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ON CERTAIN MULTIPLIER PROJECTIONS
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ABSTRACT. We consider multiplier projections inM(C(∏∞
j=1 S2,K)) of a cer-

tain diagonal form. We show that, while for each these multiplier projections

Q, we have that Q(x) ∈ B(H) \ K for all x ∈
∞
∏
j=1

S2, the ideal generated by Q

inM(C(∏∞
j=1 S2,K)) might be proper. We further show that the ideal gener-

ated by a multiplier projection of the special form is proper if and only if the
projection is stably finite. The results of this paper also form a basis for coun-
terexamples to non-unital generalizations of a famous result of Blackadar and
Handelman.
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INTRODUCTION

In their famous first paper [5], Dixmier and Douady showed that there exists
a separable continuous field of Hilbert spaces of rank ℵ0 over an infinite dimen-
sional compact Hausdorff space, which is not trivial, proving that their result
for finite dimensional base spaces could not be generalized to the infinite case.
A reformulation by Blanchard and Kirchberg in [3] leads to an infinite dimen-
sional compact Hausdorff space X and a Hilbert C(X)-module E with infinite
dimensional fibres Ex, such that the unit P of the algebra LC(X)(E) of bounded
adjointable C(X)-linear operators on E has properly infinite image in L(Ex) for
all x ∈ X, but P itself is not properly infinite. Several authors further studied
this phenomenon subsequently and applied the ideas involved to construct C∗-
algebras with non-regular behavior (see e.g. [3], [4], [7], [18], [20], [21], [24], [25],
[26], [27] and many more).

The C∗-algebra C(∏∞
j=1 S2,K) of continuous functions into the compact op-

erators with spectrum the infinite product of two-spheres has been of interest in
many of these constructions. M. Rørdam used this algebra in [21] to construct a
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separable simple C∗-algebra with both a (non-zero) finite and infinite projection.
In [20] Rørdam used it to construct an extension

0→ C(∏∞
j=1 S2,K)→ B→ K → 0

such that B is not stable (despite the fact that both, ideal and quotient, are sta-
ble C∗-algebras). Also, Rørdam’s construction in [18] of a non-stable C∗-algebra,
which becomes stable after tensoring it with large enough (non-zero) matrix al-
gebras, can be altered to using comparability properties of projections in matrix
algebras over C(∏∞

j=1 S2,K).
Rørdam’s constructions have in common that they take advantage of special

multiplier projections of a certain diagonal form. The projections considered are
infinite direct sums

(0.1) Q =
∞⊕

j=1

pIj ,

where each direct summand pIj is a finite tensor product of Bott projections over
coordinates specified by a finite subset Ij of the natural numbers. (We remind
the reader of the detailed construction in the following section.) Using these pro-
jections, Rørdam proves in [21] that there exists a finite full multiplier projection
in M(C(∏∞

j=1 S2,K)) (and thereby showing that the C∗-algebra C(∏∞
j=1 S2,K)

does not have the corona factorization property). Recall that a projection in a C∗-
algebra is called full, if the closed two-sided ideal generated by it is the whole
C∗-algebra.

In this paper we investigate non-full multiplier projections in
M(C(∏∞

j=1 S2,K)) of the special form as in (1.1). Firstly, note that it is not at
all obvious that there exist non-full projections of this diagonal form. Identi-

fying M(C(∏∞
j=1 S2,K)) with the strictly continuous functions from

∞
∏
j=1

S2 into

B(H), any multiplier projection Q of the certain diagonal form satisfies that Q(x)
∈ B(H) \ K. In particular, locally, Q(x) is full in B(H) for all x ∈ X, and non-full
examples must be similar to the Dixmier–Douady phenomenon from above. (It
follows from the results of Pimsner, Popa and Voiculescu [17] that such a non-full
projection cannot be found when the spectrum is finite-dimensional.)

Using the techniques from [21] we then prove the following result:

THEOREM. Let

Q =
∞⊕

j=1

pIj ∈ M(C(∏∞
j=1 S2,K)).

Then Q is non-full if, and only if, Q is stably finite.
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This result leads to a counterexample to a non-unital generalization of the
famous Blackadar–Handelman theorem ([2]) (see Corollary 4.4). Possible gener-
alizations of the Blackadar–Handelman theorem are further studied in a separate
paper of the author ([16]), using the techniques developed in this paper.

The paper is organized as follows. In Section 1 we recall notation and con-
structions from [21] and specify the multiplier projections the paper is devoted
to. Section 2 contains the technical tool to prove our main results. In Section 3 we
characterize non-fullness of multiplier projections in a combinatorial way. Finally,
Section 4 contains the proof of the main theorem, i.e., we show that all non-full
projections from Section 3 are stably finite.

1. PRELIMINARIES

Consider the following setting (and notation), which is adapted from [21].
We consider the compact Hausdorff space given by an infinite product of two-

spheres, X =
∞
∏
j=1

S2, equipped with the product topology. Let further

p ∈ C(S2, M2(C)) denote the Bott projection,

i.e., the projection corresponding to the “Hopf bundle” ξ over S2 with total Chern
class c(ξ) = 1 + x (see e.g. [10]).

With πn : X → S2 denoting the coordinate projection onto the n-th coordi-
nate, consider the (orthogonal) projection

pn := p ◦ πn ∈ C(∏∞
j=1 S2, M2(C)).

If I ⊆ N is a finite subset, I = {n1, n2, . . . , nk}, then let pI denote the pointwise
tensor product

pI := pn1 ⊗ pn2 ⊗ · · · ⊗ pnk ∈ C(∏∞
j=1 S2, M2(C)⊗M2(C)⊗ · · · ⊗M2(C)).

It is shown in [21] that the projection pn corresponds to the pull-back of
the Hopf bundle via the coordinate projection πn, denoted by ξn := π∗n(ξ), and
that the projection pI corresponds to the tensor product of vector bundles ξn1 ⊗
ξn2 ⊗ · · · ⊗ ξnk . If K is the C∗-algebra of compact operators on a separable in-
finite dimensional Hilbert space, then we can view pn and pI as elements of
C(∏∞

j=1 S2,K) in the natural way.
In addition to the setting of [21], let us denote by p− the projection corre-

sponding to the complex line bundle ξ− over S2 with total Chern class c(ξ−) =
1− x. (Recall that the first Chern class is a complete invariant for complex line
bundles (see Proposition 3.10 of [6]).) The tensor product ξ ⊗ ξ− is isomorphic
to the one-dimensional trivial bundle, because its Euler class can be computed,
using Equation 3.3 of [21], to be

e(ξ ⊗ ξ−) = x− x = 0
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and the only line bundle with zero Euler class is the trivial bundle θ1 ([6], Propo-
sition 3.10). Accordingly, the projection in C(X, M4(C)) that is given by the point-
wise tensor product of p and p− is equivalent to a one-dimensional constant pro-
jection.

We finally define p−n ∈ C(∏∞
j=1 S2,K) as p−n := p− ◦ πn.

We are now ready to specify the multiplier projections this paper is devoted
to and which were considered by Rørdam in [21] and [20]: All our results are for
multiplier projections given by

(1.1) Q =
∞⊕

j=1

pIj ,

where each pIj is a tensor product of Bott projections as above.
For every C∗-algebra A, for fixed projections Q ∈ M(A) we will denote the

direct sum Q⊕Q⊕ · · · ⊕Q︸ ︷︷ ︸
m times

of Q with itself by m ·Q.

Standard references for vector bundles and multiplier algebras are [8] and
[13] respectively. We also use extensively the ideas of [21].

2. TECHNICAL RESULT

A trivial projection in C(∏∞
j=1 S2,K) is a projection which corresponds (up

to isomorphism) to a trivial complex vector bundle. We denote trivial projections
in C(∏∞

j=1 S2,K) by g.

PROPOSITION 2.1. Let Ij, j ∈ N, be finite subsets of N, and consider the multi-
plier projection Q inM(C(∏∞

j=1 S2,K)) given by

Q =
∞⊕

j=1

pIj .

Then the following statements are equivalent:

(i) g � Q =
∞⊕

j=1
pIj .

(ii)
∣∣∣ ⋃

j∈F
Ij

∣∣∣ > |F| for all finite subsets F ⊆ N.

Proof. That (ii) implies (i) is the content of Proposition 4.5(i) of [21].

If, on the other hand, there is a finite subset F ⊆ N such that
∣∣∣ ⋃

j∈F
Ij

∣∣∣ <

|F|, consider the subprojection
⊕
j∈F

pIj in C(∏∞
j=1 S2,K). Let J :=

⋃
j∈F

Ij. With πJ

denoting the projection onto the coordinates given by J, we have
⊕
j∈F

pIj = π∗J (q)
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for some projection q ∈ C(∏|J|j=1 S2,K). The projection q corresponds to a vector

bundle of dimension |F| over |J| = |⋃j∈F Ij|-many copies of S2. But then by
Theorem 8.1.2 of [8], this vector bundle majorizes a trivial bundle. In terms of
projections this implies

g = π∗J (g) � π∗J (q) =
⊕
j∈F

pIj � Q.

It is possible to generalize this result. The following proposition allows to
count the precise number of trivial subprojections (while Proposition 2.1 is only
good to check existence of some trivial subprojection).

PROPOSITION 2.2. Let Ij, j ∈ N, be finite subsets of N, and consider the multi-
plier projection Q inM(C(∏∞

j=1 S2,K)) given by

Q =
∞⊕

j=1

pIj .

Let m ∈ N. Then the following statements are equivalent:

(i) m · g � Q =
∞⊕

j=1
pIj .

(ii) |F| <
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m for all finite subsets F ⊆ N.

Proof. The implication from (i) to (ii) can be seen from standard stability
properties of vector bundles, as follows: Assume there is some finite subset F
such that

|F| >
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m.

Then
⊕
j∈F

pIj is an |F|-dimensional subprojection of Q that can be considered, using

the identification of projections with vector bundles and using a pullback by the
appropriate coordinate projection (as in the proof of Proposition 2.1), as an |F|-
dimensional vector bundle over a base space consisting of the product of

∣∣∣ ⋃
j∈F

Ij

∣∣∣
copies of S2. Then Theorem 8.1.2 from [8] proves the existence of a trivial (|F| −
|⋃j∈F Ij|)-dimensional subbundle. This implies (again in terms of projections in
M(C(∏∞

j=1 S2,K))):

m · g 6 (|F| − |
⋃

j∈F
Ij|) · g �

⊕
j∈F

pIj 6
∞⊕

j=1

pIj = Q.
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Let us now prove that (ii) implies (i): By hypothesis all finite subsets F ⊆ N
satisfy

|F| <
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m.

Assume m · g � Q. Then m · g �
N⊕

j=1
pIj for some N ∈ N by Lemma 4.4 of [21].

Let k1, k2, . . . , km−1 be natural numbers in N \⋃N
j=1 Ij. Then by Lemma 2.3 of [12]

there exists a projection q such that

q⊕ (p−k1
⊗ p−k2

⊗ · · · ⊗ p−km−1
) ∼ m · g � Q.

Tensoring (pointwise) both sides by pK := pk1 ⊗ pk2 ⊗ · · · ⊗ pkm−1 , it follows that

(q⊗ pk1 ⊗ pk2 ⊗ · · · ⊗ pkm−1)⊕ g �
N⊕

j=1

pIj ⊗ pk1 ⊗ pk2 ⊗ · · · ⊗ pkm−1 .

In particular,

g �
N⊕

j=1

pIj ⊗ pK =
N⊕

j=1

pIj∪K.

By Proposition 2.1 this entails that there is some (finite) subset F ⊆ {1, 2, . . . , N}
such that ∣∣∣ ⋃

j∈F
Ij ∪ K

∣∣∣ < |F|.
Hence,

|F| >
∣∣∣ ⋃

j∈F
Ij ∪ K

∣∣∣ = ∣∣∣ ⋃
j∈F

Ij

∣∣∣+ |K| = ∣∣∣ ⋃
j∈F

Ij

∣∣∣+ (m− 1).

But the existence of a finite subset F satisfying the following that contradicts the
hypothesis:

|F| >
∣∣∣ ⋃

j∈F
Ij ∪ K

∣∣∣+ 1 =
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m.

If we want to consider multiples of the multiplier projection as well, we can
apply

COROLLARY 2.3. Let Ij, j ∈ N, be finite subsets of N, and consider the multiplier
projection Q inM(C(∏∞

j=1 S2,K)) given by

Q =
∞⊕

j=1

pIj .

Let m, n ∈ N. Then the following statements are equivalent:

(i) m · g � n ·Q ∼
∞⊕

j=1
n · pIj .



ON CERTAIN MULTIPLIER PROJECTIONS 263

(ii) n|F| <
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m for all finite subsets F ⊆ N.

Proof. Note, that in n · Q each index set Ij appears n times. Choosing the
same set Ij several times does not increase the right-hand side of the inequality
(ii) of Proposition 2.2, while it does increase the left-hand side of that inequality.
Now the statement follows immediately from Proposition 2.2.

3. NON-FULL MULTIPLIER PROJECTIONS

The combinatorial description of subequivalences makes it possible to prove
the following useful result.

LEMMA 3.1. If N · g �
∞⊕

j=1
pIj for all N ∈ N, then

1 � Q.

Proof. By Proposition 2.2 the hypothesis is equivalent to: For all N ∈ N there
is some finite subset F ⊆ N such that

(3.1) |F| >
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ N.

It suffices to show that, whenever G ⊆ N is a finite subset, then there exists
a finite subset H ⊆ N \ G such that

g �
⊕
j∈H

pIj .

Apply the hypothesis (3.1) to the choice |G| + 1 for N: we obtain a finite
subset F ⊆ N such that

|F| >
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ |G|+ 1.

Then ∣∣∣ ⋃
j∈F\G

Ij

∣∣∣+ 1 6
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ 1 6 |F| − |G|.

By Proposition 2.1 this implies that

g �
⊕

j∈F\G
pIj ,

and we can take H := F \ G.

We can now prove the main theorem of this section, which is a combinato-
rial characterization for multiplier projections of the special form to be non-full.
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THEOREM 3.2. Let Q =
∞⊕

j=1
pIj ∈ M(C(∏∞

j=1 S2,K)) be as above. Then the

following statements are equivalent:
(i) Q is non-full.

(ii) ∀m ∈ N ∃N(m) ∈ N such that N(m) · g � m ·Q.

(iii) ∀m ∈ N ∃N(m) ∈ N such that m|F| <
∣∣∣ ⋃

j∈F
Ij

∣∣∣+ N(m) for all finite subsets

F ⊆ N.

Proof. The equivalence between (ii) and (iii) follows from Proposition 2.3.
That (ii) implies (i) is well-known and that (i) implies (ii) follows from Lem-
ma 3.1.

Rephrasing the content of Theorem 3.2 we get the following interesting re-
sult. Recall (see e.g. [13]) that for a compact Hausdorff space X,

M(C(X,K) ∼= C∗-s(X,B(H))),

where C∗-s(X,B(H)) is the algebra of strictly continuous functions from X into
B(H).

COROLLARY 3.3. There exists a compact Hausdorff space X and a projection Q in
C∗-s(X,B(H)), the multiplier algebra of C(X,K), such that Q(x) ∈ B(H) \ K for all
x ∈ X, and Q is not full in C∗-s(X,B(H)).

In particular, the projection Q(x) is full in the fiber over each x ∈ X, but Q
is itself non-full. It follows from the results of Pimsner, Popa and Voiculescu in
[17] that for obtaining an example of such a multiplier projection the space X is
necessarily of infinite dimension.

Proof. Let X =
∞
∏
j=1

S2. To show existence of the projection Q, choose pair-

wise disjoint subsets Ij ⊆ N such that |Ij| = n and set

Q :=
∞⊕

j=1

pIj ∈ M(C(X,K)).

We then have that Q(x) ∈ B(H) \ K, since ‖pj(x)‖ = 1 for all x ∈ X and all
j ∈ N (and since a strictly convergent sum of pairwise orthogonal elements in the
compact operators K belongs to K if, and only if, the elements converge to 0 in
norm). So we only need to show that the index sets Ij satisfy the condition (iii) of
Theorem 3.2; that is, we need to show that

∀m ∈ N ∃N(m) ∈ N such that m <

∣∣∣ ⋃
j∈F

Ij

∣∣∣+ N(m)

|F| for all finite subsets F ⊆ N.
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Now ∣∣∣ ⋃
j∈F

Ij

∣∣∣+ m(m−1)
2

|F| >

|F|
∑

j=1
j + m(m−1)

2

|F| =
|F|(|F|+1)

2 + m(m−1)
2

|F|

=
1
2

(
1 + |F|+ m(m− 1)

|F|

)
,

and the last expression is minimized when |F| ∈ {(m− 1), m}.
Hence,∣∣∣ ⋃

j∈F
Ij

∣∣∣+ m(m−1)
2 + 1

|F| >

∣∣∣ m−1⋃
j=1

Ij

∣∣∣+ m(m−1)
2

m− 1
=

m(m−1)
2 + m(m−1)

2
m− 1

= m.

So we can choose N(m) = m(m−1)
2 + 1.

4. STABLY FINITE MULTIPLIER PROJECTIONS

In this section we will show that every multiple of a non-full projection

Q =
∞⊕

j=1

pIj

constructed as in Theorem 3.2 above (and, in particular, every multiple of the
explicit projection of Corollary 3.3), is a finite projection. In fact, our results show
that a multiplier projection Q of the special form is non-full if, and only if, it is
stably finite (Corollary 4.3).

It is fairly easy to see that the projections m · Q, where Q is one of the non-
full projections from Theorem 3.2, cannot be properly infinite. This follows from
Theorem 3.2 which implies that for all m ∈ N, there exists N(m) ∈ N such that

N(m) · g � m ·Q, but N(m) · g � l ·Q for sufficiently large l.

It does not seem possible to see finiteness of these projections in a similarily
easy way. To show finiteness we will need to give a somewhat complicated proof.
The idea is the content of the following lemma, which is essentially contained in
the proof of Theorem 5.6 of [21]. We omit the straightforward proof.

LEMMA 4.1. Let B be a simple inductive limit C∗-algebra,

B1
ϕ1 //

ϕi,1

77B2
ϕ2 // · · · // Bi

ϕi // · · · // B

with injective connecting ∗-homomorphisms ϕj. Let q be a projection in B1.



266 HENNING PETZKA

If the image ϕi,1(q) of the projection q is not properly infinite in any building block
algebra Bi, then q must be finite.

Using this argument for finiteness of a projection, we can now prove the
main result.

THEOREM 4.2. Let

Q =
∞⊕

j=1

pIj ∈ M(C(∏∞
j=1 S2,K))

be a multiplier projection as before. Suppose there is some k ∈ N such that k · g � Q.
Then Q is finite.

Proof. First we reduce to the case that N \ ⋃∞
j=1 Ij is infinite. Consider the

projection map ρ :
∞
∏
j=1

S2 →
∞
∏
j=1

S2 onto the odd coordinates:

ρ(x1, x2, x3, x4, x5, . . .) = (x1, x3, x5, . . .).

Then the induced mapping ρ∗ : C(∏∞
j=1 S2,K)→ C(∏∞

j=1 S2,K) given by

ρ∗( f ) = f ◦ ρ

is injective and extends to an injective mapping between the multiplier algebras

ρ∗ :M(C(∏∞
j=1 S2,K))→M(C(∏∞

j=1 S2,K))

(to see this consult Proposition 2.5 of [13] and use that ρ∗(n · g) n→∞→ 1, where g
denotes a constant one-dimensional projection as before).

Now Q must be finite in M(C(∏∞
j=1 S2,K)), if ρ∗(Q) is. Indeed, on sup-

posing Q to be infinite, i.e. Q ∼ Q0 < Q for some projection Q0, injectivity of ρ∗

implies ρ∗(Q−Q0) > 0 and hence infiniteness of ρ∗(Q). But now ρ∗(Q) is of the
same form as Q, i.e.,

ρ∗(Q) =
∞⊕

j=1

p Ĩj
,

and the sets Ĩj of indices being used satisfy N \ ⋃∞
j=1 Ĩj ⊇ 2N, and in particular

N \⋃∞
j=1 Ĩj is infinite, as desired.
After this reduction step we start the main part of the proof. By assumption

we can find k ∈ N ∪ {0} such that k · g � Q, but (k + 1) · g � Q. Choose a

partition {Ai}∞
i=−1 of N such that each Ai is infinite and such that A0 =

∞⋃
j=1

Ij,

i.e., A0 contains exactly all the indices used in our multiplier projection Q. Also,
choose a partition {Bi}∞

i=−∞ of A−1 with each Bi of cardinality k, except in the the
case k = 0 where we do not need the sets Bi at all.

For each r > 0, choose an injective map

γr : Z× Ar → Ar+1.



ON CERTAIN MULTIPLIER PROJECTIONS 267

We can now define an injective map ν : Z×N→ N by

ν(j, l) = γr(j, l), for every l ∈ Ar.

Injectivity of ν follows from injectivity of each γr and disjointness of the sets Aj.
Using the injective map ν, let us now define a ∗-homomorphism

ϕ :M(C(∏∞
j=1 S2,K))→M(C(∏∞

j=1 S2,K)).

The construction of this ∗-homomorphism is only a small variation of a
mapping that M. Rørdam defined in his paper [21] to construct “a simple C∗-
algebra with a finite and an infinite projection”. ϕ will depend on the natural
number k from the hypothesis of the theorem. But the change of ϕ for varying k
is minor, so we can take care of all cases at once. (Only the case k = 0 has to be
treated separately, but this is actually exactly Rørdam’s map from [21].)

For j 6 0 and in the case k > 1 we define

ϕj : C(∏∞
j=1 S2,K)→ C(∏∞

j=1 S2,K)

by
ϕj( f )(x1, x2, x3, . . .) = τ( f (xν(j,1), xν(j,2), xν(j,3), xν(j,4), . . .)⊗ pBj)

with the finite sets Bj ⊆ N chosen above, and a chosen isomorphism τ : K⊗K →
K. In the case k = 0 we simply define ϕj by

ϕj( f )(x1, x2, x3, . . .) = f (xν(j,1), xν(j,2), xν(j,3), xν(j,4), . . .).

For j > 1 we define ϕj : C(∏∞
j=1 S2,K)→ C(∏∞

j=1 S2,K) by

ϕj( f )(x1, x2, x3, . . .) = τ( f (cj,1, . . . , cj,j, xν(j,j+1), xν(j,j+2), . . .)⊗ pBj∪{ν(j,1),...,ν(j,j)})

with points
c1,1
c2,1 c2,2
c3,1 c3,2 c3,3
c4,1 c4,2 c4,3 c4,4

...
...

...
...

. . .

in S2 chosen in such a way that for all j ∈ N,

{(ck,1, ck,2, . . . , ck,j) : k > j} is dense in
j

∏
i=1

S2.

(Here the case k = 0 just means that every set Bj is taken to be the empty set.)
After choosing a sequence of isometries {Sj}∞

j=−∞ in M(C(∏∞
j=1 S2,K))

such that

S∗j Sj = 1 for all j ∈ Z and
∞

∑
j=−∞

SjS∗j = 1
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(where the infinite sum converges strictly), define

ϕ̃ : C(∏∞
j=1 S2,K)→M(C(∏∞

j=1 S2,K)) by ϕ̃ :=
∞

∑
j=−∞

Sj ϕjS∗j .

Then by Proposition 2.3, recalling that the cardinality of each set Bj was chosen
to be equal to k, and by the fact that ϕj(g) ∼ pBj for all j 6 0, we get

ϕ̃((k + 1) · g) �
0⊕

j=−∞

(k + 1) · pBj �
0⊕

j=−∞

g ∼ 1.

Hence ϕ̃(n · g) converges strictly for n→ ∞ to a projection

F ∼
∞⊕

j=−∞

Fj � 1,

where

Fj =


τ(1⊗ pBj) for j 6 0 and k > 1,

1 for j 6 0 and k = 0,
τ(1⊗ pBj∪{ν(j,1),ν(j,2),...,ν(j,j)}) for j > 1 and k > 1,

τ(1⊗ p{ν(j,1),ν(j,2),...,ν(j,j)}) for j > 1 and k = 0.

Here the map τ : B(H)⊗ B(H) → B(H) is the extension of τ to B(H)⊗ B(H),
which exists because τ(en ⊗ en)

n→∞−→ 1 strictly ([13]).
Since F � 1, F ∼ 1 and hence there is an isometry V ∈ M(C(∏∞

j=1 S2,K))
such that the map

ϕ := V∗ ϕ̃V
is a unital mapping ϕ : M(C(∏∞

j=1 S2,K)) → M(C(∏∞
j=1 S2,K)). (Here we are

using [13] again.)
For every 0 6= f there is some δ > 0 and some open set

U = U1 ×U2 ×U3 × · · · ×Ur × S2 × S2 × · · ·
⊆ S2 × S2 × S2 × · · · × S2 × S2 × S2 × · · ·

such that ‖ f|U‖ > δ. By the density condition on the cij there are infinitely many

j > 0 such that for any x ∈
∞
∏
j=1

S2,

‖ϕj( f )(x)‖ > δ > 0.

Hence ϕ( f )(x) ∈ B(H) \ K for all x and

ϕ( f ) ∈ M(C(∏∞
j=1 S2,K)) \ C(∏∞

j=1 S2,K).

In particular, ϕ is injective, and C(∏∞
j=1 S2,K)ϕ( f )C(∏∞

j=1 S2,K) is norm dense

in C(∏∞
j=1 S2,K). (The latter holds since ϕ( f )(x) 6= 0 for all x ∈

∞
∏
j=1

S2.)



ON CERTAIN MULTIPLIER PROJECTIONS 269

We get that (k + 1) · g is an element in C(∏∞
j=1 S2,K)ϕ( f )C(∏∞

j=1 S2,K).
Further, ϕ((k + 1) · g) � 1, and so ϕ2( f ) is full inM(C(∏∞

j=1 S2,K)).
This implies the simplicity of the inductive limit

B := lim
→

(M(C(∏∞
j=1 S2,K)), ϕ).

We have now arrived in the setting of Lemma 4.1 and it suffices to show
that ϕm(Q) is not properly infinite for all m ∈ N. For this we define the maps

αj : P(N)→ P(N), j ∈ Z; αj(J) = ν(j, J) ∪ Bj ∪ {ν(j, 1), ν(j, 2), . . . , ν(j, j)},
with the convention that {ν(j, 1), ν(j, 2), . . . , ν(j, j)} = ∅ for j 6 0. To simplify
our computations let us introduce new notation and denote from now on Bj ∪
{ν(j, 1), ν(j, 2), . . . , ν(j, j)} simply by B̃j. With these definitions, one has

ϕ(pI) ∼
∞⊕

j=−∞

pαj(I) =
∞⊕

j=−∞

pν(j,I)∪B̃j
.

Set Γ0 := {Is : s ∈ N} and define inductively

Γn+1 := {αj(I) : j ∈ Z, I ∈ Γn}.
Then

ϕm(Q) ∼
⊕
I∈Γm

pI .

We will prove that ϕm(Q) is not properly infinite by applying Rørdam’s
criterion (Proposition 2.1), showing that for each m > 1 there is an injective map

tm : Γm → N
such that tm(I) ∈ I for all I ∈ Γm. Once we have this map, it follows that

ϕm(Q) ∼
⊕
I∈Γm

pI � g

for any m> 1. But for each m the projection g is in the ideal of C(∏∞
j=1 S2,K)

given by
(C(∏∞

j=1 S2,K))ϕm(Q)(C(∏∞
j=1 S2,K)).

Then g� l · ϕm(Q) for some l∈N and hence none of the projections ϕm(Q), m∈N,
is properly infinite. By Lemma 4.1 this implies that the projection Q is finite.

The maps tm are defined inductively as follows: For m = 1, note that

Γ1 = {ν(j, Is) ∪ B̃j : j ∈ Z, s ∈ N}.
For each j ∈ Z, set

Γ
j

1 := {ν(j, Is) ∪ B̃j : s ∈ N} =: {J j
s : s ∈ N}.

Then

Γ1 =
∞⋃

j=−∞

Γ
j

1 = {J j
s : s ∈ N, j ∈ Z}, and Γ

j1
1 ∩ Γ

j2
1 = ∅ for j1 6= j2.
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(The latter property holds, because ν was chosen to be injective.)
Since k · g � Q, but (k + 1) · g � Q, we know by Proposition 2.2 that for any

finite subset F ⊆ N

(4.1)
∣∣∣ ⋃

s∈F
Is

∣∣∣+ k > |F|,

and in the case k > 1 that there is some finite subset F0 such that∣∣∣ ⋃
s∈F0

Is

∣∣∣+ k = |F0|.

If k = 0, we set F0 to be the empty set. After choosing such a finite subset F0, for
any finite subset F ⊇ F0 we must have

|(
⋃

s∈F
Is) \ (

⋃
s∈F0

Is)| > |F \ F0|,

since, otherwise, the finite subset F would violate the inequality (4.1). By injec-
tivity of ν we get for each j ∈ Z that∣∣∣ ⋃

s∈F0

ν(j, Is)
∣∣∣+ k = |F0|, and |(

⋃
s∈F

ν(j, Is)) \ (
⋃

s∈F0
ν(j, Is))| > |F \ F0|.

Then by Hall’s marriage theorem one can find for each j an injective map-
ping

tj
1 : Γ

j
1 → N

such that for all J j
s = (ν(j, Is) ∪ B̃j) ∈ Γ

j
1 ,

tj
1(J j

s) ∈ J j
s, and tj

1(J j
s) /∈ Bj whenever s /∈ F0.

By injectivity of ν and pairwise disjointness of the sets Bj, j ∈ Z, there is
then an injective map

t1 : {J j
s : s ∈ N, j ∈ Z} = Γ1 → N.

We have finished defining an injective map t1 : Γ1 → N.
Inductively we define tm+1 : Γm+1 → N after definition of tm : Γm → N by

tm+1(αj(I)) := ν(j, tm(I))

for αj(I) ∈ Γm+1 (and I ∈ Γm).
With this choice the map tm+1 is injective. Indeed, the equations

tm+1(αj(I)) = tm+1(α j̃( Ĩ))
q q

ν(j, tm(I)) ν( j̃, tm( Ĩ))

imply by injectivity of ν that

j = j̃, and tm(I) = tm( Ĩ).
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By the induction hypothesis, tm was chosen to be injective, and hence

I = Ĩ.

For each m ∈ Nwe ended up with an injective map

tm : Γm → N

such that tm(I) ∈ I for all I ∈ Γm, which is all that was left to construct.

COROLLARY 4.3. Let

Q =
∞⊕

j=1

pIj ∈ M(C(∏∞
j=1 S2,K)).

Then Q is non-full if, and only if, Q is stably finite.

Proof. If all multiples n ·Q of Q are finite, then n ·Q � 1 for any n ∈ N and
Q cannot be full. The converse direction follows from combining Theorem 4.2
with Theorem 3.2.

We immediately get the following counterexample to a non-unital general-
ization of the famous Blackadar–Handelman theorem.

COROLLARY 4.4. There exists a non-unital separable nuclear C∗-algebra B such
thatMn ⊗M(B) is finite for all n > 1, but B has no non-zero bounded trace.

Sketch of proof. Let X =
∞
∏
j=1

S2, and let Q ∈ M(C(X,K)) \ C(X,K) be a

multiplier projection of the special form considered in Corollary 4.3, which is
stably finite. Let B := Q(C(X,K))Q. Then for all n > 1,Mn⊗M(B) is finite, and
it follows from the construction of Q that B has no non-zero bounded trace. (For
more details, see Theorem 5.2 of [16].)

If a multiplier projection of the form

Q =
∞⊕

j=1

pIj

is full, then 1 � m · Q for some m ∈ N. Hence some multiple of Q is properly
infinite. The projection Q itself might be finite though (see [21]).

On the other hand if Q is non-full, then Q is stably finite by Corollary 4.3.
Summarized, the results state that every multiplier projection in the mul-

tiplier algebraM(C(∏∞
j=1 S2,K)) of the special form considered above is either

non-full and stably finite, or full and stably properly infinite.
It is an interesting question in which way one can generalize the above re-

sults (e.g. find a version of Corollary 4.3 where B is a simple C∗-algebra). For
instance, is it true that for separable simple stable C∗-algebras multiplier projec-
tions are stably finite if and only if they are non-full? We will show that multiplier
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projections are non-full if and only if they are stably not properly infinite, assum-
ing the following property that Ng introduced in [14].

DEFINITION 4.5. A C∗-algebra A is called asymptotically regular if, whenever
D is a full hereditary subalgebra of A⊗K with no non-zero unital quotient and
no non-zero bounded trace, there is some natural number n > 1 such that Mn(D)
is stable.

THEOREM 4.6. Suppose that A is a separable simple C∗-algebra, which is asymp-
totically regular. Then a multiplier projection Q ∈ M(A⊗K) is full if, and only if, Q
is not in A⊗K and some multiple of Q is properly infinite.

Proof. Firstly, if Q is full, then some multiple of Q is equivalent to the mul-
tiplier unit, which is properly infinite ([19], Lemma 3.4). It is clear that Q cannot
be in the canonical ideal.

Conversely, suppose that Q ∈ M(A⊗K) \ (A⊗K) and that there is some
natural number n ∈ N such that n · Q is properly infinite. Consider the (full)
hereditary subalgebra given by

D := (n ·Q)(A⊗K)(n ·Q).

This algebra is non-unital (because Q is not in A ⊗ K) and, by simplicity, has
no non-zero unital quotients either. Assume D has a non-zero bounded trace,
which must be faithful by simplicity, and which extends to a bounded trace τ on
the multiplier algebra. But since n · Q is properly infinite, τ(n · Q) = 0. Hence
D is a full hereditary subalgebra with no non-zero unital quotients and no non-
zero bounded trace. By the assumption of asymptotic regularity Mm(D) is stable
for some m. By Theorem 4.23 of [1], mn · Q ∼ 1. Hence, Q is a full multiplier
projection.

COROLLARY 4.7. Suppose that A is a separable simpleZ-stable C∗-algebra. Then
a multiplier projection Q ∈ M(A⊗K) is full if, and only if, Q is not in A⊗K and Q
is properly infinite.

Proof. Theorem 3.6 of [7] together with Theorem 4.5 of [22] implies that ev-
ery separable unital C∗-algebra absorbing the Jiang–Su algebra ([9]) is asymptoti-
cally regular. Hence, by the previous theorem, it only remains to show that every
full multiplier projection is properly infinite.

By Corollary 3.5 of [7] and Theorem 4.1 of [11] it follows that Z-stable C∗-
algebras have the corona factorization property (see Definition 1.1 of [11]), which
(by its definition) implies that full multiplier projections are properly infinite.

REMARK 4.8. Suppose A is a unital separable simple exact Z-stable C∗-
algebra and suppose P ∈ M(A ⊗ K) \ (A ⊗ K) is a projection. Then P is not
full if and only if τ(P) < ∞ for some τ ∈ T(A) if and only if P is stably finite. (If
T(A) = ∅ then A is automatically purely infinite and P is full.)
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The above, together with the Kasparov absorption theorem, is essentially
the generalization of the Blackadar–Handelman theorem to non-unital exact sim-
ple Z-stable finite C∗-algebras possessing a non-zero projection in the stabiliza-
tion. (See Corollary 4.5 of [16] for an alternate proof of a more general result.)

Recall that a C∗-algebra B has the property (SP) if every non-zero heredi-
tary C∗-subalgebra of B contains a non-zero projection. The next result shows
that achieving a simple version of Corollary 4.3 or Corollary 4.4 may not be so
straightforward:

PROPOSITION 4.9. Let B be a simple separable stable C∗-algebra with (SP) and
both a non-zero finite and infinite projection (e.g., Rørdam’s example in [21] and [23]).

Then there exists a projection P ∈ M(B) \ B such that P is not full inM(B), but
P is not stably finite.

Proof. Denote the non-zero finite projection by p f and denote the infinite
projection by p∞.

Note that since B is simple, non-elementary and has (SP), B has the follow-
ing property: For every non-zero hereditary C∗-subalgebra D ⊆ B and for every
natural number n > 1, there exists m > n and non-zero pairwise orthogonal
projections r1, r2, . . . , rm ∈ D such that rj ∼ rk for all j, k.

Hence, there exists a sequence {sj}∞
j=1 of non-zero pairwise orthogonal pro-

jections in B such that the following hold:

(i) For each n > 1, s1 ⊕ 2 · s2 ⊕ 3 · s3 ⊕ · · · ⊕ n · sn � p f .

(ii) The sum
∞⊕

j=1
sj converges strictly inM(B).

Let P ∈ M(B) \ B be the projection that is given by

P :=
∞⊕

j=1

sj.

Since B is a simple C∗-algebra with an infinite projection, it is clear that some
finite multiple of P will be infinite; i.e., P is not stably finite. We will now prove
that P is non-full, which will complete the proof.

Assume to the contrary that P is full. Then 1M(B) ∼ n · P ∼
∞⊕

j=1
n · sj for

some n ∈ N. Then by Lemma 5.6 of [15] we have that 1M(B) ∼
∞⊕

j=n
n · sj. This

implies that p∞ �
N⊕

j=n
n · sj for some N ∈ N. But then we have the following,

which is a contradiction:

p∞ �
N⊕

j=n
n · sj � p f .
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It would be interesting to see whether or not the converse of the above result
would also hold.

REMARK 4.10. (i) We note that a real rank zero C∗-algebra has (SP). Hence,
Proposition 4.9 implies the following: If B is a simple separable stable real rank
zero C∗-algebra such that every nonfull projection P ∈ M(B) \ B is stably fi-
nite, then B is either purely infinite or stably finite. We note that the dichotomy
problem for simple separable real rank zero C∗-algebras (i.e., whether every such
C∗-algebra is purely infinite or stably finite) is still open.

(ii) The property discussed above (if a multiplier projection, not in the canon-
ical ideal, is non-full then it is stably finite) seems to complement the corona fac-
torization property (if a multiplier projection is full then it is properly infinite).
This seems to be a new regularity property, and it is interesting to see whether or
not it characterizes dichotomy.
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