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ABSTRACT. We will investigate the intersection of the normal operators with
the closure of the nilpotent operators in various C∗-algebras. A complete de-
scription of the intersection will be given for unital, simple, purely infinite
C∗-algebras. The intersection in AF C∗-algebras is also of interest. In addition,
an example of a separable, nuclear, quasidiagonal C∗-algebra where every op-
erator is a limit of nilpotent operators will be constructed.
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1. INTRODUCTION

As an n× n matrix has trivial spectrum if and only if it is nilpotent and the
set of nilpotent n× n matrices is closed in the operator topology, in Problem 7 of
[10] Halmos posed the question, “Is every quasinilpotent operator (that is, an op-
erator T with spectrum {0}) on a complex, separable, infinite dimensional Hilbert
space the norm limit of nilpotent operators (that is, operators T such that Tk = 0
for some k ∈ N; note every nilpotent operator is automatically quasinilpotent)?"
An affirmative answer to Halmos problem was given in [5] (also see [4] and [2]).
However, Halmos realized that his problem was incorrect as [11] showed that
there exists non-quasinilpotent operators that are norm limits of nilpotent opera-
tors. Thus Halmos reposed his question as, “What is the closure of the nilpotent
operators on a complex, separable, infinite dimensional Hilbert space?” or equiv-
alently, “What is the closure of all operators on a complex, separable, infinite di-
mensional Hilbert space with trivial spectrum?" A complete characterization of
the closure of the nilpotent operators was first given in [3]:

THEOREM 1.1 ([3]; see Theorem 5.1 in [15] for a proof). Let H be a complex,
separable, infinite dimensional Hilbert space and let T be a bounded linear operator onH.
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Then T is a norm limit of nilpotent operators onH if and only if the following conditions
are satisfied:

(i) The spectrum of T is connected and contains zero.
(ii) The essential spectrum of T is connected and contains zero.

(iii) The Fredholm index of λIH − T is zero for all λ ∈ C such that λIH − T is semi-
Fredholm.

Herrero performed a significant amount of work in an attempt to determine
the closure of the nilpotent operators on a complex, separable, infinite dimen-
sional Hilbert space (see [12], [13], and [14]). In particular, before [3], Herrero
proved the following specific case of Theorem 1.1 in an elegant way:

THEOREM 1.2 (Theorem 7 of [12], also see Proposition 5.6 in [15] and Theo-
rem 2 in [9]). Let N be a normal operator on a complex, separable, infinite dimensional
Hilbert spaceH. Then the following are equivalent:

(i) N is a norm limit of nilpotent operators onH.
(ii) N is a norm limit of quasinilpotent operators onH.

(iii) The spectrum of N is connected and contains zero.

Due to the existence and elegance of multiple proofs of Theorem 1.2, it is
natural rephrase the above question in the context of C∗-algebras; that is, “Given
an arbitrary C∗-algebra A and a normal operator N ∈ A, can simple conditions
be given to determine whether N is a norm limit of nilpotent or quasinilpotent
operators from A?"

Although the GNS construction implies A can be embedded faithfully into
the bounded linear operators on a Hilbert space, Theorem 1.2 does not provide
the answer to this question as the image of A need not contain the necessary
nilpotent or quasinilpotent operators.

However, a solution to this question can be easily obtained in several par-
ticular cases. For example, this question is easily solved for abelian C∗-algebras
(which have no non-trivial quasinilpotent operators). In addition, this problem
has already been solved for the Calkin algebra:

THEOREM 1.3 (see Theorem 5.34 in [15]). Let B(H) be the bounded linear op-
erators on a complex, separable Hilbert space H, let A be the Calkin algebra, let q :
B(H) → A be the canonical quotient map, and let T ∈ B(H). Then q(T) is a norm
limit of nilpotent operators from A if and only if the essential spectrum of T is connected
and contains zero and the Fredholm index of λIH − T is zero for all λ such that λIH − T
is semi-Fredholm.

More recently in [22], a complete classification of which normal operators
were norm limits of nilpotent and quasinilpotent operators was obtained for type
I and type III von Neumann algebras with separable predual (with some partial
results for type II von Neumann algebras):
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THEOREM 1.4 (Corollary 2.6 in [22]). Let

M := L∞(X,B(H))⊕
(

∏
n>1
Mn(C)⊗L∞(Xn)

)
where (X, µ) and (Xn, µn) are Radon measure spaces and B(H) is the set of bounded
linear operators on a complex, separable, infinite Hilbert space H. Let P ∈ M be the
(central) projection onto L∞(X,B(H)) and let N ∈ M be a normal operator. Then the
following are equivalent:

(i) N is a norm limit of nilpotent operators from M.
(ii) N is a norm limit of quasinilpotent operators from M.
(ii) PN = N and the spectrum of N(x) is connected and contains zero for almost

every x ∈ X.

THEOREM 1.5 (Theorem 3.2 in [22]). Let M be a type III von Neumann algebra
with separable predual. Then there exists a locally compact, complete, separable, metriz-
able measure space (X, µ) and a collection of type III factors (Mx)x∈X with separable
predual such that M is a direct integral of (Mx)x∈X . If N ∈M is a normal operator, we

may write N =
⊕∫
X

Nxdµ(x) where Nx ∈Mx is a normal operator µ-almost everywhere.

Then the following are equivalent:
(i) N is a norm limit of nilpotent operators from M.

(ii) N is a norm limit of quasinilpotent operators from M.
(iii) Nx is a norm limit of nilpotent operators from Mx for almost every x ∈ X.
(iv) Nx is a norm limit of quasinilpotent operators from Mx for almost every x ∈ X.
(v) The spectrum of Nx is connected and contains zero for almost every x ∈ X.

In particular, the following are necessary requirements for an operator to be
a norm limit of quasinilpotent operators and are derived from the facts that the
set of invertible elements is an open set in any C∗-algebra and the semicontinuity
of the spectrum.

LEMMA 1.6 (for a proof, see Lemma 1.3 in [22]). Let A be a C∗-algebra and let
T ∈ A be a limit of quasinilpotent operators from A. Then the spectrum of T is connected
and contains zero.

In this paper, which is a continuation of [22], we will examine whether con-
ditions can be given to determine when a normal operator is a limit of nilpotent
or quasinilpotent operators in various C∗-algebras.

Section 2 will examine this question in the context of unital, simple, purely
infinite C∗-algebras. As unital, simple, purely infinite C∗-algebras have a plethora
of projections with particular structure similar to that of von Neumann algebras,
a complete solution to our problem will be obtained for said algebras (see The-
orem 2.8). In particular, as the Calkin algebra is a unital, simple, purely infinite
C∗-algebra, Section 2 will generalize Theorem 1.3. Section 2 will also examine
auxiliary questions such as the closure of the span of nilpotent operators and the
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distance from a projection to the nilpotent operators in any unital, simple, purely
infinite C∗-algebra.

Section 3 will examine this question in the context of AF C∗-algebras. AF
C∗-algebras are one generalization of finite dimensional C∗-algebras and thus it
is surprising that the closure of nilpotent operators in said algebras is incredible
complex. In particular, Section 3 relates the norm closure of the nilpotent oper-
ators in AF C∗-algebras to the asymptotic behaviour of nilpotent matrices as the
dimension of the matrices are allowed to increase and will demonstrate the ex-
istence of AF C∗-algebras with non-zero normal operators in the closure of the
nilpotent operators. Since the submission of this paper, the author has used one
of the main results of Section 3, Theorem 3.9, to obtain additional interesting re-
sults along with an additional (yet more complicated) proof of Theorem 2.8 (see
[21]).

Section 4 will generalize a construction from [20] to demonstrate that there
exists a separable, nuclear, quasidiagonal C∗-algebra where every operator is
a norm limit of nilpotent operators. The cone of this C∗-algebra is then AF-
embeddable and it will be demonstrated this cone has also has the property that
every operator is a norm limit of nilpotent operators.

NOTATION 1.7. The following will be the notation used throughout the pa-
per:

(i)Mn(A) - the C∗-algebra of n× n matrices with entries in a C∗-algebra A.
(ii) Nor(A) - the set of normal operators of a C∗-algebra A.

(iii) Asa - the set of self-adjoint operators of a C∗-algebra A.
(iv) A+ - the set of positive operators of a C∗-algebra A.
(v) Nil(A) - the set of nilpotent operators of a C∗-algebra A.

(vi) QuasiNil(A) - the set of quasinilpotent operators of a C∗-algebra A.
(vii) σ(T) - the spectrum of an operator T.

(viii) A−1 - the set of invertible operators of a unital C∗-algebra A.
(ix) A−1

0 - the connected component of the identity in A−1.
(x) dist(A, B) - the distance between two sets A and B in a normed linear space.

(xi) diag(a1, . . . , an) - the n× n diagonal matrix with a1, . . . , an along the diag-
onal.

2. PURELY INFINITE C∗-ALGEBRAS

In this section we will prove our main result, Theorem 2.8, which completely
classifies when a normal operator in a unital, simple, purely infinite C∗-algebra
is a norm limit of nilpotent and quasinilpotent operators. The main tools of the
proof are the existence and equivalence of projections in unital, simple, purely
infinite C∗-algebras and Lemma 2.1 which gives positive matrices of norm one
that are asymptotically approximated by nilpotent matrices as we allow the size
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of the matrices to increase. In fact, in the case that A−1
0 = A−1, the conditions of

Theorem 2.8 are identical to the conditions of Theorem 1.2. This is not a surprise
as the proof of Theorem 2.8 relies only on Lemma 2.1 and the structure of the pro-
jections in a unital, simple, purely infinite C∗-algebra. In fact, the proof of Theo-
rem 2.8 can be adapted to prove Theorem 1.2. When the proof of Theorem 2.8 has
been completed, we will apply similar techniques to obtain information about the
closed span of nilpotent operators and the distance from a fixed projection to the
nilpotent operators in unital, simple, purely infinite C∗-algebras.

For completeness we include an outline of the following previously known
result.

LEMMA 2.1 (See A1.14 in [1]). For each n ∈ N there exists a positive matrix
An ∈ Mn(C) with norm one such that lim

n→∞
dist(An, Nil(Mn(C))) = 0.

Proof. Let

Q′n :=
n−1

∑
j=1

1
j

qj
n ∈ Mn(C)

where qn ∈ Mn(C) is the nilpotent Jordan block of order n. It was shown in [16]
that ‖Re(Q′n)‖ 6 π/2. If Qn := (i/ln(n))Q′n ∈ Mn(C) and Hn := Re(Qn) ∈
Mn(C), then, by [16], −In 6 Hn 6 In, Qn ∈ Nil(Mn(C)),

|‖Hn‖ − 1| 6 ln(2)
2 ln(n)

, and ‖Hn −Qn‖ 6
π

2 ln(n)
.

By normalizing each Hn, we obtain self-adjoint matrices Bn ∈ Mn(C) with
norm one such that

lim
n→∞

dist(Bn, Nil(Mn(C))) = 0.

For each n ∈ N let An := B2
n. Hence An ∈ Mn(C) is a positive matrix with norm

one. Since the square of any nilpotent matrix is a nilpotent matrix, it is easy to
obtain, as desired,

lim
n→∞

dist(An, Nil(Mn(C))) = 0.

Although the following two results are not required for the proof of Theo-
rem 2.8, we include them here for completeness and for later discussions. Lem-
ma 2.2 appears in [22] and we include its simple proof for convenience.

LEMMA 2.2 (Lemma 2.3 in [22]). Let A be a C∗-algebra and let A ∈ A+. Sup-
pose A is not invertible and σ(A) = {0 = λ0 < λ1 < · · · < λk}. Then

dist(A, QuasiNil(A)) >
1
2

max
16i6k

|λi − λi−1|.
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Proof. It is easy to see that there exists x0, y0 ∈ σ(A) and a Cauchy domain
Ω such that |x0 − y0| = max

16i6k
|λi − λi−1|, 0 /∈ Ω, and

inf{‖(λI − A)−1‖−1 : λ ∈ ∂Ω} = 1
2
|x0 − y0|.

If M ∈ A is such that

‖A−M‖ < inf{‖(λI − A)−1‖−1 : λ ∈ ∂Ω}
then, by an application of the analytic functional calculus for Banach algebras
(see Theorem 1.1 in [15]), σ(M) ∩Ω 6= ∅. As 0 /∈ Ω and the spectrum of any
quasinilpotent operator is {0}, the result trivially follows.

COROLLARY 2.3. Let {An}n>1 be the positive matrices of norm one from Lem-
ma 2.1. For every m ∈ N there exists an Nm ∈ N such that

σ(An) ∩ [ k
m , k+1

m ) 6= ∅

for all k ∈ {0, 1, . . . , m− 1} and for all n > Nm. That is, the spectrum of the matrices
An are asymptotically dense in [0, 1].

Proof. Since lim
n→∞

dist(An, Nil(Mn(C))) = 0 by Lemma 2.1, Lemma 2.2 im-

plies lim
n→∞

dist(σ(An), 0) = 0 and the distance between adjacent eigenvalues

(when arranged in increasing order) of each An tends to zero as n tends to in-
finity. Hence the result easily follows.

We will require the use of the following trivial result in the proof of Theo-
rem 2.8.

LEMMA 2.4. Let A be a C∗-algebra, let N ∈ Nor(A), let (Nn)n>1 be a sequence
of normal operators of A such that N = lim

n→∞
Nn, and let U be an open subset of C such

that U ∩ σ(N) 6= ∅. Then there exists an k ∈ N such that σ(Nn) ∩ U 6= ∅ for all
n > k.

Proof. Fix λ ∈ U ∩ σ(N). By Urysohn’s lemma there exists a continuous
function f on C such that f |Uc = 0 yet f (λ) = 1. Note f (N) = lim

n→∞
f (Nn) by

standard functional calculus results. If σ(Nn)∩U = ∅ for infinitely many n, then
f (Nn) = 0 for infinitely many n yet f (N) 6= 0 by construction. This is clearly a
contradiction.

Now we will prove Theorem 2.8 for positive operators. Although Proposi-
tion 2.5 is not required in the proof of Theorem 2.8, the proof of Proposition 2.5
contains all the conceptual difficulties and technical approximations thus easing
in the comprehension of Theorem 2.8.

PROPOSITION 2.5. Let A be a unital, simple, purely infinite C∗-algebra and let
A ∈ A+. Then the following are equivalent:

(i) A ∈ Nil(A).
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(ii) A ∈ QuasiNil(A).
(iii) The spectrum of A is connected and contains zero.

Proof. Clearly (i) implies (ii) and (ii) implies (iii) is trivial by Lemma 1.6. We
shall demonstrate that (iii) implies (i).

Suppose the spectrum of A is connected and contains zero and let ε > 0.
Since A is a unital, simple, purely infinite C∗-algebra, A has real rank zero (see
[23] or Theorem V.7.4 in [8]). Thus there exists scalars 0 = an < an−1 < · · · <
a1 = ‖A‖ and non-zero pairwise orthogonal projections P(1)

1 , . . . , P(1)
n ∈ A such

that ‖A− A1‖ 6 ε where

A1 :=
n

∑
k=1

akP(1)
k .

Moreover, since the spectrum of A is connected, we may also assume that

max
16k6n−1

|ak+1 − ak| 6 ε

by Lemma 2.4. The idea behind the remainder of the proof is to systematically
remove the largest eigenvalue of A1 by approximating with a nilpotent operator.

By Lemma 2.1 there exists an ` ∈ N, a positive matrix T1 ∈ M`(C) with
‖T1‖ = a1, and a nilpotent matrix M1 ∈ M`(C) such that ‖T1 − M1‖ 6 ε. In
addition, by a small perturbation, we may assume that the geometric multiplicity
of the eigenvalue a1 of T1 is one. For each k ∈ {2, . . . , n} let

{λ1,k, λ2,k, . . . , λ
m(1)

k ,k
}

be the spectrum of σ(T1) contained in [ak, ak−1) counting multiplicity (where zero
intersection is possible). Since A is a unital, simple, purely infinite C∗-algebra, for
each k ∈ {2, . . . , n} there exist pairwise orthogonal projections

Q(1)
1,k , Q(1)

2,k , . . . , Q(1)

m(1)
k ,k

such that P(1)
1 is equivalent Q(1)

j,k for each j ∈ {1, . . . , m(1)
k } and

mk
∑

j=1
Q(1)

j,k < P(1)
k .

For k ∈ {2, . . . , n} let

P(2)
k := P(1)

k −
m(1)

k

∑
j=1

Q(1)
j,k > 0

(where the empty sum is the zero projection). Therefore, if

A′1 := a1P(1)
1 +

n

∑
k=2

ak

( m(1)
k

∑
j=1

Q(1)
j,k

)
and A2 :=

n

∑
k=2

akP(2)
k
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then A′1 and A2 are self-adjoint operators such that A1 = A′1 + A2. Notice if

P(2) :=
n
∑

k=2
P(2)

k then P(2) is a non-trivial projection such that

A2 ∈ P(2)AP(2) and A′1 ∈ (IA − P(2))A(IA − P(2)).

Thus the proof will be complete if we can demonstrate that A′1 is within 2ε of a
nilpotent operator from (IA− P(2))A(IA− P(2)) and A2 is within 2ε of a nilpotent
operator from P(2)AP(2).

Recall P(2)AP(2) and (IA − P(2))A(IA − P(2)) are unital, simple, purely infi-
nite C∗-algebras. Moreover, if

A′′1 := a1P(1)
1 +

n

∑
k=2

m(1)
k

∑
j=1

λj,kQ(1)
j,k ∈ (IA − P(2))A(IA − P(2))

then ‖A′′1 − A′1‖ 6 ε by the assumption that max
16k6n−1

|ak+1 − ak| 6 ε. Since

{P(1)
1 } ∪ {{Q

(1)
j,k }

m(1)
k

j=1 }
n
k=2

are pairwise orthogonal, equivalent projections in (IA − P(2))A(IA − P(2)), we
can use the partial isometries implementing the equivalence to construct a ma-
trix algebra with these projections as the orthogonal minimal projections. More-
over, by construction, inside this matrix algebra A′′1 has the same spectrum as
T1 (including multiplicity) so A′′1 can be approximated with the analog of M1 in-
side (IA − P(2))A(IA − P(2)). Hence A′1 is within 2ε of a nilpotent operator from
(IA − P(2))A(IA − P(2)).

To approximate A2 with a nilpotent operator from P(2)AP(2), we repeat the
same argument with a positive matrix T2 of norm a2. Due to the nature of the
above approximations, the above process gives a non-trivial projection P(3) <

P(2) and a positive operator A3 of P(3)AP(3) with spectrum {a3, a4, . . . , an} such
that A2 − A3 ∈ (P(2) − P(3))A(P(2) − P(3)) can be approximated within 2ε of a
nilpotent operator from (P(2) − P(3))A(P(2) − P(3)). By repeating this process a
finite number of times (eventually ending with a zero operator), we can write
A1 as a finite direct sum of positive matrices each within 2ε of a nilpotent matrix
from the respective matrix algebra. Hence A1 is within 2ε of a nilpotent operator
from A and thus A is within 3ε of a nilpotent operator from A.

In order to adapt the proof of Proposition 2.5 to normal operators, it is nec-
essary to be able to approximate said operators with normal operators with finite
spectra. This difficult work has already been completed by Lin.

THEOREM 2.6 (Theorem 4.4 in [18]). Let A be a unital, simple, purely infinite
C∗-algebra and let N ∈ Nor(A). Then N can be approximated by normal operators with
finite spectra if and only if λIA − N ∈ A−1

0 for all λ ∈ C \ σ(N).
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It turns out that the condition “λIA − N ∈ A−1
0 for all λ ∈ C \ σ(N)” is a

necessary condition for an operator to be a limit of nilpotent operators.

LEMMA 2.7. Let A be a unital C∗-algebra and let T ∈ QuasiNil(A). Then λIA−
T ∈ A−1

0 for all λ ∈ C \ σ(T).

Proof. If M ∈ QuasiNil(A) then λIA − tM is invertible for all λ ∈ C \ {0}
and for all t ∈ C. Therefore λIA −M ∈ A−1

0 for all λ ∈ C \ {0}.
If T ∈ QuasiNil(A) then 0 ∈ σ(T) by Lemma 1.6. As A−1

0 is closed in the
relative topology on A−1, λIA − T ∈ A−1

0 for all λ ∈ C \ σ(T).

With Lemma 2.7 giving another necessary condition for a normal operator
to be a limit of nilpotent operators, we can now address our main theorem.

THEOREM 2.8. Let A be a unital, simple, purely infinite C∗-algebra and let N ∈
Nor(A). Then the following are equivalent:

(i) N ∈ Nil(A).
(ii) N ∈ QuasiNil(A).

(iii) 0 ∈ σ(N), σ(N) is connected, and λIA − N ∈ A−1
0 for all λ ∈ C \ σ(N).

Proof. Clearly (i) implies (ii) and (ii) implies (iii) is trivial by Lemma 1.6 and
Lemma 2.7. We shall demonstrate that (iii) implies (i). As the approximations
contained in the proof are identical to those used in Proposition 2.5, we will only
outline the main technique and omit the approximations.

Suppose 0 ∈ σ(N), σ(N) is connected, and λIA − N ∈ A−1
0 for all λ ∈

C \ σ(N). Fix ε > 0 and for each (n, m) ∈ Z2 let

Bn,m := (εn− ε
2 , εn + ε

2 ] + i(εm− ε
2 , εm + ε

2 ] ⊆ C.

By Theorem 2.6 there exists a normal operator Nε with finite spectrum such
that ‖N− Nε‖ 6 ε. For each (n, m) ∈ Z2 we label the box Bn,m relevant if σ(Nε)∩
Bn,m 6= ∅ and we label the box Bn,m irrelevant if σ(Nε) ∩ Bn,m = ∅. Since σ(N) is
connected, we may assume (via Lemma 2.4) that the union of all relevant Bn,m is
a connected set and B0,0 is relevant. By a perturbation of at most ε, we can assume
that σ(Nε) is precisely the centres of all relevant boxes and ‖N − Nε‖ 6 2ε.

The remainder of the proof is similar in nature to the proof of Proposition 2.5
in that we will use a recursive algorithm to write Nε as a finite direct sum of
matrices inside of A each of which is within 5ε of the set of nilpotent matrices. If
the only relevant box is B0,0, the algorithm may stop as Nε is the zero operator and
thus nilpotent. Otherwise we label a relevant box bad if its removal disconnects
the union of the relevant boxes or it is B0,0 and we label a relevant box good if it
is not bad. Elementary graph theory implies that at least one box is good.

Let Bn0,m0 be a good, relevant box. Since the union of the relevant boxes
is connected, there exists a continuous path γ : [0, 1] → C that connects 0 to
εn0 + iεm0 whose image lies in the union of the relevant boxes. By Lemma 2.1
and since γ can be approximated uniformly by a polynomial that vanishes at
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zero, there exists an ` ∈ N, a normal operator N` ∈ M`(C), and a nilpotent M` ∈
M`(C) such that the spectrum of N` is contained within an ε-neighbourhood of
the union of relevant boxes and ‖N`−M`‖ 6 ε. By perturbing the eigenvalues of
N` by at most 4ε, we can assume that the spectrum of N` is precisely a subset of
the centres of relevant boxes, the multiplicity of εn0 + iεm0 is precisely one, and
‖M` − N`‖ 6 5ε.

For each (n, m) ∈ Z2 let Pn,m be the spectral projection of Nε for the box
Bn,m. Using Pn0,m0 as a main projection, for each other (n, m) ∈ Z2 such that
εn + iεm is in the spectrum of N` we can find the algebraic multiplicity of the
eigenvalue εn + iεm of N` many orthogonal subprojections of Pn,m whose sum is
strictly less then Pn,m and each of which is equivalent to Pn0,m0 . Thus, as in the
proof of Proposition 2.5, we can find a projection P1 ∈ A such that P1 commutes
with Nε, P1NεP1 can be approximated by a nilpotent operator from P1AP1 within
5ε, and (I − P1)Nε(I − P1) has the same spectrum as Nε minus εn0 + iεm0.

By our selection of (n0, m0) and choice of projection P1, the number of rel-
evant Bn,m for (I − P1)Nε(I − P1) is one less than the number of relevant Bn,m
for Nε and the union of the relevant Bn,m for (I − P1)Nε(I − P1) is connected and
contains B0,0. Thus, by repeating the above process a finite number of times, we
obtain a nilpotent operator M ∈ A such that ‖N − M‖ 6 7ε. Hence the result
follows.

In the case of our C∗-algebra is not a purely infinite C∗-algebra, we note that
the following can easily be proved using the techniques illustrated above.

LEMMA 2.9. Let A be a unital, simple C∗-algebra and let N ∈ Nor(A) be such

that σ(N) is connected and contains zero. If N = lim
n→∞

mn
∑

k=1
ak,nPk,n where ak,n ∈ C and

Pk,n are infinite projections with
mn
∑

k=1
Pk,n = IA then N ∈ Nil(A).

Proof. The conditions that A is simple and the projections are infinite imply
that the projections are properly infinite (see Theorem V.5.1 in [8]) and every pro-
jection is equivalent to a subprojection of any infinite projection (see Lemma V.5.4
in [8]). Thus the process used above works (where we note the small technical
detail that, when removing one projection from the sum, we can still take the
differences containing the other projections to be infinite by showing that they
contain a strict subprojection equivalent to the original Pk,n by Theorem V.5.1 in
[8]).

With the proof of Theorem 2.8 complete, we turn our attention to other in-
teresting questions pertaining to limits of nilpotent operators in unital, simple,
purely infinite C∗-algebras. To begin, we recall that Corollary 6 in [12] shows that
the closure of Nil(B(H)) + Nil(B(H)) contains every normal operator. We now
demonstrate a similar result for unital, simple, purely infinite C∗-algebras.



NORMAL LIMITS OF NILPOTENT OPERATORS IN C∗ -ALGEBRAS 145

THEOREM 2.10. Let A be a unital, simple, purely infinite C∗-algebra. Then

Asa ⊆ {M1 + M2 : M1, M2 ∈ Nil(A)} and

A ⊆ {M1 + M2 + M3 + M4 : M1, M2, M3, M4 ∈ Nil(A)}.
Proof. Clearly the second result follows from the first by considering real

and imaginary parts. To prove the first result, we will first demonstrate that

IA ∈ {M1 + M2 : M1, M2 ∈ Nil(A)}.

Note that there exists a positive operator A ∈ A such that σ(A) = [0, 1]. Thus A
and IA − A are limits of nilpotent operators by Theorem 2.8 (or Proposition 2.5)
which completes the claim.

Let A ∈ Asa be arbitrary and fix ε > 0. Since A has real rank zero (see Theo-
rem V.7.4 in [8]), there exist non-zero pairwise orthogonal projections {Pk}n

k=1 ⊆

A and scalars {ak}n
k=1 such that

∥∥∥ n
∑

k=1
akPk − A

∥∥∥ < ε. Since each PkAPk is a unital,

simple, purely infinite C∗-algebra with unit Pk, Pk is a limit of the sum of two
nilpotent operators from PkAPk. Since the finite direct sum of nilpotent operators

is a nilpotent operator,
n
∑

k=1
akPk is a limit of sums of two nilpotent operators from

A and thus the result follows.

COROLLARY 2.11. Let A be a unital, simple, purely infinite C∗-algebra and let
N ∈ Nor(A) be such that λIA − N ∈ A−1

0 for all λ ∈ C \ σ(N). Then

N ∈ {M1 + M2 : M1, M2 ∈ Nil(A)}.
Proof. The result follows from the same argument in Theorem 2.10 where N

can be approximated by normal operators with finite spectrum by Theorem 2.6.

We note that if A := On is the Cuntz algebra generated by n isometries
then A−1

0 = A−1 by [7]. Thus Nor(On) ⊆ {M1 + M2 : M1, M2 ∈ Nil(On)} for all
n ∈ N.

In Corollary 9 of [12], Herrero determined the distance from a fixed pro-
jection in B(H) to the nilpotent and quasinilpotent operators was either 0, 1, or
1/2 and gave necessary and sufficient conditions for each distance. Using the
structure of projections in unital, simple, purely infinite C∗-algebras, it is possible
to imitate Herrero’s work. We begin by noting the following trivial result which
follows from the fact that any element of the open unit ball around the identity in
a C∗-algebra is invertible and by Lemma 2.2.

LEMMA 2.12 (Lemma 8.1 in [22]). Let A be a unital C∗-algebra. Then

dist(IA, Nil(A)) = dist(IA, QuasiNil(A)) = 1.
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Moreover, if P ∈ A is a non-trivial projection then

1
2
6 dist(P, QuasiNil(A)) 6 dist(P, Nil(A)) 6 1.

THEOREM 2.13. Let A be a unital, simple, purely infinite C∗-algebra and let P ∈
A be a projection. Then

(i) dist(P, Nil(A)) = dist(P, QuasiNil(A)) = 0 if P = 0,
(ii) dist(P, Nil(A)) = dist(P, QuasiNil(A)) = 1 if P = IA, and

(iii) dist(P, Nil(A)) = dist(P, QuasiNil(A)) = 1/2 otherwise.

Proof. Clearly (i) and (ii) hold by Lemma 2.12. To see that (iii) holds, it suf-
fices to show

dist(P, Nil(A)) 6
1
2

by Lemma 2.12. Since IA− P is a properly infinite projection, for each k ∈ N there
exist pairwise orthogonal projections Q1,k, Q2,k, . . . , Qk,k such that P is equivalent

to Qj,k for each j ∈ {1, . . . , k} and
k
∑

j=1
Qj,k < IA − P.

Let

Qk := P +
k

∑
j=1

Qj,k.

Then P ∈ QkAQk for all k ∈ N. Thus it suffices to show that

inf
k>1

dist(P, Nil(QkAQk)) 6
1
2

.

Since
{P} ∪ {Qj,k}k

j=1

is a set of equivalent, pairwise orthogonal projections in A, we can use the partial
isometries implementing the equivalence to construct a copy of Mk+1(C) with
these projections as the orthogonal minimal projections. Moreover, by construc-
tion, inside this matrix algebra P is a rank one projection. Thus, by Theorem 2.12
in [15], P is within 1/2 + sin(π/(mk + 1)) (where mk is the integer part of k/2) of
a nilpotent matrix. Thus, we have the following, so the result follows:

dist(P, Nil(QkAQk)) 6
1
2
+ sin(π/(mk + 1)).

3. AF C∗-ALGEBRAS

In this section we will investigate when a normal operator in an AF C∗-
algebra is a norm limit of nilpotent operators. The study of such operators is in-
trinsically related to how normal matrices can be asymptotically approximated by
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nilpotent matrices as we allow the dimension of our matrices to increase. Propo-
sition 3.7 will provide conditions on an AF C∗-algebra that guarantee the intersec-
tion of the normal operators and the quasinilpotent operators is trivial whereas
Theorem 3.5 exhibits an AF C∗-algebra A where Asa ∩Nil(A) 6= {0}. Moreover, in
Theorem 3.9 which is the main result of this section, we will demonstrate that ev-
ery UHF C∗-algebra has a normal operator with spectrum equal to the closed unit
disk that is a norm limit of nilpotent operators. All of this together (along with
Proposition 4.10) implies that the study of Nor(A)∩Nil(A) for AF C∗-algebras A
is incredibly complex.

We begin with the following important result.

PROPOSITION 3.1. Let A be an AF C∗-algebra and write A =
⋃

k>1
Ak where each

Ak is a finite dimensional C∗-algebra. For each T ∈ A following are equivalent:
(i) T ∈ QuasiNil(A).

(ii) T ∈ Nil(A).
(iii) T ∈ ⋃

k>1
Nil(Ak).

Proof. Clearly (iii) implies (ii) and (ii) implies (i). Suppose T ∈ QuasiNil(A).
Let ε > 0 and choose M ∈ QuasiNil(A) such that ‖T−M‖ < ε. Since M ∈ ⋃

k>1
Ak

and by the semicontinuity of the spectrum, there exist an k ∈ N and an operator
M0 ∈ Ak such that ‖M0 −M‖ < ε and

σ(M0) ⊆ {z ∈ C : dist(z, σ(M)) < ε} = {z ∈ C : |z| < ε}.
Since Ak is a finite dimensional C∗-algebra, Ak is a direct sum of matrix algebras.
Thus M0 is unitarily equivalent to a direct sum of upper triangular matrices. Each
of these upper triangular matrices is the sum of a nilpotent matrix and a diagonal
matrix whose diagonal entries are in σ(M0). Since the equivalence is via a unitary,
by subtracting the diagonal part we obtain an M′ ∈ Nil(Ak) such that

‖M0 −M′‖ 6 sup{|z| : z ∈ σ(M0)} < ε.

Therefore ‖T −M′‖ < 3ε completing the proof.

REMARK 3.2. The study of which normal operators of an AF C∗-algebra are
in the closure of the nilpotent operators is intrinsically connected to the distribu-
tion of eigenvalues of normal matrices that are asymptotically approximated by
nilpotent matrices as we allow the dimension of the matrices to increase.

Indeed if A is an AF C∗-algebra with A =
⋃

k>1
Ak where A1

α1→ A2
α2→ A3

α3→

· · · is a direct limit of finite dimensional C∗-algebras with αk injective for all k ∈ N,
then it is easy to see by Proposition 3.1 and by [17] that N ∈ Nor(A) ∩Nil(A) if
and only if for each k ∈ N there exists an Nk ∈ Nor(Ak) such that N = lim

k→∞
Nk

and lim
k→∞

dist(Nk, Nil(Ak)) = 0. Moreover, since N = lim
k→∞

Nk, lim
k→∞
‖αk(Nk) −
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Nk+1‖ = 0. This is possible only if for each k ∈ N the eigenvalues of αk(Nk)
and Nk+1 (including multiplicities) can be paired together in a manner such that
the maximum of the absolute values of the differences tends to zero as k tends to
infinity.

Similarly, if Nk ∈ Nor(Ak) can be chosen such that for each k ∈ N the eigen-
values of αk(Nk) and Nk+1 (including multiplicities) can be paired together inside
the appropriate direct summand of Ak+1 in a manner such that the maximum
of the absolute values of the differences tends to zero as k tends to infinity and
lim
k→∞

dist(Nk, Nil(Ak)) = 0, then, by taking unitary conjugates of the matrices Nk,

it is possible to construct a Cauchy sequence in A that converges to a normal
operator N in the closure of the nilpotent operators.

EXAMPLE 3.3. For each n ∈ N let An ∈ M2n(C) be a diagonal matrix with
spectrum { 1

2n , 2
2n , . . . , 1}. Then

lim inf
n→∞

dist(An, Nil(M2n(C))) > 0.

To see this, we note that the sequence (An)n>1 can be used to construct a Cauchy
sequence in the 2∞-UHF C∗-algebra A that converges to a non-zero positive op-
erator A. If lim inf

n→∞
dist(An, Nil(M2n(C))) = 0 then A would be the limit of ele-

ments of Nil(A) which would contradict Proposition 4.6 in [22] as A has a faithful
tracial state.

Alternatively

lim inf
n→∞

dist(An, Nil(M2n(C))) > 1
2

since the normalized trace onM2n(C) has norm one, the normalized traces of An
tend to 1/2 as n tends to infinity, and the trace of any nilpotent matrix is zero.

Note, in the above example, we can view each An as a positive operator
whose spectrum is the first 2n entries of the sequence {1, 1

2 , 3
4 , 1

4 , 7
8 , . . .}. Thus,

by Remark 3.2, we are interested in the following question: “Given a sequence
(an)n>1 ∈ `∞(N) does lim inf

n→∞
dist(diag(a1, . . . , an), Nil(Mn(C))) = 0?" An appli-

cation of Lemma 2.2 implies {an}n>1 must be a connected set containing zero in
order for an affirmative answer to this question. Thus the following is of particu-
lar interest.

PROPOSITION 3.4. There exists a sequence (an)n>1 ∈ `∞(C)+ with {an}n>1 =
[0, 1] such that

lim inf
n→∞

dist(diag(a1, . . . , an), Nil(Mn(C))) = 0.

Proof. By Lemma 2.1 for each n ∈ N there exists a positive matrix An ∈
Mn(C) of norm one such that lim

n→∞
dist(An, Nil(Mn(C))) = 0. Choose n1 ∈ N

such that dist(An1 , Nil(Mn1(C))) 6 1. Let the first n1 of the scalars aj be the
eigenvalues of An1 (including multiplicity).
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Let R1 := An1 . By Corollary 2.3 σ(An) progressively gets dense in [0, 1] as n
increases. Therefore there exists an n2 ∈ N such that

σ(An2) ∩ [ k
22 , k+1

22 ) 6= ∅

for all k ∈ {0, 1, 2, 3} and

dist(An2 , Nil(Mn2(C))) 6
1
22 .

By comparing the eigenvalues of R1 and An2 there exist an m1 ∈ N and an injec-
tive map f1 from the eigenvalues of R1 (including multiplicity) to the eigenval-
ues of A⊕m1

n2 (including multiplicity) such that |λ − f1(λ)| 6 1/4 for all eigen-
values λ of R1 (including multiplicity). Therefore, if A⊕m1

n2 	 R1 denotes the
(m1n2− n1)× (m1n2− n1) diagonal matrix whose diagonal entries are the eigen-
values of A⊕m1

n2 (including multiplicities) excluding f1(λ) for all eigenvalues λ of
R1 (including multiplicity), then

R2 := R1 ⊕ (A⊕m1
n2 	 R1)

is within 1/4 of a unitary conjugate of A⊕m1
n2 and thus

dist(R2, Nil(Mn2m1(C)) 6
1
4
+ dist(A⊕m1

n2 , Nil(Mn2m1(C))

6
1
4
+ dist(An2 , Nil(Mn2(C)) 6

1
2

.

Thus define the next m1n2 − n1 of the scalars aj to be the eigenvalues of
A⊕m1

n2 	 R1 (including multiplicity).
By continuing this process ad infinitum, the desired sequence (an)n>1 is

obtained.

Of course the existence of the above sequence does not imply that there
exists an AF C∗-algebra with a non-zero positive operator in the closure of the
nilpotent operators as the structure required for such an operator is more com-
plex (see Remark 3.2). However, an example of such a AF C∗-algebra is an easy
application of the theory developed in Section 2.

THEOREM 3.5. There exists an AF C∗-algebra A such that A+ ∩Nil(A) 6= {0}.
Proof. Let O2 be the Cuntz algebra generated by two isometries. Since O2

is a separable, nuclear C∗-algebra, the cone of O2, C := C0((0, 1],O2), is AF-
embeddable (see Proposition 2 in [19] or Theorem 8.3.5 in [6]). Hence there exists
an AF C∗-algebra A such that C ⊆ A. Thus it suffices to show C+ ∩Nil(C) 6= {0}.

Let A ∈ (O2)+ \ {0} be such that σ(A) = [0, 1] and let A′ ∈ C+ be defined
by A′(x) = Ax for all x ∈ (0, 1]. Since A 6= 0, A′ 6= 0. Since A ∈ Nil(O2) by
Theorem 2.8 (or simply Proposition 2.5), it is trivial to verify that A′ ∈ Nil(C) as
desired.
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Using Theorem 3.5 and Proposition 3.1, it is easy to obtain the following
that enables us to improve Lemma 2.1 by bounding the nilpotency degrees of the
approximating nilpotent matrices. Theorem 3.5, Proposition 3.1, and Remark 3.2
together also imply that Lemma 2.1 holds with the additional property that the
distribution of eigenvalues of the sequence An is “not too poorly behaved”.

COROLLARY 3.6. There exist an increasing sequence of natural numbers (kn)n>1
and a sequence of positive matrices An ∈ Mkn(C) of norm one such that for every ε > 0
there exist an index m ∈ N and an ` ∈ N such that

dist(An, Nil`(Mkn(C))) < ε

for all n > m (where Nil`(Mkn(C)) is the set of nilpotent kn× kn-matrices of nilpotency
index at most `).

Next we have the following trivial observation that shows several AF C∗-
algebras where no non-zero normal operators are limits of quasinilpotent opera-
tors.

PROPOSITION 3.7. Suppose A =
⋃

k>1
Ak where A1

α1→ A2
α2→ A3

α3→ · · · is a

direct limit of finite dimensional C∗-algebras with αk injective for all k ∈ N. If Ak =
mk⊕
j=1
Mnj,k (C) and {nj,k}j,k>1 is a bounded set, then Nor(A) ∩QuasiNil(A) = {0}.

Proof. Suppose N ∈ Nor(A) ∩ QuasiNil(A) and let ` := sup
j,k>1

nj,k < ∞.

Therefore M` = 0 for all M ∈ ⋃
k>1

Nil(Ak) so N` = 0 by Proposition 3.1. Hence

N = 0.

The main result of this section is Theorem 3.9 which gives examples of nor-
mal operators in each UHF C∗-algebra that are limits of nilpotent operators. This
result is slightly surprising since every UHF C∗-algebra has a faithful tracial state
yet [22] demonstrated that faithful tracial states impose restrictions on when nor-
mal operators can be limits of nilpotent operators. In particular, Proposition 4.6
in [22] shows that Asa ∩QuasiNil(A) = {0} for every UHF C∗-algebra A (also see
Corollary 4.8, Lemma 4.12, and Theorem 4.13 in [22]).

The main tool in this construction is Lemma 5.4 in [22] which is based on
Section 2.3.3 of [15].

LEMMA 3.8 (Lemma 5.4 in [22]). Let n, m ∈ N with m > 2 and choose 0 =
a0 < a1 < a2 < · · · < am = 1. Then there exists an M ∈ Nil(M(2m+1)n+1(C)) and
an N ∈ Nor(M(2m+1)n+1(C)) such that

‖M− N‖ 6 π

n
+ max

06k6m−1
|ak+1 − ak| and

σ(N) = {ake(πi/n)j : j ∈ {1, . . . , 2n}, k ∈ {0, . . . , m}}



NORMAL LIMITS OF NILPOTENT OPERATORS IN C∗ -ALGEBRAS 151

with the multiplicity of zero being n + 1 and the multiplicity of every other eigenvalue
being one.

The following result was known to Marcoux and was communicated to the
author.

THEOREM 3.9 (Marcoux). Let A be a nonelementary UHF C∗-algebra. There
exists an N ∈ Nor(A) ∩Nil(A) such that σ(N) is the closed unit disk.

Proof. Write A =
⋃

k>1
M`k

(C) whereM`1(C)
α1→M`2(C)

α2→M`3(C)
α3→ · · ·

is a direct limit of full matrix algebras with αk injective for all k ∈ N. Moreover
we can assume that `k+1/`k is composite for all k ∈ N and `1 > 11.

For each k ∈ N we will construct nk, mk ∈ N and qk ∈ N ∪ {0} such that
m1, n1 > 2, (2mk + 1)nk + 1 + qk = `k for all k ∈ N, 2mk 6 mk+1 for all k ∈ N,
2nk 6 nk+1 for all k ∈ N, and, if Nk ∈ Nor(M(2mk+1)nk+1+qk

(C)) is a specific
unitary conjugate of the normal matrix obtain by taking the direct sum of the
qk× qk zero matrix with the normal matrix from Lemma 3.8 with n = nk, m = mk,
and aj = j/mk for all j ∈ {0, 1, . . . , mk} then (Nk)k>1 is a Cauchy sequence in A.

If such a sequence exists then, since lim
k→∞

mk = ∞ and lim
k→∞

nk = ∞ and since

adding a zero direct summand at most decreases the distance to the nilpotent
operators, Lemma 3.8 implies

lim
k→∞

dist(Nk, Nil(M`k
(C))) = 0.

Thus, if N = lim
k→∞

Nk then N ∈ Nor(A)∩Nil(A) by construction. Since ‖Nk‖ 6 1,

‖N‖ 6 1. Since lim
k→∞

mk = ∞ and lim
k→∞

nk = ∞, Lemma 3.8 implies the intersection

of σ(Nk) with any open subset of the closed unit ball is non-empty for sufficiently
large k. This implies σ(N) is the closed unit disk by the semicontinuity of the
spectrum.

To show that the claim is true, let m1 = 2 and select n1 ∈ N with n1 > 2
and q1 ∈ {0, 1, 2, 3, 4} such that `1 = (2m1 + 1)n1 + 1+ q1. Let N1 be as described
above.

Suppose we have performed the construction for some fixed k ∈ N. Since
`k+1/`k is composite, we may write `k+1/`k = pz where p, z > 2. Then, when
we view Nk as an element ofM`k+1

(C), each eigenvalue of Nk has pz times the
multiplicity it did inM`k

(C). Let nk+1 := pnk > 2nk and mk+1 := zmk > 2mk.
Then

(2mk+1 + 1)nk+1 + 1 = `k+1 − ((z− 1)pnk + pz + pzqk − 1).

Thus let qk+1 := ((z− 1)pnk + pz + pzqk − 1) > 0 so

(2mk+1 + 1)nk+1 + 1 + qk+1 = `k+1.

If N′k+1 is the normal matrix obtain by taking the direct sum of the qk × qk zero
matrix with the normal matrix from Lemma 3.8 with n = nk+1, m = mk+1, and
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aj = j/mk+1 for all j ∈ {0, 1, . . . , mk+1}, then, by construction, we can pair the
eigenvalues of Nk (including multiplicity) when viewed an element ofM`k+1

(C)
with the eigenvalues of N′k+1 in a bijective way such that the difference of any pair
is at most π/nk + 1/mk by our knowledge of the eigenvalues from Lemma 3.8.
Thus there exists a unitary conjugate Nk+1 of N′k+1 that is within π/nk + 1/mk of
the image of Nk inM`k+1

(C). Since 2mk 6 mk+1 for all k ∈ N and 2nk 6 nk+1 for
all k ∈ N, this implies (Nk)k>1 is a Cauchy sequence in A as desired.

Furthermore, we note that the following can be applied to every UHF C∗-
algebra by Theorem 3.9.

THEOREM 3.10 (Theorem 5.8 in [22]). Let Ω be a non-empty, open, connected
and simply connected subset of C containing zero such that ∂Ω contains at least two
points and is a Jordan curve. Let A be a C∗-algebra and suppose that there exists an
N ∈ Nor(A) ∩Nil(A) such that σ(N) is the closed unit disk. Then there exists an
operator N0 ∈ Nor(A) ∩Nil(A) with σ(N0) = Ω.

To conclude this section, we will demonstrate that Corollary 6 in [12] can-
not be generalized to AF C∗-algebras (it was demonstrated in Section 8 of [22]
that Corollary 9 in [12] cannot be generalized to C∗-algebras with faithful tra-
cial states). It is the existence of faithful tracial states on finite dimensional C∗-
algebras that prevents the generalization of Herrero’s result.

LEMMA 3.11. Let A be a unital AF C∗-algebra and let T ∈ A. Then each of the
following sets is either the empty set or a singleton:

(i) {λ ∈ C : λIA + T ∈ Nil(A)}.
(ii) {λ ∈ C : λIA + T ∈ span(Nil(A))}.

Proof. We shall only prove the first claim since the proof of the second claim
is exactly the same. Suppose

λ0 ∈ {λ ∈ C : λIA + T ∈ Nil(A)}

and let R := λ0 IA + T. Thus to show that λIA + T /∈ Nil(A) for all λ ∈ C \ {λ0}
it suffices to show that µIA + R /∈ Nil(A) for all µ ∈ C \ {0}.

Since A is a unital AF C∗-algebra, A =
⋃

k>1
Ak where A1

α1→ A2
α2→ A3

α3→ · · ·

is a direct limit of finite dimensional C∗-algebras with αk unital and injective for
all k ∈ N. Therefore there exists Rk ∈ Ak such that R = lim

k→∞
Rk. However, since

R ∈ Nil(A), Proposition 3.1 implies that R = lim
k→∞

Mk where Mk ∈ Nil(Ak) for

all k ∈ N. Hence lim
k→∞
‖Rk −Mk‖ = 0. Thus lim

k→∞
trAk (Rk) = 0 (where trAk is any

faithful tracial state on Ak) as every nilpotent matrix has zero trace.
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Fix µ ∈ C \ {0}. Then µIA + R = lim
k→∞

µIAk + Rk. If µIA + R ∈ Nil(A) then

the above argument implies that lim
k→∞

trAk (µIAk + Rk) = 0 which is impossible as

µ 6= 0 and lim
k→∞

trAk (Rk) = 0.

COROLLARY 3.12. Let A be a unital AF C∗-algebra. Then

IA /∈ span(Nil(A)).

For the proof note that 0 ∈ span(Nil(A)) and apply Lemma 3.11.

4. C∗-ALGEBRAS WITH DENSE SUBALGEBRAS OF NILPOTENT OPERATORS

In [20], Read gave an example of a separable C∗-algebra that contains a
dense subalgebra consisting entirely of nilpotent operators. In this section we
will use Lemma 2.1 and the construction in [20] to construct an approximately
homogeneous (and thus separable, nuclear, and quasidiagonal) C∗-algebra that
contains a dense subalgebra consisting entirely of nilpotent operators. It will
also be demonstrated that there exists an AF C∗-algebra with a C∗-subalgebra
D where D = Nil(D). Thus the study of the closure of nilpotent operators in AF
C∗-algebras is incredibly complex.

CONSTRUCTION 4.1. By Lemma 2.1 there exist finite dimensional Hilbert
spaces {Hn}n>1, positive matrices An ∈ B(Hn) of norm one, and nilpotent ma-
trices Mn ∈ B(Hn) such that ∑

n>1
‖An − Mn‖ < ∞. Since each An is a positive

matrix with norm one, there exist unit vectors ξn ∈ Hn such that Anξn = ξn for
all n ∈ N.

We will use {Hn}n>1 and {ξn}n>1 to generalize Read’s construction. Con-
sider the sequence of pointed Hilbert spaces (Hn, ξn). For each n < m define

φn,m :
n⊗

k=1
Hk →

m⊗
k=1
Hk such that

φn,m(η1 ⊗ η2 ⊗ · · · ⊗ ηn) = η1 ⊗ η2 ⊗ · · · ⊗ ηn ⊗ ξn+1 ⊗ ξn+2 ⊗ · · · ⊗ ξm.

Let K :=
∞⊗

k=1
Hk be the completion of the direct limit of the nested sequence of

Hilbert spaces
n⊗

k=1
Hk with the connecting maps φn,m. Since eachHk is separable,

each
n⊗

k=1
Hk is separable and thus K is separable. Let φn :

n⊗
k=1
Hk → K be the

natural inclusion.
We will maintain the above notation throughout the rest of this section.
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The following are new versions of Lemma 0.3 and Corollary 0.4 in [20] re-
spectively that will serve our purposes. We omit the proofs as they follow as
in [20].

LEMMA 4.2. Let (Sn)n>1 be a sequence of operators with Sn ∈ B(Hn) such that

C := ∏
n>1

max{‖Sn‖, 1} < ∞ and ∑
n>1
‖Snξn − ξn‖ < ∞.

Then there exists a unique operator S′ ∈ B(K) such that S′(φnζ) = S′nζ for each

ζ ∈
n⊗

k=1
Hk where S′n := lim

m→∞
S′n,m where, for each m > n, S′n,m :

n⊗
k=1
Hk → K is

defined by

S′n,m = φm ◦
( m⊗

i=1

Si

)
◦ φn,m.

We will use
∞⊗

n=1
Sn to denote S′.

COROLLARY 4.3. Let S′ =
∞⊗

n=1
Sn and R′ =

∞⊗
n=1

Rn be elements of B(K) as

constructed in Lemma 4.2. Then

‖S′ − R′‖ 6 CSCR ∑
n>1
‖Sn − Rn‖

where
CS := ∏

n>1
max{1, ‖Sn‖} and CR := ∏

n>1
max{1, ‖Rn‖}.

CONSTRUCTION 4.4. Let B be the C∗-subalgebra of B(K) generated by all

operators of the form
∞⊗

n=1
Sn given by Lemma 4.2. Let EA be subset of B contain-

ing all operators of the form
∞⊗

n=1
Sn from Lemma 4.2 such that there exist a k ∈ N

such that Sn = An for each n > k. Since ∑
n>1
‖Anξn − ξn‖ = 0 and ‖An‖ = 1 for

all n ∈ N, EA is non-empty. Let C be the C∗-algebra generated by EA. Note that
EA is a self-adjoint set so C is the closure of the algebra generated by EA.

LEMMA 4.5. The C∗-algebra C from Construction 4.4 is nuclear, quasidiagonal,
approximately homogeneous, and separable.

Proof. For each k ∈ N let Ck be the C∗-subalgebra of C generated by all

operators of the form
∞⊗

n=1
Sn from Lemma 4.2 such that Sn = An for all n > k.

Then Ck is isomorphic to B(H1)⊗min · · · ⊗min B(Hk)⊗min Ak+1 where Ak+1 is the

abelian C∗-algebra generated by the infinite tensor
∞⊗

n=k+1
Sn where Sn = An for all

n > k. Since C is the inductive limit of the C∗-algebras Ck, the result follows.
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THEOREM 4.6. The C∗-algebra C from Construction 4.4 has a dense subalgebra N
such that every operator of N is nilpotent.

Proof. This proof is nearly identical to that of Theorem 1.2 in [20] where the
only changes are our simple modifications. Let EN be the subset of B consisting

of all operators of the form
∞⊗

n=1
Sn from Lemma 4.2 such that there exist a k ∈ N

such that Sn = Mn for all n > k. Let N be the (not necessarily closed nor self-
adjoint) subalgebra of B generated by EN . It suffices to show three things: (i)
N ⊆ C; (ii) N is dense in C; (iii) every operator of N is nilpotent.

(i) It suffices to show that EN ⊆ C. To begin we will show that N is not
empty. Suppose that (Sn)n>1 is a sequence of operators where Sn ∈ B(Hn) for all
n ∈ N and Sn = Mn for all n > k for some fixed k ∈ N. Since ‖An‖ = 1 for all
n ∈ N and ∑

n>1
‖Mn − An‖ < ∞, ∑

n>1
|‖Sn‖ − 1| < ∞ and so ∏

n>1
max{1, ‖Sn‖} <

∞. Moreover, since ∑
n>1
‖Anξn − ξn‖ = 0,

∑
n>k
‖Snξn − ξn‖ 6 ∑

n>k
‖Mn − An‖+ ∑

n>k
‖Anξn − ξn‖ < ∞.

Hence Lemma 4.2 implies that the operator
∞⊗

n=1
Sn exists. Hence N is not empty.

Fix a sequence (Sn)n>1 of operators where Sn ∈ B(Hn) for all n ∈ N and

Sn = Mn for all n > k. For each m > k define Rm :=
( m⊗

n=1
Sn

)
⊗
( ∞⊗

n=m+1
An

)
.

Then {Rm}m>k ⊆ EA by construction and, by Corollary 4.3,∥∥∥ ∞⊗
n=1

Sn − Rm

∥∥∥ 6 (∏
n>1

max{‖Sn‖, 1}
)2

∑
n>m+1

‖An −Mn‖.

Therefore, since lim
m→∞

∑
n>m+1

‖An −Mn‖ = 0,
∞⊗

n=1
Sn is in the closure of {Rm}m>k

and thus
∞⊗

n=1
Sn ∈ C. Hence N ⊆ C as desired.

(ii) It suffices to show that EA is in the closure of N since C is the closure of

the algebra (and not ∗-algebra) generated by EA. Fix an operator T :=
( k⊗

n=1
Sn

)
⊗( ∞⊗

n=k+1
An

)
∈ EA. For each m > k let Rm :=

( m⊗
n=1

Sn

)
⊗
( ∞⊗

n=m+1
Mn

)
. Then

{Rm}m>k ⊆ N and, by Corollary 4.3, ‖T − Rm‖ is at most( k

∏
n=1

max{‖Sn‖, 1}
)2(

∏
n>1

max{‖Mn‖, 1}
)

∑
n>m+1

‖An −Mn‖.

Therefore, since lim
m→∞

∑
n>m+1

‖An −Mn‖ = 0, T ∈ N. Hence EA is in the closure of

N so N is dense in C.
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(iii) Notice that every operator N of N can be written in the form

N =
`

∑
k=1

Sk ⊗
( ∞⊗

i=n+1

Mk
i

)
for some n, ` ∈ N and S1, . . . , S` ∈ B

( n⊗
k=1
Hk

)
. Therefore, since there exists an

mn+1 ∈ N such that Mmn+1
n+1 = 0, Nmn+1 = 0 (by the trivial computation that( ∞⊗

n=1
Rn

)( ∞⊗
n=1

R′n
)
=

∞⊗
n=1

RnR′n). Hence N is nilpotent so every operator of N is

nilpotent.

One interesting consequence is the following which is quite surprising since
every other C∗-algebra A with Nor(A) ∩Nil(A) 6= {0} studied in this paper and
in [22] had a plethora of projections.

COROLLARY 4.7. Let C be the C∗-algebra from Construction 4.4. Then σ(T) is
connected and contains zero for all T ∈ C. Thus C is projectionless.

The proof is trivial by Theorem 4.6 and Lemma 1.6.
To conclude this section we will demonstrate that there exists an AF C∗-

algebra that contains a C∗-subalgebra D such that D = Nil(D). This demon-
strates that the study of the closure of the nilpotent operators in an AF C∗-algebra
is incredibly complex. To begin we note the following trivial observation from the
proof of Theorem 4.6.

LEMMA 4.8. Let C be the C∗-algebra from Construction 4.4, let N be the subalge-
bra of C from Theorem 4.6, and N1, . . . , Nm ∈ N. Then there exists an ` ∈ N (depending
on N1, . . . , Nm) such that Nn1 Nn2 · · ·Nn`

= 0 for any selection of nj ∈ {1, . . . , m}.
This result is trivial by the structure of elements of N from the third part of

the proof of Theorem 4.6.

LEMMA 4.9. Let C be the C∗-algebra from Construction 4.4 and let N be the sub-
algebra of C from Theorem 4.6. The subalgebra

C0(0, 1]�N :=
{ m

∑
j=1

f j ⊗ Nj : m ∈ N, Nj ∈ N, f j ∈ C0(0, 1]
}

of C0(0, 1]⊗min C is dense and consists entirely of nilpotent operators.

Proof. Clearly C0(0, 1]�N is a dense subalgebra of C0(0, 1]⊗min C as N is a

dense subalgebra of C. Let
m
∑

j=1
f j ⊗ Nj ∈ C0(0, 1]�N be arbitrary. By Lemma 4.8

there exists an ` ∈ N such that Nn1 Nn2 · · ·Nn`
= 0 for any nj ∈ {1, . . . , m}. Thus( m

∑
j=1

f j ⊗ Nj

)`
= 0 so every element of C0(0, 1]�N is nilpotent.
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PROPOSITION 4.10. There exists an AF C∗-algebra A and a C∗-subalgebra D of
A such that D has a dense subalgebra consisting entirely of nilpotent operators.

Proof. Let C be the C∗-algebra from Construction 4.4 and let

D := C0(0, 1]⊗min C.

Then D is AF-embeddable by Lemma 4.5 and by Proposition 2 in [19]. Thus the
result follows from Lemma 4.9.
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