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1. INTRODUCTION

The notion of quasi-multipliers of operator spaces was introduced in Defi-
nition 2.2 in [20] and its relation with operator algebra products was discussed in
Theorem 2.6 in [20]. That is, for a given operator space X, the possible operator
algebra products that X can be equipped with are precisely the bilinear map-
pings on X that are implemented by contractive quasi-multipliers. Moreover, in
Theorem 3.3.1 in [16] and Theorem 4.1 in [17], the author gave a geometric char-
acterization of operator algebra products in terms of only matrix norms using the
Haagerup tensor product. These results were presented in the Great Plains Op-
erator Theory Symposium (GPOTS) held at the University of Illinois at Urbana-
Champaign in 2003. After the author’s talk, G.K. Pedersen asked the question
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“How can the extreme points of the unit ball of a quasi-multiplier space be char-
acterized?” This question gave rise to a further direction to study quasi-multipli-
ers. Through investigation, it turned out that what should be characterized is the
“engagement” between quasi-multipliers and extreme points of the unit ball of
the operator space, and not extreme points of the unit ball of the quasi-multipli-
er space. In order to accomplish characterization, the author introduces the new
notion “(approximate) quasi-identities”.

In Section 2 we briefly review a construction of an injective envelope and a
triple envelope of an operator space, and recall the definition of quasi-multipli-
ers and their correspondence to operator algebra products. Furthermore, we de-
fine important classes of extreme points: local isometries, local co-isometries, and
local unitaries, which actually become isometries, co-isometries, and unitaries,
respectively, with certain embeddings.

In Section 3 we give alternative definitions of one-sided and quasi-multi-
pliers which are used to characterize operator algebras with approximate identi-
ties in Section 4.

Section 4 is the main part of this paper. We introduce the new notion “(ap-
proximate) quasi-identities” for normed algebras. We see that at least in the op-
erator algebra case, contractive (approximate) quasi-identities are a natural (and
“minimal” in a certain sense) generalization of contractive (approximate) one-
sided identities. Then we characterize an operator algebra having a contractive
(approximate) quasi- (respectively, left, right, two-sided) identity in terms of its
associated quasi-multiplier and extreme points of the unit ball (of the weak∗-
closure) of the underlying operator space (Theorem 4.7, Corollary 4.9, Corol-
lary 4.11, Corollary 4.12, Theorem 4.13). As seen from these theorems and corol-
laries, the unit ball of such an operator algebra and the unit ball of its quasi-multi-
plier space are coupled with each other like two gears mesh.

In Section 5 we give an operator space characterization of C∗-algebras and
their one-sided ideals in a clear and simple manner in terms of quasi-multipliers.

Section 6 is just an addendum and it is devoted to showing that if an oper-
ator space has an operator space predual, then so has its quasi-multiplier space.

This paper is a revision and an enlargement of the author’s manuscripts
titled “Extreme points of the unit ball of a quasi-multiplier space” and “Extreme
points of the unit ball of an operator space” which had been circulated since 2004.

2. PRELIMINARIES

We begin by recalling the construction of an injective envelope of an oper-
ator space due to Z.-J. Ruan ([24], [25]) and M. Hamana ([12], [13], also see [14]),
independently. The reader unfamiliar with this subject is referred to Chapter 15
of [22], or Chapter 6 of [10], or [7], or [2], for example.
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Let X ⊂ B(H) be a nonzero operator space, and consider the Paulsen opera-
tor system

SX :=
[
C1H X

X∗ C1H

]
⊂M2(B(H)).

One then takes a minimal (with respect to a certain ordering) completely positive
SX-projection Φ on M2(B(H)), where an SX-projection is an idempotent that fixes
each element of SX . Then the image ImΦ turns out to be an injective envelope
I(SX) of SX . By a well-known result of M.-D. Choi and E.G. Effros ([8]), ImΦ
is a unital C∗-algebra with the product � (which is called the Choi–Effros product)
defined by ξ� η := Φ(ξη) for ξ, η ∈ ImΦ and with the other algebraic operations
and norm taken to be the original ones in M2(B(H)). The C∗-algebraic structure
of I(SX) does not depend on a particular embedding X ⊂ B(H). By a well-
known trick one may decompose Φ into

Φ =

[
ψ1 φ
φ∗ ψ2

]
.

Accordingly, one may write

(2.1) ImΦ = I(SX) =

[
I11(X) I(X)
I(X)∗ I22(X)

]
⊂M2(B(H)),

where I(X) is an injective envelope of X, and I11(X) and I22(X) are injective
C∗-algebras (hence unital (see Proposition 2.8 in [7])). We denote the identities
of I11(X) and I22(X) by 111 and 122, respectively. Note that the last inclusion
in expression (2.1) is not as a subalgebra since the multiplication in I(SX) and
the multiplication in M2(B(H)) are not same in general. The new product �
induces a new product • between elements of I11(X), I22(X), I(X), and I(X)∗.
For instance, x • y∗ = ψ1(xy∗) for x, y ∈ I(X). Note that the associativity of • is
guaranteed by that of �.

The following property is often useful.

LEMMA 2.1 (Blecher–Paulsen, Corollary 1.3 in [7]). (i) If a ∈ I11(X), and if
a • x = 0, ∀x ∈ X, then a = 0.

(ii) If b ∈ I22(X), and if x • b = 0, ∀x ∈ X, then b = 0.

One may write the C∗-subalgebra, denoted by C∗(∂X) of I(SX) (with the
new product) generated by [

O X
O O

]
as

C∗(∂X) =

[
E(X) T (X)
T (X)∗ F (X)

]
⊂
[

I11(X) I(X)
I(X)∗ I22(X)

]
,

where T (X) is a triple envelope of X, i.e., a “minimal” TRO that contains X com-
pletely isometrically. Here an operator space X being a ternary ring of operators
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(TRO for short) or a triple system means that there is a complete isometry ι from X
into a C∗-algebra such that ι(x)ι(y)∗ι(z) ∈ ι(X), ∀x, y, z ∈ X.

We call the embedding i : X →
[

O X
O O

]
⊂ C∗(∂X) ⊂ I(SX) the Shilov

embedding of X, and often denote
[

0 x
0 0

]
(x ∈ X) simply by x. Similarly, we

often write X for
[

O X
O O

]
, and 111 for

[
111 0
0 0

]
, etc. The involution on B(H)

induces an involution on M2(B(H)) in an obvious way, and it is still denoted

by ∗. For example, for x ∈ X,
[

0 x
0 0

]∗
=

[
0 0
x∗ 0

]
.

In this paper, all operator spaces are assumed to be norm-complete. When-
ever infinite-dimensional vector spaces are involved in products, we take the
norm-closure of the linear span. For instance, X • z • X := span{x • z • y : x, y ∈
X}, where z ∈ I(X)∗.

Now we are ready to recall the definition of one-sided and quasi-multipli-
ers. We remark that the one-sided multipliers were first introduced by D.P. Blecher
in [2]. The following definition (items (i) and (ii)) is an equivalent but more man-
ageable version appearing in [7].

DEFINITION 2.2. Let X be a nonzero operator space.
(i) (Blecher–Paulsen, Definition 1.4 in [7]) The left-multiplier algebra of X is the

operator algebra

LM(X) := {a ∈ I11(X) : a • X ⊂ X}.
We call an element of LM(X) a left multiplier of X.

(ii) The right multiplier algebra of X is the operator algebra

RM(X) := {b ∈ I22(X) : X • b ⊂ X}.

We call an element ofRM(X) a right multiplier of X.
(iii) (Kaneda–Paulsen, Definition 2.2 in [20]) The quasi-multiplier space of X is

the operator space

QM(X) := {z ∈ I(X)∗ : X • z • X ⊂ X}.

We call an element of QM(X) a quasi-multiplier of X.

Note that LM(X) and RM(X) are denoted by IMl(X) and IMr(X), re-
spectively, in [7].

The following theorem characterizes operator algebra products in terms of
quasi-multipliers and matrix norms. Especially, (iii) tells us that the operator
algebra products (algebraic property) a given operator space can be equipped
with are completely determined only by its underlying matrix norm structure
(geometric property), which can be regarded as the “quasi” version of the τ-trick
theorem by Blecher–Effros–Zarikian (Theorems 1.1 and 4.6 in [4]).
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THEOREM 2.3 (Kaneda, Theorem 3.3.1 in [16], Theorem 4.1 in [17]). Let X be
a nonzero operator space with a bilinear mapping ϕ : X × X → X, and let I(SX) be as
above and 1 be its identity. We regard X as a subspace of I(SX) by the Shilov embedding
defined above. Let

M2(I(SX)
h
⊗ I(SX)) M2(X)
∪ ∪

Γϕ :

X
h
⊗ C1 X

h
⊗ X

O C1
h
⊗ X

 →
[

X X
O X

]
be defined by

Γϕ

([
x1 ⊗ 1 x⊗ y

0 1⊗ x2

])
:=
[

x1 ϕ(x, y)
0 x2

]
and their linear extension and norm closure, where

h
⊗ is the Haagerup tensor product.

Then, the following are equivalent:
(i) (X, ϕ) is an abstract operator algebra (i.e., there is a completely isometric ho-

momorphism from X into B(H) for some Hilbert space H, hence, in particular, ϕ is
associative).

(ii) There exists a z ∈ Ball(QM(X)) := {z ∈ QM(X) : ‖z‖ 6 1} such that
∀x, y ∈ X, ϕ(x, y) = x • z • y.

(iii) Γϕ is completely contractive.
Moreover, such a z is unique.

When the above conditions hold, we denote ϕ by mz, and call (X, mz) the
operator algebra corresponding to the quasi-multiplier z, or the algebrization of X
by the quasi-multiplier z. On the other hand, for a given operator algebra A, we
call z given in (ii) the quasi-multiplier associated with A.

We denote by ext(Ball(I(X))) the set of the extreme points of the unit ball
of I(X). The following are particularly important subsets of ext(Ball(I(X))). We
will see in Corollary 2.10 that these are actually subsets of ext(Ball(I(X))).

DEFINITION 2.4. Let X be a nonzero operator space, and let S be a subset of
I(X).

(i) URloc(S) := {x ∈ S : x∗ • x = 122}.
(ii) ULloc(S) := {x ∈ S : x • x∗ = 111}.

(iii) Uloc(S) := URloc(S) ∩ ULloc(S).
We call an element of URloc(I(X)) (respectively, ULloc(I(X)), Uloc(I(X))) a local
isometry (or, local right unitary) (respectively, local co-isometry (or, local left unitary),
local unitary).

Item (iii) of the following proposition tells us that with certain embeddings,
local isometries (respectively, local co-isometries, local unitaries) actually become
isometries (respectively, co-isometries, unitaries).
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LEMMA 2.5. Let X be a nonzero operator space.
(i) If URloc(I(X)) 6= ∅, then there exists a commutative diagram

I11(X)
σ1←− I(X)

σ∗1 ↑ 	 ↑ ρ1

I(X)∗
ρ∗1←− I22(X)

such that ρ∗1(b) := ρ1(b∗)∗, ∀b ∈ I22(X), σ∗1 (x∗) := σ1(x)∗, ∀x ∈ I(X), and ρ1, σ1
(hence ρ∗1 , σ∗1 ) are complete isometries, and σ1 ◦ ρ1 (hence σ∗1 ◦ ρ∗1) is a ∗-monomorphism,
and ∀x ∈ URloc(I(X)), σ1(x) is a partial isometry in the C∗-algebra I11(X).

(ii) If ULloc(I(X)) 6= ∅, then there exists a commutative diagram

I11(X)
σ2−→ I(X)

σ∗2 ↓ � ↓ ρ2

I(X)∗
ρ∗2−→ I22(X)

such that ρ∗2(x∗) := ρ2(x)∗, ∀x ∈ I(X), σ∗2 (a) := σ2(a∗)∗, ∀a ∈ I11(X), and ρ2, σ2
(hence ρ∗2 , σ∗2 ) are complete isometries, and ρ2 ◦ σ2 (hence ρ∗2 ◦ σ∗2 ) is a ∗-monomorphism,
and ∀x ∈ ULloc(I(X)), ρ2(x) is a partial isometry in the C∗-algebra I22(X).

(iii) If Uloc(I(X)) 6= ∅, then in (i) and (ii), one can take ρ1, σ1, ρ2, σ2 (hence ρ∗1 , σ∗1 ,
ρ∗2 , σ∗2 ) to be onto such that ρ2 = ρ−1

1 , σ2 = σ−1
1 (hence ρ∗2 = (ρ∗1)

−1, σ∗2 = (σ∗1 )
−1).

Moreover,
(a) ∀x ∈ URloc(I(X)), σ1(x) = (σ2)

−1(x) and ρ2(x) = (ρ1)
−1(x) are

isometries in the C∗-algebras I11(X) and I22(X), respectively;
(b) ∀x ∈ ULloc(I(X)), σ1(x) = (σ2)

−1(x) and ρ2(x) = (ρ1)
−1(x) are

co-isometries in the C∗-algebras I11(X) and I22(X), respectively;
(c) ∀x ∈ Uloc(I(X)), σ1(x) = (σ2)

−1(x) and ρ2(x) = (ρ1)
−1(x) are uni-

taries in the C∗-algebras I11(X) and I22(X), respectively.

Proof. Once we define mappings ρ1, ρ2, σ1, and σ2 as follows, then the as-
sertions are straightforward.

(i) Pick v ∈ URloc(I(X)), and define ρ1(b) := v • b, ∀b ∈ I22(X); σ1(x) :=
x • v∗, ∀x ∈ I(X).

(ii) Pick v ∈ ULloc(I(X)), and define ρ2(x) := v∗ • x, ∀x ∈ I(X); σ2(a) :=
a • v, ∀a ∈ I11(X).

(iii) Pick v ∈ Uloc(I(X)), and define ρ1, ρ2, σ1, and σ2, as (i) and (ii).

A refinement of the following lemma will be given in Theorem 4.13 using
the alternative definitions of quasi-multipliers given in Section 3.

LEMMA 2.6. Let A be a nonzero operator algebra and z be the quasi-multiplier
associated with A.

(i) If A has a contractive approximate right identity, then z∗ ∈ URloc(I(A)).
(ii) If A has a contractive approximate left identity, then z∗ ∈ ULloc(I(A)).

(iii) If A has a contractive approximate two-sided identity, then z∗ ∈ Uloc(I(A)).
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Proof. (i) follows from noticing that in the proof of Theorem 2.3 in [5], it
is seen that v∗ is the quasi-multiplier associated with A and v ∈ URloc(I(A)),
although the terminology “quasi-multiplier” does not appear there.

(ii) is similar by symmetry.
(iii) follows from (i) and (ii).

It follows from Lemma 2.6 together with Lemma 2.5 that if A is an operator
algebra with a contractive approximate right identity, then I(A) and I(A)∗ are
embedded in I11(A) completely isometrically, and I22(A) is embedded in I11(A)
∗-monomorphically. Part of this fact is already seen in Theorem 2.3 in [5].

Similar embeddings hold when A has a contractive approximate left iden-
tity.

Also note that in Lemma 3.2.2 in [16] and Lemma 3.4 in [17], assuming
that A has a contractive approximate two-sided identity we embedded I(A) and
I(A)∗ in I11(A), accordingly we showed that our definition of quasi-multipliers
(Definition 2.2) coincides with the classical one for C∗-algebras (Section 3.12 of
[23]) in the sense that they are completely isometrically quasi-isomorphic (Theo-
rem 3.2.3 in [16] and Theorem 3.5 in [17]).

Recall that if A is an operator algebra with a contractive approximate two-
sided identity, then its injective envelope I(A) is a unital C∗-algebra which con-
tains A as a subalgebra (see Corollary 4.2.8(1) in [6], for example).

DEFINITION 2.7. (i) LM1(A) := {a ∈ I(A) : aA ⊂ A}.
(ii)RM1(A) := {b ∈ I(A) : Ab ⊂ A}.
(ii) QM1(A) := {z ∈ I(A) : AzA ⊂ A}.

LM1(A), RM1(A), and QM1(A) are equivalent to LM(A), RM(A),
and QM(A), respectively in the sense of the following lemma.

LEMMA 2.8. Let A be a nonzero operator algebra with a contractive approximate
two-sided identity. Then the following assertions hold:

(i) There is a multiplicative complete isometry λ from LM1(A) onto LM(A) such
that ax = λ(a) • x, ∀a ∈ LM1(A), ∀x ∈ A.

(ii) There is a multiplicative complete isometry ρ fromRM1(A) ontoRM(A) such
that xb = x • ρ(b), ∀b ∈ RM1(A), ∀x ∈ A.

(iii) There is a complete isometry κ from QM1(A) onto QM(A) such that xzy =

x • κ(z) • y, ∀z ∈ QM1(A), ∀x, y ∈ A.

Proof. To see (iii), first note that by Lemma 2.6(iii) and Lemma 2.5(iii), I11(A)
is an injective envelope of A. By the uniqueness of an injective envelope C∗-
algebra up to ∗-isomorphism fixing each element of A, I(A) in the definition of
QM1(A) can be taken to be I11(A). Now the assertion follows from Lemma 3.2.2
in [16] (or Lemma 3.4 in [17]).

Items (i) and (ii) are similar by establishing a lemma corresponding to Lem-
ma 3.2.2 in [16] (or Lemma 3.4 in [17]). The details are left to the reader.
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We close this preliminary section with Kadison’s characterization of the ex-
treme points of the unit ball of a C∗-algebra (Theorem 1 in [15]). We use the
following version in Pedersen’s book (Proposition 1.4.8 in [23]) and Sakai’s book
(Proposition 1.6.5 in [26]). This theorem motivated our definition of quasi-ident-
ities (Definition 4.2) and plays a key role in the proof of the characterization the-
orems (Theorems 4.7 and 4.13).

LEMMA 2.9 (Kadison). Let A be a C∗-algebra, and let p, q be orthogonal projec-
tions in A. Then x ∈ pAq is an extreme point of Ball(pAq) if and only if

(p− xx∗)A(q− x∗x) = {0}.

In this case, x is a partial isometry.

The following corollary is immediate from the lemma above.

COROLLARY 2.10. Let X be a nonzero operator space. Then the sets URloc(I(X)),
ULloc(I(X)), and Uloc(I(X)) are subsets of ext(Ball(I(X))).

3. ALTERNATIVE DEFINITIONS OF ONE-SIDED AND QUASI-MULTIPLIERS

In this section we provide alternative definitions of one-sided and quasi-
multipliers of an operator space X which are equivalent to the ones presented in
Definition 2.2.

First, we give a definition of one-sided and quasi-multipliers of X using the
second dual of C∗(∂X). Denote the second dual of E(X), F (X), and T (X) by
E(X)′′, F (X)′′, and T (X)′′, respectively, and we regard them as the corners of
the second dual of C∗(∂X) in the usual way:

C∗(∂X)′′ =

[
E(X)′′ T (X)′′

T (X)∗′′ F (X)′′

]
.

(To avoid confusion with the adjoint and to distinguishQM′′(A) fromQM∗∗(A)
in item (I) on page 86 of [16] and item (I) on page 351 of [17], in this paper we de-
note the dual by the prime instead of the star.) The Arens product on C∗(∂X)′′ in-
duces a product between elements of E(X)′′, F (X)′′, T (X)′′, and T (X)∗′′, which
is an extension of • defined in Section 2 and still denoted by •. Denote by 1E
and 1F the identities of the W∗-algebras E(X)′′ and F (X)′′, respectively. Let̂ : C∗(∂X)→ C∗(∂X)′′ be the canonical embedding.

DEFINITION 3.1. (i) LM′′(X) := {a ∈ E(X)′′ : a • X̂ ⊂ X̂}.
(ii)RM′′(X) := {b ∈ F (X)′′ : X̂ • b ⊂ X̂}.

(iii) QM′′(X) := {z ∈ T (X)∗′′ : X̂ • z • X̂ ⊂ X̂}.
By Proposition 3.2(iii) and Theorem 2.3(ii)⇒(i), the operator space X to-

gether with the bilinear mapping ϕ defined by ϕ̂(x, y) := x̂ • z • ŷ, ∀x, y ∈ X
with a fixed z ∈ Ball(QM′′(X)) is an operator algebra, and hence ϕ is denoted
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by mz (instead of m
κ−1

1 (z) which is consistent with the notation defined at the end

of Theorem 2.3) and we call (X, mz) the operator algebra corresponding to z.

LM′′(X), RM′′(X), and QM′′(X) are equivalent to LM(X), RM(X),
and QM(X), respectively in the sense of the following proposition which we
shall prove shortly.

PROPOSITION 3.2. (i) There is a multiplicative complete isometry λ1 from
LM(X) onto LM′′(X) such that â • x = λ1(a) • x̂, ∀a ∈ LM(X), ∀x ∈ X.

(ii) There is a multiplicative complete isometry ρ1 from RM(X) onto RM′′(X)

such that x̂ • b = x̂ • ρ1(b), ∀b ∈ RM(X), ∀x ∈ X.
(iii) There is a complete isometry κ1 from QM(X) onto QM′′(X) such that

̂x • z • y = x̂ • κ1(z) • ŷ, ∀z ∈ QM(X), ∀x, y ∈ X.

Next, we give a definition of one-sided and quasi-multipliers of X using a
representation of C∗(∂X) on a Hilbert space. Represent C∗(∂X) by a ∗-monomor-
phism π on the direct sum of Hilbert spaces H1 and H2 nondegenerately so that
[T (X)H2] := span{xξ : x ∈ T (X), ξ ∈ H2} = H1 and [T (X)∗H1] = H2. Denote
by 1H1

and 1H2
the orthogonal projections ontoH1 andH2, respectively.

DEFINITION 3.3. (i) LMπ(X) := {a ∈ B(H1) : aπ(X) ⊂ π(X)}.
(ii)RMπ(X) := {b ∈ B(H2) : π(X)b ⊂ π(X)}.

(iii) QMπ(X) := {z ∈ B(H1,H2) : π(X)zπ(X) ⊂ π(X)}.
By Proposition 3.4(iii) and Theorem 2.3(ii)⇒(i), the operator space X to-

gether with the bilinear mapping ϕ defined by π(ϕ(x, y)) := π(x)zπ(y), ∀x, y ∈
X with a fixed z ∈ Ball(QMπ(X)) is an operator algebra, and hence ϕ is denoted
by mz (instead of m

κ−1
2 (z) which is consistent with the notation defined at the end

of Theorem 2.3) and we call (X, mz) the operator algebra corresponding to z.

LMπ(X), RMπ(X), and QMπ(X) are equivalent to LM(X), RM(X),
and QM(X), respectively in the sense of the following proposition.

PROPOSITION 3.4. (i) There is a multiplicative complete isometry λ2 from
LM(X) onto LMπ(X) such that

π(a • x) = λ2(a)π(x), ∀a ∈ LM(X), ∀x ∈ X.

(ii) There is a multiplicative complete isometry ρ2 from RM(X) onto RMπ(X)
such that

π(x • b) = π(x)ρ2(b), ∀b ∈ RM(X), ∀x ∈ X.

(iii) There is a complete isometry κ2 from QM(X) onto QMπ(X) such that

π(x • z • y) = π(x)κ2(z)π(y), ∀z ∈ QM(X), ∀x, y ∈ X.

Proof of Propositions 3.2 and 3.4. To see Proposition 3.4(iii), first note that the
C∗-algebra I(SX) is an injective envelope of C∗(∂X), and use I(SX) to define
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QM1(C∗(∂X)) (see Definition 2.7(iii)). Since a C∗-algebra has a contractive ap-
proximate two-sided identity, by Lemma 2.8(iii) together with Lemma 3.2.2 and
Theorem 3.2.3 in [16] (or, Lemma 3.4 and Theorem 3.5 in [17]) we have a sequence
of completely isometric quasi-isomorphisms

(3.1) QM1(C∗(∂X))
∼→ QM(C∗(∂X))

∼→ QMψ̃(C∗(∂X))
∼→ QMπ(C∗(∂X)),

where QMψ̃(C∗(∂X)) and QMπ(C∗(∂X)) are as defined in Lemma 3.2.2 and
item (II) on page 86 of [16] (or, Lemma 3.4 and item (II) on page 351 of [17]).
Note that QMπ(C∗(∂X)) with “superscript π” appearing here is different from
QMπ(C∗(∂X)) with “subscript π” defined in Definition 3.3 of the present pa-
per, although they are quasi-isomorphic in the sense of Definition 3.1.1(2) in [16]
and Definition 2.1(2) in [17]. Let us denote the composition of the sequence of
completely isometric quasi-isomorphisms in (3.1) by κ, then

π(ξζη) = π(ξ)κ(ζ)π(η), ∀ζ ∈ QM1(C∗(∂X)), ∀ξ, η ∈ C∗(∂X),

and it is not hard to see that the restriction of κ to QM(X) gives κ2. Proposi-
tion 3.2(iii) is similar. Items (i) of Propositions 3.2 and 3.4 are also similar, but
use Theorem 6.1 in [3] instead of Theorem 3.2.3 in [16] (or Theorem 3.5 in [17]),
and the equivalence of LM(C∗(∂X)) and Ml(C∗(∂X)) (Theorem 1.9(i) in [7]).
Items (ii) of Propositions 3.2 and 3.4 are similar to items (i) of these propositions
by symmetry.

Finally, we define the following sets.

DEFINITION 3.5. Let X be a nonzero operator space.
(i) Let S be a subset of T (X)′′.

(a) URloc(S) := {x ∈ S : x∗ • x = 1F}.
(b) ULloc(S) := {x ∈ S : x • x∗ = 1E }.
(c) Uloc(S) := URloc(S) ∩ ULloc(S).

(ii) Let S be a subset of B(H2,H1).
(a) URloc(S) := {x ∈ S : x∗x = 1H2

}.
(b) ULloc(S) := {x ∈ S : xx∗ = 1H1

}.
(c) Uloc(S) := URloc(S) ∩ ULloc(S).

One may rewrite Lemma 2.5 using Definition 3.5 and appropriate algebraic
operations in C∗(∂X)′′ or B(H1⊕H2) with T (X)′′ or B(H2,H1) in place of I(X).
The details are left to the reader. A similar remark works for Lemma 2.6.

The following corollary immediately follows from Kadison’s theorem (Lem-
ma 2.9).

COROLLARY 3.6. (i) URloc(T (X)′′), ULloc(T (X)′′), and Uloc(T (X)′′) are
subsets of ext(Ball(T (X)′′)).

(ii) URloc(B(H2,H1)), ULloc(B(H2,H1)), and Uloc(B(H2,H1)) are subsets of
ext(Ball(B(H2,H1))).
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Hereafter, we omit the symbol ̂ or π, and we regard C∗(∂X) as a C∗-
subalgebra of C∗(∂X)′′ or B(H). We also omit the symbol � or • unless there
is a possibility of confusion.

4. QUASI-IDENTITIES AND CHARACTERIZATION THEOREMS

Throughout this section, the following elementary lemma, which follows
from the polarization identity, is useful.

LEMMA 4.1. (i) Let a ∈ B(H). If a2 = a and ‖a‖ 6 1, then a∗ = a, i.e., a is an
orthogonal projection.

(ii) Let p ∈ B(H) be an orthogonal projection, i.e., p = p∗ = p2, and let b, c ∈ B(H)
such that c∗b = p and ‖b + c‖ 6 2. Then ker p ⊂ ker b ∩ ker c if and only if b = c. In
this case, ker p = ker b = ker c.

Proof. (i) Although this is standard, we include a proof for the convenience
of the reader. Let ξ ∈ H. Then by the polarization identity,

‖aξ‖2 = 〈aξ, aξ〉 = 〈aξ, a2ξ〉 = 〈a∗aξ, aξ〉

=
1
4
(‖(a∗a + a)ξ‖2 − ‖(a∗a− a)ξ‖2) 6 ‖aξ‖2 − 1

4
‖(a∗a− a)ξ‖2.

Since ξ ∈ H is arbitrary, a = a∗a = a∗.
(ii) Assume that ker p ⊂ ker b ∩ ker c, and let η ∈ H. Then by the polariza-

tion identity,

‖pη‖2 = 〈c∗bpη, pη〉 = 〈bpη, cpη〉

=
1
4
(‖(b + c)pη‖2 − ‖(b− c)pη‖2) 6 ‖pη‖2 − 1

4
‖(b− c)pη‖2

from which it follows that b = c. The converse direction and the last assertion are
obvious and very basic facts.

We introduce the new notion “(approximate) quasi-identities”.

DEFINITION 4.2. (i) Let R be a ring. A quasi-identity of R is an element
e ∈ R such that

r = er + re− ere, ∀r ∈ R.

(ii) Let R be a topological ring. An approximate quasi-identity of R is a net
{eα} ⊂ R such that

r = lim
α
(eαr + reα − eαreα), ∀r ∈ R.

(iii) Let A be a locally convex topological algebra. A weak approximate quasi-
identity of A is a net {eα} ⊂ A such that

a = w- lim
α
(eαa + aeα − eαaeα), ∀a ∈ A.
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It is quite essential in the definition of an approximate quasi-identity that
the limit is taken “at once”. In fact, a bounded approximate left identity {eα} of
a normed algebra A is easily seen to be an approximate quasi-identity. However,
lim

α
aeα need not exist for all a ∈ A as seen in Example 4.15.

PROPOSITION 4.3. (i) A separable normed algebra with an approximate quasi-
identity admits an approximate quasi-identity which is a sequence.

(ii) A finite-dimensional normed algebra with an approximate quasi-identity with a
bound M has a quasi-identity of norm equal to or less than M.

Proof. Item (i) can be proved in a similar way to showing a separable C∗-
algebra admits an approximate identity which is a sequence (see Remark 3.1.1 in
[21], for example), and the details are left to the reader.

To see (ii), let {eα} be a bounded approximate quasi-identity of a finite-
dimensional normed algebraA such that sup

α
‖eα‖ 6 M, and let e be an accumula-

tion point of {eα} inA. Then ‖e‖ 6 M, and one can take a sequence {eαn} ⊂ {eα}
such that lim

n→∞
eαn = e. Therefore ∀a ∈ A,

‖a−(ea+ae−eae)‖6‖a− (eαn a + aeαn − eαn aeαn)‖+ ‖eαn − e‖‖a‖
+‖a‖‖eαn−e‖+‖eαn−e‖‖a‖‖eαn‖+‖e‖‖a‖‖eαn−e‖→0

as n→ ∞.

The author believes that assuming boundedness in (ii) is redundant for the
existence of a quasi-identity, and would like to leave the following as an open
problem.

QUESTION 1. Does a finite-dimensional normed algebra with a (possibly
unbounded) approximate quasi-identity admit a quasi-identity?

However, it is easy to see that a (possibly unbounded) approximate right
(respectively, left, two-sided) identity of a finite-dimensional normed algebra
can be replaced by a bounded one, and hence its accumulation point is a right
(respectively, left, two-sided) identity. To see this, let A be a non-zero finite-
dimensional normed algebra with a (possibly unbounded) approximate right
identity {ei}∞

i=1 (as remarked in the proof of Proposition 4.3(i), one can take a
sequential approximate right identity), and let n be the dimension of the vector
space span{ei : i ∈ N}, where N is the set of positive integers. We shall show
that the approximate right identity {ei}∞

i=1 can be replaced by a bounded one by
mathematical induction on n. If n = 1, this is trivial. Indeed, pick e 6= 0 from
span{ei : i ∈ N}, then for each i ∈ N, there is a unique scalar λi such that

ei = λie, and e = lim
i→∞

eei = lim
i→∞

λie2,

which forces {λi}∞
i=1, hence {ei}∞

i=1 to be bounded (there is no need to replace in
this case). Now let n > 2, and assume that the assertion is true if the dimension
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of span{ei : i ∈ N} is n − 1. Suppose that {ei}∞
i=1 is unbounded and that the

dimension of span{ei : i ∈ N} is n. One may assume that lim
i→∞
‖ei‖ = ∞ and

ei 6= 0, ∀i ∈ N by passing to a subsequence if necessary. Let v be an accumulation
point of the sequence {ei/‖ei‖}∞

i=1. Passing to a subsequence again if necessary,
we can make v = lim

i→∞
ei/‖ei‖. Since for every a ∈ A, a = lim

i→∞
aei, dividing the

right-hand side by ‖ei‖ before taking the limit yields that 0 = av, ∀a ∈ A. By
adjoining vectors v1, . . . , vn−1 appropriately, we obtain a basis {v, v1, . . . , vn−1}
of span{ei : i ∈ N}. For each i ∈ N, let ci be the coefficient of v when ei is
expanded with respect to this basis, and put ẽi := ei− civ (∈ span{v1, . . . , vn−1}).
Clearly, the sequence {ẽi}∞

i=1 serves as an approximate right identity ofA and the
dimension of span{ẽi : i ∈ N} is n− 1. Thus by the induction hypothesis, {ẽi}∞

i=1
can be replaced by a bounded right approximate identity, which completes the
proof.

Identities, left identities, right identities of rings are quasi-identities. We
shall see in Proposition 4.4 that in the operator algebra case, a contractive quasi-
identity is unique if it exists. Moreover, it is necessarily idempotent and Hermit-
ian (if the operator algebra is embedded in any C∗-algebra by any multiplicative
complete isometry).

Bounded approximate left (respectively, right, two-sided) identities of
normed algebras are approximate quasi-identities. Many normed algebras do not
have an (approximate) two-sided or one-sided identity, but do have an (approx-
imate) quasi-identity. Perhaps the following example illustrates a typical situa-
tion. Let A be a normed algebra which has a bounded left approximate identity
{eα} but does not have a right approximate identity, and let B be a normed al-
gebra which has a bounded right approximate identity { fβ} but does not have

a left approximate identity. Then A
p
⊕ B with 1 6 p 6 ∞ has neither left nor

right approximate identity, but does have a bounded approximate quasi-identity
{eα ⊕ fβ}(α,β), where {(α, β)} is a directed set by the ordering defined by

(α1, β1) 6 (α2, β2) if and only if α1 6 α2 and β1 6 β2.

But if one can always decompose a normed algebra into the direct sum of two
normed algebras one of which has a left approximate identity and the other has
a right approximate identity, then it will not be so meaningful to define (approxi-
mate) quasi-identities since one can always reduce to the case of normed algebras
with a one-sided approximate identity. In fact, a TRO with a predual always can
be decomposed in such a way ([18]). We thank Takeshi Katsura for asking for
such an example that cannot be decomposed into the direct sum of two normed
algebras with a one-sided identity. The following simple example answers the
question. Let A be the subalgebra of M3(C) supported on the (1, 1)-, (1, 2)-,
(1, 3)-, (2, 3)-, and (3, 3)-entries only, where M3(C) is equipped with the usual
matrix operations. Then A has neither left nor right identity, and cannot be de-
composed into the direct sum of any two algebras, but does have a quasi-identity
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E1 + E3, where Ei denotes the matrix whose (i, i)-entry is 1 and all other entries
are 0’s.

The following proposition convinces us that the notion of (approximate)
quasi-identities is a natural and in a certain sense “minimal” generalization of
(approximate) identities or (approximate) one-sided identities at least in the op-
erator algebra case.

PROPOSITION 4.4. (i) If e is a quasi-identity of a ring, then so is en for each n ∈ N.
(ii) A contractive quasi-identity of a normed algebra is an idempotent, and hence its

norm is 1 unless the algebra is trivial.
(iii) A contractive quasi-identity of an operator algebra A ⊂ B(H) is unique if it

exists, and is Hermitian (hence an orthogonal projection).

Proof. (i) Let e be a quasi-identity of a ringR. For brevity of writing, we add
an identity 1 toR if it does not have one. Then( n

∑
k=1

(1− e)ek−1
)

r
( n

∑
l=1

el−1(1− e)
)
= 0, ∀r ∈ R

since (1− e)R(1− e) = {0}. But each series is a “telescoping series”, and the
equation is simplified to (1− en)r(1− en) = 0, ∀r ∈ R, which means that en is a
quasi-identity ofR.

(ii) Let e be a contractive quasi-identity of a normed algebra. Then e = 2e2−
e3, that is, e(e− e2) = e− e2. Therefore inductively en(e− e2) = e− e2, ∀n ∈ N.
Thus

e− en+1 =
n

∑
k=1

(ek − ek+1) =
n

∑
k=1

ek−1(e− e2) = n(e− e2),

and so 1 > ‖en+1‖ > n‖e− e2‖− ‖e‖. Since this is true for all n ∈ N, we have that
e2 = e.

(iii) Let e and e′ be contractive quasi-identities of an operator algebra A ⊂
B(H), hence they are idempotents by (ii), and hence they are Hermitian by
Lemma 4.1(i). Since e is a quasi-identity, e(e′ − e′e) = e′ − e′e. Multiplying both
sides by e′ on the left and right yields that e′e(e′ − e′ee′) = e′ − e′ee′ since e′ is an
idempotent. Therefore inductively (e′e)n(e′ − e′ee′) = e′ − e′ee′, ∀n ∈ N. Thus

e′ − (e′e)ne′ =
n

∑
k=1

(e′e)k−1(e′ − e′ee′) = n(e′ − e′ee′),

and hence 1 > ‖(e′e)ne′‖ > n‖e′ − e′ee′‖ − ‖e′‖, ∀n ∈ N. Therefore

(4.1) e′ = e′ee′,

and so e′e = (e′e)2, that is, e′e is an idempotent. By Lemma 4.1(i), e′e = (e′e)∗ =
ee′. Thus by equation (4.1), e′ = (ee′)e′ = ee′ since e′ is an idempotent. By sym-
metry, e = e′e, and hence e′ = ee′ = e′e = e.
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In particular, if an operator algebra has a contractive one-sided or two-sided
identity, then it is the only contractive quasi-identity.

As the following proposition shows, if a C∗-algebra has a quasi-identity
(contractiveness is not assumed a priori), then it is necessarily an identity.

PROPOSITION 4.5. If A is a C∗-algebra, then A possesses a quasi-identity if and
only if A is unital. In this case, the identity is the only quasi-identity.

Proof. Let A be a nonzero C∗-algebra, and let {eα} be an approximate iden-
tity of A. Suppose that A has a quasi-identity e. We may assume that A ⊂ B(H)
nondegenerate, and denote the identity of B(H) by 1. Then (1 − e)a(1 − e) =
0, ∀a ∈ A. In particular, for ξ ∈ H, (1− e)(eα − e)∗(1− e)ξ = 0. By taking the
limit with respect to α, we have that (1− e)(1− e)∗(1− e)ξ = 0. Since ξ ∈ H is
arbitrary, (1− e)(1− e)∗(1− e) = 0, so that (1− e)∗(1− e)(1− e)∗(1− e) = 0,
and thus 1 = e ∈ A.

COROLLARY 4.6. If J is a left (respectively, right) ideal in a C∗-algebra, then J
possesses a contractive quasi-identity if and only if J has a contractive right (respectively,
left) identity. In this case, the contractive right (respectively, left) identity is the only
contractive quasi-identity.

Proof. The second statement was already observed after Proposition 4.4,
and the “if” direction of the first statement is trivial. Assume that a left ideal
J in a C∗-algebra A ⊂ B(H) has a contractive quasi-identity e. Then e is also a

quasi-identity of the weak∗-closure Jw∗ of J in B(H). Let f be the identity of the

von Neumann algebra J∗ Jw∗ which is a subalgebra of Jw∗ . Then f is a contractive

right identity of Jw∗ . Obviously, f e f is a contractive quasi-identity of J∗ Jw∗ , and
hence by Proposition 4.5, f e f = f . Thus e = e f = (e f )∗ = f e = f e f = f , where
we used the fact that e and f are Hermitian.

We are now in a position to present the characterization theorems.

THEOREM 4.7. Let X be a nonzero operator space, z ∈ Ball(QM(X)), and
(X, mz) be the corresponding operator algebra.

(i) (X, mz) has a quasi-identity of norm 1 if z∗ ∈ ext(Ball(X)).
(ii) (X, mz) has a right identity of norm 1 if and only if z∗ ∈ URloc(X).

(iii) (X, mz) has a left identity of norm 1 if and only if z∗ ∈ ULloc(X).
(iv) (X, mz) has a two-sided identity of norm 1 if and only if z∗ ∈ Uloc(X).

In each statement, z∗ is the quasi- (respectively, right, left, two-sided) identity of norm 1.

Proof. To see (i), assume that z∗ ∈ ext(Ball(X)), then ‖z‖ = 1. Let TER(X) :=
X ∩ QM(X)∗ as in Definition 4.6 in [20]. Then TER(X) is a TRO, and z∗ ∈

ext(Ball(TER(X))). IfA is the C∗-algebra generated by
[

O TER(X)
O O

]
and

[
111 0
0 0

]
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and
[

0 0
0 122

]
in I(S(X)), then TER(X) = 111A122. Thus by Kadison’s theorem

(Lemma 2.9), (111− z∗z)TER(X)(122− zz∗) = {0}, and z is a partial isometry. We
claim that (111 − z∗z)X(122 − zz∗) = {0}. Suppose the contrary, and pick x0 ∈ X
with ‖x0‖ 6 1 such that x0 = (111 − z∗z)x0(122 − zz∗) 6= 0. Then

‖z∗ ± x0‖2 = ‖zz∗ + x∗0 x0‖ = max{‖z‖2, ‖x0‖2} = 1,

and so z∗ ± x0 ∈ Ball(X), and

z∗ =
1
2
(z∗ + x0) +

1
2
(z∗ − x0).

This contradicts the fact that z∗ ∈ ext(Ball(X)). Thus (111 − z∗z)X(122 − zz∗) =
{0} as claimed, i.e., x = z∗zx + xzz∗ − z∗zxzz∗ ∈ X, ∀x ∈ X, which tells us
that z∗ ∈ X is a quasi-identity, and (i) has been shown. (ii) was observed in
Proposition 2.10 in [20], and (iii) is similar by symmetry, and (iv) follows from (ii)
and (iii).

REMARK 4.8. (i) The converse direction in (i) of the above theorem does not
hold. In fact, as we saw earlier in this section (before Proposition 4.4), let

X :=

C C C
O O C
O O C

 ⊂M3(C)

with the usual matrix norm inherited from the operator norm of M3(C). Then

QM(X) =

C C C
C C C
O C C

 .

Let z = I3 ∈ QM(X), where I3 denotes the identity matrix. Then (X, mz) has a
contractive quasi-identity E1 + E3, but z∗ is not in X.

(ii) By Corollary 2.10, z∗ in (ii)–(iv) of the above theorem is an extreme point of
Ball(I(X)), and hence an extreme point of Ball(QM(X)∗), Ball(T (X)), Ball(X),
Ball(T (X) ∩ QM(X)∗) and Ball(TER(X)) too. However, in (i) of the theorem,
z∗ is not an extreme point of Ball(QM(X)∗) (hence not an extreme point of
Ball(I(X))) or Ball(T (X)) in general, though it is an extreme point of Ball(TER(X))
as observed in the proof of Theorem 4.7. In fact, let X be as in the example in
item (i) of this remark. Then T (X) = M3(C). Let z = E1 + E3 ∈ QM(X).
Then z∗ ∈ ext(Ball(X)). But z∗ is not an extreme point of Ball(QM(X)∗) or
Ball(T (X)).

(iii) That z ∈ ext(Ball(QM(X))) does not imply that (X, mz) has an approxi-
mate quasi-identity. To see this, let

X :=

C C C
C C C
O C C

 ,
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which is a “dual” of the example above. Then

QM(X) =

C C C
O O C
O O C

 .

Let z = E1 + E3 ∈ QM(X). Then z ∈ ext(Ball(QM(X))), but (X, mz) does not
have an approximate quasi-identity.

Looking at (i) of Theorem 4.7 from a different point of view by not restricting
X to a particular algebrization, we can construct an “if and only if” statement as
follows.

COROLLARY 4.9. Let X be a nonzero operator space. Then some algebrization of
X admits a quasi-identity e of norm 1 if and only if e ∈ ext(Ball(X)) ∩QM(X)∗.

Proof. The direction “⇐” follows from Theorem 4.7(i), so we shall prove the
converse “⇒”. Let e ∈ X with ‖e‖ = 1 be a quasi-identity of (X, mz) for some
z ∈ Ball(QM(X)). Then by Proposition 4.4(ii), eze = mz(e, e) = e and so ez and
ze are idempotents, and hence they are Hermitian by Lemma 4.1(i). Thus by the
same argument as the one after equation (4.6) in the proof of Corollary 4.12, we
obtain that e∗e = ze. Similarly, ee∗ = ez. Therefore ∀x, y ∈ X, xe∗y = xe∗z∗e∗y =
xe∗ezy = xzezy ∈ X, and hence e∗ ∈ QM(X). Since e is a quasi-identity of
(X, mz), (111 − ez)X(122 − ze) = {0}. But since ez = ee∗ and ze = e∗e, we have
that (111 − ee∗)X(122 − e∗e) = {0}. Now we can show that e ∈ ext(Ball(X)) by
the same way as proving Kadison’s theorem (Lemma 2.9), although X is not a
TRO in general. See the proof of Proposition 1.4.7 in [23], for example.

REMARK 4.10. (i) It is important to note that in the proof above, z need not
be e∗ in general. See the example in Remark 4.8(i). However, re-choosing z = e∗

also allows (X, mz) to have a quasi-identity e by Theorem 4.7(i).
(ii) It is worth noting that this corollary implies that a quasi-identity, if it exists,

must be an extreme point of the unit ball of the underlying operator space, but
need not be an extreme point of the unit ball of the adjoint of its quasi-multiplier
space as the example in Remark 4.8(ii) indicated.

The author thanks the referee for asking a question which resulted in adding
the following corollary. This corollary suggests that adding the more restrictive
condition “z∗ is a quasi-identity” on the left-hand side of (i) of Theorem 4.7 also
yields an “if and only if” statement.

COROLLARY 4.11. Let X be a nonzero operator space, z ∈ Ball(QM(X)), and
(X, mz) be the corresponding operator algebra. Then z∗ is a quasi-identity of (X, mz) if
and only if z∗ ∈ ext(Ball(X)). In this case, the quasi-identity z∗ is necessarily of norm 1.

Proof. The direction “⇐” has been proved in Theorem 4.7(i). The converse
“⇒” can be observed as follows. That z∗ is a quasi-identity of (X, mz) means
(111 − z∗z)X(122 − zz∗) = {0}. Although X is not a TRO in general, this equality
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tells us that z∗ is an extreme point of Ball(X) as remarked at the last stage of the
proof of Corollary 4.9.

Extreme points best match quasi-identities (actually they are equal) when an
operator space is injective as the following corollary shows. This fact convinces
us that our attempt to characterize extreme points in terms of quasi-identities
is a correct direction, and that defining multipliers (especially, quasi-multipli-
ers) with the use of injective envelopes is the most plausible way. However, we
remark that the alternative definitions QM′′(X) and QMπ(X) defined in Sec-
tion 3 become useful when we deal with “approximate” identities as we will see
in Theorem 4.13, and that it is also possible to present Theorem 4.7, Corollary 4.9,
Corollary 4.11, and Corollary 4.12 in terms of QM′′(X) or QMπ(X) in place of
QM(X) using Definition 3.5.

COROLLARY 4.12. If X is injective in addition to the assumptions of Theorem 4.7,
then the converse of (i) in that theorem also holds, that is, (X, mz) has a quasi-identity of
norm 1 if and only if z∗ ∈ ext(Ball(X)). In this case, z∗ is the quasi-identity of norm 1.

Proof. To show “⇒”, note that if an operator space X is injective, then X =
I(X) = QM(X)∗, and hence z∗ ∈ X. Let e be a quasi-identity of norm 1. Then

(4.2) (111 − ez)X(122 − ze) = {0}.
By multiplying both sides by z on the right, we have that (111− ez)Xz(111− ez) =
{0}. By choosing (111 − ez)∗z∗ ∈ X and multiplying both sides by (111 − ez)∗ on
the right, we have that (111 − ez)(111 − ez)∗z∗z(111 − ez)(111 − ez)∗ = 0, which
implies that z(111 − ez)(111 − ez)∗ = 0. Hence z(111 − ez)(111 − ez)∗z∗ = 0, and
accordingly, z(111 − ez) = 0, so that

(4.3) z = zez.

Thus

(4.4) ez = ezez and ze = zeze,

which means that ez and ze are idempotents. (Equations (4.4) is actually an im-
mediate consequence of Proposition 4.4(ii). But we deduced equation (4.3) since
we use it toward the end of the proof.) Therefore by Lemma 4.1(i), ez and ze are
orthogonal projections, and hence

(4.5) ez = (ez)∗ = z∗e∗ and ze = (ze)∗ = e∗z∗.

Hence equation (4.2) is rewritten to (111 − z∗e∗)X(122 − e∗z∗) = {0}, and by re-
peating the argument above equation (4.3), we obtain that

(4.6) e∗ = e∗z∗e∗.

(Alternatively, one can obtain equation (4.6) from Proposition 4.4(ii). In fact,
e = mz(e, e) = eze.) Thus e∗e > e∗z∗ze > e∗z∗e∗eze = e∗e, and together with
equations (4.5) and (4.4), we have that e∗e = e∗z∗ze = zeze = ze. Hence together
with equations (4.6), (4.5), and (4.3), we have that e∗ = e∗z∗e∗ = e∗ez = zez = z.
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Thus equation (4.2) becomes (111 − z∗z)X(122 − zz∗) = {0}, which tells that
z∗ ∈ ext(Ball(X)) by Kadison’s theorem (Lemma 2.9).

In light of the above corollary, it is natural to ask the following question.

QUESTION 2. If an operator space X is injective, then always ext(Ball(X))
6= ∅?

If the answer is yes, then any injective operator space can be made into an
operator algebra with a quasi-identity of norm 1 by (i) of the above corollary.
More generally, one may ask the following question.

QUESTION 3. For any operator space X, ext(Ball(QM(X))) 6= ∅?

If this question has an affirmative answer, then so does Question 2 since
X = QM(X)∗ for an injective operator space X.

The alternative definitions of multipliers which we defined in Section 3
work in the “approximate” version of characterization.

THEOREM 4.13. Let X be a nonzero operator space, z be in Ball(QM′′(X)) (re-
spectively, Ball(QMπ(X))), and (X, mz) be the corresponding operator algebra. Then
the following implications hold, where the weak∗-closure is taken in C∗(∂X)′′ (respec-
tively, B(H1 ⊕H2)).

(1) (i) (X, mz) has a contractive weak approximate quasi-identity;
⇐ (ii) z∗ ∈ ext(Ball(Xw∗

)).
(2) (i) (X, mz) has a contractive approximate right identity;

⇔ (ii) z∗ ∈ URloc(Xw∗
).

(3) (i) (X, mz) has a contractive approximate left identity;
⇔ (ii) z∗ ∈ ULloc(Xw∗

).
(4) (i) (X, mz) has a contractive approximate two-sided identity;

⇔ (ii) z∗ ∈ Uloc(Xw∗
).

Proof. First, we shall show (1) in the case that z ∈ Ball(QM′′(X)). We con-
sider C∗(∂X) to be universally represented on the Hilbert space Hu, so that the
second dual C∗(∂X)′′ is the strong closure of C∗(∂X) in B(Hu). Suppose that z∗ ∈
ext(Ball(Xw∗

)) ∩ Ball(QM′′(X)∗). Then ‖z‖ = 1, and z∗ is an extreme point of

the unit ball of the weak∗-closed TRO WTER(X) := Xw∗ ∩QM′′(X)∗
w∗

as well.
Thus by Kadison’s theorem (Lemma 2.9), (1E − z∗z)WTER(X)(1F − zz∗) = {0}.
Then by the same argument as in the proof of Theorem 4.7(i), we obtain that

(4.7) x = z∗zx + xzz∗ − z∗zxzz∗, ∀x ∈ Xw∗ .

Pick a net {eα} ⊂ X of contractions such that SOT-lim
α

eα = z∗. Then, clearly

eαzx SOT−→ z∗zx and xzeα
SOT−→ xzz∗, and also ∀ξ, η ∈ Hu,

|〈(eαzxzeα−z∗zxzz∗)ξ, η〉|6 |〈(eαzxzeα−eαzxzz∗)ξ, η〉|+|〈(eαzxzz∗−z∗zxzz∗)ξ, η〉|
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6‖(eα − z∗)ξ‖‖η‖+ |〈(eα − z∗)zxzz∗ξ, η〉| α−→ 0.

Thus in light of (4.7) we have that eαzx + xzeα − eαzxzeα → x in the WOT, and
hence in the weak∗ topology (= σ-weak operator topology) since the convergence
is on a bounded set. In particular, for x ∈ X the convergence is also in the weak
topology, and (1) has been proved in the case that z ∈ Ball(QM′′(X)).

(1) in the case that z ∈ Ball(QMπ(X)) is the same except that C∗(∂X) is
represented on B(H1 ⊕H2) and that the weak∗ topology on B(H1 ⊕H2) is con-
cerned.

Next, we shall show “(i)⇐(ii)” of (2) in the case that z ∈ Ball(QM′′(X))

(the case z ∈ Ball(QMπ(X)) is similar). Suppose that z∗ ∈ URloc(Xw∗
), then

xzz∗ = x, ∀x ∈ Xw∗ . Pick a net {eα} ⊂ Ball(X) such that w∗-lim
α

eα = z∗. By the

separate weak∗-continuity of the product in C∗(∂X)′′, we have that

w∗- lim
α

xzeα = xzz∗ = x, ∀x ∈ Xw∗ ,

and thus

(4.8) w - lim
α

xzeα = x, ∀x ∈ X.

Now we adopt a technique employed in the proof of Theorem 2.2 in [9]. Let F be
the collection of the finite subsets of X, and let Λ := F ×N. Then Λ is a directed
set under the ordering “(F1, n1) 6 (F2, n2) if and only if F1 ⊂ F2 and n1 6 n2”.
Given F = {x1, . . . , xm} ∈ F , let

VF := {(x1ze− x1, . . . , xmze− xm) : e ∈ Ball(X)} ⊂ Xm,

where Xm is given the supremum norm. It follows from (4.8) that~0 := (01, . . . , 0m)
lies in the weak closure of VF in Xm, and hence it lies in the norm closure of VF in
Xm since VF is convex. Therefore for a given n ∈ N,

VF ∩ {~x ∈ Xm; ‖~x‖ < 1/n} 6= ∅.

The argument above tells us that for a given (F, n) ∈ Λ, we may choose eλ ∈
Ball(X) with ‖xkzeλ − xk‖ < 1/n for k = 1, . . . , m. Hence we have obtained a
contractive net {eλ} such that lim

λ
xzeλ = x ∈ X, ∀x ∈ X, and “(i)⇐(ii)” of (2)

has been shown.
“(i)⇐(ii)” of (3)–(4) are similar.
To see “(i)⇒(ii)” of (2)–(4), we show “(i)⇒(ii)” of (3) in the case that z ∈

Ball(QM′′(X)). The others are similar. Let {eα} ⊂ X be a contractive approx-

imate left identity of (X, mz), and let e be its weak∗ accumulation point in Xw∗ .
Then (1E − ez)X = {0}, so that ez = 1E . Thus by Lemma 4.1(ii), e = z∗.

REMARK 4.14. (i) The implication (i)⇒(ii) of (1) does not hold. See the ex-
ample in Remark 4.8(i).
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(ii) In the case that z∈Ball(QM′′(X)), by Corollary 3.6(i), z∗ in (ii) of (2)–(4) is
an extreme point of Ball(T (X)′′), and hence an extreme point of

Ball(QM′′(X)∗
w∗
), Ball(QM′′(X)∗), Ball(Xw∗

),

Ball(WTER(X)), and Ball(Xw∗ ∩QM′′(X)∗),

too, where WTER(X) is as defined in the proof of Theorem 4.13(i). However, in
(ii) of (1), z∗ is not an extreme point of Ball(QM′′(X)∗) (hence not an extreme

point of Ball(QM′′(X)∗
w∗

) or Ball(T (X)′′)) in general, though it is an extreme

point of Ball(WTER(X)) (and hence an extreme point of Ball(Xw∗ ∩QM′′(X)∗))
as observed in the proof above. See the example in Remark 4.8(ii). Here all the
weak∗ closures are taken in C∗(∂X)′′.

(iii) In the case that z ∈ Ball(QMπ(X)), by Corollary 3.6(ii), z∗ in (ii) of (2)–(4)
is an extreme point of Ball(B(H2,H1)), and hence an extreme point of

Ball(QMπ(X)∗
w∗

), Ball(QMπ(X)∗), Ball(T (X)
w∗

), Ball(Xw∗
),

Ball(T (X)
w∗ ∩QMπ(X)∗

w∗
), Ball(T (X)

w∗ ∩QMπ(X)∗),

Ball(WTER(X)), and Ball(Xw∗ ∩QMπ(X)∗),

too, where WTER(X) := Xw∗ ∩ QMπ(X)∗
w∗

with the weak∗ closures taken in
B(H1 ⊕H2). However, in (ii) of (1), z∗ is not an extreme point of Ball(QMπ(X)∗)

(hence not an extreme point of Ball(QMπ(X)∗
w∗
)) or Ball(T (X)

w∗
) in general,

though it is an extreme point of Ball(WTER(X)) and hence an extreme point of

Ball(X∗w∗ ∩ QMπ(X)∗). See the example in Remark 4.8(ii). Here all the weak∗

closures are taken in B(H1 ⊕H2).

In Theorem 4.13(1), we do not know whether a weak approximate quasi-
identity can be replaced by an approximate quasi-identity. The difficulty lies in
the following point. When one attempts to adopt a technique employed in The-
orem 2.2 in [9] as we did in the proof of “(i)⇐(ii)” in (2) of Theorem 4.13, one
comes up with the set

V :={(ezx1+x1ze−ezx1ze−x1, . . . , ezxm+xmze−ezxmze−xm) : e∈Ball(X)}⊂Xm,

where x1, . . . , xm ∈ X are fixed. The problem is that this set does not seem to be
convex. Thus we leave this as an open problem.

QUESTION 4. Does z∗ ∈ ext(Ball(Xw∗
)) imply that (X, mz) admits a con-

tractive approximate quasi-identity?

Related to Question 2 which is about injective operator spaces, the following
question will be reasonable in light of the fact that an injective operator space is
a TRO.
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QUESTION 5. Does a TRO always have an algebrization which admits a
contractive (weak) approximate quasi-identity?

Now, as mentioned after Definition 4.2, we provide an example of an opera-
tor algebraAwhich admits a contractive approximate left identity {eα}, but does
not possess one for which lim

α
aeα exists for all a ∈ A. We thank David P. Blecher

for the basic idea of the example.

EXAMPLE 4.15. Let us canonically identify B
( ∞⊕

n=1
l2(N)

)
with a subset of

the set M(B(l2(N))) of ℵ0 × ℵ0 matrices with entries in B(l2(N)), and B(l2(N))
with a subset of the set M(C) of ℵ0 × ℵ0 matrices with entries in C. Let

B :=
{
[ai,j]∈B

( ∞⊕
n=1

l2(N)
)
⊂M(B(l2(N))) : ∃i0∈N such that ai,j =0, ∀i> i0, ∀j∈N

}
,

and let A be the norm closure of B in B
( ∞⊕

n=1
l2(N)

)
. Then A is a right ideal of

the von Neumann algebra B
( ∞⊕

n=1
l2(N)

)
, so it has a contractive approximate left

identity. (For example, the sequence {en} with en ∈ A whose first n diagonal
entries are the identity operators on l2(N) and all the other entries are zero opera-
tors, is a contractive approximate left identity of A.) For each j ∈ N, let us denote
by Ej the element of B(l2(N)) ⊂ M(C) whose (j, j)-entry is 1 and other entries
are 0’s. Define a = [ai,j] ∈ B as follows: a1,j := Ej, ∀j ∈ N; ai,j = 0, ∀i > 2, ∀j ∈ N.
Also for each i ∈ N, define pi ∈ M(B(l2(N))) as follows: the (i, i)-entry of pi is
the identity operator on B(l2(N)), and all other entries of pi are zero operators.
Note that both api and (api)

∗ are in A. Let {eα} be “any” contractive approxi-
mate left identity of A. By Lemma 2.2(1) in [3], lim

α
e∗αb = b, ∀b ∈ A. In particular,

lim
α

e∗α(api)
∗ = (api)

∗, and hence lim
α

apieα = api. Let eα0 be any element in {eα},
and pick e ∈ B such that ‖e − eα0‖ < 1/3. Then there exists an m0 ∈ N such
that the entries in the m-th row of e are all 0’s for all m > m0, and in particular,
pm0 e = 0. Choose eα1 so that α1 > α0 and ‖apm0 eα1‖ > 2/3. Now it follows that

‖apm0 eα1 − apm0 eα0‖ > ‖apm0 eα1 − apm0 e‖ − ‖apm0 e− apm0 eα0‖

> ‖apm0 eα1‖ − ‖apm0‖‖e− eα0‖ >
2
3
− 1

3
=

1
3

.

Since eα0 is any element in {eα}, lim
α

apm0 eα does not exist.

As a byproduct of the above example, we obtain the following proposition.

PROPOSITION 4.16. There exists an operator space X for which there is a non-
degenerate representation of the C∗-algebra I(SX) on a Hilbert space H such that the
C∗-subalgebra C∗(∂X) is degenerate onH.



QUASI-MULTIPLIERS OF AN OPERATOR SPACE. II. EXTREME POINTS AND QUASI-IDENTITIES 241

Proof. Let X be the underlying operator space of the operator algebra A
defined in Example 4.15, z ∈ Ball(QM(X)) be the quasi-multiplier associated
with A, and {eα} be a contractive approximate left identity of A = (X, mz). Take
a nondegenerate representation of I(SX) on a Hilbert space H. In the proof, the
weak∗ topology concerned is the one on B(H). Let e be a weak∗ accumulation
point of {eα}. Then x = lim

α
eαzx = ezx, ∀x ∈ X, and hence (111− ez)T (X) = {0}.

Suppose that C∗(∂X) is nondegenerate onH. Then 111− ez = 0, and so e = z∗ by

Lemma 4.1(ii). Thus xzz∗ ∈ Xw∗ ∩ I(SX) = X. Now one can choose a contractive
approximate left identity {eλ} of A = (X, mz) so that lim

λ
mz(x, eλ) = lim

λ
xzeλ

exists in X for all x ∈ X as in the proof of (i)⇐(ii) of (2) of Theorem 4.13. This
contradicts the fact observed in Example 4.15.

We close this section by recalling two examples from [20]. The quasi-multi-
plier space of the operator space X in Example 2.13 of that paper is {0}. So
the “zero product” is the only possible operator algebra product that X can be
equipped with. Hence, there is no algebrization for X to have a quasi-identity.
A more interesting example is Example 2.11 of the same paper. Elementary but
tedious calculations show that all points on the sphere (i.e., the set of points with
norm 1) of X and QM(X ) are extreme points, and X can have a quasi-identity
for a certain algebrization, however, there is no algebrization for X to have a
“contractive” quasi-identity.

5. C∗-ALGEBRAS AND THEIR ONE-SIDED IDEALS

In this section, we give an operator space characterization of C∗-algebras
and their one-sided ideals in terms of quasi-multipliers. The characterization
gives the “shapes” of the operator spaces that can be made into C∗-algebras or
their one-sided ideals. Although we use QM(X) and algebraic operations in the
injective C∗-algebra I(SX), the reader should keep in mind that these characteri-
zations can be reformulated using alternative definitionsQM′′(X) or QMπ(X),
and algebraic operations in C∗(∂X)′′ or B(H1 ⊕H2), and Definition 3.5 by mod-
ifying the proofs appropriately.

First we characterize one-sided ideals in C∗-algebras. Another characteri-
zation of such ideals is given on page 2108 of [5]: left ideals in C∗-algebras are
exactly the operator algebras A with a r.c.a.i. that are also abstract triple systems.

THEOREM 5.1. Let X be a nonzero operator space, and z ∈ Ball(QM(X)),
and (X, mz) be the corresponding operator algebra. Then there is a completely iso-
metric homomorphism from (X, mz) onto a left (respectively, right) ideal in some C∗-
algebra if and only if z∗ ∈ URloc(I(X)), X∗X ⊂ zX, and Xz ⊂ XX∗ (respectively,
z∗ ∈ ULloc(I(X)), XX∗ ⊂ Xz, and zX ⊂ X∗X).
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Proof. We prove the left ideal case. The right ideal case is similar by sym-
metry.

⇒. Assume that (X, mz) is a left ideal in a C∗-algebra. Then it is a TRO and
has a contractive approximate right identity {eα}. As in the proof of Theorem 2.3
in [5], there is a v ∈ I(X) such that xv∗ = lim

α
xe∗α ∈ XX∗, ∀x ∈ X and v∗v = 122,

where the products are taken in the injective C∗-algebra I(SX). Thus

v∗X = v∗XX∗X ⊃ lim
α

v∗eαX∗X = v∗vX∗X = X∗X.

By the first sentence in the proof of Lemma 2.6 of the present paper, z = v∗. Hence
Xz ⊂ XX∗, z∗ ∈ URloc(I(X)), and X∗X ⊂ zX.

⇐. That X∗X ⊂ zX implies that XX∗X ⊂ XzX ⊂ X since z ∈ QM(X).
So X is a TRO, and hence XX∗ is a C∗-algebra. Define ψ : X → XX∗ by ψ(x) :=
xz, ∀x ∈ X. Then ψ is a completely contractive mapping from X into the C∗-
algebra XX∗. In fact ψ is a complete isometry since the right multiplication
by the contractive element z∗ gives the inverse mapping of ψ, i.e., ψ(x)z∗ =
xzz∗ = x, ∀x ∈ X since z∗ ∈ URloc(I(X)). That ψ(mz(x1, x2)) = x1zx2z =
ψ(x1)ψ(x2), ∀x1, x2 ∈ X shows that ψ is a homomorphism. Since XX∗Xz ⊂ Xz,
ψ(X) = Xz is a left ideal in the C∗-algebra XX∗.

Now we give an operator space characterization of C∗-algebras in terms of
quasi-multipliers. The characterization is quite simple and it makes a beautiful
contrast with the one-sided ideal case above. We remark that the “⇐” directions
of the theorem below was essentially first observed by Vern I. Paulsen assuming
that X is a unital C∗-algebra and using the classical definition of quasi-multipli-
ers (Section 3.12 of [23]), in which case QM(X) = X. We thank him for letting
us know his observation. In the following theorem and its proof we revive the
symbols � and • defined in Section 2 to avoid confusion.

THEOREM 5.2. Let X be a nonzero operator space, and z ∈ Ball(QM(X)), and
(X, mz) be the corresponding operator algebra. Then (X, mz) is a C∗-algebra with a
certain involution ] if and only if z∗ ∈ Uloc(I(X)) and X • z = z∗ •X∗ (or, equivalently,
z • X = X∗ • z∗, or z∗ • X∗ • z∗ = X). The involution ] is uniquely given by x] =
z∗ • x∗ • z∗, ∀x ∈ X, which implies that for a given operator algebra there exists at
most one involution that makes the operator algebra a C∗-algebra. Moreover, all such C∗-
algebras are ∗-isomorphic, which recovers the no doubt well-known fact that for a given
operator space there exists at most one C∗-algebra structure up to ∗-isomorphism.

Proof. First note that the equivalence between X • z = z∗ • X∗, z • X =
X∗ • z∗, and z∗ •X∗ • z∗ = X is straightforward from z∗ • z = 111 and z • z∗ = 122.

⇐ . Let z∗ ∈ Uloc(I(X)) ∩ Ball(QM(X)∗) and z • X = X∗ • z∗. Define an
involution ] by x] := z∗ • x∗ • z∗, ∀x ∈ X, where ∗ is the involution on the
injective envelope C∗-algebra I(SX). Since z •X = X∗ • z∗, z∗ • x∗ • z∗ is certainly
in X. Clearly, ] is conjugate linear. And also (x])] = z∗ • z • x • z • z∗ = 111 • x •
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122 = x. Hence ] is a well-defined involution. Then

‖mz(x], x)‖ = ‖z∗ • x∗ • z∗ • z • x‖ = ‖z∗ • x∗ • 111 • x‖ = ‖z∗ • x∗ • x‖
> ‖z • z∗ • x∗ • x‖ = ‖122 • x∗ • x‖ = ‖x∗ • x‖ = ‖x‖2

shows that (X, mz, ]) is a C∗-algebra.
⇒ . Assume that (X, mz, ]) is a C∗-algebra. Then it is a two-sided ideal

in itself, so that z∗ ∈ URloc(I(X)) ∩ ULloc(I(X)) = Uloc(I(X)) by the “⇒” di-
rection of Theorem 5.1. To check that X • z = z∗ • X∗, we may assume that
(X, mz, ]) ⊂ B(K) as a C∗-subalgebra for some Hilbert space K. Let S ′X :=[
C1K X

X] C1K

]
⊂ M2(B(K)) (actually X] = X) be the Paulsen operator system,

and C∗(X) = M2(X) be the C∗-algebra generated by
[

O X
O O

]
in M2(B(K)). By

using Hamana’s theorem (Corollary 4.2 in [11]) it is easily seen that there is a ∗-

homomorphism Ψ =

[
Ψ11 Ψ12
Ψ21 Ψ22

]
, which is factored by a well-known trick, from

C∗(X) onto C∗(∂X) such that Ψ12(x) = x (and hence Ψ21(x]) = (Ψ12(x))∗ = x∗),
∀x ∈ X, where C∗(∂X) is as in Section 2. Let {eα} be a contractive approximate
two-sided identity of the C∗-algebra (X, mz, ]). Then[

0 mz(x, y)
0 0

]
= lim

α
Ψ

([
0 x
0 0

] [
0 0
e]α 0

] [
0 y
0 0

])

= lim
α

[
0 x
0 0

]
�
[

0 0
e∗α 0

]
�
[

0 y
0 0

]
= lim

α

[
0 x • e∗α • y
0 0

]
, ∀x, y∈X,

so that lim
α

x • e∗α • y = x • z • y, ∀x, y ∈ X. Now

lim
α

[
x • e∗α 0

0 0

]
= lim

α
Ψ

([
0 x
0 0

])
�Ψ

([
0 0
e]α 0

])

= lim
α

Ψ

([
xe]α 0
0 0

])
=

[
Ψ11(x) 0

0 0

]
, ∀x ∈ X.

Thus Ψ11(x) • y = x • z • y, ∀x, y ∈ X, and hence by Lemma 2.1(i), Ψ11(x) =
x • z, ∀x ∈ X, so that Ψ11(X) = X • z. On the other hand,

lim
α

[
eα • x∗ 0

0 0

]
= lim

α
Ψ

([
0 eα

0 0

])
�Ψ

([
0 0
x] 0

])
= lim

α
Ψ

([
eαx] 0

0 0

])
=

[
Ψ11(x]) 0

0 0

]
, ∀x ∈ X.

Thus y∗ • Ψ11(x]) = y∗ • z∗ • x∗, ∀x, y ∈ X, since lim
α

y∗ • eα • x∗ = y∗ • z∗ •
x∗, ∀x, y ∈ X. Hence by Lemma 2.1(i) again, Ψ11(x]) = z∗ • x∗, ∀x ∈ X, so that
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Ψ11(X) = z∗ • X∗ noting that X] = X. Therefore, X • z = Ψ11(X) = z∗ • X∗. It
also follows that z∗ • x∗ • z∗ = Ψ11(x]) • z∗ = x] • z • z∗ = x], ∀x ∈ X.

Finally, we show that all C∗-algebras which have the same underlying oper-
ator space X are ∗-isomorphic. Since this fact is no doubt well known, and a sim-
pler proof (or observation) is possible, it might be redundant to present the proof.
However, it would be instructive to show how two quasi-multipliers work out, so
we include the proof. Let z′∗ ∈ Uloc(I(X)), and assume that (X, mz′ , \) is also a C∗-
algebra. Then the involution \ is given by x\ = z′∗ • x∗ • z′∗. Define a linear map-
ping π : (X, mz, ])→ (X, mz′ , \) by x 7→ x • z • z′∗. We must check that the image
is certainly in X. Note that Ψ11(x) = x • z which is one-to-one, and (Ψ11)

−1(a) =
a • z∗, ∀a ∈ Ψ11(X). Considering (X, mz′ , \) ⊂ B(K′) as a C∗-subalgebra for
some Hilbert space K′, we can define Ψ′11 as we defined Ψ11. Then (Ψ′11)

−1(a) =
a • z′∗, ∀a ∈ Ψ′11(X). By noting that Ψ11(X) = Ψ′11(X) = E(X), where E(X) is as
in Section 2, we have that for x ∈ X, x • z • z′∗ = (Ψ′11)

−1(Ψ11(x)) ∈ X, so that
Imπ ⊂ X. Similarly, we have that x • z′ • z∗ = (Ψ11)

−1(Ψ′11(x)) ∈ X, ∀x ∈ X.
Thus x = x • z′ • z∗ • z • z′∗ = π(x • z′ • z∗), ∀x ∈ X, which shows that π is onto.
π being one-to-one follows from x = π(x) • z′ • z∗, ∀x ∈ X. Furthermore,

π(mz(x, y)) = x • z • y • z • z′∗ = x • z • z′∗ • z′ • y • z • z′∗ = mz′(π(x), π(y))

and

π(x]) = z∗ • x∗ • z∗ • z • z′∗ = z∗ • x∗ • z′∗ = z′∗ • z′ • z∗ • x∗ • z′∗

= z′∗ • (x • z • z′∗)∗ • z′∗ = π(x)\

show that π : (X, mz, ])→ (X, mz′ , \) is a ∗-homomorphism.

One may expect that the quasi-multiplier space of a C∗-algebra always can
be a C∗-algebra for some algebrization, or the quasi-multiplier space of a TRO is a
TRO. However, neither of them is true in general. The following example shows
that the quasi-multiplier space of a C∗-algebra may not even be a TRO, hence
may not be completely isometric to a one-sided ideal in any C∗-algebra.

EXAMPLE 5.3. LetH be an infinite dimensional Hilbert space and let K(H)1

denote the unitization of K(H) by the identity 1 of B(H), where K(H) is the set of

the compact operators onH. Define X :=
[
K(H) K(H)
K(H) K(H)1

]
. Give X the canonical

operator space structure as a subspace of B(H⊕H), then X is a C∗-algebra with
the product on B(H⊕H). It is easy to see that the product • defined in Section 2
is the same as the original product on B(H⊕H) knowing that I(K(H)) = B(H)

(see Corollary 5.4 in [19]), and LM(X) =

[
B(H) K(H)
B(H) K(H)1

]
, and accordingly

QM(X) =

[
B(H) B(H)
B(H) K(H)1

]
which is easily seen not to be a TRO.



QUASI-MULTIPLIERS OF AN OPERATOR SPACE. II. EXTREME POINTS AND QUASI-IDENTITIES 245

6. THE QUASI-MULTIPLIER SPACE OF A DUAL OPERATOR SPACE

In this supplementary section, we prove the following theorem. The argu-
ment is parallel to that of Corollary 3.2(1) in [1].

THEOREM 6.1. If X is a nonzero operator space with an operator space predual,
then so is QM(X). Thus by the Banach–Alaoglu theorem Ball(QM(X)) is compact
in the weak∗ topology, and hence by the Krein–Milman theorem Ball(QM(X)) is the
weak∗-closure of the convex hull of the extreme points of Ball(QM(X)).

To prove this, we need a couple of lemmas. Note that if X is an operator
space with an operator space predual X∗, then Mn(X) also has an operator space
predual which is given by the operator space projective tensor product Tn⊗̂X∗,
where Tn is the set of n× n trace-class matrices, i.e., Tn = Mn(C) as vector spaces,
but Tn is given an operator space structure by the identification Tn ∼= Mn(C)′
with the pairing 〈α, β〉 := ∑

i,j
αi,jβi,j, ∀α = [αi,j] ∈ Tn, ∀β = [βi,j] ∈Mn(C).

LEMMA 6.2 (Lemma 3.1 in [1]). Let X and Y be operator spaces, with Y a dual
operator space, and let T : X → Y be a one-to-one linear mapping. Then the following
are equivalent:

(i) X has an operator space predual such that T is weak∗-continuous;
(ii) T(n)(Ball(Mn(X))) is weak∗-compact for every positive integer n;

where T(n) : Mn(X) → Mn(Y) is defined by T(n)([xi,j]) := [T(xi,j)], ∀[xi,j] ∈
Mn(X).

LEMMA 6.3. Let X be a nonzero operator space. Then

Mn(QM(X)) ∼= QM(Mn(X)),

completely isometrically.

Proof. The assertion easily follows from Mn(I(X)) ∼= I(Mn(X)) completely
isometric, and the definition of the quasi-multipliers (Definition 2.2(iii)).

Proof of Theorem 6.1. It suffices to show that the completely contractive one-

to-one mapping ι : QM(X) → CB(X
h
⊗ X, X) defined uniquely by ι(z)(x ⊗

y) := xzy satisfies (ii) of Lemma 6.2. We need to show that if {ϕλ} is a net in

ι(n)(Ball(Mn(QM(X)))) converging in the weak∗ topology to ϕ ∈ Mn(CB(X
h
⊗

X, X)), then ι(n)(ϕ) ∈ Ball(Mn(QM(X))), where we are identifying CB(X
h
⊗

X, X) with ((X
h
⊗ X)⊗̂X∗)∗ completely isometrically. But by Lemma 6.3 and

the canonical identification of Mn(CB(X
h
⊗ X, X)) ∼= CB(X

h
⊗ X,Mn(X)) (com-

pletely isometric) together with the remark before Lemma 6.2, it is enough to
show that if {ϕλ} is a net in ι(Ball(QM(X))) converging in the weak∗ topology

to ϕ ∈ CB(X
h
⊗ X, X), then ϕ ∈ ι(Ball(QM(X))). Let [xp,q], [yp,q], [vp,q], [wp,q] ∈
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Mm(X), 1 6 p, q 6 m. By Theorem 2.3(iii)⇒(ii), we are done if we have shown
that

(6.1)

∥∥∥∥∥
[

vp,q ∑kp,q ϕ(x
(kp,q)
p,q , y

(kp,q)
p,q )

0 wp,q

]∥∥∥∥∥ 6
∥∥∥∥∥
[

vp,q ⊗ 1 ∑kp,q x
(kp,q)
p,q ⊗ y

(kp,q)
p,q

0 1⊗ wp,q

]∥∥∥∥∥ ,

where each matrix is 2m × 2m. However we do know by Theorem 2.3(ii)⇒(iii)
that

(6.2)

∥∥∥∥∥
[

vp,q ∑kp,q ϕλ(x
(kp,q)
p,q , y

(kp,q)
p,q )

0 wp,q

]∥∥∥∥∥ 6
∥∥∥∥∥
[

vp,q ⊗ 1 ∑kp,q x
(kp,q)
p,q ⊗ y

(kp,q)
p,q

0 1⊗ wp,q

]∥∥∥∥∥ .

Let us denote the matrix of the right-hand side of inequality (6.1) or (6.2) by [ξr,s],
and the matrix of the left-hand side of inequality (6.1) by [xr,s], and the matrix of
the left-hand side of equation (6.2) by [xλ

r,s]. Let G ∈ Ball(M2m(X)∗) which can be
identified with [gr,s] ∈ Ball(T2m⊗̂X∗). Then

(6.3) |〈[xλ
r,s], G〉| =

∣∣∣ 2m

∑
r,s=1
〈xλ

r,s, gr,s〉
∣∣∣ 6 ‖[ξr,s]‖.

Since ϕλ → ϕ in the weak∗ topology on ((X
h
⊗ X)⊗̂X∗)∗, we have that ϕλ(x, y)→

ϕ(x, y), ∀x, y ∈ X in the weak∗ topology on X. Indeed, ϕλ w∗→ ϕ means that
∀x, y ∈ X, ∀ f ∈ X∗, 〈ϕλ, (x⊗ y)⊗ f 〉 → 〈ϕ, (x⊗ y)⊗ f 〉. But 〈ϕλ, (x⊗ y)⊗ f 〉 =
〈ϕλ(x, y), f 〉 and 〈ϕ, (x⊗ y)⊗ f 〉 = 〈ϕ(x, y), f 〉, thus 〈ϕλ(x, y), f 〉 → 〈ϕ(x, y), f 〉,
∀x, y ∈ X, ∀ f ∈ X∗. Therefore, by taking the limit with respect to λ in (6.3), we
have that

|〈[xr,s], G〉| =
∣∣∣ 2m

∑
r,s=1
〈xr,s, gr,s, 〉

∣∣∣ 6 ‖[ξr,s]‖.

Since G ∈ Ball(M2m(X)∗) is arbitrary, ‖[xr,s]‖ 6 ‖[ξr,s]‖, i.e., inequality (6.1) has
been shown.

From the proof above and “(ii)⇒(i)” of Lemma 6.2, the following corollary
immediately follows.

COROLLARY 6.4. Let X be a nonzero dual operator space, and {zα} ⊂ QM(X)
be a bounded net, and z ∈ QM(X). Then zα → z in the weak∗ topology on QM(X) if
and only if xzαy→ xzy, ∀x, y ∈ X in the weak∗ topology on X.
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