}\left(x_{1}, y_{1}\right)\right\|_{C Z} \leqslant C\left|x_{1}-y_{1}\right|^{-n} \\
& \left\|\widetilde{K}^{1}\left(x_{1}, y_{1}\right)-\widetilde{K}^{1}\left(x_{1}, y_{1}^{\prime}\right)\right\|_{C Z} \leqslant C\left|y_{1}-y_{1}^{\prime}\right|^{\varepsilon}\left|x_{1}-y_{1}\right|^{-(n+\varepsilon)} \text { for }\left|y_{1}-y_{1}^{\prime}\right| \leqslant \frac{\left|x_{1}-y_{1}\right|}{2} \\
& \left\|\widetilde{K}^{1}\left(x_{1}, y_{1}\right)-\widetilde{K}^{1}\left(x_{1}^{\prime}, y_{1}\right)\right\|_{C Z} \leqslant C\left|x_{1}-x_{1}^{\prime}\right|^{\varepsilon}\left|x_{1}-y_{1}\right|^{-(n+\varepsilon)} \text { for }\left|x_{1}-x_{1}^{\prime}\right| \leqslant \frac{\left|x_{1}-y_{1}\right|}{2}
\end{aligned}
$$

$\left(B_{3}\right)$ We have

$$
\begin{aligned}
& \left\|\widetilde{K}^{2}\left(x_{2}, y_{2}\right)\right\|_{C Z} \leqslant C\left|x_{2}-y_{2}\right|^{-m} \\
& \left\|\widetilde{K}^{2}\left(x_{2}, y_{2}\right)-\widetilde{K}^{2}\left(x_{2}, y_{2}^{\prime}\right)\right\|_{C Z} \leqslant C\left|y_{2}-y_{2}^{\prime}\right|^{\varepsilon}\left|x_{2}-y_{2}\right|^{-(m+\varepsilon)} \text { for }\left|y_{2}-y_{2}^{\prime}\right| \leqslant \frac{\left|x_{2}-y_{2}\right|}{2} \\
& \left\|\widetilde{K}^{2}\left(x_{2}, y_{2}\right)-\widetilde{K}^{2}\left(x_{2}^{\prime}, y_{2}\right)\right\|_{C Z} \leqslant C\left|x_{2}-x_{2}^{\prime}\right|^{\varepsilon}\left|x_{2}-y_{2}\right|^{-(m+\varepsilon)} \text { for }\left|x_{2}-x_{2}^{\prime}\right| \leqslant \frac{\left|x_{2}-y_{2}\right|}{2}
\end{aligned}
$$

In this article, we shall be concerned only with the case $n=m=1$. The first main result of this paper is to extend Theorem A of [6] to the $H_{w}^{p}-L_{w}^{p}$ boundedness.

THEOREM 1.3. Let T be a singular integral operator satisfying the assumption in Theorem A of [6], with regularity exponent ε. If $w \in A_{q}, q<1+\varepsilon$, then

$$
\|T(f)\|_{L_{w}^{p}\left(\mathbb{R}^{2}\right)} \leqslant C\|f\|_{H_{w}^{p}(\mathbb{R} \times \mathbb{R})}, \quad \frac{q}{1+\varepsilon}<p \leqslant 1 .
$$

To state the second result, we need some notations and definitions as follows. Given $0<p \leqslant 1$, let

$$
\begin{aligned}
& C_{0,0}^{\infty}\left(\mathbb{R}^{n}\right)=\left\{\psi \in C^{\infty}\left(\mathbb{R}^{n}\right): \psi\right. \text { has a compact support } \\
& \\
& \text { and } \left.\int_{\mathbb{R}^{n}} \psi(y) y^{\alpha} \mathrm{d} y=0 \text { for } 0 \leqslant|\alpha| \leqslant N_{p, n}\right\},
\end{aligned}
$$

where $N_{p, n}$ is a large integer depending on p and n. We say that $T_{1}^{*}(1)=0$ if

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} K\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \varphi^{1}\left(y_{1}\right) \varphi^{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} x_{1}=0
$$

for all $\varphi^{1} \in C_{0,0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi^{2} \in C_{0,0}^{\infty}\left(\mathbb{R}^{m}\right)$, and $x_{2} \in \mathbb{R}^{m}$. Similarly, $T_{2}^{*}(1)=0$ if

$$
\int_{\mathbb{R}^{m}} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} K\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \varphi^{1}\left(y_{1}\right) \varphi^{2}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} x_{2}=0
$$

for all $\varphi^{1} \in C_{0,0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi^{2} \in C_{0,0}^{\infty}\left(\mathbb{R}^{m}\right)$, and $x_{1} \in \mathbb{R}^{n}$.
The H_{w}^{p}-boundedness of the sigular integral operators in Journé's class is presented as follows.

THEOREM 1.4. Let T be a singular integral operator in Journé's class with regularity exponent ε. If $w \in A_{q}, q<1+\varepsilon$, and $T_{1}{ }^{*}(1)=T_{2}{ }^{*}(1)=0$, then

$$
\|T(f)\|_{H_{w}^{p}(\mathbb{R} \times \mathbb{R})} \leqslant C\|f\|_{H_{w}^{p}(\mathbb{R} \times \mathbb{R})^{\prime}} \quad \frac{q}{1+\varepsilon}<p \leqslant 1
$$

Throughout the article, the letter C will denote a positive constant that may vary from line to line but remains independent of the main variables. We also use $a \approx b$ to denote the equivalence of a and b; that is, there exist two positive constants C_{1}, C_{2} independent of a, b such that $C_{1} a \leqslant b \leqslant C_{2} a$.

2. PRELIMINARIES

Analogous to the clasical product Hardy spaces, the weighted product Hardy spaces $H_{w}^{p}(\mathbb{R} \times \mathbb{R}), p>0$, can be defined in terms of Lusin area integrals. A point of $\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}$ will be denoted (y, t) where $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and $t=\left(t_{1}, t_{2}\right), t_{i} \geqslant$ $0, i=1,2$. We shall often use the following notations: $\psi \in C^{\infty}(\mathbb{R})$ supported on $[-1,1]$ with ψ even and $\int_{-1}^{1} \psi(y) \mathrm{d} y=0$; for $t>0, \psi_{t}(y)=(1 / t) \psi(y / t)$; for $t=\left(t_{1}, t_{2}\right)$ and $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}, \psi_{t}(y)=\psi_{t_{1}}\left(y_{1}\right) \psi_{t_{2}}\left(y_{2}\right)$. Furthermore, for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we use $\Gamma(x)$ to denote the product cone $\Gamma(x)=\Gamma\left(x_{1}\right) \times \Gamma\left(x_{2}\right)$, where for $i=1,2, \Gamma\left(x_{i}\right)=\left\{\left(y_{i}, t_{i}\right) \in \mathbb{R}_{+}^{2}:\left|x_{i}-y_{i}\right|<t_{i}\right\}$. Given a function f on
\mathbb{R}^{2}, we define its double S-function by

$$
S^{2}(f)=\iint_{\Gamma(x)}\left|f * \psi_{t}(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}
$$

Then $f \in H_{w}^{p}(\mathbb{R} \times \mathbb{R})$ if and only if $S(f) \in L_{w}^{p}\left(\mathbb{R}^{2}\right)$ and $\|f\|_{H_{w}^{p}}=\|S(f)\|_{L_{w}^{p}}$, where w is weight function.

Let $1 / 2<p \leqslant 1$ and $w \in A_{2}$. A weighted p atom is a function $a\left(x_{1}, x_{2}\right)$ defined on \mathbb{R}^{2} whose support is contained in some open set Ω of finite measure such that:
(i) $\|a\|_{L_{w}^{2}} \leqslant w(\Omega)^{1 / 2-1 / p}$;
(ii) a can be further decomposed into weighted p elementary particles a_{R} as follows:
(a) $a=\sum_{R \in \mathcal{M}(\Omega)} a_{R}$, where $\mathcal{M}(\Omega)$ denotes the class of all maximal dyadic subrectangles of Ω and a_{R} is supported in the triple of a distinct dyadic rectangle $R \subset \Omega$ (say $R=I \times J$);
(b) $\int_{I} a_{R}\left(x_{1}, \widetilde{x}_{2}\right) \mathrm{d} x_{1}=\int_{J} a_{R}\left(\widetilde{x}_{1}, x_{2}\right) \mathrm{d} x_{2}=0$ for each $\widetilde{x}_{1} \in I, \widetilde{x}_{2} \in J ;$
(c) $\sum_{R \in \mathcal{M}(\Omega)}\left\|a_{R}\right\|_{L_{w}^{2}}^{2} \leqslant w(\Omega)^{1-2 / p}$.

We first establish a new atomic decomposition for $H_{w}^{p} \cap L_{w}^{2}$, namely the following atomic decomposition theorem.

THEOREM 2.1. Let $1 / 2<p \leqslant 1$ and $w \in A_{2}$. If $f \in H_{w}^{p}(\mathbb{R} \times \mathbb{R}) \cap L_{w}^{2}\left(\mathbb{R}^{2}\right)$, then f can be written as $f=\sum \lambda_{k} a_{k}$ in L_{w}^{2}, where a_{k} are weighted p atoms and $\lambda_{k} \geqslant 0$ satisfy $\sum\left|\lambda_{k}\right|^{p} \leqslant C\|f\|_{H_{w}^{p}}^{p}$.

Proof. For $k \in \mathbb{Z}$, let
$\Omega_{k}=\left\{x \in \mathbb{R}^{2}: S(f)(x)>2^{k}\right\} \quad$ and
$\mathcal{R}_{k}=\left\{\right.$ dyadic rectangle $R: w\left(R \cap \Omega_{k}\right) \geqslant \frac{1}{2} w(R)$ and $\left.w\left(R \cap \Omega_{k+1}\right)<\frac{1}{2} w(R)\right\}$.
For each dyadic rectangle $R=I \times J$, we denote its tent by

$$
\widehat{R}=\left\{(y, t) \in \mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}: y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2},|I|<t_{1} \leqslant 2|I|,|J|<t_{2} \leqslant 2|J|\right\}
$$

By Calderón reproducing formula, we claim

$$
f(x)=\iint_{\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}} \psi_{t}(x-y) \psi_{t} * f(y) \mathrm{d} y \frac{\mathrm{~d} t}{t_{1} t_{2}}=\sum_{k \in \mathbb{Z}} \sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} \psi_{t}(x-y) \psi_{t} * f(y) \mathrm{d} y \frac{\mathrm{~d} t}{t_{1} t_{2}}
$$

Assume the claim for the moment. Let $a_{k}(x)$ and λ_{k} be defined by

$$
a_{k}(x)=C^{-1 / 2} 2^{-k} w\left(\widetilde{\Omega}_{k}\right)^{-1 / p} \sum_{R \in \mathcal{R}_{k}} e_{R}(x)
$$

and $\lambda_{k}=C^{1 / 2} 2^{k} w\left(\widetilde{\Omega}_{k}\right)^{1 / p}$, where the constant C is the same as the one in 2.2) below and

$$
e_{R}(x)=\iint_{\widehat{R}} \psi_{t}(x-y) \psi_{t} * f(y) \mathrm{d} y \frac{\mathrm{~d} t}{t_{1} t_{2}}
$$

We first verify that a_{k} is a weighted p-atom. To do this, we define the weighted strong maximal operator $M_{\mathrm{s}, w}$ by

$$
M_{\mathrm{s}, w}(f)\left(x_{1}, x_{2}\right)=\sup _{\left(x_{1}, x_{2}\right) \in R} \frac{1}{w(R)} \int_{R}\left|f\left(x_{1}, x_{2}\right)\right| w(x) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

where the supremum is taken over all rectangles R which contain $\left(x_{1}, x_{2}\right)$. Let $\widetilde{\Omega}_{k}=\left\{x \in \mathbb{R}^{2}: M_{\mathrm{s}, w}\left(\chi_{\Omega_{k}}\right)>1 / 2\right\}$. Then for each $R \in \mathcal{R}_{k}$ there exists a maximal dyadic subrectangle \widetilde{R}, i.e. $\widetilde{R} \in \mathcal{M}\left(\widetilde{\Omega}_{k}\right)$ such that $R \subset \widetilde{R}$. For each $S \in \mathcal{M}\left(\widetilde{\Omega}_{k}\right)$, set $a_{S}=C^{-1 / 2} 2^{-k} w\left(\widetilde{\Omega}_{k}\right)^{-1 / p} \sum_{\widetilde{R}=S} e_{R}$. Then $a_{k}(x)=\sum_{S \in \mathcal{M}\left(\widetilde{\Omega}_{k}\right)} a_{S}$. It is easy to see that a_{k} is supported on $\widetilde{\Omega}$ and a_{S} is supported on $5 S$. The vanishing moment conditions of a_{k} follow from the assumption of ψ. To verify the size conditions of atom, by duality between L_{w}^{2} and $L_{w^{-1}}^{2}$,

$$
\begin{aligned}
\left\|\sum_{R \in \mathcal{R}_{k}} e_{R}\right\|_{L_{w}^{2}} & =\sup _{\|g\|_{L^{2}}^{2} \leqslant} \leqslant 1 \\
& =\sum_{\| g \mathcal{R}_{k}} e_{R} e_{R}(x) g(x) \mathrm{d} x \\
& =\sum_{\| L^{2}} \leqslant 1 \|_{R \in \mathcal{R}_{k}} \iiint_{\widehat{R}} \psi_{t}(x-y) \psi_{t} * f(y) \mathrm{d} y \frac{\mathrm{~d} t}{t_{1} t_{2}} g(x) \mathrm{d} x \\
& \leqslant C \sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} \psi_{t} \psi_{t} * g(y) \psi_{t} * f(y) \mathrm{d} y \frac{\mathrm{~d} t}{t_{1} t_{2}} \\
& \sum_{w^{2}} \iint_{\widehat{R}}\left|R\left\|\psi_{t} * f(y)\right\| \psi_{t} * g(y)\right| \mathrm{d} y \frac{\mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}
\end{aligned}
$$

where the last inequality is due to the definition of \widehat{R}. Hence, if $(y, t) \in \widehat{R}$, then $|R| \approx t^{2}$. It is clear that

$$
|R|=\int_{R} w(x)^{1 / 2} w(x)^{-1 / 2} \mathrm{~d} x \leqslant w(R)^{1 / 2}\left(w^{-1}(R)\right)^{1 / 2}
$$

so

$$
\begin{aligned}
\left\|\sum_{R \in \mathcal{R}_{k}} e_{R}\right\|_{L_{w}^{2}} \leqslant \sup _{\|g\|_{L^{2}}{ }^{-1}} \leqslant 1 & \left(\sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} w(R)\left|\psi_{t} * f(y)\right|^{2} \mathrm{~d} y \frac{\mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}\right)^{1 / 2} \\
& \left(\sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} w(R)\left|\psi_{t} * g(y)\right|^{2} \mathrm{~d} y \frac{\mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}\right)^{1 / 2}
\end{aligned}
$$

For any $R \in \mathcal{R}_{k}$ and $(y, t) \in \widehat{R}$, we have $R \subset\left\{x \in \mathbb{R}^{2}:\left|x_{i}-y_{i}\right|<t_{i}, i=1,2\right\}$ and hence

$$
\begin{aligned}
& \sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} w^{-1}(R)\left|\psi_{t} * g(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} \\
& \quad \leqslant \int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}^{2}} w^{-1}\left(\left\{x \in \mathbb{R}^{2}:\left|x_{i}-y_{i}\right|<t_{i}, i=1,2\right\}\right)\left|\psi_{t} * g(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} \\
& \quad=\int_{\mathbb{R}^{2}} \iint_{\Gamma(x)}\left|\psi_{t} * g(y)\right|^{2} w^{-1}(x) \frac{\mathrm{d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} \mathrm{~d} x=\int_{\mathbb{R}^{2}} S(g)^{2}(x) w^{-1}(x) \mathrm{d} x \leqslant C\|g\|_{L_{w}^{2}-1} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|\sum_{R \in \mathcal{R}_{k}} e_{R}\right\|_{L_{w}^{2}} \leqslant C\left(\iint_{\widehat{R}} w(R)\left|\psi_{t} * f(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Since $M_{\mathrm{s}, w}$ is bounded on L_{w}^{2} for $w \in A_{2}$, it yields $w\left(\widetilde{\Omega}_{k}\right) \leqslant C w\left(\Omega_{k}\right)$. Hence

$$
\begin{aligned}
2^{2 k+2} w\left(\widetilde{\Omega}_{k}\right) & \geqslant \int_{\widetilde{\Omega}_{k} \backslash \Omega_{k+1}}|S f(x)|^{2} w(x) \mathrm{d} x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\psi_{t} * f(y)\right|^{2} \chi_{\left\{x \in \widetilde{\Omega}_{k} \backslash \Omega_{k+1}:\left|x_{i}-y_{i}\right|<t_{i}, i=1,2\right\}} w(x) \frac{\mathrm{d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} \\
& \geqslant \sum_{R \in \mathcal{R}_{k}} \int_{\mathbb{R}^{2}} \iint_{\widehat{R}}\left|\psi_{t} * f(y)\right|^{2} \chi_{\left\{x \in \widetilde{\Omega}_{k} \backslash \Omega_{k+1}:\left|x_{i}-y_{i}\right|<t_{i}, i=1,2\right\}} w(x) \frac{\mathrm{d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} .
\end{aligned}
$$

For any $R \in \mathcal{R}_{k}$ and $(y, t) \in \widehat{R}$, we have $R \subset \widetilde{\Omega}_{k}$ and $R \subset\left\{x \in \mathbb{R}^{2}:|x-y|<t\right\}$. That implies
$\int_{\mathbb{R}^{2}} \chi_{\left\{x \in \widetilde{\Omega}_{k} \backslash \Omega_{k+1}:|x-y|<t\right\}} w(x) \mathrm{d} x \geqslant w\left(R \cap\left(\widetilde{\Omega}_{k} \backslash \Omega_{k+1}\right)\right)=w(R)-w\left(R \cap \Omega_{k+1}\right) \geqslant \frac{w(R)}{2}$, and hence

$$
\begin{equation*}
\sum_{R \in \mathcal{R}_{k}} \iint_{\widehat{R}} w(R)\left|\psi_{t} * f(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}} \leqslant C 2^{2 k} w\left(\widetilde{\Omega}_{k}\right) \tag{2.2}
\end{equation*}
$$

Both (2.1) and (2.2) give the size condition of a_{R} as follows

$$
\left\|a_{k}\right\|_{L_{w}^{2}}=C^{-1 / 2} 2^{-k} w\left(\widetilde{\Omega}_{k}\right)^{-1 / p}\left\|_{R \in \mathcal{R}_{k}} e_{R}\right\|_{L_{w}^{2}} \leqslant w\left(\widetilde{\Omega}_{k}\right)^{1 / 2-1 / p}
$$

To estimate the size condition of weight elementary particle, we have

$$
\begin{aligned}
\sum_{S \in \mathcal{M}\left(\widetilde{\Omega}_{k}\right)}\left\|a_{S}\right\|_{L_{w}^{2}}^{2} & =C^{-1} 2^{-2 k} w\left(\widetilde{\Omega}_{k}\right)^{-2 / p}\left\|_{R=S} e_{R}\right\|_{L_{w}^{2}} \\
& \leqslant C^{-1} 2^{-2 k} w\left(\widetilde{\Omega}_{k}\right)^{-2 / p}\left\|_{\widetilde{R} \in \mathcal{R}_{k}} e_{R}\right\|_{L_{w}^{2}} \leqslant w\left(\widetilde{\Omega}_{k}\right)^{1-2 / p}
\end{aligned}
$$

Therefore,

$$
\sum_{k \in \mathbb{Z}}\left|\lambda_{k}\right|^{p}=\sum_{k \in \mathbb{Z}} C^{p / 2} 2^{p k} w\left(\widetilde{\Omega}_{k}\right) \leqslant C \sum_{k \in \mathbb{Z}} 2^{p k} w\left(\Omega_{k}\right) \leqslant C\|S(f)\|_{L_{w}^{p}}^{p}=C\|f\|_{H_{w}^{p}}^{p}
$$

We return to the proof of the claim, which is equivalent to show

$$
\left\|\sum_{|k|>M} \sum_{R \in \mathcal{R}_{k}} \int_{\widehat{R}} \psi_{t}(\cdot-y) \psi_{t} * f(y) \frac{\mathrm{d} y \mathrm{~d} t}{t_{1} t_{2}}\right\|_{L_{w}^{2}} \rightarrow 0 \quad \text { as } M \rightarrow \infty
$$

By the same proof in 2.1 and 2.2 , we obtain

$$
\begin{aligned}
\left\|\sum_{|k|>M} \sum_{R \in \mathcal{R}_{k}} \int_{\widehat{R}} \psi_{t}(\cdot-y) \psi_{t} * f(y) \frac{\mathrm{d} y \mathrm{~d} t}{t_{1} t_{2}}\right\|_{L_{w}^{2}} & \leqslant C\left(\sum_{|k|>M} \sum_{R \in \mathcal{R}_{k}} \int_{\widehat{R}} w(R)\left|\psi_{t} * f(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t_{1}^{2} t_{2}^{2}}\right)^{1 / 2} \\
& \leqslant\left(\sum_{|k|>M} 2^{2 k} w\left(\Omega_{k}\right)\right)^{1 / 2}
\end{aligned}
$$

The last term tends to zero as M goes to infinity because

$$
\sum_{R \in \mathbb{Z}} 2^{2 k} w\left(\Omega_{k}\right) \leqslant C\|f\|_{L_{w}^{2}}^{2}<\infty
$$

This ends the proof of Theorem 2.1 .
It is important and convenient to emphasize that to prove the boundedness of operators defined on H_{w}^{p} spaces, it suffices to verify the boundedness of these operators acting on all atoms.

Lemma 2.2. Let $1 / 2<p \leqslant 1$ and $w \in A_{2}$. For a linear operator T bounded on $L_{w}^{2}\left(\mathbb{R}^{2}\right)$, T can be extended to a bounded operator from $H_{w}^{p}(\mathbb{R} \times \mathbb{R})$ to $L_{w}^{p}\left(\mathbb{R}^{2}\right)$ if and only if there exists an absolute constant C such that

$$
\|T a\|_{L_{w}^{p}} \leqslant C \quad \text { for any weighted } p \text { atom } a .
$$

Proof. We only show the sufficiency. Theorem 2.1 shows that, for $f \in H_{w}^{p} \cap$ L_{w}^{2}, we have $f=\sum_{i=1}^{\infty} \lambda_{i} a_{i}$ in L_{w}^{2}, where a_{i} 's are weighted p-atoms and $\sum\left|\lambda_{i}\right|^{p} \leqslant$ $C\|f\|_{H_{w}^{p}}^{p}$. Since T is linear and bounded on L_{w}^{2},

$$
\left\|T f-\sum_{i=1}^{M} \lambda_{i} T a_{i}\right\|_{L_{w}^{2}}=\left\|T\left(f-\sum_{i=1}^{M} \lambda_{i} a_{i}\right)\right\|_{L_{w}^{2}} \leqslant C\left\|f-\sum_{i=1}^{M} \lambda_{i} a_{i}\right\|_{L_{w}^{2}} \rightarrow 0 \quad \text { as } M \rightarrow \infty .
$$

Hence, there exists a subsequence (we still write the same indices) such that $T f=$ $\sum_{i=1}^{\infty} \lambda_{i} T a_{i}$ almost everywhere. Fatou's lemma yields
$\int_{\mathbb{R}^{n}}|T f|^{p} w(x) \mathrm{d} x \leqslant \liminf _{M \rightarrow \infty} \int_{\mathbb{R}^{n}}\left|\sum_{i=1}^{M} \lambda_{i} T a_{i}\right|^{p} w(x) \mathrm{d} x \leqslant \sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{p} \int_{\mathbb{R}^{n}}\left|T a_{i}\right|^{p} w(x) \mathrm{d} x \leqslant C\|f\|_{H_{w}^{p}}^{p}$.
Since $H_{w}^{p} \cap L_{w}^{2}$ is dense in H_{w}^{p}, T can be extended to a bounded operator from H_{w}^{p} to L_{w}^{p}.

3. PROOF OF THEOREM 1.3

In this section, we will show Theorem 1.3 . We first get a weighted version of the "trivial lemma" in [4].

LEMMA 3.1. Let $\alpha\left(x_{1}, x_{2}\right)$ be supported in a rectangle $R=I \times J$ and satisfy

$$
\begin{aligned}
& \int_{I} \alpha\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}=0, \quad \text { for each } x_{2} \in J, \quad \text { and } \\
& \int_{J} \alpha\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}=0, \quad \text { for each } x_{1} \in I
\end{aligned}
$$

Assume that $w \in A_{q}(\mathbb{R} \times \mathbb{R})$ where $q<1+\varepsilon$ and $q /(1+\varepsilon)<p \leqslant 1$. Write $E_{\gamma}=$ $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \notin \widetilde{I}_{\gamma}\right\}$, where $\gamma \geqslant 2$ and \widetilde{I}_{γ} is the concentric γ fold enlargement of I. Then

$$
\int_{E_{\gamma}}|T(\alpha)|^{p} w \mathrm{~d} x \leqslant C \gamma^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2} \quad \text { for some } \eta>0
$$

Proof. We shall assume that R is centered at 0 . By dilation invariance of the class of singular integrals that we are considering, we may assume R to be the unit square. Let $R_{k, j}=\left\{\left(x_{1}, x_{2}\right): 2^{k}<\left|x_{1}\right| \leqslant 2^{k+1}\right.$ and $\left.2^{j}<\left|x_{2}\right| \leqslant 2^{j+1}\right\}$. If $k, j \geqslant 1$, then on $R_{k, j}$ we get $\left|T(\alpha)\left(x_{1}, x_{2}\right)\right| \leqslant C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)}\|\alpha\|_{L^{1}}$. But $w \in A_{q} \subseteq A_{2}$ shows that

$$
\|\alpha\|_{L^{1}} \leqslant C\|\alpha\|_{L_{w}^{2}}\left(w^{-1}(R)\right)^{1 / 2} \leqslant C\|\alpha\|_{L_{w}^{2}} w(R)^{-1 / 2}
$$

and $\left|T(\alpha)\left(x_{1}, x_{2}\right)\right| \leqslant C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)}\|\alpha\|_{L_{w}^{2}} w(R)^{-1 / 2}$. Since $M_{\mathrm{S}}\left(\chi_{R}\right) \approx 2^{-(k+j)}$ on $R_{k, j}$, we have $w\left(R_{k, j}\right) \leqslant C 2^{q(k+j)} w(R)$. Therefore,

$$
\begin{aligned}
\int_{E_{\gamma} \cap\left\{\left(x_{1}, x_{2}\right):\left|x_{2}\right|>2\right\}}|T(\alpha)|^{p} w \mathrm{~d} x & \leqslant C \sum_{2^{k} \geqslant \gamma, j \geqslant 1} \int_{R_{k, j}}|T(\alpha)|^{p} w \mathrm{~d} x \\
& \leqslant C \sum_{2^{k} \geqslant \gamma, j \geqslant 1} 2^{(k+j)[q-p(1+\varepsilon)]}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2}
\end{aligned}
$$

$$
\leqslant C_{\gamma}^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2}
$$

where $\eta=p(1+\varepsilon)-q>0$. Now we estimate $\int_{R_{j}}|T(\alpha)|^{p} w \mathrm{~d} x$, where $R_{j}=$ $\left\{\left(x_{1}, x_{2}\right): 2^{j}<\left|x_{1}\right| \leqslant 2^{j+1},\left|x_{2}\right| \leqslant 2\right\}$. We see that

$$
\begin{equation*}
\int_{R_{j}}|T(\alpha)|^{p} w \mathrm{~d} x \leqslant w\left(R_{j}\right)^{1-p / 2}\left(\int_{R_{j}}|T(\alpha)|^{2} w \mathrm{~d} x\right)^{p / 2} \tag{3.1}
\end{equation*}
$$

Since $w \in A_{q}, w\left(R_{j}\right) \leqslant C 2^{q j} w(R)$. We use $\#_{2}$ to denote the sharp operator in the x_{2} variable. Then

$$
\begin{equation*}
\int_{R_{j}}|T(\alpha)|^{2} w \mathrm{~d} x \leqslant \int_{R_{j}}\left|T(\alpha)^{\#_{2}}\right|^{2} w \mathrm{~d} x . \tag{3.2}
\end{equation*}
$$

A same argument in Lemma 1 of [6] yields

$$
\int_{R_{j}}\left|T(\alpha)^{\#_{2}}\left(x_{1}, x_{2}\right)\right|^{2} w \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leqslant C\|\alpha\|_{L_{w}^{2}}^{2} 2^{j q-2 j(1+\varepsilon)} .
$$

Combining this with 3.1) gives

$$
\int_{R_{j}}|T(\alpha)|^{p} w \mathrm{~d} x \leqslant C w(R)^{1-p / 2}\|\alpha\|_{L_{w}^{2}}^{p} 2^{j q-j p(1+\varepsilon)}
$$

We sum up these estimates over j to finish the proof of Lemma 3.1
To prove Theorem 1.3. we need a weighted version of Journés covering lemma. Suppose Ω is an open set in \mathbb{R}^{2}, and $\mathcal{M}^{(2)}(\Omega)$ denotes the collection of dyadic subrectangles in Ω which are maximal with respect to the x_{2} side. If $R=I \times J \in \mathcal{M}^{(2)}(\Omega)$ and \widetilde{I} denotes the largest dyadic interval containging I so that $\widetilde{I} \times J \subseteq\left\{M_{\mathrm{s}}\left(\chi_{\Omega}\right)>1 / 2\right\}$. Let $\gamma_{1}(R)=|\widetilde{I}| /|I|$.

Lemma $3.2([\sqrt{6}])$. If $w \in A_{\infty}(\mathbb{R} \times \mathbb{R})$, then

$$
\sum_{R \in \mathcal{M}^{(2)}(\Omega)} w(R)\left(\gamma_{1}(R)\right)^{-\eta} \leqslant C_{\eta} w(\Omega) \quad \text { for any } \quad \eta>0
$$

We are ready to prove Theorem 1.3 .
Proof of Theorem 1.3 By Lemma 3.1. it suffices to show $\|T a\|_{L_{w}^{p}} \leqslant C$ for any weighted p atom a with constant C independent of the choice of a. Given a weight-ed p atom a with $\operatorname{supp}(a) \subseteq \Omega$, let $\widetilde{\Omega}=\left\{M_{\mathrm{s}}\left(\chi_{\Omega}\right)>1 / 2\right\}$ and $\widetilde{\widetilde{\Omega}}=$ $\left\{M_{\mathrm{s}}\left(\chi_{\widetilde{\Omega}}\right)>1 / 2\right\}$. Then

$$
\int_{\widetilde{\widetilde{\Omega}}}|T(a)|^{p} w \mathrm{~d} x \leqslant\|T(a)\|_{L_{w}^{2}}^{p} w(\widetilde{\widetilde{\Omega}})^{1-p / 2}
$$

Now, since $w \in A_{2}$, it follows from Theorem A of [6] that T is bounded on $L_{w v}^{2}$. Also, since $w \in A_{\infty}, w(\widetilde{\widetilde{\Omega}}) \leqslant C w(\Omega)$, so that

$$
\int_{\widetilde{\widetilde{\Omega}}}|T(a)|^{p} w \mathrm{~d} x \leqslant C\|a\|_{L_{w}^{2}}^{p} w(\Omega)^{1-p / 2} \leqslant C .
$$

For a rectangle $R \in \mathcal{M}(\Omega), R=I \times J$, we denote \widetilde{R} the rectagle $\widetilde{I} \times \widetilde{J}$ obtained by first considering $\widetilde{I} \supseteq I$ maximal so that $\widetilde{I} \times J \subseteq \widetilde{\Omega}$ and then take $\widetilde{J} \supseteq J$ maximal so that $\widetilde{I} \times \widetilde{J} \subseteq \widetilde{\Omega}$. Also let

$$
\begin{aligned}
& E_{\gamma_{1}}(R)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \notin \widetilde{I}\right\}, \quad E_{\gamma_{2}}(R)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \notin \widetilde{J}\right\}, \quad \text { and } \\
& \gamma_{1}(R)=\frac{|\widetilde{I}|}{|I|}, \quad \gamma_{2}(R)=\frac{|\widetilde{J}|}{|J|} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{(\tilde{\tilde{\Omega}})^{c}}|T(a)|^{p} w \mathrm{~d} x & =\sum_{R \in \mathcal{M}(\Omega)} \int_{(\widetilde{\mathcal{R}})^{c}}|T(a)|^{p} w \mathrm{~d} x \\
& \leqslant \sum_{R \in \mathcal{M}(\Omega)} \int_{E_{\gamma_{1}}(R)}|T(a)|^{p} w \mathrm{~d} x+\sum_{R \in \mathcal{M}(\Omega)} \int_{E_{\gamma_{2}}(R)}|T(a)|^{p} w \mathrm{~d} x:=\mathrm{I}+\mathrm{II} .
\end{aligned}
$$

By Lemma 3.1 .

$$
\int_{E_{\gamma_{1}}}\left|T\left(\alpha_{R}\right)\right|^{p} w \mathrm{~d} x \leqslant C\left(\gamma_{1}(R)\right)^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2}
$$

Summing over all $R \in \mathcal{M}(\Omega)$, we get, by Hölder's inequality and Lemma 3.2.

$$
\begin{aligned}
I & \leqslant C\left(\sum\left\|\alpha_{R}\right\|_{L_{w}^{2}}^{2}\right)^{p / 2}\left(\sum w(R)\left(\gamma_{1}(R)\right)^{-2 \eta /(2-p)}\right)^{1-p / 2} \\
& \leqslant C w(\Omega)^{(1-2 / p) p / 2} w(\Omega)^{1-p / 2} \leqslant C .
\end{aligned}
$$

Expression II is handled similarly. The proof of Theorem 1.3 is completed.

4. PROOF OF THEOREM 1.4

To prove Theorem 1.4 we need the product Littlewood-Paley square function as follows. Let $n_{1}=n, n_{2}=m, \psi^{i} \in C_{0,0}^{\infty}\left(\mathbb{R}^{n_{i}}\right)$ supported in the unit ball of $\mathbb{R}^{n_{i}}$, and ψ^{i} satisfy

$$
\int_{0}^{\infty}\left|\widehat{\psi}^{i}(t \xi)\right|^{2} \frac{\mathrm{~d} t}{t}=1 \quad \text { for all } \xi \neq 0, i=1,2
$$

For $t_{i}>0$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$, set $\psi_{t_{i}}^{i}\left(x_{i}\right)=t_{i}^{-n_{i}} \psi\left(x_{i} / t_{i}\right)$ and $\psi_{t_{1} t_{2}}\left(x_{1}, x_{2}\right)=$ $\psi_{t_{1}}^{1}\left(x_{1}\right) \psi_{t_{2}}^{2}\left(x_{2}\right)$. The product Littlewood-Paley square function of $f \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ is defined by

$$
g(f)\left(x_{1}, x_{2}\right)=\left\{\int_{0}^{\infty} \int_{0}^{\infty}\left|\psi_{t_{1} t_{2}} * f\left(x_{1}, x_{2}\right)\right|^{2} \frac{\mathrm{~d} t_{1}}{t_{1}} \frac{\mathrm{~d} t_{2}}{t_{2}}\right\}^{1 / 2} .
$$

It is well known that $w \in A_{p}(\mathbb{R} \times \mathbb{R})$ if and only if $w\left(\cdot, x_{2}\right) \in A_{p}$ with bounded A_{p} constant independently of x_{2} and $w\left(x_{1}, \cdot\right) \in A_{p}$ with bounded A_{p} constant independently of x_{1} (cf. p. 453, Theorem 6.2 of [8]). It is known that if $w \in A_{\infty}$, then $\|S(f)\|_{L_{w}^{p}}$ is equivalent to $\|g(f)\|_{L_{w}^{p}}$ for $0<p<\infty$. Hence if $w \in A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right), 1<p<\infty$, then the L_{w}^{q}-norms of double S-function and product Littlewood-Paley square function are equivalent for $0<q \leqslant 1$. Here we have the following product Littlewood-Paley characterization of $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$

$$
\begin{equation*}
\|S(f)\|_{L_{w}^{q}} \approx\|g(f)\|_{L_{w}^{q}}^{q}, \quad 0<q \leqslant 1 \text { and } w \in A_{p}, 1<p<\infty, \tag{4.1}
\end{equation*}
$$

We define the Hilbert space \mathcal{H} by

$$
\mathcal{H}=\left\{\left\{h_{t, s}\right\}_{t, s>0}:\left\|\left\{h_{t, s}\right\}\right\|_{\mathcal{H}}=\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|h_{t, s}\right|^{2} \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} s}{s}\right)^{1 / 2}<\infty\right\} .
$$

Let T be a singular integral operator in Journé's class with regularity exponent ε. Set $T_{t, s}(f)=\psi_{t, s} * T(f)$. For $f \in L_{w}^{2}\left(\mathbb{R}^{n+m}\right) \cap H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ and $w \in A_{2}$, by the Calderón reproducing formula in Lemma 3.1 of [10],

$$
\begin{equation*}
T_{t, s}(f)\left(x_{1}, x_{2}\right)=\psi_{t, s} * T\left(\int_{0}^{\infty} \int_{0}^{\infty} \psi_{t^{\prime}, s^{\prime}} * \psi_{t^{\prime}, s^{\prime}} * f(\cdot, \cdot) \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{\mathrm{d} s^{\prime}}{s^{\prime}}\right)\left(x_{1}, x_{2}\right) . \tag{4.2}
\end{equation*}
$$

By (4.2), the kernel $T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ of $T_{t, s}$ is given by

$$
\begin{align*}
& T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)= \int_{0}^{\infty} \\
& \int_{0}^{\infty} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} \psi_{t, s}\left(x_{1}-u_{1}, x_{2}-u_{2}\right) K\left(u_{1}, u_{2}, v_{1}, v_{2}\right) \tag{4.3}\\
& \times \psi_{t^{\prime}, s^{\prime}} * \psi_{t^{\prime}, s^{\prime}}\left(v_{1}-y_{1}, v_{2}-y_{2}\right) \mathrm{d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} v_{1} \mathrm{~d} v_{2} \frac{\mathrm{~d} t^{\prime}}{t^{\prime}} \frac{\mathrm{d} s^{\prime}}{s^{\prime}} .
\end{align*}
$$

By (4.1), the $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ boundedness of T is equivalent to the $H_{w}^{p}-L_{w, \mathcal{H}}^{p}\left(\mathbb{R}^{n} \times\right.$ $\left.\mathbb{R}^{m}\right)$ boundedness of the \mathcal{H}-valued operator \mathcal{L} which maps f into $\left\{T_{t, s}(f)\right\}_{t, s>0}$. Note that the $L^{2}\left(\mathbb{R}^{n+m}\right)$ boundedness of T and the product Littlewood-Paley estimate [7] imply that \mathcal{L} is bounded from $L_{w}^{2}\left(\mathbb{R}^{n+m}\right)$ to $L_{w, \mathcal{H}}^{2}\left(\mathbb{R}^{n+m}\right)$. Moreover,

THEOREM 4.1 ([11], Theorem B). Let ε be the regularity exponent satisfying $\left(B_{2}\right)$ and $\left(B_{3}\right)$. Then the kernel of $T_{t, s}\left\{T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right\}_{t, s>0}$, satisfies the following estimates:
$\left(\mathrm{D}_{1}\right)\left\|\left\{T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right\}\right\|_{\mathcal{H}} \leqslant C\left|x_{1}-y_{1}\right|^{-n}\left|x_{2}-y_{2}\right|^{-m} ;$
$\left(\mathrm{D}_{2}\right)$ for $\varepsilon^{\prime}<\varepsilon$

$$
\begin{array}{r}
\left\|\left\{T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t s}\left(x_{1}, x_{2}, y_{1}^{\prime}, y_{2}\right)\right\}\right\|_{\mathcal{H}} \leqslant C \frac{\left|y_{1}-y_{1}^{\prime}\right|^{\varepsilon^{\prime}}}{\left|x_{1}-y_{1}\right|^{n+\varepsilon^{\prime}}}\left|x_{2}-y_{2}\right|^{-m} \\
\text { if }\left|y_{1}-y_{1}^{\prime}\right| \leqslant \frac{\left|x_{1}-y_{1}\right|}{2} \\
\left\|\left\{T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}^{\prime}\right)\right\}\right\|_{\mathcal{H}} \leqslant C \frac{\left|y_{2}-y_{2}^{\prime}\right|^{\varepsilon^{\prime}}}{\left|x_{2}-y_{2}\right|^{m+\varepsilon^{\prime}}}\left|x_{1}-y_{1}\right|^{-n} \\
\text { if }\left|y_{2}-y_{2}^{\prime}\right| \leqslant \frac{\left|x_{2}-y_{2}\right|}{2}
\end{array}
$$

$\left(\mathrm{D}_{3}\right)$ for $\varepsilon^{\prime}<\varepsilon$,

$$
\begin{aligned}
& \left\|\left\{\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, x_{2}, y_{1}^{\prime}, y_{2}\right)\right]-\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}^{\prime}\right)-T_{t, s}\left(x_{1}, x_{2}, y_{1}^{\prime}, y_{2}^{\prime}\right)\right]\right\}\right\|_{\mathcal{H}} \\
& \leqslant C \frac{\left|y_{1}-y_{1}^{\prime}\right|^{\varepsilon^{\prime}}}{\left|x_{1}-y_{1}\right|^{n+\varepsilon^{\prime}}} \frac{\left|y_{2}-y_{2}^{\prime}\right|^{\varepsilon^{\prime}}}{\left|x_{2}-y_{2}\right|^{m+\varepsilon^{\prime}}} \quad \text { if }\left|y_{1}-y_{1}^{\prime}\right| \leqslant \frac{\left|x_{1}-y_{1}\right|}{2},\left|y_{2}-y_{2}^{\prime}\right| \leqslant \frac{\left|x_{2}-y_{2}\right|}{2} .
\end{aligned}
$$

The regularity of the operator $T_{t, s}$ mapping from L^{2} into $L_{\mathcal{H}}^{2}$ is demonstrated as follows.

THEOREM 4.2 ([11], Theorem C). Let the kernel of $T_{t, s}$ be defined in 4.3) and ε be the regularity exponent of T. For $\varepsilon^{\prime}<\varepsilon$,
(i) if $\left|y_{1}-x_{I}\right| \leqslant\left|x_{1}-x_{I}\right| / 2$, then

$$
\left\|\left\{\int_{\mathbb{R}^{m}}\left[T_{t, s}\left(x_{1}, \cdot, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, \cdot, x_{I}, y_{2}\right)\right] f\left(y_{2}\right) \mathrm{d} y_{2}\right\}\right\|_{L_{\mathcal{H}}^{2}\left(\mathbb{R}^{m}\right)} \leqslant C \frac{\left|y_{1}-x_{I}\right|^{\varepsilon^{\prime}}}{\left|x_{1}-x_{I}\right|^{n+\varepsilon^{\prime}}}\|f\|_{2}
$$

(ii) if $\left|y_{2}-y_{J}\right| \leqslant\left|x_{2}-y_{J}\right| / 2$, then

$$
\left\|\left\{\int_{\mathbb{R}^{n}}\left[T_{t, s}\left(\cdot, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(\cdot, x_{2}, y_{1}, y_{J}\right)\right] f\left(y_{1}\right) \mathrm{d} y_{1}\right\}\right\|_{L_{\mathcal{\mathcal { H }}}^{2}\left(\mathbb{R}^{n}\right)} \leqslant C \frac{\left|y_{2}-y_{J}\right|^{\varepsilon^{\prime}}}{\left|x_{2}-y_{J}\right|^{n+\varepsilon^{\varepsilon}}}\|f\|_{2} .
$$

Similar to Lemma 3.1. we prove the weighted vector-valued version of the "trivial lemma" in [4].

Lemma 4.3. Let $T_{t, s}$ be defined in 4.2 and ε be the regularity exponent of T. Suppose that $\alpha\left(x_{1}, x_{2}\right)$ is supported in a rectangle $R=I \times J$ and satisfies

$$
\int_{I} \alpha\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}=0 \quad \text { for each } x_{2} \in J, \quad \text { and } \quad \int_{J} \alpha\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}=0 \quad \text { for each } x_{1} \in I .
$$

For $q<1+\varepsilon$ and $q /(1+\varepsilon)<p \leqslant 1$, if $w \in A_{q}(\mathbb{R} \times \mathbb{R})$, then

$$
\iint_{E_{\gamma}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{p} w \mathrm{~d} x \leqslant C \gamma^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2} \quad \text { for some } \eta>0
$$

where E_{γ} is defined as in Lemma 3.1

Proof. By dilation invariance of the class of singular integrals which we are considering, we may assume R be the unit square. Let $R_{k, j}=\left\{\left(x_{1}, x_{2}\right): 2^{k}<\right.$ $\left|x_{1}\right| \leqslant 2^{k+1}$ and $\left.2^{j}<\left|x_{2}\right| \leqslant 2^{j+1}\right\}$. If $k, j \geqslant 1$, then on $R_{k, j}$ Minkowski's integral inequality and Theorem B of [11] imply

$$
\begin{aligned}
\left\|T(\alpha)\left(x_{1}, x_{2}\right)\right\|_{\mathcal{H}}= & \| \iint_{R}\left\{\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, x_{2}, 0, y_{2}\right)\right]\right. \\
& \left.\quad-\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, 0\right)-T_{t, s}\left(x_{1}, x_{2}, 0,0\right)\right]\right\} \alpha\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \|_{\mathcal{H}} \\
\leqslant & \iint_{R} \|\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, x_{2}, 0, y_{2}\right)\right] \\
& \quad-\left[T_{t, s}\left(x_{1}, x_{2}, y_{1}, 0\right)-T_{t, s}\left(x_{1}, x_{2}, 0,0\right)\right] \|_{\mathcal{H}}\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
\leqslant & C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)}\|\alpha\|_{L^{1}} \leqslant C 2^{-k(1+\varepsilon)} 2^{-j(1+\varepsilon)}\|\alpha\|_{L_{w}^{2}} w(R)^{-1 / 2} .
\end{aligned}
$$

Now, $w \in A_{q}$ and $M_{\mathrm{s}}\left(\chi_{R}\right) \approx 2^{-(k+j)}$ on $R_{k, j}$, we have

$$
w\left(R_{k, j}\right) \leqslant C 2^{q(k+j)} w(R)
$$

Therefore,

$$
\begin{aligned}
\iint_{E_{\gamma} \cap\left\{\left(x_{1}, x_{2}\right):\left|x_{2}\right|>2\right\}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{p} w \mathrm{~d} x & \leqslant C \sum_{2^{k} \geqslant \gamma, j \geqslant 1} \iint_{R_{k, j}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{p} w \mathrm{~d} x \\
& \leqslant C \sum_{2^{k} \geqslant \gamma, j \geqslant 1} 2^{(k+j)[q-p(1+\varepsilon)]}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2} \\
& \leqslant C_{\gamma}^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2},
\end{aligned}
$$

where $\eta=p(1+\varepsilon)-q>0$. Now we estimate $\iint_{R_{j}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{p} w \mathrm{~d} x$, where $R_{j}=$ $\left\{\left(x_{1}, x_{2}\right): 2^{j}<\left|x_{1}\right| \leqslant 2^{j+1},\left|x_{2}\right| \leqslant 2\right\}$. We see that

$$
\begin{equation*}
\iint_{R_{j}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{p} w \mathrm{~d} x \leqslant w\left(R_{j}\right)^{1-p / 2}\left(\iint_{R_{j}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{2} w \mathrm{~d} x\right)^{p / 2} \tag{4.4}
\end{equation*}
$$

since $w \in A_{q}, w\left(R_{j}\right) \leqslant C 2^{q j} w(R)$. By 3.2

$$
\begin{aligned}
\iint_{R_{j}}\left\|T_{t, s}(\alpha)\right\|_{\mathcal{H}}^{2} w \mathrm{~d} x & =\iint_{R_{j}} \int_{0}^{\infty} \int_{0}^{\infty}\left|T_{t, s}(\alpha)\right|^{2} \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} s}{s} w \mathrm{~d} x \\
& \leqslant \int_{0}^{\infty} \int_{0}^{\infty} \iint_{R_{j}}\left|T_{t, s}(\alpha)^{\#_{2}}\right|^{2} w \mathrm{~d} x \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} s}{s}=\iint_{R_{j}}\left\|T_{t, s}(\alpha)^{\#_{2}}\right\|_{\mathcal{H}}^{2} w \mathrm{~d} x .
\end{aligned}
$$

We claim

$$
\left\|T(\alpha)^{\#_{2}}\left(x_{1}, x_{2}\right)\right\|_{\mathcal{H}} \leqslant C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} M_{2}^{(2)}(\alpha)\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}
$$

where $M_{2}^{(2)} f\left(x_{1}, x_{2}\right)=\left[M^{(2)}\left(f^{2}\right)\right]^{1 / 2}$ and $M^{(2)}$ is the Hardy-Littlewood maximal operator for variable x_{2}. Assume the claim for the moment. By a same argument in Lemma 1 of [6], we have

$$
\iint_{R_{j}}\left\|T(\alpha)^{\#_{2}}\left(x_{1}, x_{2}\right)\right\|_{\mathcal{H}}^{2} w \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leqslant C\|\alpha\|_{L_{w}^{2}}^{2} 2^{j q-2 j(1+\varepsilon)} .
$$

Combining this with 4.4 gives

$$
\int_{R_{j}}|T(\alpha)|^{p} w \mathrm{~d} x \leqslant C w(R)^{1-p / 2}\|\alpha\|_{L_{w}^{2}}^{p} 2^{j q-j p(1+\varepsilon)}
$$

We sum up these estimates over j to finish the proof of Lemma 4.3. We now show the claim. By translation invariance, we only prove the pointwise estimate at $x_{2}=0$. Let $\alpha_{1}\left(x_{1}, x_{2}\right)=\alpha\left(x_{1}, x_{2}\right) \chi_{\left|x_{2}\right|<r}$ and

$$
I_{t, s}^{r}\left(x_{1}\right)=\iint_{\left|y_{2}\right|>r} T_{t, s}\left(x_{1}, x_{2}, y_{2}, y_{2}\right) \alpha\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}
$$

Then

$$
\begin{aligned}
& r^{-1} \int_{\left|x_{2}\right|<r / 2}\left|T_{t, s}(\alpha)\left(x_{1}, x_{2}\right)-I_{t, s}^{r}\left(x_{1}\right)\right| \mathrm{d} x_{2} \\
& \quad \leqslant r^{-1} \int_{\left|x_{2}\right|<1 / 2}\left|T_{t, s}\left(\alpha_{1}\right)\left(x_{1}, x_{2}\right)\right| \mathrm{d} x_{2} \\
& \quad+\int_{-1 / 22}^{1 / 2} \iint_{\left|x_{2}\right|<r<\left|y_{2}\right|}\left|T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, 0,0, y_{2}\right)\right|\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \left\|T(\alpha)^{\#_{2}}\left(x_{1}, x_{2}\right)\right\|_{\mathcal{H}} \\
& =\left\|\sup _{r>0} r^{-1} \int_{\left|x_{2}\right|<r / 2}\left|T_{t, s}(\alpha)\left(x_{1}, x_{2}\right)-I_{t, s}^{r}\left(x_{1}\right)\right| \mathrm{d} x_{2}\right\|_{\mathcal{H}} \\
& =\sup _{r>0}\left\|r^{-1} \int_{\left|x_{2}\right|<r / 2}\left|T_{t, s}(\alpha)\left(x_{1}, x_{2}\right)-I_{t, s}^{r}\left(x_{1}\right)\right| \mathrm{d} x_{2}\right\|_{\mathcal{H}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sup _{r>0}\left\|r^{-1} \int_{\left|x_{2}\right|<r / 2}\left|T_{t, s}\left(\alpha_{1}\right)\left(x_{1}, x_{2}\right)\right| \mathrm{d} x_{2}\right\|_{\mathcal{H}} \\
& \quad+\sup _{r>0}\left\|_{-1 / 2}^{1 / 2} \int_{-2} \iint_{\left|x_{2}\right|<r<\left|y_{2}\right|}\left|T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, 0,0, y_{2}\right)\right|\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1}\right\|_{\mathcal{H}} \\
& :=\mathrm{III}+\mathrm{IV} .
\end{aligned}
$$

For III, Minkowski's integral inequality and Theorem C of [11] imply

$$
\begin{aligned}
\text { III } \leqslant & \sup _{r>0} \| r^{-1} \int_{\left|x_{2}\right|<r / 2} \int_{-1 / 2}^{1 / 2} \mid \int T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
& -T_{t, s}\left(x_{1}, x_{2}, 0, y_{2}\right)\left(\alpha_{1}\right)\left(y_{1}, y_{2}\right) \mathrm{d} y_{2} \mid \mathrm{d} y_{1} \mathrm{~d} x_{2} \|_{\mathcal{H}} \\
\leqslant & \int_{-1 / 2}^{1 / 2} \sup _{r>0} r^{-1} \int_{\left|x_{2}\right|<r / 2} \| \int T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
& -T_{t, s}\left(x_{1}, x_{2}, 0, y_{2}\right)\left(\alpha_{1}\right)\left(y_{1}, y_{2}\right) \mathrm{d} y_{2} \|_{\mathcal{H}} \mathrm{d} x_{2} \mathrm{~d} y_{1} \\
\leqslant & C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} \sup _{r>0} r^{-1 / 2}\left\|\alpha_{1}\right\|_{2} \mathrm{~d} y_{1} \leqslant C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} M_{2}^{(2)}(\alpha)\left(y_{1}, 0\right) \mathrm{d} y_{1} .
\end{aligned}
$$

For IV, Minkowski's integral inequality and Theorem B of [11] imply

$$
\begin{aligned}
\mathrm{IV} & \leqslant \int_{-1 / 2^{\prime}}^{1 / 2} \sup _{r>0} \int_{\left|x_{2}\right|<r / 2}\left\|T_{t, s}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)-T_{t, s}\left(x_{1}, 0,0, y_{2}\right)\right\| y_{\mathcal{H}}\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1} \\
& \leqslant C \int_{-1 / 2}^{1 / 2} \sup _{r>0} \int_{\left|x_{2}\right|<r / 2} \sum_{j=1}^{\infty} \int_{2^{j}} \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \frac{\left|x_{2}\right|^{\varepsilon}}{\left|y_{2}\right|^{1+\varepsilon}}\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1} \\
& \leqslant C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} \sup _{r>0} \int_{\left|x_{2}\right|<r / 2} \sum_{j=1}^{\infty} 2^{-j \varepsilon}\left(2^{j}\left|x_{2}\right|\right)^{-1} \int_{\left|y_{2}\right| \leqslant 2^{j+1}\left|x_{2}\right|}\left|\alpha\left(y_{1}, y_{2}\right)\right| \mathrm{d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1} \\
& \leqslant C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} M^{(2)}(\alpha)\left(y_{1}, 0\right) \mathrm{d} y_{1} \leqslant C \frac{1}{\left|x_{1}\right|^{1+\varepsilon}} \int_{-1 / 2}^{1 / 2} M_{2}^{(2)}(\alpha)\left(y_{1}, 0\right) \mathrm{d} y_{1}
\end{aligned}
$$

since $M f \leqslant M_{q} f, q>1$, for one variable.
Next, we show that \mathcal{L} is bounded from H_{w}^{p} to $L_{w, \mathcal{H}}^{p}$ if and only if \mathcal{L} is uniformly boubded in H_{w}^{p}-norm for all weighted p atoms.

LEMMA 4.4. Let $w \in A_{2}$ and \mathcal{L} be a bounded operator from $L_{w}^{2}\left(\mathbb{R}^{n}\right)$ to $L_{w, \mathcal{H}}^{2}\left(\mathbb{R}^{n}\right)$. Then, for $1 / 2<p \leqslant 1, \mathcal{L}$ extends to be a bounded operator from $H_{w}^{p}\left(\mathbb{R}^{n}\right)$ to $L_{w, \mathcal{H}}^{p}\left(\mathbb{R}^{n}\right)$ if and only if $\|\mathcal{L}(a)\|_{L_{w, \mathcal{H}}^{p}\left(\mathbb{R}^{n}\right)} \leqslant C$ for any weighted p atom a, where the constant C is independent of a.

Proof. It suffices for us to check the sufficiency. Given $f \in H_{w}^{p} \cap L_{w}^{2}$, it follows from Theroem 2.1 that $f=\sum_{i=1}^{\infty} \lambda_{i} a_{i}$ in L_{w}^{2}. Then

$$
\psi_{t} * T f=\sum_{i=1}^{\infty} \lambda_{i} \psi_{t} * T a_{i} \quad \text { in } L_{w}^{2}
$$

Hence, there exists a subsequence (we still write the same indices) such that

$$
\psi_{t} * T f=\sum_{i=1}^{\infty} \lambda_{i} \psi_{t} * T a_{i} \quad \text { almost everywhere }
$$

Fatou's lemma and Minkowski's inequality imply

$$
\begin{aligned}
g(T f)(x) & =\left(\int_{0}^{\infty} \int_{0}^{\infty} \liminf _{N \rightarrow \infty}\left|\sum_{i=1}^{N} \lambda_{i} \psi_{t} * T a_{i}(y)\right|^{2} \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} s}{s}\right)^{1 / 2} \\
& \leqslant \liminf _{N \rightarrow \infty}^{\infty}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\sum_{i=1}^{N} \lambda_{i} \psi_{t} * T a_{i}(y)\right|^{2} \frac{\mathrm{~d} t}{t} \frac{\mathrm{~d} s}{s}\right)^{1 / 2} \leqslant \sum_{i=1}^{\infty}\left|\lambda_{i}\right| g\left(T a_{i}\right)(x)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|\mathcal{L}(f)\|_{L_{w, \mathcal{H}}^{p}}^{p} & =\int_{\mathbb{R}^{n}}[g(T f)(x)]^{p} w(x) \mathrm{d} x=\int_{\mathbb{R}^{n}} \liminf _{N \rightarrow \infty}\left(\sum_{i=1}^{N}\left|\lambda_{i}\right| g\left(T a_{i}\right)(x)\right)^{p} w(x) \mathrm{d} x \\
& \leqslant \liminf _{N \rightarrow \infty} \int_{\mathbb{R}^{n}}\left(\sum_{i=1}^{N}\left|\lambda_{i}\right| g\left(T a_{i}\right)(x)\right)^{p} w(x) \mathrm{d} x \\
& \leqslant \sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{p} \int_{\mathbb{R}^{n}}\left[g\left(T a_{i}\right)(x)\right]^{p} w(x) \mathrm{d} x \leqslant C\|f\|_{H_{w}^{p}}^{p}
\end{aligned}
$$

Since $H_{w}^{p} \cap L_{w}^{2}$ is dense in H_{w}^{p}, \mathcal{L} can be extened to a bounded operator from H_{w}^{p} to $L_{w, \mathcal{H}}^{p}$.

We now can to prove Theorem 1.4
Proof of Theorem 1.4 By Lemma 4.4 . it suffices to show $\|\mathcal{L} a\|_{L_{w, \mathcal{H}}^{p}} \leqslant C$ for any weighted p atom a with constant C independent of the choice of a. Take a weighted p atom a with supp $(a) \subseteq \Omega$. Let $\widetilde{\Omega}=\left\{M_{\mathrm{s}}\left(\chi_{\Omega}\right)>1 / 2\right\}$ and $\widetilde{\widetilde{\Omega}}=$
$\left\{M_{\mathrm{s}}\left(\chi_{\tilde{\Omega}}\right)>1 / 2\right\}$. Then

$$
\int_{\widetilde{\widetilde{\Omega}}}\|\mathcal{L}(a)\|_{\mathcal{H}}^{p} w \mathrm{~d} x \leqslant\|\mathcal{L}(a)\|_{L_{w}^{2}}^{p} w(\widetilde{\widetilde{\Omega}})^{1-p / 2} .
$$

Since $w(\widetilde{\widetilde{\Omega}}) \leqslant C w(\Omega)$ for $w \in A_{\infty}$,

$$
\int_{\widetilde{\widetilde{\Omega}}}|\mathcal{L}(a)|^{p} w \mathrm{~d} x \leqslant C\|a\|_{L_{w}^{2}}^{p} w(\Omega)^{1-p / 2} \leqslant C .
$$

As for $\int_{(\widetilde{\widetilde{\Omega}})^{c}}|\mathcal{L}(a)|^{p} w \mathrm{~d} x$, we use the same notations as the proof of Theorem 1.3 It suffices to observe that
$\int_{(\widetilde{\widetilde{\Omega}})^{c}}|\mathcal{L}(a)|^{p} w \mathrm{~d} x=\sum_{R \in \mathcal{M}(\Omega)} \int_{(\widehat{R})^{c}}|\mathcal{L}(a)|^{p} w \mathrm{~d} x$

By Lemma 4.3.

$$
\int_{E_{\gamma_{1}}}\left|\mathcal{L}\left(\alpha_{R}\right)\right|^{p} w \mathrm{~d} x \leqslant C\left(\gamma_{1}(R)\right)^{-\eta}\|\alpha\|_{L_{w}^{2}}^{p} w(R)^{1-p / 2} .
$$

Summing over $R \in \mathcal{M}(\Omega)$, we get, by Hölder's inequality and Lemma 3.2.

$$
\begin{aligned}
V & \leqslant C\left(\sum\left\|\alpha_{R}\right\|_{L_{w}^{2}}^{2}\right)^{p / 2}\left(\sum w(R)\left(\gamma_{1}(R)\right)^{-2 \eta /(2-p)}\right)^{1-p / 2} \\
& \leqslant C w(\Omega)^{(1-2 / p) p / 2} w(\Omega)^{1-p / 2} \leqslant C .
\end{aligned}
$$

The estimate of VI is similar to V and the proof of Theorem 1.4 is completed.

Acknowledgements. Research by author supported by National Science Council, Republic of China under Grant \#NSC 102-2115-M-008-006.

REFERENCES

[1] S.Y. Chang, R. Fefferman, A continuous version of duality of H^{1} with BMO on bidisc, Ann. of Math. 112(1980), 179-201.
[2] G. David, J.-L. Journé, A boundedness criterion for generalized CalderónZygmund operators, Ann. of Math. 120(1984), 371-397.
[3] Y. Ding, Y. HAN, G. Lu, X. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, Potential Anal. 37(2012), 31-56.
[4] R. Fefferman, Calderón-Zygmund theory for product domain- H^{p} theory, Proc. Nat. Acad. Sci. U.S.A. 83(1986), 840-843.
[5] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. 126(1987), 103130.
[6] R. Fefferman, A^{p} weights and singular integrals, Amer. J. Math. 110(1988), 975-987.
[7] R. Fefferman, E.M. Stein, Singular integrals on product spaces, Adv. Math. 45(1982), 117-143.
[8] J. Garcia-Cuerva, J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Math. Stud., vol. 16, Notas de Matemática, vol. 104, North Holland Publ. Co., Amsterdam 1985.
[9] R.F. Gundy, E.M. Stein, H^{p} theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76(1979), 1026-1029.
[10] Y. Han, M.-Y. Lee, C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull. 55(2012), 303-314.
[11] Y. Han, M.-Y. Lee, C.-C. Lin, Y.-C. Lin, Calderon-Zygmund operators on product Hardy spaces, J. Funct. Anal. 258(2010), 2834-2861.
[12] J.L. Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1(1985), 55-91.
[13] M.P. Malliavin, P. Malliavin, Intégrales de Lusin-Calderón pour les fonctions biharmoniques, Bull. Sci. Math. (2) 101(1977), 357-384.

MING-YI LEE, Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China

E-mail address: mylee@math.ncu.edu.tw

Received November 6, 2012; posted on July 30, 2014.

