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ABSTRACT. It is shown that each Banach space of analytic functions with con-
tinuous point evaluations on an open set Ω ⊂ Cd possesses a discrete domi-
nating set. This result enables us to prove the existence of spanning holomor-
phic cross-sections for Cowen–Douglas tuples T = (T1, . . . , Td) of class Bn(Ω),
generalizing a previous result of Kehe Zhu for single Cowen–Douglas opera-
tors. As a consequence we extend representation and classification results of
Zhu to the multivariate case.
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1. INTRODUCTION

Let H be a complex Hilbert space and let Ω ⊂ Cd be a connected open set.
A commuting tuple T = (T1, . . . , Td) ∈ L(H)d of bounded linear operators on H
is called a Cowen–Douglas tuple of degree n over Ω if

(i) Tz : H → Hd, x 7→ ((zi − Ti)x)16i6d, has closed range for every z ∈ Ω,
(ii) dim ker Tz = n for every z ∈ Ω and

(iii)
∨

z∈Ω
ker Tz = H.

We write Bn(Ω) for the class of all Cowen–Douglas tuples of degree n
over Ω.

It was observed by Cowen and Douglas in [2] for the single variable case
d = 1, and extended to the multivariable case in [3] and [4], that the complex
geometry of the associated hermitian holomorphic vector bundle

ET =
⋃

z∈Ω

{z} × ker Tz

can be used to study invariants of the operator tuple T. For instance, two Cowen–
Douglas tuples of class Bn(Ω) are unitarily equivalent if and only if the associ-
ated hermitian holomorphic vector bundles are equivalent. Global holomorphic
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frames for ET give rise to realizations of the tuple T as the adjoint of the mul-
tiplication tuple Mz = (Mz1 , . . . , Mzd) with the coordinate functions on suitable
Cn-valued analytic functional Hilbert spaces on the complex conjugate domain
Ω∗ = {z : z ∈ Ω} ⊂ Cd.

In [11] Kehe Zhu suggested an alternative approach to the Cowen–Douglas
theory based on the notion of spanning holomorphic cross-sections. It was shown
that in the case d = 1 every single Cowen–Douglas operator T ∈ L(H) possesses
a spanning holomorphic cross-section, that is, there is a holomorphic function
γ : Ω → H such that γ(z) ∈ ker Tz for every z ∈ Ω and such that H is the closed
linear span of the range of γ. As a consequence, it was shown among other things,
that every single operator T ∈ L(H) of Cowen–Douglas class Bn(Ω) is unitarily
equivalent to the adjoint of the multiplication operator Mz on a scalar-valued
analytic functional Hilbert space and that spanning holomorphic cross-sections
can be used to characterize Cowen–Douglas operators up to unitary equivalence
and similarity.

The construction of a spanning holomorphic cross-section in [11] was based
on the observation that Jensen’s formula for the zeros of holomorphic funtions
on the unit disc can be used to prove the existence of discrete uniqueness sets
for Banach spaces of holomorphic functions with continuous point evaluations
on open sets in C. The purpose of this note is to extend the ideas of Kehe Zhu
to the multivariable case. As a result, which is perhaps of independent interest,
we prove the existence of discrete dominating sets and discrete uniqueness sets
for arbitrary Banach spaces of holomorphic functions with bounded point evalu-
ations on open sets in Cd.

In more detail, in Section 3 we prove the existence of discrete dominating
sets for analytic functional Banach spaces on open sets in Cd. In Section 4 we de-
duce the existence of spanning holomorphic cross-sections for Cowen–Douglas
tuples T = (T1, . . . , Td) over admissible domains in Cd and show their unitary
equivalence to the adjoints of multiplication tuples Mz = (Mz1 , . . . , Mzd) on suit-
able scalar-valued analytic functional Hilbert spaces. As an application we char-
acterize Cowen–Douglas tuples that are unitarily equivalent or similar and de-
scribe their commutants in Section 5.

2. PRELIMINARIES

Let Ω ⊂ Cd be a domain, that is, a connected open set. Let T = (T1, . . . , Td)
in L(H)d be a Cowen–Douglas tuple of class Bn(Ω) over Ω. A standard construc-
tion going back to [2] can be used to turn the set

ET =
⋃

z∈Ω

{z} × ker Tz
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into a hermitian holomorphic vector bundle on Ω. We briefly indicate a possible
proof. For a given point z0 ∈ Ω, let N ⊂ H be a closed subspace sucht that the
direct sum decomposition

H = ker Tz0 ⊕ N

holds. Choose an open neighbourhood U of z0 such that Tz : N → Hd is bounded
below for every z ∈ U. Then the operator-valued function U → L(H, Hd), z 7→
Tz, is regular at the point z0 (see Chapter II.10 in [8] for this notion). Fix a ba-
sis (e1, . . . , en) of ker Tz0 and elements u1, . . . , un ∈ H with 〈ei, uj〉 = δij for
i, j = 1, . . . , n. By shrinking U one can achieve that there are analytic functions
f1, . . . , fn ∈ O(U, H) with fi(z0) = ei, fi(z) ∈ ker Tz for i = 1, . . . , n and z ∈ U
([8], Theorem II.11.9) and such that all the matrices

(〈 fi(z), uj〉)16i,j6n (z ∈ U)

are invertible. An elementary exercise shows that the mappings

gU = gU,( f j)
: U ×Cn → ET |U , (z, α) 7→ (z, ∑n

j=1 αj f j(z))

obtained in this way are fibrewise linear homeomorphisms such that all coordi-
nate changes gU,V = g−1

V ◦ gU : (U ∩V)×Cn → (U ∩V)×Cn are of the form

gU,V(z, α) = (z, hU,V(z)α)

with suitable holomorphic mappings hU,V : U∩V → L(Cn). Thus (ET , π), where
ET ⊂ Ω× H is equipped with its product topology and π : ET → Ω, (z, x) 7→ z,
denotes the canonical projection becomes a holomorphic vector bundle on Ω.

For an open set U ⊂ Ω, the holomorphic sections of ET over U are precisely
the functions of the form γ f : U → ET , z 7→ (z, f (z)), where f : U → H is an
analytic function with f (z) ∈ ker Tz for z ∈ U. We write Γhol(U, ET) for the set of
all holomorphic sections of ET over U and shall tacitly identify each holomorphic
section with the associated H-valued holomorphic function.

By a theorem of Grauert ([7], Corollary 3.4 and Theorem 3.5) every holo-
morphic vector bundle on a domain in C or a contractible domain of holomorphy
in Cd is holomorphically trivial or, equivalently, possesses a global holomorphic
frame. In the following by an admissible domain Ω in Cd we shall always mean
a domain of holomorphy such that every holomorphic vector bundle on Ω is
holomorphically trivial. Since holomorphic sections of the bundle ET over an
open set U ⊂ Ω can be identified with holomorphic functions f : U → H with
f (z) ∈ ker Tz for every z ∈ U, the existence of a global holomorphic frame for ET
means precisely that there are analytic functions f1, . . . , fn ∈ O(Ω, H) such that
the elements f1(z), . . . , fn(z) form a basis of ker Tz for every z ∈ Ω.

If ( f1, . . . , fn) is a global holomorphic frame for ET on Ω, then the linear
mapping

j : H → O(Ω∗,Cn), j(x)(z) = (〈x, fi(z)〉)n
i=1

is injective and intertwines componentwise the tuple T∗ = (T∗1 , . . . , T∗d ) on H
with the multiplication tuple Mz = (Mz1 , . . . , Mzd) on O(Ω∗,Cn). The space
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HT = jH ⊂ O(Ω∗,Cn) equipped with the norm ‖jx‖ = ‖x‖ becomes a Cn-
valued functional Hilbert space with reproducing kernel K : Ω∗ ×Ω∗ → L(Cn),
K(z, w) = γ(z)∗γ(w), where γ : Ω∗ → L(Cn, H) is given by

γ(z)(α) =
n

∑
i=1

αi fi(z).

More details on this construction can be found in Curto and Salinas ([4], Theo-
rem 4.12).

Extending an idea from [11] we shall show that every Cowen–Douglas tuple
T of class Bn(Ω) over an admissible domain Ω ⊂ Cd is unitarily equivalent to
the adjoint of the multiplication tuple Mz = (Mz1 , . . . , Mzd) on a scalar-valued
analytic functional Hilbert space. Throughout this paper by an analytic functional
Hilbert (Banach) space X on an open set Ω ⊂ Cd we shall mean a Hilbert (Banach)
space consisting of holomorphic complex-valued functions such that the point
evaluations δz : X → C, f 7→ f (z), are continuous for every point z ∈ Ω.

3. DOMINATING SETS

Let X be a linear space of complex-valued functions on an open set Ω ⊂ Cd

and let A ⊂ Ω be a subset. We write ‖ f ‖A = sup
z∈A
| f (z)| for the supremum norm

of a function f ∈ X on A. We call A dominating for X if ‖ f ‖A = ‖ f ‖Ω for every
function f ∈ X. By definition the set A is a uniqueness set for X if the function
f ≡ 0 is the only function in X with f |A ≡ 0. Clearly every dominating set for
X is a uniqueness set. By a discrete dominating (uniqueness) set for X we mean
a discrete subset of Ω which is a dominating (uniqueness) set for X. Note that a
discrete subset of Ω is necessarily countable.

Our aim is to show that every analytic functional Banach space X on an
open set Ω ⊂ Cd possesses a discrete dominating set. We begin with a particular
case.

PROPOSITION 3.1. Let Ω ⊂ Cd be open and let γ : Ω → X′ be a holomorphic
function into the topological dual of a Banach space X. Then the space Xγ = {x̂ : x ∈
X}, where x̂ : Ω→ C is defined by

x̂(z) = 〈x, γ(z)〉,

possesses a discrete dominating set A ⊂ Ω.

Proof. Let (Kn)n>1 be a sequence of compact sets Kn ⊂ Ω such that Kn ⊂
Int(Kn+1) for all n > 1 and

⋃
n∈N

Kn = Ω. We define K0 = ∅ and Cn = Kn \

Int(Kn−1) for n > 1. Since the sets Cn are compact, there are real numbers 0 <
δn < 1/n such that every point with distance less than δn to some point in Cn is
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contained in Ω and such that

‖γ(z)− γ(w)‖ < 1
n

for all z, w ∈ Cd with w ∈ Cn and |z− w| < δn. For each n > 1, there is a finite
subset An ⊂ Cn with

Cn ⊂
⋃

w∈An

Bδn/2(w).

Then A =
⋃

n>1
An ⊂ Ω is a discrete subset. To see this note that, for any compact

subset K of Ω, the inclusions

A ∩ K ⊂ A ∩ Int(KN) ⊂
⋃

16n6N
An

hold for all sufficiently large N. To prove that A is dominating for Xγ, fix a func-
tion f = 〈x, γ〉 ∈ Xγ. For z ∈ Cn, there is a point a ∈ An with |z− a| < δn/2.
Since f (z)− f (a) = 〈x, γ(z)− γ(a)〉, it follows that

| f (z)| 6 | f (z)− f (a)|+ ‖ f ‖A 6
‖x‖

n
+ ‖ f ‖A.

For an arbitrary point z ∈ Ω, choose an integer n > 1 with z ∈ Int(Kn) and
a component C of Int(Kn) containing z. Since ∂C ⊂ ∂Kn ⊂ Cn, the maximum
principle implies that | f (z)| 6 ‖ f ‖∂C 6 (‖x‖/n)+ ‖ f ‖A. Since every point z ∈ Ω
is contained in Int(Kn) for almost all n, it follows that A is dominating for Xγ.

An argument from [9] can be used to show that in the setting of the last
proposition each dominating set S for Xγ contains a discrete dominating set for
Xγ. Although not necessary for the sequel, we include the result.

PROPOSITION 3.2. Let Ω and Xγ be given as in Proposition 3.1. Then each dom-
inating set S for Xγ contains a discrete dominating set for Xγ.

Proof. Let S ⊂ Ω be a dominating set for Xγ and let A ⊂ Ω be defined as
in the preceding proof. With the notation from there, for every n > 1 and every
point a ∈ An, choose a point z ∈ S with |z − a| < δn/2 if this is possible. In
each component C of Ω which has non-trivial intersection with S choose a point
zC ∈ S. Let S′ be the totality of all points selected in this way. To verify that
S′ is discrete in Ω, fix a compact set K in Ω and choose an integer N > 1 with
K ⊂ Int(KN). Then for any natural number n > N such that there is a point z ∈ K
with dist(z, An) < δn/2, the inequalities

0 < dist(K, Int(KN)
c) 6 dist(K, Cn) <

δn

2
hold. As δn converges to zero, there are only finitely many such n and hence
S′ ∩ K is finite.

Given a function f = 〈x, γ〉 ∈ Xγ, choose a sequence (zk)k>1 in S with
| f (zk)| → ‖ f ‖Ω as k → ∞ and together with a sequence of integers nk > 1 such
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that zk ∈ Knk \ Knk−1 ⊂ Cnk for all k. For each k > 1, there is a point ak ∈ Ank with
|zk − ak| < δnk /2. Hence there exists a point wk ∈ S′ with |zk − wk| < δnk . The
choice of δnk implies that ‖γ(zk)− γ(wk)‖ < 1/nk. Hence we find that

| f (wk)| > | f (zk)| − |〈x, γ(zk)− γ(wk)〉| > | f (zk)| −
‖x‖
nk

.

If (nk)k>1 contains a bounded subsequence, then by passing to a suitable sub-
sequence, we can achieve that (zk) converges to a point z ∈ Ω. But then f is
constant on the component C of z in Ω and S′ ∩ C 6= ∅. Hence we may assume
that (nk)→ ∞ as k→ ∞. The observation that

‖ f ‖S′ > lim
k→∞

(
| f (zk)| −

‖x‖
nk

)
= ‖ f ‖Ω

completes the proof.

A linear space X of complex-valued functions on an open set Ω ⊂ Cd is of
the form

X = {〈x, γ〉 : x ∈ X}
for some holomorphic mapping γ : Ω → X′ with values in the dual of a Banach
space X if and only if there is a complete norm on X which turns X into an
analytic functional Banach space. Indeed, if X is an analytic functional Banach
space, then the mapping

γ : Ω→ X ′, γ(z) = δz (δz( f ) = f (z))

is holomorphic and X = {〈 f , γ〉 : f ∈ X}. Conversely, if γ : Ω → X′ is a
holomorphic map into the dual of a Banach space X, then the mapping

ρ : X/⊥γ(Ω)→ Xγ = {〈x, γ〉 : x ∈ X}, [x] 7→ 〈x, γ〉

is a vector-space isomorphism and the norm ‖〈x, γ〉‖ = ‖[x]‖ turns Xγ into an
analytic functional Banach space.

COROLLARY 3.3. Let X be an analytic functional Banach space on an open set
Ω ⊂ Cd. Then each dominating set S for X contains a discrete dominating set. In
particular, there is a discrete uniqueness set for X.

In [9] this result was proved for the case where X is the Banach space of all
bounded analytic functions on an open set in C.

In strong contrast to the result contained in Corollary 3.3, basic complex
analysis shows that on a domain of holomorphy Ω ⊂ Cd the space of all holo-
morphic functions on Ω cannot possess any discrete uniqueness set.

LEMMA 3.4. Let S ⊂ Ω be a discrete subset of a domain of holomorphy Ω ⊂ Cd.
Then every complex-valued function f : S → C extends to a holomorphic function
on Ω. In particular, the space O(Ω) of all analytic functions on Ω has no discrete
uniqueness set.
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Proof. Choose a point a ∈ Ω \ S. Then A = S ∪ {a} ⊂ Ω is a discrete and
hence analytic subset. By a well known theorem in complex analysis ([5], Theo-
rem V.1.9) every holomorphic function on an analytic subset of a Stein manifold X
extends to a holomorphic function on all of X. Since every function f : A → C is
holomorphic as a function on the analytic subset A ⊂ Ω, the assertion follows.

4. SPANNING HOLOMORPHIC CROSS SECTIONS

Let T = (T1, . . . , Td) ∈ L(H)d be a Cowen–Douglas tuple of class Bn(Ω) on
a domain Ω ⊂ Cd. Following [11] we call a holomorphic section γ : Ω → H of
the associated vector bundle ET a spanning holomorphic cross-section for T if

H =
∨
{γ(z) : z ∈ Ω}.

Our aim in this section is to show that every Cowen–Douglas tuple of class Bn(Ω)
over an admissible domain Ω ⊂ Cd possesses a spanning holomorphic cross-
section. Since Ω is supposed to be admissible, there is a global holomorphic
frame (γ1, . . . , γn) for ET on Ω. By induction on n we shall prove that there are
holomorphic functions φ1, . . . , φn ∈ O(Ω) such that γ = φ1γ1 + · · ·+ φnγn is a
spanning holomorphic cross-section for T. For later use, we shall show that the
functions φ1, . . . , φn can be chosen simultaneously with respet to finitely many
different Cowen–Douglas tuples.

For simplicity, let us say that a given set of functions γ1, . . . , γn : Ω → H
spans H if

H =
∨
{γk(z) : k = 1, . . . , n and z ∈ Ω}.

LEMMA 4.1. Let Ω ⊂ Cd be a domain of holomorphy and let Hi (1 6 i 6 m)
be Hilbert spaces such that each of the spaces Hi is spanned by two analytic functions
γi

1, γi
2 ∈ O(Ω, Hi). Then there exists a holomorphic function φ ∈ O(Ω) such that the

function γi = φγi
1 + γi

2 also spans Hi for every 1 6 i 6 m.

Proof. For i = 1, . . . , m, we define a holomorphic function δi : Ω∗ → H′i into
the Banach space dual of Hi by setting

δi(z)(x) = 〈x, γi
2(z)〉.

Using Proposition 3.1 we obtain discrete subsets Ai ⊂ Ω such that the sets A∗i ⊂
Ω∗ are uniqueness sets for the resulting spaces Hδi = {x̂ : x ∈ Hi}, where

x̂(z) = 〈x, δi(z)〉 = 〈x, γi
2(z)〉 (z ∈ Ω∗).

According to Lemma 3.4 there exist holomorphic functions φi ∈ O(Ω) \ {0} such
that φi vanishes on Ai. Define φ = φ1 · · · φm and γi = φγi

1 + γi
2 for 1 6 i 6 m.

To show that γi spans Hi, fix an element x ∈ γi(Ω)⊥. Since φ vanishes on Ai and
since A∗i is a uniqueness set for Hδi , we find that x ∈ γi

2(Ω)⊥. Since the zero set
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of φ has no interior point, it follows that x ∈ γi
1(Ω)⊥. Thus we have shown that

x = 0. This observation completes the proof.

An inductive argument allows us to prove a corresponding result for the
case that the spaces Hi are spanned by an arbitrary finite number of holomorphic
functions.

LEMMA 4.2. Let Ω ⊂ Cd be a domain of holomorphy and let Hi (1 6 i 6 m)
be Hilbert spaces such that each of the spaces Hi is spanned by holomorphic functions
γi

1, . . . , γi
n ∈ O(Ω, Hi). Then there exist holomorphic functions φ1, . . . , φn−1 such that

the mapping γi = φ1γi
1 + · · ·+ φn−1γi

n−1 + γi
n also spans Hi for i = 1, . . . , m.

Proof. For n = 2, the assertion follows from Lemma 4.1. Suppose that the
assertion has been proved for some natural number n > 2 and that γi

1, . . . , γi
n+1 ∈

O(Ω, Hi) are spanning functions for Hi (1 6 i 6 m). Define

H′i =
∨
{γi

j(z) : z ∈ Ω and j = n, n + 1} (1 6 i 6 m).

By Lemma 4.1 there is a function φn ∈ O(Ω) such that δi
n = φnγi

n + γi
n+1 spans

H′i for 1 6 i 6 m. Then Hi is spanned by the functions

γi
1, . . . , γi

n−1, δi
n (1 6 i 6 m),

and by induction hypothesis, we find holomorphic maps φ1, . . . , φn−1 ∈ O(Ω)
such that, for i = 1, . . . , m, the function

γi = φ1γi
1 + · · ·+ φn−1γn−1 + δn

spans Hi.

Note that if, in the setting of the last lemma, the vectors γi
1(z), . . . , γi

n(z) are
linearly independent for every z ∈ Ω, then the resulting function γi cannot have
any zeros.

As a first application we prove that, on an admissible domain Ω ⊂ Cd,
every Cowen–Douglas tuple T ∈ L(H)d of class Bn(Ω) possesses a spanning
holomorphic cross-section.

THEOREM 4.3. Let Ω ⊂ Cd be an admissible domain and let T ∈ L(H)d be a
Cowen–Douglas tuple of class Bn(Ω). Then T possesses a spanning holomorphic cross-
section γ : Ω→ H such that γ(z) 6= 0 for every z ∈ Ω.

Proof. Since Ω is supposed to be admissible, there exist spanning holomor-
phic functions γ1, . . . , γn : Ω → H for H such that the vectors γ1(z), . . . , γn(z)
form a basis of ker Tz for every point z ∈ Ω. By Lemma 4.2 there is a spanning
holomorphic function γ : Ω → H for H such that 0 6= γ(z) ∈ ker Tz for every
z ∈ Ω.

Exactly as in the one-variable case ([2], Corollary 1.13), it follows that the
defining conditions for a Cowen–Douglas tuple of class Bn(Ω) are preserved
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when Ω is replaced by a smaller domain Ω0 ⊂ Ω. For completeness sake, we
indicate the argument.

LEMMA 4.4. Let Ω0 ⊂ Ω be connected open sets and let T ∈ L(H)d be a Cowen–
Douglas tuple of class Bn(Ω). Then T is of class Bn(Ω0). If γ : Ω → H is a spanning
holomorphic cross-section for T, then γ|Ω0 is a spanning holomorphic cross-section for T
regarded as a Cowen–Douglas tuple of class Bn(Ω0).

Proof. Let x ∈ H be orthogonal to ker Tz for every z ∈ Ω0. To prove that
T is of class Bn(Ω0) it suffices to show that x = 0. Assume that w ∈ Ω is a
boundary point of the open set V = Int({z ∈ Ω : x ⊥ ker Tz}). Let f1, . . . , fn be a
holomorphic frame of ET on a connected open neighbourhood U of w. Then the
holomorphic functions 〈 fi, x〉 vanish on the non-empty open set V ∩U ⊂ U and
hence, by the identity theorem, on all of U. This leads to the contradiction that
U ⊂ V. Since Ω is connected, it follows that V = Ω. Hence x = 0.

If γ : Ω→ H is a spanning holomorphic cross-section for T and x is orthog-
onal to γ(Ω0), then again by the identity theorem 〈γ(z), x〉 = 0 for all z ∈ Ω.
This observation completes the proof.

Although global spanning holomorphic cross-sections need not exist for
general Cowen–Douglas tuples of class Bn(Ω), the preceding results imply that at
least the restriction to every admissible subdomain Ω0 ⊂ Ω is a Cowen–Douglas
tuple with a global spanning holomorphic cross-section. The following result
shows that every Cowen–Douglas tuple of class Bn(Ω) is unitarily equivalent to
the adjoint of the multiplication tuple Mz = (Mz1 , . . . , Mzd) on a suitable scalar-
valued analytic functional Hilbert space.

THEOREM 4.5. Let T ∈ L(H)d be a Cowen–Douglas tuple of class Bn(Ω) over
an admissible domain Ω ⊂ Cd. Then there exist an analytic functional Hilbert space Ĥ
on Ω∗ and a unitary operator U : H → Ĥ such that UTiU∗ = M∗zi

for i = 1, . . . , d,
where

Mzi : Ĥ → Ĥ, f 7→ zi f

is the multiplication operator with the i-th coordinate function.

Proof. By Theorem 4.3 there exists a spanning holomorphic cross-section
γ : Ω → H for T. Then γ̃ : Ω∗ → H′, γ̃(z) = 〈·, γ(z)〉, defines a holomor-
phic function into the Banach space dual of H. As seen in the section preceding
Corollary 3.3, the space Ĥ = {x̂ : x ∈ H}, where x̂ = 〈x, γ̃〉, equipped with
the norm ‖x̂‖ = ‖x‖ becomes an analytic functional Hilbert space on Ω∗. The
map U : H → Ĥ, x 7→ x̂, defines a unitary operator which intertwines the tuples
T∗ = (T∗1 , . . . , T∗d ) on H and Mz = (Mz1 , . . . , Mzd) on Ĥ componentwise.

In the setting of Theorem 4.5 the reproducing kernel of the analytic func-
tional Hilbert space Ĥ is given by K : Ω∗ × Ω∗ → C, (z, w) 7→ 〈γ(w), γ(z)〉.
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Indeed, for w ∈ Ω∗, the function K(·, w) = Uγ(w) belongs to Ĥ and satisfies

〈x̂, K(·, w)〉 = 〈Ux, Uγ(w)〉 = 〈x, γ(w)〉 = x̂(w)

for all x ∈ H.

5. APPLICATIONS

In this section we extend several classification results obtained in [11] for
single Cowen–Douglas operators to the multivariable case. More precisely, we
characterize Cowen–Douglas tuples which are unitarily equivalent or similar,
and compute their commutants.

Recall that, for Hilbert spaces H1, H2, two tuples S ∈ L(H1)
d, T ∈ L(H2)

d

are called unitarily equivalent if there exists a unitary operator U : H1 → H2 such
that USi = TiU for i = 1, . . . , d.

THEOREM 5.1. Let S ∈ L(H1)
d, T ∈ L(H2)

d be two Cowen–Douglas tuples of
class Bn(Ω) on an admissible domain Ω ⊂ Cd. Then the following are equivalent:

(i) S and T are unitarily equivalent,
(ii) the hermitian holomorphic bundles ES and ET are equivalent,

(iii) there exist spanning holomorphic cross-sections γS for S and γT for T such that
‖γS(z)‖ = ‖γT(z)‖ for all z ∈ Ω.

Proof. Let U : H1 → H2 be a unitary operator such that USi = TiU for
i = 1, . . . , d. Since U ker Sz = ker Tz for z ∈ Ω, the operator U induces a fibrewise
linear homeomorphism

f : ES → ET , (z, x) 7→ (z, Ux).

Using the charts of ES and ET described in the preliminaries, it easily follows
that f is a biholomorphic map and hence an isomorphism of holomorphic vector
bundles. Since f is fibrewise isometric, it defines an isomorphism of hermitian
holomorphic vector bundles.

Let f : ES → ET be an isomorphism of hermitian holomorphic vector bun-
dles. Then f acts as f (z, x) = (z, Fzx), where Fz : ker Sz → ker Tz are suitable
unitary operators. Since Ω is admissible, there is a global holomorphic frame
γ1, . . . , γn : Ω → H1 for ES. Since f is an isomorphism of holomorphic vector
bundles, the functions δi : Ω → H2, z 7→ Fzγi(z), form a global holomorphic
frame for ET . According to Lemma 4.2 there are functions φ1, . . . φn ∈ O(Ω) such
that

γ : Ω→ H1, z 7→ φ1(z)γ1(z) + · · ·+ φn(z)γn(z) and

δ : Ω→ H2, z 7→ φ1(z)δ1(z) + · · ·+ φn(z)δn(z)

are spanning holomorphic cross-sections for S and T, respectively. By construc-
tion it follows that ‖δ(z)‖ = ‖Fzγ(z)‖ = ‖γ(z)‖ for every z ∈ Ω.
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Now assume that there exist spanning holomorphic cross-sections γS for
S and γT for T such that ‖γS(z)‖ = ‖γT(z)‖ for all z ∈ Ω. By Theorem 4.5
and the following remarks, the tuples S∗ and T∗ are unitarily equivalent to the
multiplication tuples Mz = (Mz1 , . . . , Mzd) on analytic functional Hilbert spaces
ĤS and ĤT given by the reproducing kernels KS, KT : Ω∗ ×Ω∗ → C,

KS(z, w) = 〈γS(w), γS(z)〉, KT(z, w) = 〈γT(w), γT(z)〉.

Since these functions are holomorphic in z, conjugate holomorphic in w and coin-
cide on the diagonal {(z, z) : z ∈ Ω∗}, a well known result from complex analysis
shows that KS = KT (see Exercise 3 in Chapter 8 of [6]). But then the functional
Hilbert spaces given by these kernels coincide and hence S and T are unitarily
equivalent.

Note that by the remark following Lemma 4.2 one can achieve in addition
that the spanning holomorphic cross-sections γS for S and γT for T in condition
(iii) of Theorem 5.1 have no zeros on Ω.

The following variant of the preceding theorem can be seen as a general-
ization of a result from [2] (see Theorem 4.15 in [4] for a multivariable version)
stating that the curvature of the hermitian holomorphic vector bundle ET is a
complete unitary invariant for operators of Cowen–Douglas class B1(Ω).

THEOREM 5.2. Let S ∈ L(H1)
d, T ∈ L(H2)

d be Cowen–Douglass tuples of class
Bn(Ω) over a connected open set Ω ⊂ Cd. Then the following are equivalent:

(i) S and T are unitarily equivalent,
(ii) the hermitian holomorphic bundles ES and ET are equivalent,

(iii) there exist a connected open set ∅ 6= Ω0 ⊂ Ω and spanning holomorphic cross-
sections γS for S and γT for T on Ω0 such that

∂j∂k log ‖γS(z)‖ = ∂j∂k log ‖γT(z)‖

for all z ∈ Ω0 and j, k = 1, . . . , d.

Proof. As in the proof of Theorem 5.1 it follows that condition (i) implies
condition (ii). Suppose that ES and ET are unitarily equivalent as hermitian
holomorphic vector bundles. Fix an arbitrary admissible domain Ω0 ⊂ Ω. By
Lemma 4.4 the tuples S and T are of Cowen–Douglas class Bn(Ω0). Hence The-
orem 5.1 and the following remark imply that there are spanning holomorphic
cross-sections γS for S and γT for T on Ω0 without zeros such that ‖γS(z)‖ =
‖γT(z)‖ for z ∈ Ω0.

To complete the proof, let us suppose that condition (iii) holds. By shrinking
Ω0 we may suppose that Ω0 ⊂ Ω is an open euclidean ball. Condition (iii) means
precisely that the function

u : Ω0 → R, u(z) = log ‖γS(z)‖ − log ‖γT(z)‖
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is pluriharmonic (see Section 4.4 in [10]). By Theorem 4.4.9 in [10], there is an
analytic function f ∈ O(Ω0) with u = Re f on Ω0. But then we obtain

‖γS(z)‖ = eu(z)‖γT(z)‖ = ‖e f (z)γT(z)‖

for z ∈ Ω0. Since S, T are of class Bn(Ω0) and since γS, e f γT are spanning holo-
morphic cross-sections for S and T on Ω0, it follows from Theorem 5.1 that S and
T are unitarily equivalent.

In the remaining parts of this paper we briefly indicate that also the results
from [11] concerning similarity orbits and commutants of Cowen–Douglas oper-
ators extend to the multivariable case. We need some basic properties of positive
definite functions (see e.g. [1]). Let Ω be an arbitrary set. If γ : Ω → H is a
function into a complex Hilbert space, then the function

Kγ : Ω×Ω→ C, (z, w) 7→ 〈γ(z), γ(w)〉

is positive definite. Indeed, for z1, . . . , zn ∈ Ω and t1, . . . , tn ∈ C, we obtain that

∑
16i,j6n

Kγ(zi, zj)tjti =
∥∥∥ ∑

16i6n
tiγ(zi)

∥∥∥2
> 0.

Using this formula one can easily show that, for two functions γi : Ω → Hi
(i = 1, 2) with values in complex Hilbert spaces Hi, there is a constant c > 0
such that cKγ1 − Kγ2 is positive definite if and only if there is a bounded linear
operator A : H1 → H2 with Aγ1(z) = γ2(z) for all z ∈ Ω. To indicate that this
relation holds, we shall use the notation γ2 ≺ γ1. We write γ1 ∼ γ2 if γ1 ≺ γ2
and γ2 ≺ γ1.

Let S ∈ L(H1)
d, T ∈ L(H2)

d be two Cowen–Douglass tuples of class Bn(Ω)
over a connected open set Ω ⊂ Cd. Suppose that S possesses a spanning holo-
morphic cross-section γS : Ω → H1. The above remarks yield a natural identifi-
cation between the set

I(S, T) = {A ∈ L(H1, H2) : ASi = Ti A for i = 1, . . . , d}

of all intertwining operators for S and T and the set of all global sections

CγS(T) = {γ ∈ Γhol(Ω, ET) : γ ≺ γS}

of ET dominated by γS.

LEMMA 5.3. For S, T and γS as above, the mapping

ρ : I(S, T)→ CγS(T), A 7→ AγS

is a well defined bijection. An operator A ∈ I(S, T) has dense range if and only if ρ(A)
is a spanning holomorphic cross-section for T.

Proof. The inclusion A ker Sz ⊂ ker Tz holds for every operator A ∈ I(S, T)
and every point z ∈ Ω. Hence ρ is well defined. As seen above, every section
γ ∈ CγS(T) is of the form γ = AγS with a suitable operator A ∈ L(H1, H2).
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Since γS : Ω → H1 spans H1, the operator A is uniquely determined and the
intertwining relations

Tj AγS(z) = Tjγ(z) = zjγ(z) = ASjγS(z) (z ∈ Ω, j = 1, . . . , d)

imply that A ∈ I(S, T). Obviously an operator A ∈ I(S, T) has dense range if and
only if the induced function AγS is spanning for H2.

Two commuting tuples S ∈ L(H1)
d, T ∈ L(H2)

d are said to be similar if
there is an invertible operator A ∈ L(H1, H2) such that ASi = Ti A for i = 1, . . . , d.

THEOREM 5.4. Let S ∈ L(H1)
d, T ∈ L(H2)

d be Cowen–Douglas tuples of class
Bn(Ω) on an admissible domain Ω ⊂ Cd. Then S and T are similar if and only if there
exist spanning holomorphic cross-sections γS : Ω → H1 for S and γT : Ω → H2 for T
such that γS ∼ γT .

Proof. According to Theorem 4.3 there is a spanning holomorphic cross-
section γS : Ω → H1 for S. If A ∈ I(S, T) is an invertible operator, then γ = AγS
is a spanning holomorphic cross-section for T with γ ∼ γS.

Conversely, if γS, γT are spanning holomorphic cross-sections for S and T
on Ω such that γS ∼ γT , then by Lemma 5.3 there are bounded operators A
in I(S, T) and B ∈ I(T, S) such that γT = AγS and γS = BγT . The identities
γT = ABγT and γS = BAγS imply that A is invertible with inverse B. Hence S
and T are similar.

As another immediate application of Lemma 5.3 one obtains that, for two
Cowen–Douglas tuples S ∈ L(H1)

d, T ∈ L(H2)
d of class Bn(Ω) on an admissible

domain Ω ⊂ Cd, there is an intertwining operator A ∈ I(S, T) with dense range
if and only if there are spanning holomorphic cross-sections γS : Ω → H1 for S
and γT : Ω→ H2 for T with γT ≺ γS.

As a final result we deduce a description of the commutant (T)′ = I(T, T)
of Cowen–Douglas tuples T.

THEOREM 5.5. Let T ∈ L(H)d be a Cowen–Douglas tuple of class Bn(Ω) on an
admissible domain Ω ⊂ Cd and let γT : Ω → H be a spanning holomorphic cross-
section for T. Then the map

(T)′ → CγT (T), A 7→ AγT

is a well defined bijection.

For the proof it suffices to apply Lemma 5.3 with S = T.
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