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ABSTRACT. We prove some new characterisations of honesty of the perturbed
semigroup in Kato’s perturbation theorem on abstract state spaces via three
approaches, namely using the mean ergodicity of operators, adjoint operators
and the uniqueness of the perturbed semigroup. We then apply Kato’s theo-
rem on abstract state spaces and the honesty theory linked to it to the study of
quantum dynamical semigroups. We show that honesty is the natural gener-
alisation of the notion of conservativity.
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INTRODUCTION

This paper originates from a perturbation theorem for substochastic semi-
groups (positive semigroups which are contractive on the positive cone) which
is known as Kato’s perturbation theorem [4], [14]. The main idea in Kato’s orig-
inal work in [14] tells us that if A is the generator of a substochastic semigroup
on L1 and B is a positive operator satisfying certain conditions, then there is an
extension G of A + B that generates a perturbed substochastic semigroup. Al-
though this theorem is useful as a generation result, with applications in various
problems such as birth and death problems [14], fragmentation problems [3] and
transport equations [2], [24], (see Chapters 7–10 of [5] for a survey of the results),
our interest in this theorem lies mainly in the honesty theory derived from it.

Honesty is a property of the perturbed semigroup in Kato’s theorem. We
will give the precise technical definition of honesty in Section 1; for now, it suffices
to think of honesty theory as the study of the consistency between the perturbed
semigroup and the system it describes in the following sense: A substochastic
semigroup in L1 is often used to model the time evolution of some quantity. The
nature of the modelled process often requires that the described quantity should
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be preserved, i.e. the semigroup describing the evolution is conservative (sto-
chastic). However, in some cases, the semigroup turns out not to be conservative
even though the modelled system should have this property. This phenomenon
is what we will call dishonesty. For a system modelled by a strictly substochastic
semigroup, we have a loss term representing the loss due to the system. Dishon-
esty in this case would mean that the described quantity is lost from the system
faster than predicted by the loss term.

Apart from consistency with the system, honesty of the semigroup is also in-
teresting from a purely mathematical point of view. It is a well-known result ([5],
Theorem 6.13; [18], Remark 1.7; [4], Theorem 2.1) that honesty of the semigroup
is equivalent to its generator G being precisely equal to A + B (Kato’s theorem
tells us G ⊇ A + B). Thus honesty characterises when a core of A + B is also a
core of G.

The honesty of the perturbed semigroup in Kato’s theorem on L1 has been
extensively studied, with results going back to Kato’s seminal paper [14] where
Kato studied the stochasticity of the perturbed semigroup on `1. Other early
results include [2] and [24]. More recently, Voigt and Mokhtar-Kharroubi in [18],
introduced a more systematic approach to studying the problem on L1, that is, via
functionals involving the resolvents of generators. Note that an important area
in the study of honesty involves identifying characterisations of honesty which
can then be used to determine if a semigroup in a given setting is honest. This
follows naturally since the honest semigroups are the consistent semigroups.

In this paper, we are interested in a recent generalisation of Kato’s theo-
rem to abstract state spaces and the honesty theory linked to it. Abstract state
spaces are real ordered Banach spaces with norm additive on its generating pos-
itive cone. Examples of such spaces include preduals of von Neumann algebras,
or more generally, subspaces of duals of C∗-algebras. This generalisation was
proven by Arlotti, Lods and Mokhtar-Kharroubi in Theorem 2.1 of [4] (see also
the special case for the space of trace class operators in [17]). More significantly,
in Section 3 of [4], the authors also showed that earlier results in the honesty the-
ory of Kato’s theorem on L1 hold for the case of abstract state spaces as well by
generalising the functional approach involving resolvents. Furthermore, they in-
troduced an alternative approach to honesty using functionals which are defined
using the Dyson–Phillips series representation of the semigroup ([4], Section 4).

In Sections 2 and 3, we will introduce some new approaches to the study
of honesty in abstract state spaces. In particular we will present three new ap-
proaches to characterising honesty, namely a mean ergodic approach, an ap-
proach involving adjoint operators and finally, an approach involving uniqueness
of the perturbed semigroup in Kato’s theorem. The approach involving adjoint
operators will turn out important when considering the adjoint semigroup in ap-
plications as we will see in Section 5 while the approach involving uniqueness



HONESTY THEORY AND APPLICATIONS IN QUANTUM DYNAMICAL SEMIGROUPS 445

of the perturbed semigroup is tied to classical questions about the uniqueness of
solutions to Kolmogorov differential equations. Finally, we will also investigate
the preservation of honesty under the addition of a potential term.

In the second half of this paper, we will investigate an application of Kato’s
theorem on abstract state spaces in the study of quantum dynamical semigroups.
The development of Kato’s original theorem in [14] was inspired by the study
of classical Kolmogorov differential equations on `1, which are in turn linked
to the study of stochastic processes. The non-commutative analogue of stochas-
tic processes is linked to the study of quantum mechanics and is known as the
study of quantum stochastic processes or quantum flows. The counterpart to a
Markov process in the classical setting is a quantum Markov process while the
corresponding semigroups are known as quantum Markov semigroups or quan-
tum dynamical semigroups. The extension of Kato’s theorem to abstract state
spaces allows us to apply this theorem to this non-commutative setting as we
will demonstrate in Sections 4 and 5.

The link between Kato’s theorem (the original L1 version) and quantum dy-
namical semigroups has been known since the 1970s, when Davies in [9] showed
that the techniques used in Kato’s paper [14] could be used to show the existence
of a quantum dynamical semigroup satisfying certain conditions. More precisely,
the application of Kato’s theorem is restricted to the special class of quantum dy-
namical semigroups whose generators can be represented in Lindblad form (see
Definition 4.7). Although the relation to Kato’s theorem has been noted, the ac-
tual application of Kato’s theorem in abstract state spaces to quantum dynamical
semigroups has yet to be written up in the literature. We will do so in Section 4
as this setting will be utilised in Section 5. However, it should be noted that the
theory of quantum dynamical semigroups has largely developed independently
of Kato’s theorem, see for example [7], [8], [11], [12].

The application of Kato’s theorem in constructing quantum dynamical semi-
groups leads naturally to questions about the role of honesty for these semi-
groups. Note that although the relation with Kato’s theorem has long been identi-
fied, the link to honesty has yet to be established as honesty theory was developed
in a systematic manner much more recently. However, just like the commutative
case on L1, there is also a notion of conservativity of quantum dynamical semi-
groups that has been studied independently of honesty theory (see [7], [8], [11]
for example) and we will in fact, show that honesty is a generalisation of this no-
tion in Section 5. More precisely, we will show that previously known results for
the conservative case regarding domain characterisation and uniqueness of the
semigroup can be extended to the substochastic case via honesty theory. This ab-
stract approach to conservativity yields alternative proofs and new insights into
quantum dynamical semigroups.
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1. KATO’S THEOREM AND HONESTY THEORY IN ABSTRACT STATE SPACES

Let us begin by clarifying some terminology. Suppose X is an ordered Ba-
nach space with positive cone X+. We will often use 〈·, ·〉 to denote the duality
between X and its dual space X∗. If T is a linear operator on X, we will use T∗ to
denote its adjoint (dual) operator. We will also use ρ(T) to denote the resolvent
set of T, σ(T) to denote the spectrum of T and σp(T), σc(T), σr(T) to denote the
point, continuous and residual spectrum of T respectively.

We say that the linear operator T is positive if Tu ∈ X+ for all u ∈ X+. T
will be called substochastic (respectively stochastic) if T is positive and ‖Tx‖ 6
‖x‖ (respectively ‖Tx‖ = ‖x‖) for all x ∈ X+. A one-parameter semigroup of
operators (U(t))t>0 in X will be called substochastic (respectively stochastic) if
U(t) is substochastic (respectively stochastic) for all t > 0.

In this section, we will introduce Kato’s theorem and the honesty theory
related to it. We will be interested solely in the theory of honesty of Kato’s per-
turbation theorem in abstract state spaces.

An abstract state space is a real ordered Banach space, X, with a generating
positive cone, X+, on which the norm is additive, i.e. ‖u + v‖ = ‖u‖ + ‖v‖ for
all u, v ∈ X+. The additivity of the norm ensures that the norm is monotone i.e.
‖u‖ 6 ‖v‖ if 0 6 u 6 v. Moreover, the additivity of the norm and the generating
cone allow us to extend the norm on the positive cone to a linear functional on X
given by

(1.1) Ψ : X → R, 〈Ψ, u〉 = ‖u‖, u ∈ X+.

For these spaces, Arlotti et al. proved the following generalisation of Kato’s per-
turbation theorem.

THEOREM 1.1 ([4], Theorem 2.1). Suppose X is an abstract state space and the
operators A and B with D(A) ⊆ D(B) ⊆ X satisfy:

(i) A generates a substochastic semigroup (UA(t))t>0,
(ii) Bu > 0 for u ∈ D(A)+ := D(A) ∩ X+,

(iii) 〈Ψ, (A + B)u〉 6 0 for all u ∈ D(A)+.
Then there exists an extension G of A + B that generates a substochastic C0-

semigroup (V(t))t>0 on X. The generator G satisfies, for all λ > 0 and u ∈ X,

R(λ, G)u =
∞

∑
k=0

R(λ, A)(BR(λ, A))ku.

Moreover, (V(t))t>0 is the minimal substochastic C0-semigroup whose generator
is an extension of A + B in the following sense: if (Ṽ(t))t>0 is another substochastic
C0-semigroup whose generator is an extension of (A + B, D(A)), then V(t) 6 Ṽ(t) for
all t > 0.

Henceforth, we will refer to Theorem 1.1 as Kato’s theorem.
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We will discuss two previous approaches to the honesty theory of Kato’s
theorem as they will be required in the subsequent sections. We begin by intro-
ducing the functional approach involving resolvent operators from Section 3 of
[4]. Consider again the operators from Theorem 1.1. We are interested in the
functional

a0 : D(G)→ R, a0(u) = −〈Ψ, Gu〉.
Since (V(t))t>0 is substochastic, for u ∈ D(G)+, we have

〈Ψ, Gu〉 = lim
t→0

t−1〈Ψ, V(t)u− u〉 = lim
t→0

t−1(‖V(t)u‖ − ‖u‖) 6 0,

so a0 is positive on D(G). Moreover, from the definition, it is easy to see that a0 is
continuous on D(G) with respect to the graph norm. We denote the restriction of
a0 to D(A) by a, i.e.

(1.2) a0|D(A) = a : D(A)→ R, a(u) = −〈Ψ, Au + Bu〉.

We now use a to define our second functional. Fix λ > 0 and u ∈ X+.
Since the operators R(λ, A) and BR(λ, A) are positive, the sequence R(n)u :=

n
∑

k=0
R(λ, A)(BR(λ, A))ku, n∈N is non-decreasing and in fact, converges to R(λ, G)u.

Therefore, we have a(R(n)u) = a0(R(n)u) 6 a0(R(λ, G)u) for all n ∈ N, i.e.
(a(R(n)u))n is a bounded, monotone real sequence, which must then be conver-
gent. Taking u = u+ − u− ∈ X, u+, u− ∈ X+, we see that this convergence holds
for any u ∈ X. Therefore, we can define a new functional on D(G) by

aλ(R(λ, G)u) =
∞

∑
k=0

a(R(λ, A)(BR(λ, A))ku).

It can be shown ([4], Proposition 3.1) that aλ|D(A) = a and that the definition
of aλ is independent of λ. Thus we define a := aλ. From the inequality a(R(n)u) 6
a0(R(λ, G)u) for u ∈ X+, it follows that a(R(λ, G)u) 6 a0(R(λ, G)u). Hence, a is
continuous on D(G) with respect to the graph norm.

These two functionals now allow us to define a positive functional, ∆λ ∈ X∗

which will be key in characterising the honesty of the semigroup,

(1.3) 〈∆λ, u〉 = a0(R(λ, G)u)− a(R(λ, G)u), u ∈ X.

To see this, we need the technical definition of honesty as given in [4]. To
motivate the definition, consider the following: For any u ∈ X+ and any t > 0,

we have
t∫

0
V(s)u ds ∈ D(G) with V(t)u− u = G

t∫
0

V(s)u ds. Since the semigroup

is positive, we have

(1.4) ‖V(t)u‖ − ‖u‖ = −a0

( t∫
0

V(s)u ds
)

.

We define honesty to be the following:
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DEFINITION 1.2 ([4], Definition 3.8). The perturbed semigroup (V(t))t>0 in
Kato’s theorem is said to be honest if and only if

(1.5) ‖V(t)u‖ − ‖u‖ = −a
( t∫

0

V(s)u ds
)

for all t > 0, u ∈ X+.

Otherwise, the semigroup is said to be dishonest.

REMARK 1.3. Note that if equality holds in condition (iii) in Kato’s theo-
rem, then a = 0. Hence an honest semigroup in this case is simply a stochastic
semigroup.

Comparing (1.4) and (1.5), we see that (V(t))t>0 is honest if and only if

(1.6) a0

( t∫
0

V(s)u ds
)
= a

( t∫
0

V(s)u ds
)

for all t > 0, u ∈ X+.

Further calculations (see for example Theorem 3.11 of [4]) show that (1.6) holds
if and only if a0(R(λ, G)u) = a(R(λ, G)u) for some λ > 0. Therefore (V(t))t>0 is
honest if and only if ∆λ = 0, i.e. no loss occurs. This is precisely the equivalence
of (i) and (ii) in Theorem 1.4, which states some well-known characterisations of
honesty. The result as stated below, is a restatement of Theorem 3.5 in [4] and
Definition 1.2.

THEOREM 1.4. Suppose X is an abstract state space and A, B, (V(t))t>0 are as in
Kato’s theorem and λ > 0. The following are equivalent:

(i) (V(t))t>0 is honest.
(ii) ∆λ = 0.

(iii) lim
n→∞
‖[BR(λ, A)]nu‖ = 0 for all u ∈ X+.

(iv) G = A + B.

The second approach to honesty we will utilise is a spectral approach. The
spectral characterisation of honesty is based on Theorem 1.5 which is a general
result that is not merely restricted to the operators A, B satisfying the conditions
of Kato’s theorem.

THEOREM 1.5 ([5], Theorem 4.3). Let A, B be linear operators on a Banach space
X with D(A) ⊆ D(B). Suppose A + B has an extension G and Λ := ρ(A) ∩ ρ(G) 6=
∅. Then

(i) 1 /∈ σp(BR(λ, A)) for any λ ∈ Λ.
(ii) 1 ∈ ρ(BR(λ, A)) for some/all λ ∈ Λ if and only if D(G) = D(A) and G =

A + B.
(iii) 1 ∈ σc(BR(λ, A)) for some/all λ ∈ Λ if and only if D(G) ) D(A) and G =

A + B.
(iv) 1 ∈ σr(BR(λ, A)) for some/all λ ∈ Λ if and only if G ) A + B.
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We can use Theorem 1.5 to obtain some characterisations of honest semi-
groups. So henceforth, we will let A, B denote the operators in Kato’s theorem
unless stated otherwise. We begin with a simple but useful observation which
follows from the equality (λ− A− B)R(λ, A) = I − BR(λ, A) and the fact that
ker(T∗) is the annihilator of Im(T) for a densely defined linear operator T (see
also Lemma 3.1 of [20]).

LEMMA 1.6. For all λ > 0, Im(λ− A− B) = Im(I − BR(λ, A)) and ker(λ−
(A + B)∗) = ker(I − (BR(λ, A))∗).

From Theorems 1.4 and 1.5, we have that (V(t))t>0 is honest if and only
if 1 ∈ ρ(BR(λ, A)) ∪ σc(BR(λ, A)) for some λ > 0, which holds if and only if
Im(I − BR(λ, A)) is dense in X. Combining this with Lemma 1.6, we have:

PROPOSITION 1.7. Let X be an abstract state space and A, B, (V(t))t>0 be as in
Theorem 1.1. The semigroup (V(t))t>0 is honest if and only if either of the following
equivalent conditions hold:

(i) Im(λ− (A + B)) = Im(I − BR(λ, A)) is dense in X for some/all λ > 0.
(ii) ker(λ− (A + B)∗) = ker(I − (BR(λ, A))∗) = {0} for some/all λ > 0.

It is a well-known fact that when working with positive operators, it is gen-
erally sufficient to work in real spaces (see for example Example 2.87 of [5]) as
the theory on real spaces can be extended to complex spaces via the process of
complexification. This statement applies to Kato’s theorem and honesty theory
as well. However, it is sometimes more useful to apply the complex versions as
we will see in Sections 4 and 5. So let us briefly elaborate on this. In the rest of
this section, we let X be an abstract state space and A, B, G and (V(t))t>0 be as in
Theorem 1.1. We will use XC to denote the complexification of X and AC, BC, GC
and (VC(t))t>0 to denote the respective complexified operators.

By using the complexified forms of the functionals a0 and a, we can define
honesty in the complexification of abstract state spaces in terms of complex func-
tionals:

DEFINITION 1.8. The semigroup (VC(t))t>0 is said to be honest if and only if

‖VC(t)u‖C − ‖u‖C = −aC

( t∫
0

VC(s)u ds
)

for all t > 0, all u ∈ (XC)+.

Otherwise, the semigroup is said to be dishonest.

Using this definition of complex honesty, it can be shown that real honesty
is equivalent to complex honesty. Moreover, we can derive analogous charac-
terisations for complex honesty from real honesty, for example, the conditions
in Proposition 1.7 for the complex case would then hold for all λ ∈ C+ where
C+ := {λ ∈ C : Re(λ) > 0}.
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2. NEW CHARACTERISATIONS OF HONESTY THEORY

We prove some new characterisations of honesty in abstract state spaces.

2.1. HONESTY AND MEAN ERGODICITY. We begin by applying the mean ergodic
theorem to obtain a characterisation of honesty. The advantage of this approach
is that it allows us to characterise not only when the semigroup is honest but also
characterise the exact form of the generator when it is honest. More precisely, we
can find conditions which differentiate when the generator G = A + B and when
G = A + B.

We begin by noting that the operator BR(λ, A) is substochastic and hence,
is power bounded. This follows from the inequality 〈Ψ, (A + B)R(λ, A)u〉 =
λ‖R(λ, A)u‖ − ‖u‖ + ‖BR(λ, A)u‖ 6 0 for u ∈ X+. Now we can prove the
following characterisation of honesty:

THEOREM 2.1. Let X be an abstract state space and suppose A, B, (V(t))t>0 are
as in Theorem 1.1. Then the semigroup (V(t))t>0 is honest if and only if BR(λ, A)
is mean ergodic for some λ > 0. Moreover, the generator G = A + B if and only if
BR(λ, A) is uniformly ergodic.

Proof. Fix λ > 0. Since BR(λ, A) is power-bounded, BR(λ, A) is Cesáro
bounded and lim

n→∞
1
n‖(BR(λ, A))nu‖ = 0 for all u ∈ X. Moreover, Theorem 1.5

tells us that ker(I − BR(λ, A)) = {0}. Hence by the mean ergodic theorem ([16],
Theorem 2.1.3) the mean ergodicity of BR(λ, A) is equivalent to the condition
X = Im(I − BR(λ, A)). Applying Proposition 1.7, it follows that BR(λ, A) is
mean ergodic if and only if (V(t))t>0 is honest.

To prove the second assertion, we use the uniform ergodic theorem. Since
BR(λ, A) is power bounded, it satisfies the condition lim

n→∞
1
n‖(BR(λ, A))n‖ = 0.

Hence by the uniform ergodic theorem ([16], Theorem 2.2.1) and the fact that
ker(I− BR(λ, A)) = {0}, it follows that BR(λ, A) is uniformly ergodic if and only
if Im(I − BR(λ, A)) = X. But Im(I − BR(λ, A)) = X if and only if I − BR(λ, A)
is invertible (as ker(I − BR(λ, A)) = {0}). Hence by Theorem 1.5, it follows that
G = A + B if and only if BR(λ, A) is uniformly ergodic.

The mean ergodic characterisation given in Theorem 2.1 is motivated by
some results of Tyran-Kamińska in [20] and [21]. In [20], Tyran-Kamińska proves
some generation theorems in the abstract setting of a general Banach space where
the operator A + B is dissipative and the generated semigroup is contractive,
using a mean ergodic approach. In particular, in Theorem 1.3 of [20] she proves
a generation theorem for an honest semigroup in a variant of Kato’s theorem on
real Banach lattices under the additional condition that BR(λ, A) is mean ergodic.
In Theorem 3.4 of [21] on the other hand, she proves that the perturbed semigroup
in Kato’s original theorem in L1 (satisfying condition (iii) in Theorem 1.1 with
equality) is stochastic if and only if BR(λ, A) is mean ergodic.
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2.2. HONESTY AND ADJOINT OPERATORS. Next, we give a characterisation for
honesty based on adjoint operators. The spectral characterisation in Theorem 1.5
and Proposition 1.7 showed that honesty of the semigroup is related to the exis-
tence of eigenvectors of (BR(λ, A))∗ and (A + B)∗. The following result tells us
that it suffices to consider the existence of positive subeigenvectors of (BR(λ, A))∗

and (A + B)∗ instead of eigenvectors.

THEOREM 2.2. Let X be an abstract state space and suppose A, B, (V(t))t>0 are
as in Theorem 1.1. Fix λ > 0. The following are equivalent:

(i) (V(t))t>0 is dishonest.
(ii) There exists fλ ∈ X∗\{0} such that ((BR(λ, A))∗n fλ) is weak∗-convergent and

w*-limn→∞(BR(λ, A))∗n fλ 6= 0.
(iii) There exists fλ ∈ X∗+\{0} such that ((BR(λ, A))∗n fλ) is weak∗-convergent and

w*-limn→∞(BR(λ, A))∗n fλ 6= 0.
(iv) There exists fλ ∈ X∗+\{0} such that (BR(λ, A))∗ fλ > fλ.
(v) There exists fλ ∈ X∗+\{0} such that (A + B)∗ fλ > λ fλ.

(vi) There exists fλ ∈ X∗+\{0} such that (A + B)∗ fλ = λ fλ.
(vii) There exists fλ ∈ X∗\{0} such that (A + B)∗ fλ = λ fλ.

Proof. (i)⇔ (vii) follows directly from Proposition 1.7(ii). (i)⇒ (vi) because
∆λ ∈ ker(I − (BR(λ, A))∗) = ker(λ− (A + B)∗) ([4], Theorem 3.24) and dishon-
esty of the semigroup implies ∆λ 6= 0. (vi) ⇒ (v) is obvious. To show (v) ⇒
(iv), note that BR(λ, A) − I = (A + B − λ)R(λ, A). Hence (BR(λ, A))∗ − I ⊇
R(λ, A∗)((A + B)∗)− λ). Since R(λ, A∗) is a positive operator, it follows that (v)
⇒ (iv).

To show (iv) ⇒ (iii), we first note that (BR(λ, A))∗ is a power bounded
operator as BR(λ, A) is. Moreover, (iv) and the positivity of (BR(λ, A))∗ implies
that for all u ∈ X+, 〈(BR(λ, A))∗n fλ, u〉 > 〈(BR(λ, A))∗(n−1) fλ, u〉 for all n ∈ N.
Hence {〈(BR(λ, A))∗n fλ, u〉} is a monotonically increasing sequence in R which
is bounded above, hence converges. Since the sequence is bounded below by
〈 fλ, u〉 and fλ 6= 0, it converges to a non-zero element. Since this holds for all
u ∈ X+ and X+ is generating, w*-lim(BR(λ, A))∗n fλ exists and is non-zero.

The implication (iii) ⇒ (ii) is clear. It only remains to show (ii) ⇒ (i). Let
F := w*-lim(BR(λ, A))∗n fλ and Fn := (BR(λ, A))∗n fλ, n ∈ N. Take u ∈ X. Then

〈Fn, u〉 = 〈(BR(λ, A))∗Fn−1, u〉 = 〈Fn−1, BR(λ, A)u〉.
Letting n → ∞, we have that 〈F, u〉 = 〈F, BR(λ, A)u〉 = 〈(BR(λ, A))∗F, u〉, i.e.
(I − (BR(λ, A))∗)F = 0. Thus by Proposition 1.7(ii), (V(t))t>0 is dishonest.

2.3. HONESTY AND UNIQUENESS OF THE KATO SEMIGROUP. The final character-
isation of honesty that we present is based on the uniqueness of the perturbed
semigroup in Kato’s theorem. Recall from Theorem 1.1 that the generator G of
the perturbed semigroup in Kato’s theorem is an extension of A + B. It turns out
that the Kato semigroup is the unique substochastic semigroup generated by an
extension of A + B if and only if the Kato semigroup is honest. More precisely,
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THEOREM 2.3. Let X be an abstract state space and suppose A, B satisfy the con-
ditions of Theorem 1.1 with perturbed semigroup (V(t))t>0 and generator G.

(i) If (V(t))t>0 is honest, then (V(t))t>0 is the unique (substochastic) semigroup
whose generator is an extension of A + B.

(ii) If (V(t))t>0 is dishonest, then there are infinitely many substochastic semigroups
whose generators are extensions of A + B.

We will require a few generation results for substochastic semigroups in or-
der to prove Theorem 2.3. The first result is a version of the Hille–Yosida theorem
for substochastic semigroups which can be proven in essentially the same way,
only with additional positivity constraints.

LEMMA 2.4. Let X be an ordered Banach space. An operator A on X with dense
domain generates a substochastic (respectively stochastic) semigroup if and only if for
every λ > 0, A has a resolvent R(λ, A) with domain X and λR(λ, A) is a substochastic
(respectively stochastic) operator.

Using this lemma, we can derive another generation result for substochastic
semigroups on abstract state spaces.

LEMMA 2.5. Let X be an abstract state space. A linear operator A with dense
domain generates a substochastic (respectively stochastic) semigroup on X if and only if

(i) 〈Ψ, Au〉 6 0 (= 0) for all u ∈ D(A)+, and
(ii) for each λ > 0 and u ∈ X, the equation

(2.1) λv− Av = u

has a unique solution v = R(λ, A)u ∈ D(A) and R(λ, A)u ∈ X+ for all u ∈ X+.

Proof. The necessity follows directly from Lemma 2.4 and the fact that if A
generates a substochastic semigroup (T(t))t>0, then for u ∈ D(A)+,

〈Ψ, Au〉 = lim
t→0

〈
Ψ,

T(t)u− u
t

〉
= lim

t→0

1
t
(‖T(t)u‖ − ‖u‖) 6 0.

The sufficiency follows since for u ∈ X+ and λ > 0, we have 〈Ψ, λR(λ, A)u〉 =
〈Ψ, u〉+ 〈Ψ, AR(λ, A)u〉 6 〈Ψ, u〉 i.e. ‖λR(λ, A)u‖ 6 ‖u‖. Hence by Lemma 2.4,
A generates a substochastic semigroup.

Proof of Theorem 2.3. To prove (i), let (Ṽ(t))t>0 be another substochastic semi-
group with generator G̃ ⊃ A+ B. Then (A+ B)∗ ⊃ G̃∗. Since (V(t))t>0 is honest,
A + B = G, i.e. (A + B)∗ = G∗ and so (A + B)∗ generates an adjoint semigroup.
Since (A + B)∗ and G̃∗ both generate adjoint semigroups, it follows that G̃∗ =

(A + B)∗ = G∗. Thus for λ > 0, R(λ, G̃)∗ = R(λ, G)∗ and so R(λ, G) = R(λ, G̃).
Therefore, by the Post–Widder inversion formula, Ṽ(t) = V(t) for all t > 0, so
(V(t))t>0 is unique.

To prove (ii), we will construct an infinite set of substochastic semigroups
whose generators are extensions of A + B. Fix u0 ∈ X+\{0} such that ‖u0‖ 6 1.
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Define G̃ by

(2.2) G̃u = Gu + (a0 − a)(u)u0, u ∈ D(G̃).

Then G̃ has domain D(G) and for u ∈ D(A + B) = D(A), we have G̃u = Gu =

(A + B)u since a0|D(A) = a = a|D(A). Hence, G̃ is an extension of A + B. It
remains to show that G̃ generates a substochastic semigroup. To do so, we check
that G̃ satisfies Lemma 2.5. Condition (i) is satisfied since for all u ∈ D(G)+,

〈Ψ, G̃u〉 = 〈Ψ, Gu〉+ (a0 − a)(u)〈Ψ, u0〉 = −a0(u)(1− ‖u0‖)− a(u)‖u0‖ 6 0

as a0, a are positive functionals and ‖u0‖ 6 1. To show that condition (ii) is satis-
fied, substitute G̃ into (2.1) to get

(2.3) (λ− G)v + (a− a0)(v)u0 = u.

Applying R(λ, G) to both sides and rearranging, we have

(2.4) v = R(λ, G)u + αuR(λ, G)u0

where αu is some constant depending on u.
To see that αu is unique for every u, substitute (2.4) into (2.3). Then u0 6= 0

implies
αu(1 + (a− a0)(R(λ, G)u0)) = (a0 − a)(R(λ, G)u).

Now consider the coefficient of αu. By the definition of a0 we have

1 + (a− a0)(R(λ, G)u0) = 1 + a(R(λ, G)u0) + 〈Ψ, λR(λ, G)u0 − u0〉
= 1− ‖u0‖+ ‖λR(λ, G)u0‖+ a(R(λ, G)u0)

which is strictly positive since ‖u0‖ 6 1, a is positive, u0 ∈ X+\{0} and R(λ, G)
is injective. Therefore αu exists and is unique for each u ∈ X. Moreover, αu > 0 if
u ∈ X+ because a0 > a. Hence, the solution v in (2.4) to (2.1) is unique and more-
over, positive if u ∈ X+, and so condition (ii) of Lemma 2.5 is satisfied. Therefore
G̃ generates a substochastic semigroup. Since u0 was an arbitrary positive ele-
ment with ‖u0‖ 6 1, it follows that we can construct infinitely many semigroups
of this form by varying u0.

The proof above shows that if (V(t))t>0 is dishonest and X is not one-
dimensional, there are in fact infinitely many substochastic semigroups (Ṽ(t))t>0

with generator G̃ ⊃ A + B whose loss is “minimal" in the sense

(2.5) ‖Ṽ(t)u‖ − ‖u‖ = −a
( t∫

0

Ṽ(s)u ds
)

for all u ∈ X+.

To see this, observe that (2.2) can be rewritten as

G̃u = Gu− 〈Ψ, Gu〉u0 − a(u)u0 for all u ∈ D(G)
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where ‖u0‖ 6 1, u0 ∈ X+\{0}. Taking u0 satisfying ‖u0‖ = 1, we have for all
u ∈ D(G),

〈Ψ, G̃u〉 = (1− ‖u0‖)〈Ψ, Gu〉 − a(u)‖u0‖ = −a(u)

and so it follows that (2.5) holds.
Theorem 2.3 is a generalisation of Theorem 6 in [19] where Reuter was inter-

ested in uniqueness of solutions to the backward Kolmogorov differential equa-
tions. As Kato’s theorem originated from studying solutions to Kolmogorov dif-
ferential equations, it is unsurprising that we have an analogous result regarding
the uniqueness of solutions in Kato’s setting too.

3. HONESTY AND POTENTIALS

In the study of semigroup properties, one is often interested in the preser-
vation of the properties under modifications to the semigroup. In this section,
we look at the preservation of honesty of the perturbed Kato semigroup under
another class of perturbations, namely the addition of an absorption term.

An absorption or potential term is a common term which occurs in differ-
ential equations which model dynamical systems. In semigroup language, this
is often phrased in terms of adding, or more precisely, taking away a (positive)
potential term from the generator of the original semigroup. An example of this
can be seen in the transport equation studied in Section 3 of [24] (see also Ex-
ample 3.3). The transport operator T := T0 − h where T0 is the free-streaming
operator and 0 6 h is the absorption term. In this case, the free-streaming oper-
ator generates the original semigroup (U(t))t>0 while T0 − h generates the new
absorption semigroup, (Uh(t))t>0. Note that the relation Uh(t) 6 U(t) holds for
all t > 0 as h is positive. Other examples where absorption terms occur include
piecewise deterministic Markov processes [21] and the heat equation on graphs
[15], [25]. Thus in this section, we study conditions which ensure that the honesty
or dishonesty of the original semigroup is retained by the absorption semigroup.

PROPOSITION 3.1. Let X be an abstract state space and suppose A, B satisfy the
conditions of Kato’s theorem with honest perturbed semigroup (V(t))t>0. Let K be a
positive operator such that there is an extension AK of (A − K, D(A) ∩ D(K)) that
generates a substochastic semigroup and AK, B also satisfy Kato’s theorem with perturbed
semigroup (VK(t))t>0. If (D(A)∩D(K))+ is dense in the graph norm in D(A)+, then
(VK(t))t>0 is also honest.

Proof. Let S := (λ − A)(D(A) ∩ D(K))+. Elementary calculations show
that if (D(A) ∩ D(K))+ is dense in D(A)+, then S is dense in X+.

Let v ∈ S. Then

(R(λ, A)− R(λ, AK))v

= R(λ, AK)(λ− AK − (λ− A))R(λ, A)v
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= R(λ, AK)(λ− A + K− (λ− A))R(λ, A)v (as R(λ, A)v ∈ (D(A) ∩ D(K))+)

= R(λ, AK)KR(λ, A)v > 0.

Since S is dense in X+, R(λ, A), R(λ, AK) are bounded and X+ is closed, it fol-
lows that R(λ, AK) 6 R(λ, A). Hence BR(λ, AK) 6 BR(λ, A) and iterating,
(BR(λ, AK))

n 6 (BR(λ, A))n. The result now follows by Theorem 1.4(iii).

If K is a bounded positive operator such that A− K generates a substochas-
tic semigroup and A, B satisfy Kato’s theorem, then A− K, B also satisfy Kato’s
theorem since 〈Ψ, (A−K + B)x〉 = 〈Ψ, (A+ B)x〉 − 〈K, x〉 6 0 for all x ∈ D(A)+.
We will denote the perturbed semigroup by (VK(t))t>0. Proposition 3.1 tells us
that honesty is retained even after adding a bounded potential term to the gener-
ator. It turns out that in this case, dishonesty is retained as well:

PROPOSITION 3.2. Let X be an abstract state space and suppose A, B satisfy the
conditions of Kato’s theorem with dishonest perturbed semigroup (V(t))t>0. Let K be a
bounded positive operator such that A − K generates a substochastic semigroup. Then
the perturbed semigroup (VK(t))t>0 is also dishonest.

Proof. Theorem 2.3(ii) implies that there are infinitely many extensions Gα

of A + B which generate substochastic semigroups. Since K is bounded, Gα − K
also generates a semigroup for each α. Moreover, since Gα ⊇ A + B and K is
bounded, it follows that Gα − K ⊇ A− K + B. Hence there exist infinitely many
semigroups whose generators are extensions of A − K + B. So by Theorem 2.3,
(VK(t))t>0 is also dishonest.

It turns out that for the case of preserving dishonesty, adding a bounded po-
tential is in some sense sharp. We can find an example that shows that a dishonest
semigroup can be converted into an honest semigroup by adding a potential that
is “large enough”. We will not go into the full details here as it requires a lot more
auxiliary information, but simply give a brief outline. This example can be found
in the study of Laplacians on graphs where the Laplacian is known to generate a
substochastic heat semigroup on `1. In [25], it is shown that the heat semigroup
can be seen as a perturbed semigroup derived from Kato’s theorem and more-
over, honesty of the heat semigroup is equivalent to stochastic completeness of
the graph. Then Theorem 2 of [15] states that any graph can be modified to form a
stochastically complete one by adding a (sufficiently large) potential term to the
Laplacian. In other words, the heat semigroup generated by any graph Lapla-
cian can be modified to become an honest one by increasing the potential term
adequately. So dishonesty is not always preserved under absorption.

Finally, let us apply these results to the case of the transport equation.

EXAMPLE 3.3. Let us consider the linear transport equation with no in-
coming particles as boundary condition from Section 3 of [24]. So we let X =
L1(S × V, µ) where S ⊂ Rn, V ⊂ Rn are locally compact in the induced topol-
ogy and µ = λn × ρ where λn is the n-dimensional Lebesgue measure and ρ is a
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locally integrable Borel measure on V. The linear transport equation is given as

∂ f
∂t

(s, v, t) = −v · ∇x f (s, v, t)− h(s, v) f (s, v, t)

+
∫
V

k(s, v, v′) f (s, v′, t)dρ(v′), x = (s, v)

where h : S×V → [0, ∞] and k : S×V ×V → [0, ∞] are measurable functions.
Let T0 denote the generator of the C0-semigroup of free streaming (U0(t))t>0

and h denote the maximal multiplication operator associated with the function
h(s, v). In this case, we will assume that T = T0 − h, D(T) = D(h), generates the
substochastic C0-semigroup (U(t))t>0 and K is the positive operator defined by

K f (s, v) :=
∫
V

k(s, v, v′) f (s, v′)dρ(v′), f ∈ D(K) = D(T)

with

‖h f ‖ 6 −
∫

T f dµ, for all f ∈ D(T)+ and(3.1) ∫
V

k(s, v, v′)dρ(v) 6 h(s, v′) µ-a.e.(3.2)

Under this setup, T and K satisfy the conditions of Kato’s theorem with perturbed
semigroup (V(t))t>0 ([24], p. 463).

Next we consider a second measurable function h̃(s, v) > 0 and suppose
that h̃ (the maximal multiplication operator with h̃(s, v)) is U(·)-bounded (see
Definition 1.2 of [23]) i.e. h̃ is T-bounded and there exist α ∈ (0, ∞] , γ > 0 such
that for all f ∈ D(T)

α∫
0

‖hU(t) f ‖dt 6 γ‖ f ‖.

By Corollary 2.10 of [23], Th̃ = T − h̃ generates a substochastic C0-semigroup.
Moreover for f ∈ D(T)+,

‖(h + h̃) f ‖ 6 −
∫

T f dµ +
∫

h̃ f dµ = −
∫

Th̃ f dµ and ‖K f ‖ 6 ‖(h + h̃) f ‖.

Therefore, Th̃ and K also satisfy the conditions of Kato’s theorem with per-
turbed semigroup denoted (Ṽh(t))t>0. Since by assumption h̃ is T-bounded, we
have (D(T) ∩D(h̃))+ dense in D(T)+, so by Proposition 3.1, (Ṽh(t))t>0 is honest
whenever (V(t))t>0 is.

In the case when we have equality in (3.2), the background material is called
a pure scatterer ([23], p. 463). Proposition 3.1 and 3.2 tell us that adding a bounded
h̃ to h does not affect the honesty or dishonesty of the transport semigroup. In
other words, a change from pure scatterer to impure does not affect honesty if
the change is “small” enough.
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In the next section, we will look at how the abstract results in Sections 1 to 3
can be applied to study quantum dynamical semigroups.

4. QUANTUM DYNAMICAL SEMIGROUPS AND KATO’S THEOREM

Kato’s original theorem on L1 is connected to the study of stochastic pro-
cesses and classical Markov semigroups. The extension of Kato’s theorem to ab-
stract state spaces allows us to apply this theory to the non-commutative setting.
In this section and the next, we will demonstrate an application of Kato’s theo-
rem to quantum dynamical semigroups. We will begin by introducing a special
class of quantum dynamical semigroups in this section and describe how they
can be constructed using Kato’s theorem. As noted in the introduction, although
Kato’s methods have been employed by Davies to construct quantum dynamical
semigroups in [9], the theory of quantum dynamical semigroups has largely de-
veloped independently of Kato’s theorem. Hence, we will begin by presenting
the theory of quantum dynamical semigroups independently of Kato’s theorem
following the survey of Fagnola [11] in Section 4.1 before applying Kato’s theo-
rem in Section 4.2. In Section 5, we will investigate applications of honesty theory
for quantum dynamical semigroups.

4.1. QUANTUM DYNAMICAL SEMIGROUPS. The brief summary of the theory of
quantum dynamical semigroups presented in this section is based on [11] where
Fagnola considers quantum dynamical semigroups defined on the space of boun-
ded linear operators on a complex Hilbert space H, L(H). In particular, he con-
structs a minimal quantum dynamical semigroup based on Chung’s construc-
tion of the minimal solution of Feller–Kolmogorov equations for countable state
Markov chains. Note that in the rest of this paper, H will denote a complex Hilbert
space and 〈·, ·〉 will denote the inner product on H. Also, L(H)+ is the cone
consisting of H-positive operators i.e. operators T such that 〈Tx, x〉 > 0 for all
x ∈ D(T).

We begin by presenting some preliminary information. First recall that
L(H) has predual isometrically isomorphic to T(H), the space of trace class oper-
ators on H, equipped with the trace norm, ‖·‖tr. The duality is given by

〈ρ, x〉T(H),L(H) = Tr(ρx), ρ ∈ T(H), x ∈ L(H).

This duality will allow us to apply Kato’s theorem (on abstract state spaces) and
its related results to the theory of quantum dynamical semigroups on L(H). This
follows because the predual space T(H) is the complexification of the space of
self-adjoint trace-class operators Ts(H), which is a real ordered Banach space with
trace norm additive on the positive cone, i.e. it is an abstract state space. The
functional Ψ which we saw in Section 1 is simply the trace functional in this case.
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The subspace of T(H) consisting of the rank one operators |u〉〈v|, u, v ∈ H,
defined by

|u〉〈v|ϕ := 〈v, ϕ〉u, ϕ ∈ H

will play an important role. We will require the following lemma about the con-
vergence of rank one operators.

LEMMA 4.1. Suppose u, v, (un), (vn) ∈ H satisfy ‖un − u‖ → 0 and ‖vn −
v‖ → 0 as n→ ∞. Then ‖|u〉〈v| − |un〉〈vn|‖tr → 0 as n→ ∞.

Now we are ready to define quantum dynamical semigroups.

DEFINITION 4.2 ([11], Definition 3.1). Let A denote a W∗-algebra of oper-
ators acting on a Hilbert space H. A quantum dynamical semigroup on A is a
family (T (t))t>0 of bounded operators on A with the following properties:

(i) T (0)a = a for all a ∈ A.
(ii) T (t + s)a = T (t)T (s)a for all s, t > 0 and all a ∈ A.

(iii) T (t) is completely positive for all t > 0.
(iv) T (t) is a σ-weakly continuous operator in A for all t > 0.
(v) For every a ∈ A, the map t 7→ T (t)a is continuous with respect to the

σ-weak topology on A.

DEFINITION 4.3 ([11], Definition 3.2). The infinitesimal generator of the
quantum dynamical semigroup (T (t))t>0 is the operator G∗ whose domain D(G∗)
is the space of elements a ∈ A for which there exists an element b ∈ A such that
b = lim

t→0

T (t)a−a
t in the σ-weak topology and G∗a = b.

Since the quantum dynamical semigroup (T (t))t>0 on L(H) satisfies con-
ditions (iv) and (v) of Definition 4.2, it follows that (T (t))t>0 induces a predual
semigroup (S(t))t>0 on T(H) defined by

〈S(t)ρ, x〉T(H),L(H) = 〈ρ, T(t)x〉T(H),L(H) for all ρ ∈ T(H), x ∈ L(H), t > 0.

Equivalently, this may be stated via the generator of the semigroup, i.e. G is the
generator of (S(t))t>0 if and only if G∗ is the generator of (T (t))t>0 ([22], Theo-
rem 1.2.3; [6], p. 252). If (T (t))t>0 is a quantum dynamical semigroup, the pred-
ual semigroup is in fact, strongly continuous. This follows from condition (v) in
Definition 4.2. To ensure that the notation in this section concurs with those in the
previous sections, we will always denote the generator of a quantum dynamical
semigroup as an adjoint operator, for example G∗; more precisely, as the adjoint
of the generator of the predual semigroup.

The special class of quantum dynamical semigroups we are interested in
satisfies the following premise, which we will assume holds for the remainder of
this paper unless stated otherwise:

PREMISE 4.4. Suppose Y generates a C0-semigroup of contractions (P(t))t>0
in H. Suppose also the sequence of operators (Ll)

∞
l=1 are such that D(Ll) ⊇ D(Y)
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and for all u ∈ D(Y), we have

(4.1) 〈u, Yu〉+ 〈Yu, u〉+
∞

∑
l=1
〈Llu, Llu〉 6 0.

It will also prove useful later to consider the sesquilinear form Γ(x), x ∈
L(H) with domain D(Y)× D(Y) ⊆ H×H given by

(4.2) Γ(x)[v, u] = 〈v, xYu〉+ 〈Yv, xu〉+
∞

∑
l=1
〈Llv, xLlu〉.

Assuming Premise 4.4 holds, Fagnola ([11], Chapter 3) shows that:

PROPOSITION 4.5 ([11], Theorem 3.22). There exists a minimal quantum dy-
namical semigroup (T(t))t>0 satisfying

(4.3) 〈v, (T(t)x)u〉 = 〈v, xu〉+
t∫

0

Γ(T(s)x)[v, u]ds for all u, v ∈ D(Y)

and T(t)1 6 1 for all t > 0. The semigroup is minimal in the sense that for any
quantum dynamical semigroup (U(t))t>0 on L(H) which is a solution to (4.3) and for
any x ∈ L(H)+, we have T(t)x 6 U(t)x for all t > 0.

Equation (4.3) can be restated in terms of the generator of the quantum dy-
namical semigroup:

PROPOSITION 4.6. A contractive quantum dynamical semigroup (T (t))t>0 sat-
isfies (4.3) if and only if its generator G∗ satisfies

(4.4) 〈v, (G∗x)u〉 = Γ(x)[v, u] for all u, v ∈ D(Y), x ∈ D(G∗).
Proof. Suppose (T (t))t>0 satisfies (4.3). Fix u, v ∈ D(Y) and x ∈ D(G∗).

Since Tr(x|u〉〈v|) = 〈v, xu〉, equation (4.3) can be rewritten as Tr((T (t)x)|u〉〈v|)−

Tr(x|u〉〈v|) =
t∫

0
Γ(T (s)x)[v, u]ds. Hence,

1
t

Tr((T (t)x− x)|u〉〈v|)

=
1
t

t∫
0

(
〈Yv, (T (s)x)u〉+ 〈v, (T (s)x)Yu〉+

∞

∑
l=1
〈Llv, (T (s)x)Llu〉

)
ds.(4.5)

The continuity of t 7→ T (t)x with respect to the σ-weak topology implies that
the maps s 7→ 〈Yv, (T (s)x)u〉, s 7→ 〈v, (T (s)x)Yu〉, s 7→ 〈Llv, (T (s)x)Llu〉, l ∈ N
are continuous. Moreover, since (T (t))t>0 is contractive, we have for all l ∈ N,
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|〈Llv, (T (s)x)Llu〉| 6 ‖x‖‖Llu‖‖Llv‖. But by (4.1), we have

∞

∑
l=1
‖Llv‖‖Llu‖ 6

( ∞

∑
l=1
‖Llv‖2

)1/2( ∞

∑
l=1
‖Llu‖2

)1/2

6 (−2 Re〈v, Yv〉)1/2(−2 Re〈u, Yu〉)1/2.(4.6)

Thus, by the Weierstrass M-test, the map s 7→
∞
∑

l=1
〈Llv, (T (s)x)Llu〉 is continuous.

Therefore we can let t→ 0 in (4.5) to obtain 〈v, (G∗x)u〉 = Γ(x)[v, u].
Conversely, suppose (T (t))t>0 satisfies (4.4). We begin by observing that

the form Γ(x)[v, u], x ∈ L(H), u, v ∈ D(Y) can be restated as

Γ(x)[v, u] = Tr
(

x
(
|Yu〉〈v|+ |u〉〈Yv|+

∞

∑
l=1
|Llu〉〈Llv|

))
(4.7)

since
∞
∑

l=1
|Llu〉〈Llv| converges in trace norm by (4.6). On the other hand, from

Proposition 1.2.2 of [22], we have for x ∈ L(H),

T (t)x− x = G∗weak∗
t∫

0

T (s)x ds

where weak∗
t∫

0
T (s)x ds denotes the weak∗ integral of T (s)x. Hence

〈v, (T (t)x)u〉 − 〈v, xu〉

=
〈

v,
(
G∗weak∗

t∫
0

T (s)x ds
)

u
〉

= Γ
(

weak∗
t∫

0

T (s)x ds
)
[v, u] (by assumption)

= Tr
((

weak∗
t∫

0

T (s)x ds
)(
|Yu〉〈v|+ |u〉〈Yv|+

∞

∑
l=1
|Llu〉〈Llv|

))
(by (4.7))

=

t∫
0

Tr
(
(T (s)x)

(
|Yu〉〈v|+ |u〉〈Yv|+

∞

∑
l=1
|Llu〉〈Llv|

))
ds (by definition)

=

t∫
0

Γ(T (s)x)[v, u]ds (by (4.7)).

Therefore (T (t))t>0 satisfies (4.3).
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DEFINITION 4.7. We say that the generator G∗ of a quantum dynamical
semigroup can be represented in Lindblad form if there exist operators Y, (Ll)
on H satisfying Premise 4.4 such that

〈v, (G∗x)u〉 = Γ(x)[v, u]

for all x ∈ D(G∗) and all u, v ∈ D(Y).

4.2. CONSTRUCTING QUANTUM DYNAMICAL SEMIGROUPS USING KATO’S THE-
OREM. Now we look at the construction via Kato’s theorem, of a quantum dy-
namical semigroup whose generator can be represented in Lindblad form. In
particular, we will show that the minimal quantum dynamical semigroup iden-
tified in Proposition 4.5 coincides with that constructed via Kato’s theorem. Al-
though this application of Kato’s methods to quantum dynamical semigroups
were also noted by others including Davies [9] and Arlotti, Lods and Mokhtar-
Kharroubi [4], we have yet to find any literature which applies Kato’s theorem
directly to quantum dynamical semigroups or which actually shows that the two
methods are equivalent. We will prove this equivalence in this section both for
completeness and as preparation for the next section on applications of honesty
theory. Since Kato’s theorem is stated for real spaces, we will restrict to the space
of self-adjoint trace class operators, Ts(H).

First, consider the semigroup (U(t))t>0 in Ts(H) defined by

U(t)ρ = P(t)ρP(t)∗, ρ ∈ Ts(H).

Note that since (P(t))t>0 is contractive, so is (P(t)∗)t>0. It turns out that (U(t))t>0
is also a C0-semigroup of contractions with generator we will denote by A (see for
example Section I.3.16 of [10]). In [9], Davies considers the case where we have
equality in equation (4.1) and shows that the operator A and an appropriately de-
fined B (see Lemma 4.9, Corollary 4.12) satisfy in our terminology the conditions
in Theorem 1.1. His methods also hold for the more general case (with inequality
in (4.1)) with minor modifications. We describe his methods below as this setup
will be used in Section 5 as well.

To determine the domain of the generator A, Davies introduces a positive,
one-to-one map

π : Ts(H)→ Ts(H), π(ρ) = R(1, Y)ρR(1, Y)∗

and considers the subspace Ds := π(Ts(H)). Then Lemma 2.1 of [9] (restated as
Lemma 4.8) holds in this case as well since the inequality (4.1) has no role in the
proof.

LEMMA 4.8 ([9], Lemma 2.1). The domain Ds is dense in Ts(H). Let ρ ∈ Ds
and ε > 0. Then there exist ρ1, ρ2 ∈ (Ds)+ := Ds ∩ Ts(H)+ such that

(4.8) ρ = ρ1 − ρ2, ‖ρ1‖tr + ‖ρ2‖tr < ‖ρ‖tr + ε.

Moreover, Ds is a core for A and for all ρ ∈ Ds

(4.9) Aρ = Yρ + ρY∗
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in the sense that Yρ is a trace class operator while ρY∗ is a restriction of the operator
(Yρ)∗ which is also trace class.

Now let us consider the operator B. The next two lemmas are the analogues
of Lemma 2.2, Lemma 2.3 in [9] and can be proven almost exactly as in [9]. The
only changes required are changes from equalities to inequalities at the appropri-
ate points, hence the proofs are omitted.

LEMMA 4.9. The formula

(4.10) Bρ =
∞

∑
l=1

Ll R(1, Y)π−1(ρ)(Ll R(1, Y))∗

with the series converging in the trace norm defines a positive linear map B : Ds →
Ts(H) such that

(4.11) Tr(Aρ + Bρ) 6 0 for all ρ ∈ (Ds)+.

LEMMA 4.10. For all λ > 0, the map BR(λ, A) fromDs into Ts(H) has a unique,
positive, bounded linear extension Jλ : Ts(H)→ Ts(H) such that ‖Jλ‖ 6 1.

REMARK 4.11. Since A is resolvent positive, R(λ, A)Ds ⊂ Ds and B is posi-
tive on Ds, it follows from (4.11) that for all ρ ∈ (Ds)+,

‖BR(λ, A)ρ‖tr 6 −Tr(AR(λ, A)ρ) = Tr(ρ)− λ Tr(R(λ, A)ρ) 6 ‖ρ‖tr.

Then (4.8) implies that ‖BR(λ, A)ρ‖tr 6 ‖ρ‖tr for all ρ ∈ Ds, that is, B is A-
bounded on Ds. Davies uses this to prove the existence of Jλ in Lemma 4.10.

The results above allow us to derive an important corollary. We give the
complete proof here as some details were omitted in [9].

COROLLARY 4.12. The map B has a positive extension B′ : D(A)→ Ts(H) such
that

(4.12) Tr(Aρ + B′ρ) 6 0 for all ρ ∈ D(A)+.

Proof. We define
B′ρ = J1(I − A)ρ.

We begin by showing that B′ is an extension of B. Since B is A-bounded onDs (by
Remark 4.11), it suffices to show that B′ρ = Bρ for all ρ in a core of A which lies in
Ds. In particular, we will show that B′ρ = Bρ for all ρ ∈ π2(Ts(H)) ⊂ Ds. To see
that π2(Ts(H)) is a core for A, simply note that density in Ts(H) follows because
π2(Ts(H)) contains the finite rank operators whose eigenvectors lie in D(Y2) (see
also Lemma 4.15) while invariance of π2(Ts(H)) under (U(t))t>0 follows directly
from the definition of π. So let ρ = π2(σ) for some σ ∈ Ts(H), that is, ρ ∈
π2(Ts(H)). Then by (4.9), we have that Aρ = π(Yπ(σ) + π(σ)Y∗) ∈ Ds and so
(I− A)ρ ∈ Ds. Therefore B′ρ = J1(I− A)ρ = BR(1, A)(I− A)ρ = Bρ and so B′ is
an extension of B. Moreover, ‖B′R(1, A)ρ‖tr = ‖J1ρ‖tr 6 ‖ρ‖tr for all ρ ∈ Ts(H).
Therefore B′ is A-bounded.
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To show that the inequality (4.12) holds, let ρ ∈ D(A)+ and consider

ρε = R(1, εY)ρR(1, εY)∗, ε > 0.

It is easy to see that ρε is self-adjoint if ρ is. Moreover, (1− ε−1)R(1, Y)R(ε−1, Y)+
R(1, Y) = R(ε−1, Y), so it follows that

ρε = R(1, Y)((1− ε−1)R(1, εY) + ε−1 I)ρ((1− ε−1)R(1, εY)∗ + ε−1 I)R(1, Y)∗.

Thus, ρε ∈ (Ds)+. Moreover, the map ρ 7→ ρε is bounded independently of ε as

‖ρε‖tr 6 ‖R(1, εY)‖∞‖ρ‖tr‖R(1, εY)∗‖∞ 6 ‖ρ‖tr.

We will show that ρε → ρ as ε → 0 in trace norm for all ρ ∈ Ts(H). Consider
the rank one operator ρ := |u〉〈v|, u, v ∈ H. Elementary calculations show that
ρε = |uε〉〈vε| where uε = R(1, εY)u and vε = R(1, εY)v. By Lemma II.3.4 of [10],
uε → u and vε → v as ε → 0. Hence by Lemma 4.1, it follows that ρε → ρ in
trace norm as ε → 0. Since the (self-adjoint) finite rank operators are dense in
Ts(H) and the map ρ 7→ ρε is uniformly bounded, it follows that ρε → ρ for all
ρ ∈ Ts(H).

Now for ρ ∈ D(A), we have Aρ ∈ Ts(H) and Aρε = (Aρ)ε. Therefore we
can conclude that ρε → ρ and Aρε → Aρ as ε → 0. Since B′ is A-bounded, it
follows that Bρε → B′ρ. Therefore by Lemma 4.9, for all ρ ∈ D(A)+, B′ρ > 0 and

Tr(Aρ + B′ρ) = lim
ε→0

Tr(Aρε + Bρε) 6 0.

Henceforth we will identify B with B′ and simply denote it by B. With this
we have:

PROPOSITION 4.13. A and B satisfy the conditions of Theorem 1.1 and so there
exists a minimal perturbed semigroup (S̃(t))t>0 with generator G̃ an extension of A+ B.
Moreover, R(λ, G̃) satisfies

R(λ, G̃)ρ =
∞

∑
k=0

R(λ, A)(BR(λ, A))kρ for all ρ ∈ Ts(H).

We have just described two methods of constructing a minimal quantum
dynamical semigroup with Y, (Ll) satisfying Premise 4.4; one via Fagnola’s me-
thod (Proposition 4.5) and the other via Kato’s theorem (Proposition 4.13). The
remainder of this section will be devoted to showing that the two semigroups
coincide.

Note that the semigroup from Kato’s theorem acts in the space Ts(H) while
Fagnola’s semigroup acts in the spaceL(H). In order to show that the semigroups
coincide, we will first transfer the semigroups to the same space, namely T(H).
Recalling that T(H) is simply the complexification of Ts(H), we will henceforth
work with the complexifications of the operators A, B, (U(t))t>0, (S̃(t))t>0, G̃ but
retain the same notation. We can do so because we saw in Section 1 that honesty
in the complexified space is equivalent to honesty in the real space. To transfer
Fagnola’s semigroup to T(H) on the other hand, we will utilise the fact that every
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quantum dynamical semigroup on L(H) induces a predual semigroup on T(H).
We will denote by (S(t))t>0 the predual semigroup of Fagnola’s minimal quan-
tum dynamical semigroup (T(t))t>0 identified in Proposition 4.5. We now show
that (S(t))t>0 coincides with (S̃(t))t>0.

THEOREM 4.14. Let (S(t))t>0 be the predual semigroup of the minimal quantum
dynamical semigroup (T(t))t>0 in Proposition 4.5 and (S̃(t))t>0 be the perturbed semi-
group in Proposition 4.13. Then S̃(t)ρ = S(t)ρ for all ρ ∈ T(H), t > 0.

In order to prove the theorem, we require some auxiliary information. First
let us consider a few important subspaces, beginning with

V = V1 := Span{|u〉〈v| : u, v ∈ D(Y)}.

We will also occasionally require the spaces

Vn := Span{|u〉〈v| : u, v ∈ D(Yn)}, n ∈ N, n > 2.

Moreover, the map π can be extended to T(H) and we will be interested in the
spaces

D := π(T(H)) = Ds + iDs and πn(T(H)), n ∈ N, n > 2.

LEMMA 4.15. For all n ∈ N, Vn ⊂ D and moreover, Vn is a core for A.

Proof. Since Vn+1 ⊆ Vn, it suffices to show that V ⊆ D to prove the first
statement. Fix u, v ∈ D(Y). Then |u〉〈v| = R(1, Y)ρR(1, Y)∗ where ρ is the rank-
one operator defined by ρ := |(I − Y)u〉〈(I − Y)v|. Therefore |u〉〈v| ∈ D and so
V ⊂ D.

Next, we show that V is dense in T(H). Since D(Y) is dense in H, it follows
from Lemma 4.1 that V is dense in the space of finite rank operators. Since the
finite rank operators are dense in T(H), it follows that V is dense in T(H).

Finally, observe that U(t)(|u〉〈v|) = P(t)|u〉〈v|P(t)∗ = |P(t)u〉〈P(t)v| for
all t > 0. Since P(t)u ∈ D(Y) for all u ∈ D(Y) and all t > 0, we have that
U(t)(|u〉〈v|) ∈ V . Therefore V is invariant under (U(t))t>0 and so V is a core
for A.

A similar argument shows that Vn is a core for A for all n > 2 since D(Yn)
is a core for Y and D(Yn) is invariant under the semigroup (P(t))t>0.

REMARK 4.16. Recall that in the proof of Corollary 4.12 we showed that
π2(Ts(H)) is a core for A|Ts(H). We can in fact show more generally that πn(T(H)),
n ∈ N are cores for A. A similar proof as that of Lemma 4.15 shows in fact that
Vn ⊆ πn(T(H)) for all n > 2. Furthermore, it is easy to see that πn(U(t)σ) =
U(t)(πnσ) for all σ ∈ T(H) and all t > 0. Therefore πn(T(H)), n ∈ N are also
cores for A.

It will also be useful to know how the operators A, B act on the operators
in V .
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LEMMA 4.17. For all |u〉〈v| ∈ V and x ∈ L(H)

Tr(x(A|u〉〈v|)) = 〈Yv, xu〉+ 〈v, xYu〉 and Tr(x(B|u〉〈v|)) =
∞

∑
l=1
〈Llv, xLlu〉.

In particular,

Tr(x((A + B)|u〉〈v|)) = Γ(x)[v, u].

Proof. Fix |u〉〈v| ∈ V and x ∈ L(H). Note first that elementary calculations
show that Y|u〉〈v|+ |u〉〈v|Y∗ = |Yu〉〈v|+ |u〉〈Yv|. Since V ⊂ D by Lemma 4.15,
and hence (4.9) holds for ρ = |u〉〈v| (Lemma 4.8), we have

Tr(x(A|u〉〈v|)) = Tr(x(|Yu〉〈v|+ |u〉〈Yv|)) = 〈v, xYu〉+ 〈Yv, xu〉.

On the other hand, by Lemma 4.9, for ρ ∈ D, (4.10) holds and from the proof of
Lemma 4.15, π−1(|u〉〈v|) = |(I −Y)u〉〈(I −Y)v|. Hence for ϕ ∈ H,

(B|u〉〈v|)ϕ =
∞

∑
l=1

Ll R(1, Y)|(I −Y)u)〉〈(I −Y)v|(Ll R(1, Y))∗ϕ

=
∞

∑
l=1

Ll R(1, Y)〈(I −Y)v, (Ll R(1, Y))∗ϕ〉(I −Y)u

=
∞

∑
l=1
〈Llv, ϕ〉Llu =

∞

∑
l=1
|Llu〉〈Llv|ϕ.

Therefore, Tr(x(B|u〉〈v|)) =
∞
∑

l=1
〈Llv, xLlu〉. The final assertion follows directly

from the definition of Γ(x)[v, u].

COROLLARY 4.18. The generator G̃∗ of the adjoint semigroup (S̃∗(t))t>0 of the
semigroup (S̃(t))t>0 can be represented in Lindblad form.

Proof. Let u, v ∈ D(Y) and x ∈ D(G̃∗). Then by Lemma 4.15, |u〉〈v| ∈
V ⊆ D(A), so by Lemma 4.17, it follows that 〈v, (G̃∗x)u〉 = Tr((G̃∗x)|u〉〈v|) =

Tr(x(G̃|u〉〈v|)) = Tr(x((A + B)|u〉〈v|)) = Γ(x)[v, u].

We also require some information about Fagnola’s construction, (T(t))t>0
with generator G∗. In particular, Fagnola shows in Proposition 3.25 of [11] that
the resolvent of G∗ is given by

(4.13) R(λ, G∗)x =
∞

∑
k=0

Qk
λ(Pλ(x)), x ∈ L(H), λ > 0
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with the series convergent in the strong operator topology, where Pλ and Qλ,
λ > 0 are linear positive maps in L(H) defined by

〈v, Pλ(x)u〉 =
∞∫

0

e−λs〈P(s)v, xP(s)u〉ds,(4.14)

〈v, Qλ(x)u〉 =
∞

∑
l=1

∞∫
0

e−λs〈Ll P(s)v, xLl P(s)u〉ds,(4.15)

for x ∈ L(H), u, v ∈ D(Y). We will rephrase Pλ and Qλ in terms of A and B.

LEMMA 4.19. Suppose Pλ, Qλ are as defined in (4.14) and (4.15) and A, B are as
in Proposition 4.13. Then Pλ = R(λ, A)∗ = R(λ, A∗) and Qλ = (BR(λ, A))∗ for all
λ > 0.

Proof. Fix λ > 0. Since R(λ, A)ρ =
∞∫
0

e−λsP(s)ρP(s)∗ ds for all ρ ∈ T(H), it

follows by elementary calculations that for |u〉〈v| ∈ V , we have R(λ, A)|u〉〈v| =
∞∫
0

e−λs|P(s)u〉〈P(s)v|ds, where the integral is absolutely convergent in T(H) and

also in the graph norm of A. Hence, for u, v ∈ D(Y), x ∈ L(H),

〈v, (R(λ, A)∗x)u〉 = Tr(x(R(λ, A)|u〉〈v|)) = Tr
(

x
∞∫

0

e−λs|P(s)u〉〈P(s)v|ds
)

=

∞∫
0

e−λs〈P(s)v, xP(s)u〉ds = 〈v, Pλ(x)u〉.

Since Pλ(x) ∈ L(H) for all x ∈ L(H), it follows that Pλ = R(λ, A)∗. Similarly,

〈v, ((BR(λ, A))∗x)u〉 = Tr(x(BR(λ, A)|u〉〈v|))

= Tr
(

x
(

B
∞∫

0

e−λs|P(s)u〉〈P(s)v|ds
))

=

∞∫
0

e−λs Tr(x(B|P(s)u〉〈P(s)v|))ds

(as |P(s)u〉〈P(s)v| ∈ D(B))

=
∞

∑
l=1

∞∫
0

e−λs〈Ll P(s)v, xLl P(s)u〉ds = 〈v, Qλ(x)u〉.

Therefore, Qλ = (BR(λ, A))∗.

Now we can show that the two semigroups are equal.
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Proof of Theorem 4.14. From (4.13) and Lemma 4.19, we have that

R(λ, G)∗x = R(λ, G∗)x =
∞

∑
k=0

Qk
λ(Pλ(x)) =

∞

∑
k=0

(BR(λ, A))∗kR(λ, A)∗x

for all x ∈ L(H) with the series convergent in the strong operator topology. Since

by Proposition 4.13, we know that
∞
∑

k=0
R(λ, A)(BR(λ, A))kρ converges in trace

norm for all ρ ∈ T(H) and the trace functional is continuous on T(H), it follows
that

R(λ, G)ρ =
∞

∑
k=0

R(λ, A)(BR(λ, A))kρ = R(λ, G̃)ρ, ρ ∈ T(H).

Hence, by the Post–Widder inversion formula, S(t)ρ = S̃(t)ρ for all ρ ∈ T(H),
t > 0.

In the remainder of this paper, unless stated otherwise, (T(t))t>0 will de-
note the minimal quantum dynamical semigroup with generator G∗ identified in
Proposition 4.5 with associated form Γ satisfying Premise 4.4 and (S(t))t>0 will
always denote its predual semigroup with generator G.

REMARK 4.20. One can also prove Theorem 4.14 by using the minimality of
the semigroups, that is, Fagnola’s semigroup (T(t))t>0 is the minimal semigroup
whose generator can be represented in Lindblad form (Proposition 4.5) while the
Kato semigroup (S̃(t))t>0 is the minimal semigroup whose generator is an exten-
sion of A + B (Theorem 1.1). Corollary 4.18 tells us that the adjoint semigroup of
(S̃(t))t>0 can be represented in Lindblad form. To complete the proof, we only
need to show that any quantum dynamical semigroup satisfying (4.3) has pred-
ual semigroup whose generator is an extension of A + B. We will in fact, prove
this in the next section (Lemma 5.12).

5. APPLICATIONS OF HONESTY THEORY IN QUANTUM DYNAMICAL SEMIGROUPS

In the previous section, we saw that the generator of a certain quantum
dynamical semigroup in Lindblad form can be viewed as the adjoint of a per-
turbed generator of a substochastic semigroup in the setting of Kato’s theorem.
A natural question to investigate next is the application of honesty theory to these
semigroups. It turns out that if equality holds in (4.1), then honesty of the pred-
ual semigroup is equivalent to a notion known as conservativity of the quantum
dynamical semigroup (Proposition 5.2).

Conservativity of the quantum dynamical semigroup has long been stud-
ied (see [7], [8], [11] for example). The main reason for the interest in conserva-
tivity is that it is related to the non-explosion of the system ([8] and [11], Sec-
tion 3.6). However, the study of conservativity is also of interest because conser-
vative quantum dynamical semigroups turn out to be the semigroups with “nice”
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properties. For example, if the minimal semigroup is conservative, then it is the
unique semigroup satisfying (4.3) ([11], Corollary 3.23). Moreover, one can give
a precise description of the domain of the generator if the minimal semigroup
is conservative ([11], Proposition 3.33; [13], Theorem 4.1). This is important as
we saw in the previous section that the domain of the generator of the quantum
dynamical semigroup is difficult to determine precisely and is often defined in
terms of a form.

We begin by giving the definition of conservativity.

DEFINITION 5.1. A quantum dynamical semigroup (T(t))t>0 is called con-
servative if T(t)1 = 1 for every t > 0.

A necessary condition for (T(t))t>0 to be conservative is for

Γ(1)[v, u] =
d
dt
〈v, (T(t)1)u〉|t=0 = 0

for all u, v ∈ D(Y). So when we speak of conservativity, we will only consider
the case when we have equality in (4.1).

PROPOSITION 5.2. Suppose (T(t))t>0 is the minimal quantum dynamical semi-
group identified in Proposition 4.5 with Γ satisfying Premise 4.4 with equality in (4.1).
Then (T(t))t>0 is conservative if and only if its predual semigroup (S(t))t>0 is honest.

Proof. Since Γ satisfies (4.1) with equality, the predual semigroup being hon-
est is equivalent to it being stochastic (Remark 1.3). In this context, this means
that S(t) is trace-preserving for all t > 0, i.e. Tr(S(t)ρ) = Tr(ρ) for all ρ ∈
Ts(H) and this is equivalent to (T(t))t>0 being conservative since Tr(S(t)ρ) =
Tr((S(t)ρ)1) = Tr(ρ(T(t)1)) for all ρ ∈ T(H), t > 0.

The equivalence between honesty and conservativity allows us to derive
some conditions for conservativity from honesty theory by combining Theo-
rems 1.4, 2.1, 2.2, Proposition 1.7, Lemma 4.19 and Proposition 5.2.

PROPOSITION 5.3. Suppose (T(t))t>0 is the minimal quantum dynamical semi-
group identified in Proposition 4.5 with Γ satisfying Premise 4.4 with equality in (4.1).
Let λ > 0 and Qλ as defined in (4.15). The following are equivalent:

(i) The semigroup (T(t))t>0 is conservative.
(ii) The sequence of operators {Qn

λ(1)}n>0 converges σ-weakly to 0.
(iii) If for some x ∈ L(H), we have Qλx = x, then x = 0.
(iv) If for some x ∈ L(H), we have Qλx > x, then x = 0.
(v) The operator Qλ∗ is mean ergodic, where Qλ∗ denotes the predual operator of Qλ.

(vi) lim
n→∞
‖Qn

λ∗ρ‖tr = 0 for all ρ ∈ Ts(H)+.

Some of the conditions in Proposition 5.3 are known. For example, condi-
tions (ii) and (iii) in Proposition 5.3 are similar to the conditions given in Theo-
rem 3.2 of [11]. It should be noted however, that Theorem 3.2 of [11] was proven
without applying honesty theory.
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We now generalise the notion of conservativity to the class of minimal quan-
tum dynamical semigroups constructed in Proposition 4.5 by transfering the con-
cept of honesty from Kato’s theorem to these quantum dynamical semigroups:

DEFINITION 5.4. Let (T(t))t>0 be the minimal quantum dynamical semi-
group identified in Proposition 4.5 with Γ satisfying Premise 4.4. The semigroup
(T(t))t>0 is said to be honest if and only if its predual semigroup (S(t))t>0 is hon-
est in the sense of Definition 1.2.

We will show that honesty is the natural analogue of conservativity in the
strictly substochastic case. As we mentioned above, conservativity is important
because it allows us to characterise uniqueness of the semigroup and also the
domain of its generator. It turns out that honesty also allows us to do the same
for the substochastic case as we will show in Corollary 5.10 and Proposition 5.11.

As in the conservative case, we are also interested in characterising the hon-
esty of the quantum dynamical semigroups. Since Proposition 5.3 was derived
from characterisations of honesty in Theorems 1.4, 2.1, 2.2, it follows that con-
ditions (ii) to (vi) in Proposition 5.3 also characterise the honesty of the minimal
semigroup (T(t))t>0. These conditions can also be used to show that other pre-
viously known characterisations of conservativity (which were proven without
using honesty theory methods) also characterise honesty.

For example, we can prove a version of Proposition 3.3.1 in [11] for honesty
by applying condition (iii) of Proposition 5.3. We simply require the following
lemma whose proof we omit as it can be proven almost exactly as in Proposi-
tion 3.30 of [11].

LEMMA 5.5. Fix λ > 0. Then for all x ∈ L(H), we have Γ(x) = λx if and only
if Qλ(x) = x.

COROLLARY 5.6. Let (T(t))t>0 be the minimal quantum dynamical semigroup
identified in Proposition 4.5 with Γ satisfying Premise 4.4. The semigroup (T(t))t>0 is
honest if and only if ker(λ− Γ) = {0} for some/all λ > 0.

Now let us look at the domains of generators of these minimal semigroups.
We will see that honesty theory allows us to give two different descriptions of the
domain of the generator of an honest semigroup, one in terms of cores (Proposi-
tion 5.7) and the other, a description of the actual domain (Proposition 5.9). The
description in terms of cores given below is an extension of Proposition 3.32 in
[11] which states that V is a core for G if and only if (T(t))t>0 is conservative.

PROPOSITION 5.7. The minimal quantum dynamical semigroup (T(t))t>0 is hon-
est if and only if any of the spaces Vn or πn(T(H)), n ∈ N is a core for G, the generator
of the predual semigroup (S(t))t>0.

Proof. Theorem 1.4 tells us that (T(t))t>0 is honest if and only if G = A + B.
Since B is A-bounded, a subspace S ⊂ D(A) is a core for A + B if and only if S
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is a core for A. The result now follows from Lemma 4.15 and Remark 4.16 which
tell us that for each n ∈ N, Vn and πn(T(H)) are cores for A.

Next, we will give a precise description of the domain of the generator of
an honest semigroup. But first, we need some auxiliary information. Recall from
(4.2) that Γ(x) is a sequilinear form on D(Y)× D(Y) for all x ∈ L(H). So if Γ(x)
is closed, we can associate an operator W(x) with the form Γ(x) in the sense:

D(W(x)) = {u ∈ D(Γ(x)) : ∃v ∈ H such that

Γ(x)(u, φ) = 〈v, φ〉 for all φ ∈ D(Γ(x))},(5.1)

W(x)u = v.

Define

F := {x ∈ L(H) : there exists W(x) ∈ L(H) such that

Γ(x)[v, u] = 〈v, W(x)u〉 for all u, v ∈ D(Y)}.

LEMMA 5.8. F = D((A + B)∗) and W(x) = (A + B)∗x for all x ∈ F .

Proof. We begin by showing that W ⊇ (A + B)∗. Let x ∈ D((A + B)∗),
u, v ∈ D(Y). Then by Lemma 4.17,

〈v, ((A + B)∗x)u〉 = Tr(((A + B)∗x)|u〉〈v|) = Tr(x((A + B)|u〉〈v|)) = Γ(x)[v, u].

Thus Γ(x) is given by a bounded operator, namely (A + B)∗x so x ∈ F and
W ⊇ (A + B)∗.

Now let x ∈ F and u, v ∈ D(Y). Then by Lemma 4.17,

Tr(W(x)|u〉〈v|) = 〈v, W(x)u〉 = Γ(x)[v, u] = Tr(x((A + B)|u〉〈v|)).

So there exists y = W(x) ∈ L(H) such that Tr(x((A + B)|u〉〈v|)) = Tr(y|u〉〈v|)
for all u, v ∈ D(Y). Since by Lemma 4.15 we know that V is a core for A + B,
it follows that Tr(x((A + B)ρ)) = Tr(yρ) for all ρ ∈ D(A + B). Therefore x ∈
D((A + B)∗) and W(x) = y = (A + B)∗x. So W ⊆ (A + B)∗.

Lemma 5.8 allows us to give the following precise description of the domain
of the generator when the semigroup is honest because by Theorem 1.4, the semi-
group is honest if and only if G = A + B, i.e. if and only if G∗ = (A + B)∗ = W.

PROPOSITION 5.9. The minimal quantum dynamical semigroup (T(t))t>0 is hon-
est if and only if D(G∗) = F and G∗x = W(x) for all x ∈ D(G∗).

As a corollary, we have a characterisation of an honest quantum dynamical
semigroup in terms of the form Γ(x). A similar result was proven for the case
of conservativity in Proposition 3.33 of [11] and Theorem 4.1 of [13] but with
different proofs as they did not apply honesty theory results.

COROLLARY 5.10. The minimal quantum dynamical semigroup (T(t))t>0 is hon-
est if and only if the domain of its generator G∗ is the space of all elements x ∈ L(H)
such that the form Γ(x) on D(Y)× D(Y), (v, u) 7→ Γ(x)[v, u] is norm continuous.



HONESTY THEORY AND APPLICATIONS IN QUANTUM DYNAMICAL SEMIGROUPS 471

Proof. The form Γ(x) on D(Y) × D(Y) is norm continuous if and only if
there exists an operator W(x) ∈ L(H) such that Γ(x)[v, u] = 〈v, W(x)u〉 for all
u, v ∈ D(Y). So the set of all elements x ∈ L(H) such that the form Γ(x) is norm
continuous is precisely F . The result now follows from Proposition 5.9 .

Lemma 5.8 also allows us to show that honesty characterises uniqueness of
semigroups satisfying (4.3). This result is an extension of Corollary 3.23 in [11],
which tells us that a minimal quantum dynamical semigroup which is conserva-
tive is unique.

PROPOSITION 5.11. The minimal quantum dynamical semigroup (T(t))t>0 is
honest if and only if it is the unique contractive quantum dynamical semigroup on L(H)
satisfying equation (4.3).

To prove Proposition 5.11 using honesty theory, we require a result describ-
ing the relationship between the generators of quantum dynamical semigroups
satisfying (4.3) and the operators A, B in Kato’s theorem.

LEMMA 5.12. Suppose (T (t))t>0 is a contractive quantum dynamical semigroup
on L(H) with generator G∗. Then (T (t))t>0 satisfies (4.3) for all u, v ∈ D(Y) if and
only if G∗ ⊆ (A + B)∗.

Proof. By Proposition 4.6, (T (t))t>0 satisfies (4.3) if and only if its generator
G∗ satisfies (4.4). Since G∗x ∈ L(H) for all x ∈ D(G∗), it follows from Lemma 5.8
that (4.4) holds if and only if D(G∗) ⊆ D((A + B)∗) and G∗x = (A + B)∗x for all
x ∈ D(G∗).

Proof of Proposition 5.11. We begin by noting that if S, T are closed, densely
defined operators, then it follows from Proposition B.10 of [1] that S ⊆ T if and
only if T∗ ⊆ S∗. Since generators of C0-semigroups are closed and densely
defined, and (A + B)∗ = A + B∗, it follows that if G is a generator of a C0-
semigroup, then G∗ ⊆ (A + B)∗ if and only if A + B ⊆ G .

Now recall that we denote the generator of (T(t))t>0 by G∗ and suppose
that there is another quantum dynamical semigroup (T (t))t>0 satisfying (4.3)
with generator denoted G∗. Then by Lemma 5.12, both G∗, G∗ ⊆ (A + B)∗ and
thus A + B ⊆ G and A + B ⊆ G. So there exist at least two substochastic predual
semigroups which have generators that are extensions of A + B. By Theorem 2.3,
this occurs if and only if the minimal semigroup is dishonest. Therefore (T(t))t>0
is unique if and only if it is honest.

We will conclude this section by giving an application of honesty theory to a
strictly substochastic quantum dynamical semigroup. As honesty theory for the
strictly substochastic case has yet to be studied in the literature, we will modify an
example from Section 2 of [12] (which was used for the study of conservativity)
to form a strictly substochastic semigroup. Our modification is motivated by
the addition of a potential or absorption term to the generator of a substochastic
semigroup in classical L1 examples (see for instance, Example 3.3).
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EXAMPLE 5.13. We begin by looking at the example from [12]. Let H :=
L2(R,C), the space of complex-valued square-integrable functions on the real
line and let the operators Y, (Ll)l∈N be defined as:

(Yu)(x) =
1
2

σ(x)2u′′(x), D(Y) = {u ∈ H : u′, u′′ ∈ H},

(Lu)(x) = L1u(x) = σ(x)u′(x), D(L) = {u ∈ H : u′ ∈ H},
where σ(x) is a complex-valued function defined on R,(5.2)

(Llu)(x) = 0, l > 2.

For simplicity, we will consider two cases, namely σ(x) = 1 and σ(x) = −ieix.
Note that if σ(x) = 1, then Y is simply the Laplacian ∆ on R. It can be shown that
(some realisation of) Y is a self-adjoint operator which generates a substochastic
semigroup on H and moreover, these operators satisfy Premise 4.4 with equality
(see [12]). More importantly,

PROPOSITION 5.14 ([12], Theorem 2.1, Remark 3.5). The semigroup is honest
if σ(x) = 1 and dishonest if σ(x) = −ieix .

More generally, if σ is a real-valued bounded smooth function in R with
bounded derivatives of all orders or if σ is multiplied by a complex phase inde-
pendent of x, then the minimal quantum dynamical semigroup constructed from
Y and L above is conservative (or honest) ([12], Remark 3.5). Such semigroups
occur in the dilation and quantum extension of classical diffusion processes on R.

We use a simple modification in order to obtain the strictly substochastic ex-
ample. First consider the Schrödinger operator, defined formally by SK := 1

2∆−K
for some measurable function K. This operator is related to diffusion processes
with absorption. Under some additional conditions, the Schrödinger operator
is a self-adjoint operator generating a substochastic semigroup in H (see [23] for
example). We will consider the case when K is a strictly positive, bounded, real-
valued function and we will also let K denote the operator of multiplication with
this function. We now define

(YKu)(x) :=
1
2

σ(x)2u′′(x)− K(x)u(x), D(YK) = {u ∈ H : u′, u′′ ∈ H}

and leave (Ll)l∈N as defined in (5.2).
Once again, we consider the two cases above, namely σ(x) = 1 and σ(x) =

−ieix. Since K is multiplication with a strictly positive function, YK and (Ll)l∈N
satisfy (4.1) with a strict inequality. Hence the minimal quantum dynamical semi-
group associated with YK, (Ll)l∈N is strictly substochastic.

From Section 4.2, we know that the formal operators

AKρ :=YKρ+ρY∗K =Yρ+ρY∗−(Kρ+ρK), ρ∈D(A) and Bρ :=L1ρL1, ρ∈D(B)

satisfy Kato’s theorem. Since the operator K is bounded, so is the operator K :
T(H) → T(H), Kρ := Kρ + ρK. Hence we may apply our results relating po-
tentials and honesty from Section 3 to derive some results on the honesty of this
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semigroup. In particular, combining Proposition 3.1 and Proposition 3.2 with
Proposition 5.14, it follows that

PROPOSITION 5.15. The minimal quantum dynamical semigroup associated with
YK and L is honest for the case σ(x) = 1 and dishonest for the case σ(x) = −ieix.

Therefore, if σ(x) = 1 (or more generally, σ is a real-valued, bounded,
smooth function in R with bounded derivatives of all orders), then the minimal
semigroup is the unique semigroup satisfying (4.3) (Proposition 5.11). Moreover,
by Corollary 5.10, in this case we have a precise description of the domain of
the generator of the minimal semigroup, namely D(G∗) is given by all elements
x ∈ L(H) such that the form Γ(x) on D(Y)× D(Y), (v, u) 7→ Γ(x)[v, u] is norm
continuous.
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