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INTRODUCTION

The term decoherence is used with many different meanings in literature,
always in some sense related with the emergence of classical features in the evo-
lution of a quantum open system. It is however quite difficult to find out a clear
and well-recognized formal definition of decoherence. We study the mathemat-
ical definition proposed by Blanchard and Olkiewicz in 2003 ([2]) in the case of
markovian systems. For the reader who has never encountered this topic, we
suggest to see [2], [3], [6], [7], [19], [20], for an introduction to the technical details
of the matter and for motivations for this research.

We want to investigate the relations between this kind of decoherence and
the ergodic properties of the semigroup. First, we specify the context and the
mathematical objects we are going to treat. We consider a von Neumann algebra
M acting on a complex Hilbert space h and a quantum dynamical semigroup
(QDS) T = (Tt)t>0 onM, that is a weak∗ continuous semigroup of completely
positive normal bounded maps Tt on M. We call T a quantum Markov semi-
group (QMS) if the maps Tt are also identity preserving.

The idea of decoherence introduced by Blanchard and Olkiewicz essentially
purposes to decompose the space M into the direct sum of a decoherence-free
subalgebra on which the evolution is unitary (i.e. resembles to the evolution of
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a closed system) and a remaining part of M on which the semigroup goes to 0
when time goes on. To be more precise, we say that there is environment induced
decoherence (EID) on the system described by T if there exist a Tt-invariant von
Neumann subalgebraM1 ofM and a Tt-invariant and ∗-invariant weak* closed
subspaceM2 ofM such that:

(EID1)M =M1 ⊕M2 withM2 6= {0};
(EID2)M1 is a maximal von Neumann subalgebra ofM on which the restriction
of every Tt is a ∗-automorphism;

(EID3) w∗- lim
t→∞
Tt(x) = 0 for all x ∈ M2.

M1 is called the algebra of effective observables, while M2 is the space of
non-detectable observables.

In this paper, when not specified differently, by decoherence we will mean
EID.

The above definition is a slight modification of the original one introduced
by Blanchard and Olkiewicz, but it is equivalent at least when we have a QMS
with a faithful normal invariant state (see [6] for the details about this).

In general it is very difficult to understand when such a decomposition oc-
curs, also because it is not clear whether the spacesM1 andM2 are univocally
determined. A collection of questions arise about how to prove the existence of
EID and about the determination of the corresponding decomposition of the alge-
bra. A starting point can be finding some possible candidates for the spacesM1
andM2. The definition of EID, as we already emphasized in previous papers [6],
[7], clearly suggests to consider the relations with the spaces

N (T ) := {a ∈ M : Tt(a∗a) = Tt(a∗)Tt(a), Tt(aa∗) = Tt(a)Tt(a∗)∀t > 0},

the biggest von Neumann subalgebra of M on which the action of any Tt is a
∗-homomorphism (see Proposition 1.3), and

M0 :=
{

x ∈ M : w∗- lim
t
Tt(x) = 0

}
,

the space on which the semigroup weakly∗ converges to 0 as time goes on. When
EID occurs, we clearly haveM1 ⊂ N (T ) andM2 ⊂M0, and, in some cases, the
previous inclusions are necessarily equalities: for example in the finite-dimen-
sional case ([7]), or whenN (T ) is contained in the set F (T ) of fixed points of the
semigroup (see Proposition 1.5 and Theorem 1.6). Nevertheless, it can happen to
haveM1 = N (T ) (e.g. for uniformly continuous semigroups [13] or for QMSs
possessing a faithful normal invariant state [22]), but its intersection withM0 can
be not trivial, so thatM2 6=M0 (see [8]).

On the other hand, N (T ) has been extensively studied (see [10], [15], [16])
in relation to asymptotic behavior of the semigroup: indeed, under the hypoth-
esis of the existence of a faithful normal invariant state ω, if N (T ) consists only
of fixed points, then the semigroup is ergodic, i.e. the system converges toward a
steady state (possibly different from ω) . Moreover, under additional conditions
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(the algebraM on which the semigroup acts is finite-dimensional, or the detailed
balance property), the equality N (T ) = F (T ) is also necessary to have ergodic-
ity (see [16]). Therefore, it is natural to wonder whether there are some relation-
ships between decoherence and ergodicity, at least in the case N (T ) ⊂ F (T ).
This paper is aimed at answering to this question.

In Section 2 we show that in general, for an ergodic QMS, it is possible to
define a normal norm one projection E onto F (T ) which induces the decom-
position M = F (T ) ⊕ Ker E , but in general, we cannot state that it is an EID
decomposition: indeed, F (T ) could be not an algebra and, in any case, even if it
was so, F (T ) could be not an effective subalgebra. On the other hand, whenever
N (T ) consists only of fixed points, we show that any QMS displaying decoher-
ence is necessarily ergodic and has F (T ) which is an algebra (see Theorem 1.6).
More precisely, when EID holds, we obtain that N (T ) = F (T ) coincides with
the biggest subalgebra on which T acts in a unitary way, the decomposition in-
duced by decoherence is unique (withM1 = F (T ) andM2 = M0), and there
exists a normal conditional expectation onM1. In addition, ifF (T ) is an algebra,
ergodicity and decoherence are equivalent (see Corollary 1.8). Theorems 1.15 and
1.17 describe how these results can be improved in two special cases, respectively
when N (T ) is trivial (i.e. N (T ) = C1l) and when the semigroup has a faithful
normal invariant state.

For applications, the value of our results also derives from the fact that the
algebra N (T ) can be determined explicitly in many cases: for example, for a
wide class of QMSs acting on B(h), it has been completely characterized in terms
of the generator (see [9], [13]). We shall come back to this point in Section 3. All
the results of the second section hold for QMSs and, really, for a larger class of
semigroups, since it is enough to consider the case when the maps Tt satisfy only
Kadison–Schwarz property (Tt(x∗)Tt(x) 6 Tt(x∗x) for all t > 0 and x ∈ M),
instead of complete positivity. QMSs are obviously the most popular choice for
applications, but weakening the positivity conditions can be however interesting
if we think about new theories wondering about the reasonable positivity condi-
tions for quantum dynamics (see for instance [18] and [23]).

Section 3 illustrates the use of our results for some QDSs with unbounded
generator, which constitute in general the most difficult case, but include many
interesting models. We recall the construction of minimal QDS and some rela-
tions between the canonical form of the generator and the space N (T ); finally
we explain how to prove decoherence for a couple of models: the two photon
absorption and emission process and a generic semigroup.

1. SEMIGROUPS WITH TRIVIAL EVOLUTION ON N (T )

In this section, we shall always assume that T is a QMS on the algebra
M, possibly with the weakened positivity condition that the maps Tt are only
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Kadison–Schwarz instead of completely positive, as we mentioned above. Drop-
ping complete positivity is actually a common practice that one can find in many
article on similar topics ([10], [16], [22]). However, we underline that, even if, in
most of the proofs here, only simple positivity of the maps Tt is used, the reader
should not be tempted to think that simple positivity is sufficient for our results.
Really, Kadison–Schwarz is a basic ingredient to demonstrate Proposition 1.3:
this result is essential for our study and does not hold true in general when the
maps Tt are only positivity preserving instead of Kadison–Schwarz (see [6] for a
counterexample).

As we already explained, our interest consists in studying the link of EID
decomposition with ergodicity. We shall say that the QMS T is ergodic if the
net (Tt(x))t>0 is weakly* convergent for all x ∈ M or, equivalently, if the limit
w- lim

t→+∞
T∗t(ϕ) exists for all normal functional ϕ on M, where T∗t denotes the

pre-dual map of Tt and w-lim is the limit in the weak topology.
The following proposition illustrates how every ergodic semigroup natu-

rally induces a Jacobs–DeLeeuw–Glicksberg splitting of the algebraM (see also
Proposition 1.20), and we want to try to relate it to decoherence properties.

PROPOSITION 1.1. The following conditions are equivalent:
(i) T is ergodic;

(ii) there exists a normal norm one projection E onto F (T ) such that

Ker E =M0 :=
{

x ∈ M : w∗- lim
t
Tt(x) = 0

}
;

(iii)M = F (T )⊕M0.
In particular, if one of the previous conditions holds, then Ker E is a Tt-invariant

and ∗-invariant weak* closed subspace ofM, E is the unique norm one projection onto
F (T ) such that Ker E =M0, and it is given by

E(x) := w∗- lim
t
Tt(x) ∀ x ∈ M,(1.1)

Ker E = span w∗{(I − Tt)x : x ∈ M, t > 0},

where I denotes the identical operator.
Finally, E satisfies E(xE(y)) = E(x)E(y) for all x, y ∈ M if and only if F (T ) is

an algebra. In particular, in this case, E is a conditional expectation onto F (T ).
Proof. (i) ⇒ (ii) Assume T ergodic and consider the linear operator E :

M → M given by (1.1). Clearly, the range of E coincides with F (T ) and
E ◦ Tt = Tt ◦ E = E for all t > 0, by the semigroup property and the normal-
ity of Tt. As a consequence,

E2(x) = w∗- lim
t
Tt(E(x)) = w∗- lim

t
E(x) = E(x) ∀ x ∈ M,

i.e. E is a projection. Since it is also a positive operator preserving the identity 1l,
E is a norm one projection onto F (T ).



ERGODIC QUANTUM MARKOV SEMIGROUPS AND DECOHERENCE 297

The normality of E follows by Theorem 2.1 in [16], since every ergodic semi-
group is also mean ergodic. The equality Ker E =M0 is clear by definition of E .

(ii)⇒ (iii) It is trivial.
(iii)⇒ (i) If the decompositionM = F (T )⊕M0 holds, for every x ∈ M,

x = x1 + x2 with x1 ∈ F (T ) and x2 ∈ M0, there exists w∗-lim
t
Tt(x) = x1, so that

T is ergodic.
Assume now that one of conditions (i), (ii), (iii) is fulfilled, and take E de-

fined by (1.1). So, Ker E is weak* closed as a consequence of the normality of E .
If E ′ is another norm one projection onto F (T ) such that Ker E ′ =M0, then, for
x = x1 + x2 ∈ M with x1 ∈ F (T ) and x2 ∈ M0, we necessarily have

E ′(x) = E ′(x1 + x2) = E ′(x1) = x1,

since x1 and x2 are respectively in the range and in the kernel of E ′. Therefore,
E ′ = E .

To conclude, we prove that

(1.2) Ker E = span w∗{(I − Tt)x : x ∈ M, t > 0}.

If E(x) = 0, then x = (I − E)x = w∗-lim
t
(I − Tt)x, so one inclusion holds. Con-

versely, if x = (I−Tt)y for some y ∈ M and t > 0, then E(x) = (I−Tt)E(x) = 0
by relation E ◦ Tt = Tt ◦ E = E . This proves that

span {(I − Tt)x : x ∈ M, t > 0} ⊂ Ker E ⊂ span w∗{(I − Tt)x : x ∈ M, t > 0},

and so equality (1.2) follows by the weak* closure of Ker E . In particular, Ker E is
a Tt-invariant and ∗-invariant subspace ofM.

Assume now that E(xE(y)) = E(x)E(y) for all x, y ∈ M. Then clearly
the subspace F (T ) becomes an algebra. Conversely, if F (T ) is an algebra, then
E satisfies the property E(xE(y)) = E(x)E(y) for all x, y ∈ M by Tomiyama’s
theorem (see Theorem 1 in [24]), i.e. E is a conditional expectation onto F (T ).

REMARK 1.2. Note that, in general, F (T ) is not automatically an algebra,
even if the semigroup is ergodic. But, for instance, the existence of a faithful
normal invariant state is a sufficient condition to have that F (T ) is an algebra
(see Lemma 3 in [14]).

The obtained decomposition M = F (T ) ⊕M0 shows some similarities
with EID, but, unfortunately, it does not automatically imply decoherence. In-
deed, F (T ) is not necessarily an algebra and, anyway, also when it is an algebra,
the semigroup acts in a unitary way on F (T ) (the action is trivial), but F (T )
could be not the maximal algebra with this property. We want then to under-
stand when such a decomposition is an EID decomposition.

In view of this, we analyze the relations between F (T ) and the space

(1.3) N (T ) = {a ∈ M : Tt(a∗a) = Tt(a∗)Tt(a), Tt(aa∗) = Tt(a)Tt(a∗) ∀ t > 0},
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which has been introduced by Evans in [10] and then extensively studied pre-
cisely in relation to ergodic properties of dissipative semigroups (see also [15],
[22]).

The following statement demonstrates some very interesting properties of
N (T ) (see Theorem 4 in [10] or Proposition 1 in [6] for the proof).

PROPOSITION 1.3. N (T ) is the biggest von Neumann subalgebra ofM on which
the action of any Tt is a ∗-homomorphism. In particular N (T ) is Tt-invariant and we
have

(1.4) Tt(x∗y) = Tt(x∗)Tt(y) ∀ t > 0, if either x or y belongs to N (T ).
By definition, it is clear that every decoherence-free space is contained in

N (T ), and then the following result follows.

COROLLARY 1.4. If F (T ) is an algebra, then it is contained in N (T ).
As we already recalled, when the semigroup possesses a faithful normal in-

variant state, the equality F (T ) = N (T ) is a sufficient condition to have ergod-
icity. Therefore, it is natural to wonder what happens about decoherence when
the action of the semigroup on N (T ) is trivial, i.e. N (T ) ⊂ F (T ). In this case,
the analysis of decoherence is considerably simplified, and we can give fairly sat-
isfactory answers to the following general questions about decoherence:

(1) Is it possible to find necessary and sufficient conditions to have EID?

And, if EID holds,

(2)M1 = N (T )?M2 =M0?
(3) There exists a conditional expectation ontoM1?
(4) Is the decoherence decomposition unique?

In particular, in Corollary 1.8, we shall show that, under the conditionN (T )
= F (T ), EID is equivalent to the ergodicity of T .

In the following we will assume that F (T ) does not coincide with all the algebra
M (this case is obviously trivial). As a consequence, since we suppose N (T ) ⊂
F (T ), the conditionM2 6= {0} required by EID definition is always satisfied.

PROPOSITION 1.5. IfN (T ) is contained in F (T ), thenN (T ) is the biggest von
Neumann subalgebra ofM on which the restriction of every Tt is a ∗-automorphism. In
particular, the action of Tt is trivial on N (T ).

Proof. We know that N (T ) is the biggest von Neumann algebra on which
every Tt acts as a ∗-homomorphism. When N (T ) ⊂ F (T ), the restriction of Tt
to N (T ) is the identity operator, so the action is surely automorphic.

THEOREM 1.6. AssumeN (T ) ⊂ F (T ). Then the following facts are equivalent:
(i) EID holds;

(ii) there exists a normal conditional expectation E ontoN (T ) such that Ker E=M0.
In particular, in this case:
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(a) the EID decomposition is uniquely determined byM1 = N (T ) = F (T )
andM2 =M0;

(b) T is ergodic;
(c) E is the unique normal conditional expectation ontoM1 such that Ker E =

M0 =M2, and it is given by E(x) = w∗-lim
t
Tt(x).

Proof. (ii) ⇒ (i) If E is a normal conditional expectation onto N (T ) such
that Ker E =M0, then we haveM = N (T )⊕M0 withM0 a Tt and ∗-invariant
weak* closed subspace ofM. Therefore, sinceM1 = N (T ) by Proposition 1.5,
EID holds.

(i)⇒ (ii) If EID holds, we necessarily haveM1 = N (T ) by Proposition 1.5
and by EID definition. Therefore, since N (T ) ⊂ F (T ), for all x = x1 + x2 ∈ M
with xi ∈ Mi, i = 1, 2, there exists

w∗- lim
t
Tt(x) = w∗- lim

t
Tt(x1) = x1,

i.e. the semigroup is ergodic. This proves that (i) implies condition (b). Moreover,
for x in F (T ), the same decomposition written above will give us x = Tt(x) =
w∗-lim

t
Tt(x) = x1 ∈ N (T ), so we have the equality F (T ) = N (T ). This means

in particular that F (T ) is an algebra and so, by Proposition 1.1, there is a condi-
tional expectation E onto F (T ) = N (T ) such that Ker E =M0.

Moreover, Propositions 1.1 and 1.5 assure the uniqueness of the EID de-
composition, withM1 = F (T ) = N (T ) andM2 =M0 = Ker E , where E is the
unique normal conditional expectation E onto F (T ) = N (T ) with Ker E =M0,
and it is given by E(x) = w∗-lim

t
Tt(x).

REMARK 1.7. Note that it is possible that N (T ) is strictly contained in
F (T ) (see Example 2, item (4b) in [7]).

On the other hand, in general, the condition N (T ) = F (T ) alone does not
imply EID (see Example 2.6).

Theorem 1.6 immediately gives that, ifN (T ) ⊂ F (T ), the condition “F (T )
is an algebra” is necessary in order to have EID. By exploiting the proof of the
same theorem, we obtain that it is also sufficient when the semigroup is ergodic.

COROLLARY 1.8. Assume N (T ) ⊂ F (T ). The following facts are equivalent:
(i) T is ergodic and F (T ) is an algebra;

(ii) EID holds.

We now want to find other equivalent conditions to EID. In order to search
for these, in the following proposition we restrict to the case of the existence of
a normal conditional expectation onto N (T ), since, by Theorem 1.6, this is a
necessary condition to have EID when the inclusion N (T ) ⊂ F (T ) holds.

PROPOSITION 1.9. Assume N (T ) ⊂ F (T ) and suppose there exists a normal
conditional expectation E onto N (T ). Then the following facts are equivalent:
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(i) (Tt(x))t>0 weakly* converges to 0 for all x ∈ Ker E ;
(ii) (T∗t(ϕ))t>0 weakly converges to ϕ ◦ E for all normal states ϕ;

(iii) E(x) = w∗-lim
t
Tt(x) for all x ∈ M;

(iv) Ker E =M0.
Moreover, if one of the previous conditions holds, then N (T ) = F (T ).

Proof. The implications (iii)⇒ (iv)⇒ (i) are clear.
Now, note that Tt ◦ E = E for all t > 0, being Tt the identical operator on

N (T ). Moreover, since for any x in M we have E(x) ∈ N (T ) ⊂ F (T ) and
(I −E)(x) ∈ Ker E (where I always denotes the identical operator onM), we get

(1.5) Tt(x) = Tt(E(x)) + Tt((I − E)(x)) = E(x) + Tt((I − E)(x)).

Therefore, equivalence between (i) and (iii) immediately follows, recalling that
(I − E)(M) = Ker E .

Now, take a normal state ϕ onM, always using (1.5), we deduce

T∗t(ϕ) = ϕ ◦ Tt = ϕ ◦ E + ϕ ◦ Tt ◦ (1− E)

and the equivalence of (i) with (ii) easily follows.
Finally, if (iii) holds, then any x ∈ F (T ) satisfies x = E(x), so it is in the

range of E , which coincides with N (T ). This proves F (T ) ⊂ N (T ) and, since
the opposite inclusion holds by hypothesis, equality follows.

COROLLARY 1.10. Assume N (T ) ⊂ F (T ). Then EID holds if and only if there
exists a normal conditional expectation onto N (T ) satisfying one of the equivalent con-
ditions (i), (ii), (iii) in Proposition 1.9.

Proposition 1.9 has an important consequence relating decoherence and in-
variant states.

COROLLARY 1.11. Assume N (T ) ⊂ F (T ), then the semigroup can display
decoherence only if it has at least an invariant state.

Proof. By Corollary 1.10, we know that, if decoherence takes place, then
there exists a conditional expectation E onN (T ) such that (T∗t(ϕ))t weakly con-
verges to ϕ ◦ E for all normal states ϕ. This assures that all the states of the form
ϕ ◦ E are invariant.

We conclude this section by a remark about the relationships between the
vector spaceM0 and the “orthogonal”ofN (T ) with respect to an invariant state.

REMARK 1.12. Assume that N (T ) ⊂ F (T ) and ω is an invariant state of
the semigroup. Then

M0 ⊂ N (T )⊥,ω := {x ∈ M : ω(y∗x) = 0 for all y ∈ N (T )}

Indeed, if we consider y ∈ N (T ), x ∈ M0, then

ω(y∗x) = ω(Tt(y∗x)) = ω(Tt(y∗)Tt(x)) = ω(y∗Tt(x))→t 0.
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In the following subsections, we consider the cases when N (T ) is trivial
and/or there exists an invariant faithful normal state for the semigroup.

1.1. SEMIGROUPS WITH N (T ) = C1l. By assuming thatN (T ) = C1l, we have an
easy way to write a conditional expectation onto the trivial algebra C1l, by which
we can improve the results of Theorem 1.6 and Proposition 1.9 and give sufficient
and necessary conditions for EID.

PROPOSITION 1.13. Consider the algebra A = C1l. A linear map E :M→ A is
a conditional expectation onto A if and only if it is of the form

(1.6) E(x) = ω(x)1l ∀ x ∈ M

for some state ω onM. Moreover, the following facts hold:
(i) E is normal if and only if ω is;

(ii) ω is the only compatible state with E , i.e. ω = ω ◦ E ;
(iii) Ker ω = Ker E ;
(iv) Ker E is Tt-invariant for all t > 0 if and only if ω is an invariant state for the

semigroup T .

Proof. Let E be a conditional expectation ontoA; for all x ∈ M, let ω(x) ∈ C
be such that E(x) = ω(x)1l. By construction, the map ω :M→ C is a linear and
positive functional satisfying ω(1l) = 1l, i.e. ω is a state onM.

On the other hand, if we consider a state ω and introduce a map E defined as
in (1.6), E is clearly a positive and linear operator satisfying E2 = E and E(1l) = 1l.
Therefore, ‖E‖ = ‖E(1l)‖ = 1, i.e. E is a conditional expectation onto C1l.

Statements (i)–(iii) trivially follow by definition of E .
For the proof of point (iv), we can remember that Ker E = (I − E)(M), so

Ker E is preserved by Tt if and only if E(Tt((I − E)(x))) = 0 for all x, so if and
only if ETt(x) = ETtE(x) for all x. Since

(1.7) ETt(x) = ω(Tt(x))1l and ETtE(x) = ω(x)1l ∀ x ∈ M,

the preservation of the kernel of E by Tt is equivalent to the invariance of ω under
Tt, so that the statement is proved.

REMARK 1.14. Note that, if N (T ) is the image of a normal conditional ex-
pectation compatible with a normal invariant state ω butN (T ) 6= C1l, the equal-
ity Ker E = Ker ω does not hold true in general. An example is given by the
two-photon absorption and emission process; see next section, and in particular
Remark 2.4.

THEOREM 1.15. Assume N (T ) = C1l. Then the following facts are equivalent:
(i) EID holds;

(ii) there exists a normal state ω such that (Tt(x))t>0 weakly* converges to 0 for all
x ∈ Ker ω;
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(iii) there exists a normal state ω which is the weak limit of (T∗t(ϕ))t>0 for all normal
states ϕ;

(iv) there exists a normal state ω such that w∗-lim
t
Tt(x) = ω(x)1l for all x ∈ M.

Moreover, if one of these conditions is satisfied, then ω is the unique normal invari-
ant state,M1 = C1l andM2 = Ker ω.

Proof. (ii), (iii) and (iv) are equivalent thanks to Proposition 1.9, since every
normal conditional expectation E onto C1l is given by equation (1.6) for some
normal state ω (see Proposition 1.13) and ϕ(E(x)) = ω(x)ϕ(1l) = ω(x) for all
states ϕ.

Moreover, since Ker ω = Ker E = M0 by Propositions 1.9 and 1.13, state-
ments (i) and (ii) are equivalent by Theorem 1.6 and we have M1 = C1l and
M2 = Ker ω.

If conditions (i)–(iv) are satisfied, then we have ϕ =w-lim
t
T∗t(ϕ) = ω for

every normal invariant state ϕ, i.e. ω is the unique normal invariant state.

REMARK 1.16. In general, it is not true that if the semigroup has a unique
invariant state, then it displays decoherence (see Example 2.6).

Moreover, we will see in the next subsection that the existence of a faithful
normal invariant state implies EID (see Theorem 1.17). However, in general, this
condition is not necessary to have decoherence, even if N (T ) = C1l. Indeed, we
describe a generic semigroup displaying decoherence even if its unique invariant
state is not faithful (see Proposition 2.5).

1.2. SEMIGROUPS WITH AN INVARIANT FAITHFUL STATE. In this case, N (T ) al-
ways includes F (T ), since F (T ) is an algebra and the semigroup is surely au-
tomorphic on it. So, the condition N (T ) ⊂ F (T ) implies N (T ) = F (T ), and
decoherence and ergodicity are equivalent (see Corollary 1.8).

THEOREM 1.17. Let ω be a faithful normal invariant state for T and assume
N (T ) ⊂ F (T ). Then:

(i) F (T ) = N (T ).
(ii) (Frigerio–Verri) There exists a unique normal conditional expectation E onto

N (T ) which is compatible with ω. In particular, E is defined by

E(x) = w∗- lim
t
Tt(x), x ∈ M.

(iii) EID holds and the decomposition is unique withM1 = N (T ) andM2 =M0 =

N (T )⊥,ω.

Proof. Since T possesses a faithful normal invariant state, Frigerio–Verri
theorem [16] assures the existence of a normal conditional expectation E onto
F (T ) = N (T ), which is also Tt-invariant and given by

(1.8) E(x) = w∗- lim
t
Tt(x), x ∈ M.
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In particular, we have ϕ ◦ E = ϕ for every normal invariant state ϕ. Note that if E ′
is a normal conditional expectation ontoN (T ) which is compatible with ω, then
Ker E ′ = N (T )⊥,ω, and this proves the uniqueness of E . Indeed, if x ∈ Ker E ′
and y ∈ N (T ), then

ω(y∗x) = ω(E ′(y∗x)) = ω(y∗E ′(x)) = 0.

On the other hand, if x ∈ N (T )⊥,ω, then ω(y∗x) = 0 for each y ∈ N (T ). In
particular, since E ′ is compatible with ω,

ω(E ′(x)∗x) = ω(E ′(x)∗E ′(x)) = 0,

so E ′(x) = 0, i.e. x ∈ Ker E ′.
Moreover, Theorem 1.6 implies that EID holds withM1 = N (T ) = F (T )

andM2 =M0 = Ker E =N (T )⊥,ω.

If we assume M = B(h) and N (T ) = C1l, we can say something more
about the behaviour of off-diagonal terms of the dynamics of a density operator.
By a density operator ρ, we mean a nonnegative operator with trace 1. Any nor-
mal state ω on B(h) can therefore be written in a unique way as ω(x) = tr(ρx).
Thus, in the following, we shall identify normal states and their densities.

COROLLARY 1.18. Assume M = B(h), N (T ) = C1l, and let ρ be a faithful
invariant state for T . If (en)n is an onb of h given by eigenvectors of ρ, then, for every
normal state ϕ, we have

(1.9) 〈en, T∗t(ϕ)em〉 →t 0 ∀ n 6= m.

Proof. Since there exists a faithful invariant state, we haveF (T ) = N (T ) =
C1l by item (i) of Theorem 1.17. Therefore, there exists E : B(h) → N (T ) normal
conditional expectation given by formula (1.8) and satisfying tr(ρE(x)) = tr(ρx).
The triviality ofN (T ) clearly implies E(x) = tr(ρx)1l for all x ∈ B(h), so that, for
all normal states ϕ, we have

lim
t
〈en, T∗t(ϕ)em〉 = lim

t
tr((T∗t(ϕ))(|em〉〈en|)) = lim

t
tr(ϕTt(|em〉〈en|))

= tr(ϕE(|em〉〈en|)) = tr(ρ|em〉〈en|) = 0.

for all n 6= m.

REMARK 1.19. Our analysis always starts by the definition of decoherence
given by Blanchard and Olkiewicz, but in fact the term decoherence can be used
with different meanings; the original interpretation surely indicates the loss of
coherences. Indeed, given a density matrix ρ, its dynamics (Schrödinger picture)
is given by the predual semigroup ρt = T∗tρ. If we select an orthonormal basis
(en)n of h, each density matrix ρ is characterized by its components ρ(m, n) =
〈em, ρen〉. The off-diagonal terms ρt(m, n), with n 6= m, are called the coherences
of ρ. The intuitive idea is that decoherence consists of the disappearance of these
terms as time increases, that is ρt(m, n) goes to 0 as t tends to ∞, for m 6= n.



304 R. CARBONE, E. SASSO AND V. UMANITÀ

So that, for large times, the evolution of states becomes essentially described by
diagonal matrices with respect to a privileged bases. Rebolledo proposed in [21]
an alternative mathematical definition of decoherence which tries to catch this
aspect.

The previous result assures that, ifM = B(h), N (T ) = C1l and there exists
a faithful normal invariant state, then EID implies the loss of coherences, in the
sense explained above, and the privileged basis is determined by the invariant
state.

Finally, when there exists a faithful normal invariant state, different authors
(see [3] and [17]) have already underlined that it is natural to study the relation
of EID with the so called Jacobs–DeLeeuw–Glicksberg splitting (see in particular
Corollary 3.3 and Propositions 3.3 and 3.6 in [17]).

THEOREM 1.20 (Jacobs–DeLeeuw–Glicksberg splitting). If there exists a faith-
ful normal invariant state ω, then

V0 := span w∗{x ∈ M : ∃ λ ∈ R such that Tt(x) = eiλt ∀ t > 0}

is a von Neumann subalgebra ofM and we haveM = V0 ⊕Ms with

Ms := {x ∈ M : 0 ∈ {Tt(x)}w∗

t>0}

a weak* Banach subspace which is ∗-invariant and Tt invariant.
Moreover, the action of every Tt on V0 is a ∗-automorphism, and V0 is the image of

a normal conditional expectation Q compatible with ω.
Finally, when V0 = N (T ) we have Ms =M0.

In the case we have studied, also this aspect is now clear.

COROLLARY 1.21. If N (T ) ⊂ F (T ) and the semigroup has a faithful normal
invariant state, then N (T ) = V0 and Ms = M0, so EID and Jacobs–DeLeeuw–
Glicksberg decompositions coincide. In particular, the conditional expectation Q appear-
ing in Theorem 1.20 is the orthogonal projection onto N (T ) with respect to the scalar
product induced by the faithful invariant state.

Proof. Since there is a faithful normal invariant state, we haveF (T ) ⊂ V0 ⊂
N (T ), and these three spaces have to coincide by the assumptionN (T ) ⊂ F (T ).
Moreover, Theorem 1.17 assures EID withM2 =M0. Finally, the equality Ms =
M0 =M2 follows by Theorem 1.20, since in general we haveM0 ⊂Ms.

2. MINIMAL QUANTUM DYNAMICAL SEMIGROUPS

In this section, we describe some cases when our results can be easily ap-
plied. The class of uniformly continuous semigroups is already interesting, but
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it is sometimes too small for the applications in quantum probability and math-
ematical physics: in general, the generator L can be given formally in a “gen-
eralized” Lindblad form with unbounded operators G and (Lk)k (see formulas
before). In this case, under some assumptions, it is possible to define a quan-
tum dynamical semigroup associated with L and called minimal QDS. For these
QDSs, with possibly unbounded generator, we recall the essential definitions and
some results, in particular about the characterization of the space N (T ) starting
from the canonical form of the generator. This is obviously a central point here,
because the results of the previous section are based on certain assumptions on
N (T ), so it is crucial that we can have a way to determine this space.

Following the construction given by Fagnola in [11], let G and (Lk)k>1 be
operators in h satisfying the following hypothesis (by D(G) we denote the do-
main of G and similarly for other operators):

(H-1) G is the infinitesimal generator of a strongly continuous contraction semi-
group in h, D(G) ⊂ D(Lk) for all k > 1, and for all v, u ∈ D(G),

〈v, Gu〉+ ∑
k>1
〈Lkv, Lku〉+ 〈Gv, u〉 = 0.

For each x ∈ B(h) we define the sesquilinear form L(x) in h with domain D(G)×
D(G) by setting

(2.1) L(x)(v, u) = 〈v, xGu〉+ ∑
k>1
〈Lkv, xLku〉+ 〈Gv, xu〉.

If (H-1) holds, then there exists a minimal QDS (T (min)
t )t>0 on B(h) that is sub-

Markov (i.e. T (min)
t (1l) 6 1l) and such that:

(2.2) 〈v, T (min)
t (x)u〉 = 〈v, xu〉+

t∫
0

L(T (min)
s (x))(v, u)ds ∀ v, u ∈ D(G).

In addition, if T (min) is Markov, then the following facts hold:

(i) T (min) is the unique QDS on B(h) satisfying (2.2).
(ii) The domain of the infinitesimal generator L(min) of T (min) is given by all

elements x ∈ B(h) such that the sesquilinear form (v, u) 7→ L(x)(v, u) is norm
continuous on D(G)×D(G). In this case, we have 〈v,L(x)u〉 = L(x)(v, u) for all
x ∈ D(L) and (v, u) ∈ D(G)×D(G).

For a QMS on B(h) with an unbounded generator represented in the gen-
eralized canonical form (2.1), it is possible to obtain a characterization of N (T )
based on the generalized commutator of the set

(2.3) D(T ) := {e−itH LkeitH , e−itH L∗k eitH : k > 1, t > 0},

where H is the Hamiltonian of the system, i.e. the operator defined by Hu :=
(i/2)(Gu− G∗u) for u ∈ D(G) ∩D(G∗).
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But the sole hypothesis (H-1) is not sufficient to make sense of the operators
e−itH LkeitH , so, following [9], we shall also assume that

(H-2) there exists a linear manifold D dense in h, D ⊂ D(G) ∩D(G∗), which is a
core for G and

(i) Lk is closed and D is a core for every Lk,
(ii) H is essentially self-adjoint on D and the unitary group (eitH)t∈R

generated by iH satisfies eitH(D) ⊂ D(G) for all t ∈ R,
(iii) the operator G0 given by G0u = (Gu + G∗u)/2 for u ∈ D, is essen-

tially self-adjoint and D(G) ⊂ D(G0) ⊂ D(Lk) for every k > 1.

THEOREM 2.1 ([9], Theorem 3.2). Let T be the minimal QDS associated with
the operators G and Lk satisfying (H-1) and (H-2). If T is Markov, then we have

Tt(x) = eitHxe−itH ∀ x ∈ N (T ).

In particular, N (T ) is contained in the generalized commutator of D(T ).
From this theorem and Proposition 1.3, we immediately deduce

COROLLARY 2.2. Suppose all the assumptions of previous theorem hold, then
N (T ) is the biggest von Neumann subalgebra of B(h) on which T acts as a ∗-automor-
phism.

Always in [9], it is proved that really equality N (T ) = D(T )′ holds under
some additional assumptions. We do not write the technical details here since we
shall not need this result.

2.1. TWO-PHOTON ABSORPTION AND EMISSION PROCESS. We choose the Hilbert
system space h= `2(N), the space of complex-valued square summable sequences,
with canonical orthonormal basis (en)n>0. The usual annihilation and creation
operators a, a+ can then be defined by ae0 = 0, aen =

√
nen−1 for n > 1, a+en =√

n + 1en+1.
Here we consider the quantum Markov semigroup generated by the un-

bounded operator (which should be read as a bilinear form, as explained before)

L(x) = iκ[a+2a2, x]− µ2

2
(a+2a2x− 2a+2xa2 + xa+2a2)(2.4)

− λ2

2
(a2a+2x− 2a2xa+2 + xa2a+2)

where κ is a real constant and µ2 (respectively λ2) is the absorption (respectively
emission) rate, 0 < λ2 < µ2.

The generator (2.4) can be written in canonical form (2.1) with L1 = µa2,
L2 = λa+2 and Lk = 0 for k > 3. The associated operators H and G will then be
given by H = κa+2a2, G = −(1/2)∑ L∗k Lk − iH.

The associated process is called the two-photon absorption and emission process
when λ > 0, while, for λ = 0, we would obtain the two-photon absorption
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process, that we shall not consider here. We refer to [12] and references therein for
the construction of the quantum Markov semigroup T associated with the formal
generator (2.4) by the minimal semigroup method and the characterization of
invariant states. At positive temperature, i.e. λ > 0 (see [4]), there exist infinitely
many commuting invariant states ρα, α ∈ [0, 1], which are convex combinations
ρα = αρe + (1− α)ρo of the even and odd extremal invariant states

ρe = (1− ν2) ∑
k>0

ν2k|e2k〉〈e2k|, ρo = (1− ν2) ∑
k>0

ν2k|e2k+1〉〈e2k+1|, ν =
λ

µ
.

All these states are equilibrium (detailed balance) states and any initial state σ0
converges to an invariant state as time goes to infinity (essentially by an applica-
tion of the well-known Frigerio–Verri result but see always [12] for details).

We shall denote by pe and po the support projections of the invariant states
ρe and ρo, respectively, i.e.,

pe = ∑
k>0
|e2k〉〈e2k|, po = ∑

k>0
|e2k+1〉〈e2k+1|.

PROPOSITION 2.3. The two-photon absorption and emission semigroup displays
decoherence with

M1 = N (T ) = F (T ) = span{pe, po},

M2 =M0 = N (T )⊥,ρ = {x ∈ M : tr(ρex) = tr(ρox) = 0},

where ρ is any invariant faithful state of the semigroup.

Proof. By [9], Subsection 5.1 and Corollary 3.1, for this model we have

span{pe, po} = D(T )′ = N (T ) ⊂ F (T ) = {H, L1, L2}′,

so F (T ) = {L1, L2}′ ⊂ D(T )′. Then the equality F (T ) = N (T ) easily follows.
Since the semigroup has an invariant faithful density ρ, it satisfies the condi-

tions of Theorem 1.17 and this implies EID withM1 = N (T ) andM2 =M0 =

N (T )⊥,ρ. Moreover, Remark 1.12 tells us thatM0 ⊂ N (T )⊥,ω for every invari-
ant state ω and so, here, in particularM0 = N (T )⊥,ρ ⊂ N (T )⊥,ρe ∩N (T )⊥,ρo .
But the last inclusion easily turns out to be an equality since we know that ρ =
ρα = αρe + (1− α)ρo for some α ∈ (0, 1) and

x ∈ N (T )⊥,ρe ∩N (T )⊥,ρo ⇔ tr(ρe pex) = tr(ρe pox) = tr(ρo pex) = tr(ρo pox) = 0

⇔ tr(ρex) = tr(ρox) = 0,

where the last equivalence follows by the fact that ρk pk = ρk and ρk pj = 0 for k 6=
j, k, j ∈ {o, e}. Then, for x ∈ N (T )⊥,ρe ∩ N (T )⊥,ρo and k ∈ {o, e}, tr(ρpkx) =

αtr(ρe pkx) + (1− α)tr(ρo pkx) = 0, so x ∈ N (T )⊥,ρ. We deduce

M2 =M0 = N (T )⊥,ρ = {x ∈ M : tr(ρex) = tr(ρox) = 0}.
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Moreover, in this case, we can state further that decoherence takes place
with exponential speed since the action of the semigroup on the setM2 of non-
detectable observables converges to 0 uniformly exponentially fast in a suitable
L2 norm induced by an invariant faithful state of the system, i.e. we have a spec-
tral gap inequality (see [4]).

REMARK 2.4. In relation with Remark 1.14, we can underline that, in this
two-photon absorption and emission process, the normal conditional expectation
E onto N (T ) compatible with ρα (given by Theorem 1.17) is such that Ker E 6=
Ker ρα. Indeed, if we consider

x = |e0〉〈e0| − α(1− α)−1|e1〉〈e1|,

then we have tr(ραx) = 0 (i.e. x belongs to the kernel of the normal state defined
by ρα) but tr(ρα pex) = α(1− ν2) 6= 0, i.e. x 6∈ N (T )⊥,ρα = Ker E .

2.2. GENERIC SEMIGROUPS. Take again h = l2(N) andM = B(h), with (en)n the
canonical orthonormal basis of h as in the previous example. We consider a class
of form generators which can be represented in the generalized canonical form

L(x) = G∗x + ∑
{j,m∈N|j 6=m}

L∗mjxLmj + xG

where

G = − ∑
m∈N

(
− γmm

2
+ iκm

)
|em〉〈em|, Lmj =

√
γmj|ej〉〈em| for j 6= m,

with κm ∈ R and γmj > 0 for every m 6= j such that γmm := − ∑
j 6=m

γmj is finite for

any m.
Notice that the operators Lmj are bounded, so their domain coincide with h,

while G is not necessarily bounded, its domain is the set

D(G) =
{

u ∈ h : ∑
k
(γ2

mm + κ2
m)|um|2 < +∞

}
,

which is obviously dense in h since it contains all the sequences with a finite
number of non-zero elements. Anyway hypothesis (H-1) is always verified for
these forms. So, by using the standard techniques described at the beginning
of this section, we can introduce an operator L that generates a minimal QDS
T = T (min) associated with the form L. Moreover, if we call D the algebra of
diagonal bounded operators, we have that Tt(D) ⊂ D and the restriction of the
generator L to D is completely described by the classical minimal sub-Markov
generator Γ defined on l∞(N) by (see [5])

Γ f = ∑
j,k∈N

γkj f (j)ek.

In particular, T is Markov if and only if the classical process generated by Γ is
conservative.
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Notice that also hypothesis (H-2) is verified, for instance taking D = D(G),
which is a core for H and G0 in this case.

We address the semigroups of this form as generic semigroups after the
definition introduced by Accardi and Kozyrev in [1] (even if the semigroups de-
scribed here are a generalization of their original family). In this class, we de-
termine a subset of semigroups without normal faithful invariant states and dis-
playing decoherence.

PROPOSITION 2.5. Suppose that the classical process associated with Γ is conser-
vative and has the set {0} as an absorbing class and an attractor; moreover, assume
inf
k>1
|γkk| > 0. Then the associated QMS T has the unique normal invariant state

ρ = |e0〉〈e0| and displays decoherence with

M1 = N (T ) = C1l, M2 =M0 = {x ∈ M : tr(ρx) = 0}.
By {0} absorbing state we mean that P{Xt = 0|X0 = 0} = 1 for all t > 0; by

{0} attractor we mean that the set {0} is visited infinitely often starting from any
initial measure, i.e., in this case, lim

t
P{Xt = 0|X0 ∼ π} = 1 for any probability

measure π on N. We can obtain a generator Γ satisfying the conditions of the
theorem for instance by choosing

γ00 = 0, γj,j+1 = a and γj,j−1 = b ∀j > 1, γjk = 0 for |j− k| > 2

with 0 < a < b constants.

Proof. First we want to determine the normal invariant states of the semi-
group. Notice that, for l 6= n, |el〉〈en| is in the domain of the generator, since T is
Markov and so we can use the characterization of the domain of L recalled at the
beginning of this section. We can compute

L(|el〉〈en|) =
(γll + γnn

2
+ i(κl − κn)

)
|el〉〈en|.

Now, if ρ is an invariant state, then

0 = tr(ρL(|el〉〈en|)) =
(γll + γnn

2
+ i(κl − κn)

)
ρnl for l 6= n.

This implies ρ is diagonal, because, if, by contradiction, ρnl 6= 0 for l 6= n, we
obtain γll = γnn = 0 and this is not possible since inf

k>1
|γkk| > 0.

Consequently any invariant state ρ is diagonal, ρ = ∑ ρk|ek〉〈ek|, and the in-
variance property is fulfilled if and only if the vector (ρk)k is an invariant density
for the classical process, i.e. if and only if ∑

k
ρkγkj = 0 for any j. But, since the

class {0} is an attractor, the unique invariant measure for the classical process is
the Dirac measure concentrated in {0}. So ρ = |e0〉〈e0| is the unique invariant
state for the quantum semigroup.

The second step is proving thatN (T ) = C1l. Since we have already noticed
that conditions (H-1) and (H-2) are verified, by Theorem 2.1 we get N (T ) ⊂



310 R. CARBONE, E. SASSO AND V. UMANITÀ

D(T )′. We prove that D(T )′ = C1l and so N (T ) = C1l. D(T ) contains all
elements |ej〉〈em| with j 6= m and (γjm ∨ γmj) > 0, so, take x ∈ B(h), n 6= m and
γnm 6= 0, we have

[Lnm, x] = 0⇔∑
jk

xjk(δmj|en〉〈ek| − δkn|ej〉〈em|) = 0

⇔∑
k

xmk|en〉〈ek| −∑
j

xjn|ej〉〈em| = 0

⇔


xmk = 0 for k 6= m,
xjn = 0 for j 6= n,
xmm = xnn.

Now we look at the classical process: since {0} is an attractor, we have that,
for any state k, there exist an integer n > 1 and some states l1, . . . , ln such that
γkl1 γl1l2 · · · γln0 > 0. So, for x ∈ B(h), xkk = xl1l1 = · · · = x00 and xjk = 0 for
j 6= k. Therefore any x in D(T )′ has to be a multiple of the identity.

We still have to prove EID. Thanks to Theorem 1.15, it is enough to show
that (Tt(x))t>0 weakly* converges to 0 for all x in the kernel of the invariant state,
i.e. for all x ∈ B(h) such that tr(|e0〉〈e0|x) = x00 = 0. So, take such an element x
and write it as x = y + z with

y = ∑
j>1

xjj|ej〉〈ej|, z = ∑
{j,m∈N:j 6=m}

xjm|ej〉〈em|.

We prove that w∗-lim
t
Tt(y) = w∗-lim

t
Tt(z) = 0.

Given the trace class operator σ = |em〉〈ej|, then

|tr(σTt(z))| = xjm exp(t(γmm + γjj)/2 + it(κj − κm))|

6 e− infj>1 |γjj |(t/2)|xjm| → 0 as t→ ∞.

For the diagonal part y, we want to exploit the ergodic properties of the classical
Markov associated process, say (Xt)t, with generator Γ. Call f : N → C the
bounded function defined by f (n) = xnn, and restrict to consider initially only
positive σ with normalized trace; then

tr(σTt(y)) = E[ f (Xt)|X0 ∼ π],

where π is the law on N defined by π({k}) = 〈ek, σek〉. Since {0} is an attractor
and x00 = 0 implies that f (0) = 0, we have

|tr(σTt(y))| = |E[ f (Xt)|X0 ∼ π]| 6 ‖ f ‖∞P{Xt 6= 0|X0 ∼ π} → 0.

We can then conclude that EID holds with M1 = C1l and M2 = M0 = {x ∈
B(h) : x00 = 0}.

However, we underline that the uniqueness of the invariant state and trivi-
ality of N (T ) do not assure EID, as the following example shows.
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EXAMPLE 2.6. Consider a generic QMS associated with a Γ which is the
generator of a classical birth and death process with rates

γ00 = 0, γj,j+1 = a and γj,j−1 = b ∀j > 1, γjk = 0 for |j− k| > 2,

now with 0 < b < a constants. Here {0} is an absorbing class and is accessible
from any other state, but it is no more an attractor, while the set {k, k > 1} is
a transient class as before. Similarly as in previous proposition, we can prove
that N (T ) = C1l and that ρ = |e0〉〈e0| is the unique normal invariant state of
the semigroup. But EID does not hold: we can proceed as in the previous proof,
but the conclusion will be different for the action of the semigroup on diagonal
elements, since the classical Markov process, starting from a transient state, will
display a propensity to escape to infinity.
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