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ABSTRACT. The category of C∗-algebras is blessed with many different tensor
products. In contrast, virtually the only tensor product ever used in the cate-
gory of von Neumann algebras is the normal spatial tensor product. In this pa-
per, we propose a definition of what a generic tensor product in this category
should be. We call these weak* tensor products. A complete characterization for
an analogue of nuclearity for weak* tensor products is given and we construct
2c nonequivalent weak* tensor product completions of L∞(R)� L∞(R).
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1. INTRODUCTION

In the category of C∗-algebras, a tensor product A⊗α B of two C∗-algebras
A and B is any completion of the algebraic tensor product A� B with respect to
a C∗-norm ‖ · ‖α. The two most natural choices of tensor products of C∗-algebras
are the maximal tensor product A⊗max B and minimal tensor product A⊗min B.
True to their names, these are the “largest” and “smallest” tensor product of A
and B in the sense that the identity map on A� B extends to C∗-quotients

A⊗max B→ A⊗α B→ A⊗min B

for any other tensor product A⊗α B of A and B.
Though the maximal and minimal tensor products are the most commonly

studied tensor products in the category of C∗-algebras, they are by no means
the only tensor products studied. For example, the binormal C∗-tensor product
M ⊗bin N of von Neumann algebras M and N is studied by Effros and Lance
in [2]. More recently, Ozawa and Pisier constructed a continuum of C∗-norms
on B(H)� B(H) (see [4]), where H is the infinite dimensional separable Hilbert
space, and the author constructed a continuum of C∗-norms on algebraic tensor
products of certain group C∗-algebras (see [6]).
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In contrast to C∗-algebras, virtually the only tensor product in the category
of von Neumann algebras ever studied is the normal spatial tensor product.

Further, there is not a concept of what other tensor products in this category
should be. We propose that in the category of von Neumann algebras, a generic
tensor product of von Neumann algebras M and N should be a von Neumann
algebra S which contains a weak* dense copy of the algebraic tensor product
M � N such that M and N are identifiable as von Neumann algebras with the
copies of M⊗ 1 and 1⊗N in S, respectively. We call such a von Neumann algebra
S a weak* tensor product of M and N. In Section 2 of this paper, we define this
concept more rigorously and investigate weak* tensor products of factors.

Similar to the case of C∗-algebras, there is a “largest” weak* tensor product
completion of M� N for two von Neumann algebras M and N. We briefly draw
some connections between this “largest” weak*-tensor product and related struc-
tures in Section 3. Surprisingly, in general there is no “smallest” weak* tensor
product despite the normal spatial tensor product being defined analogously to
the minimal tensor product of C∗-algebras.

Tensor products play an invaluable role within the field of C∗-algebras and
many properties of C∗-algebras (such as nuclearity (see Definition 11.4 of [5]),
exactness (see Chapter 17 of [5]), and the WEP (see Proposition 15.3 of [5])) are
either defined or have a characterization in terms of tensor products. Perhaps
weak* tensor products could play a similar role within von Neumann algebras
in the future. Recall that a C∗-algebra A is nuclear if and only if the algebraic
tensor product A� B has a unique C∗-completion for every second C∗-algebra B.
In Section 4, we completely characterize the analogous property for weak* tensor
products. The class of nuclear C∗-algebras is large and contains many interesting
examples. In contrast, a von Neumann algebra M has the property that M � N
has a unique weak* tensor product completion for every von Neumann algebra
N if and only if M is the direct product of type I factors. In particular, this implies
that even abelian von Neumann algebras need not admit this property.

In the final section, we apply the theory developed throughout to studying
weak* tensor product completions of L∞(R)� L∞(R). In particular, we construct
2c nonequivalent weak* tensor product completions of L∞(R)� L∞(R) and note
that a generic weak* tensor product completion of L∞(R)� L∞(R) need not have
a separable predual, despite L∞(R) having a separable predual.

2. DEFINITIONS AND STUDY OF FACTORS

In this section we make precise the notion of weak* tensor products and
examine particular examples involving factors. In particular, we show that if M
is a factor of type II or III, then M � M′ does not admit a unique weak* tensor
product completion. The case when M = B(H) for some Hilbert space H is
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completely different, and we show that B(H) has the property that B(H)�N has
a unique weak* tensor product completion for each von Neumann algebra N.

DEFINITION 2.1. Let M and N be von Neumann algebras and suppose that
α : M � N → B(H) is an injective ∗-representation on some Hilbert space H
such that α(M ⊗ 1) and α(1⊗ N) are von Neumann subalgebras of B(H). The
weak* tensor product M⊗αN is defined to be the weak* closure of α(M � N) in
B(H). Such a weak* tensor product M⊗αN is also called a weak* tensor product
completion of M� N.

Of course the normal spatial tensor product of von Neumann algebras is a
particular example of a weak* tensor product. Indeed, if M ⊂ B(H) and N ⊂
B(K) are von Neumann algebras, then the canonical inclusion ι of M � N into
B(H ⊗ K) satisfies the conditions imposed by the above definition and M⊗N is
the weak* closure of ι(M� N) in B(H ⊗ K).

The following example gives another construction of a weak* tensor prod-
uct for factors.

EXAMPLE 2.2. Let M ⊂ B(H) be a factor. It is an early result of Murray and
von Neumann that the multiplication map m : a⊗ b 7→ ab from M�M′ → B(H)
is injective (see [3]). Observe that a ∈ B(H) commutes with M ·M′ if and only if
a ∈ C1 as both M and M′ are subsets of M ·M′. Hence,

M⊗m M′ = B(H).

Recall that if M is factor, then M⊗M′ is a factor of the same type. Hence,
if M is a factor of type II or III and m is as in Example 2.2, then M⊗m M′ and
M⊗M′ are not ∗-isomorphic. On the other hand, if M = B(H) is a type I factor
then M⊗m M′ is trivially canonically ∗-isomorphic to M⊗M′ since M′ = C1. This
motivates us to define a means of comparison for weak* tensor products.

DEFINITION 2.3. Let M and N be von Neumann algebras. Two weak* ten-
sor products M⊗αN and M⊗βN of M and N are equivalent if the map α(a⊗ b) 7→
β(a⊗ b) for a ∈ M, b ∈ N extends to a (normal) ∗-isomorphism of M⊗αN onto
M⊗βN.

Let A be a ∗-algebra and π : A→ B(H), σ : A→ B(K) be ∗-representations
of A. We recall that the map σ(a) 7→ π(a) extends to a normal ∗-homomorphism
from π(A)′′ to σ(A)′′ if and only if π is quasi-contained in σ, i.e., if and only if
π is unitarily equivalent to a subrepresentation of some amplification of σ. In
particular, this immediately gives that two weak* tensor products M⊗αN and
M⊗βN are equivalent if and only if α and β are quasi-equivalent (i.e., each is
quasi-contained in the other) and, further, that the identity map on M � N ex-
tends to a normal ∗-homomorphism from M⊗αN to M⊗βN if and only if β is
quasi-equivalent to a subrepresentation of α. This observation allows us to see
that there is a universal weak* tensor product.
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PROPOSITION 2.4. Let M and N be von Neumann algebras. There exists a unique
(up to equivalence) weak* tensor product M⊗αN of M and N with the property that if
M⊗βN is any other weak* tensor product, then the identity map on M� N extends to a
normal ∗-homomorphism from M⊗αN onto M⊗βN.

Proof. The uniqueness of such a weak* tensor product is clear, so we focus
on showing existence. Since the collection of all quasi-equivalence classes of rep-
resentations of M� N forms a set, the collection of equivalence classes of weak*
tensor products of M and N must form a set. Let {M⊗αi N : i ∈ I} be the set
formed by choosing one representative from each equivalence class, and define
α =

⊕
i∈I

αi. Then, since αi is a subrepresentation of α for every i ∈ I, it is clear

that M⊗αN has the desired universal property among weak* tensor products of
M and N.

DEFINITION 2.5. Let M and N be von Neumann algebras. The maximal (or
universal) weak* tensor product of M and N is the weak* tensor product M⊗αN of
M and N with universal property described in Proposition 2.4. This weak* tensor
product is denoted M⊗w∗-maxN.

It is readily verified that this weak* tensor product is both commutative and
associative. It is also easily checked that this weak* tensor product has the pro-
jectivity property since if K is any weak* closed ideal of a von Neumann algebra
M, then M = N ⊕ K where N = M/K.

We find it interesting to observe that if M ⊂ B(H) is a factor of type II
or III and m : M � M′ → B(H) is the multiplication map, then M⊗w∗-maxM′

is not a factor since both B(H) = M⊗m M′ and M⊗M′ are normal quotients of
M⊗w∗-maxM′.

We find it useful to think of the normal spatial and maximal weak* tensor
products as being analogues of the minimal and maximal tensor products of C∗-
algebras. Recall that the minimal tensor product A⊗min B of C∗-algebras A and
B has the property that if A⊗α B is any other C∗-completion of A� B, then the
identity map on A� B extends to a ∗-homomorphism from A⊗α B→ A⊗min B.

REMARK 2.6. The examples we have already studied show that the ana-
logue of this property does not hold for the normal spatial tensor product among
the class of weak* tensor products. Indeed, let M ⊂ B(H) be a factor of type II or
III and m : M�M′ → B(H) the multiplication operator. Then M⊗m M′ = B(H)
is not a normal quotient of M⊗M′ since B(H) is a type I factor but M⊗M′ is a fac-
tor not of type I. However, it is interesting to note that both M⊗M′ and M⊗m M′,
being factors, are each minimal among the weak* tensor products of M and M′.

We finish this section with a brief discussion of an analogue of nuclearity for
C∗-algebras phrased in terms of weak* tensor products. Typically the injectivity
of von Neumann algebras is thought of as being the proper analogue of nucle-
arity of C∗-algebras. We will later see that our following definition is a much
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stronger condition than injectivity and does not even include the class of abelian
von Neumann algebras.

DEFINITION 2.7. A von Neumann algebra M has the weak* tensor uniqueness
property (or WTU property) if for any von Neumann algebra N, any two weak*
tensor products M⊗αN and M⊗βN of M and N are equivalent.

PROPOSITION 2.8. Let H be a Hilbert space. Then B(H) has the WTU property.

Proof. Let N be a von Neumann algebra and suppose that B(H)⊗αN ⊂
B(K) is a weak* tensor product of B(H) and N. Then α|B(H) is unitarily equivalent
to an amplification map of B(H). So we may assume that K = H⊗ `2(I) for some
index set I and

α(a⊗ 1) = a⊗ 1 ∈ B(H)⊗B(`2(I)) = B(K)

for every a ∈ B(H). Since α(1⊗ N) commutes with α(B(H)⊗ 1) = B(H)⊗ 1, we
have that α(1⊗ N) ⊂ 1⊗ B(`2(I)). It follows that B(H)⊗αN is equivalent to the
normal spatial tensor product B(H)⊗N.

3. REMARKS ON THE MAXIMAL WEAK* TENSOR PRODUCT

Before continuing onto the main results of this paper, we pause to record
a couple of connections between the maximal weak* tensor product and related
constructions. We begin by establishing a connection with the maximal tensor
product of C∗-algebras.

PROPOSITION 3.1. Let A and B be C∗-algebras. Then the identity map on A� B
extends to a normal ∗-isomorphism (A⊗max B)∗∗ ∼= A∗∗⊗w∗-maxB∗∗.

Proof. We first assume that A and B are unital.
Let πu : A � B → B(Hu) be the universal representation of A � B and

α : A∗∗ � B∗∗ → B(K) be a ∗-representation satisfying the conditions for con-
structing a weak* tensor product such that A∗∗⊗αB∗∗ = A∗∗⊗w∗-maxB∗∗ canoni-
cally. We will show that πu is quasi-equivalent to α|A�B.

Observe that since any ∗-representation of A (respectively B) extends to a
normal ∗-representation of A∗∗ (respectively B∗∗), the restriction πu|A extends to
a normal ∗-representation of A∗∗ and πu|B extends to a normal ∗-representation
of B∗∗. Since πu|A and πu|B have commuting ranges, we further have that πu
extends to a normal ∗-representation β : A∗∗ � B∗∗ → B(H). By the universal
property of the maximal weak* tensor product, β is quasi-contained in α and,
thus, πu = β|A�B is quasi-contained in α|A�B. Since we trivially have that
πu quasi-contains every ∗-representation of A� B, we then conclude that πu is
quasi-equivalent to α.

Since πu is quasi-equivalent to α|A�B, the identity map on A � B extends
to a normal ∗-isomorphism πu(A � B)′′ ∼= α(A � B). Since πu extends to the
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universal representation of A⊗max B, we have that πu(A� B)′′ = (A⊗max B)∗∗

canonically. Further α(A� B)′′ = A∗∗⊗w∗-maxB∗∗ since A and B are weak* dense
in A∗∗ and B∗∗ respectively. Thus, we have shown that the identity map on A� B
extends to a normal ∗-isomorphism (A⊗max B)∗∗ ∼= A∗∗⊗w∗-maxB∗∗ in the case
when A and B are unital.

Let AI and BI denote the unitizations of not necessarily unital A and B. The
issue with the above proof in the nonunital case is that we are not able to restrict
from A� B to A⊗ 1 or 1⊗ B in general. However this is not a serious issue since
any ∗-representation of A� B extends to a ∗-representation of AI � BI , and both
A⊗ 1 and 1⊗ B are contained in AI � BI .

Let M and N be von Neumann algebras. The binormal C∗-norm ‖ · ‖bin of
M� N is defined by

‖x‖bin = sup{ϕ(x∗x)1/2 : ϕ ∈ S(M� N) and (a, b) 7→ ϕ(a⊗ b)

is separately weak* continuous}
where S(M � N) is the set of states on M � N, i.e. the set of linear maps ϕ :
M� N → C such that ϕ(1) = 1 and ϕ(x∗x) > 0 for every x ∈ M� N. This C∗-
tensor norm was defined and studied by Effros and Lance in [2]. The main result
of their paper on this norm is that a von Neumann algebra M has the property
that the binormal C∗-norm ‖ · ‖bin agrees with the minimal C∗-norm ‖ · ‖min on
M�N for all choices of von Neumann algebras N if and only if M is semidiscrete
(see Theorem 4.1 of [2]). We will next observe that the norm on M � N arising
from the inclusion in M⊗w∗-maxN is exactly the binormal C∗-norm.

PROPOSITION 3.2. Let M and N be von Neumann algebras and ‖ · ‖w∗-max de-
note the norm on M � N arising from the inclusion into M⊗w∗-maxN. Then
‖ · ‖w∗-max = ‖ · ‖bin.

Proof. Let ϕ ∈ S(M� N) and suppose that ϕ|M and ϕ|N are weak* continu-
ous. Denote the GNS representation of ϕ by πϕ : M�N → B(Hϕ). We claim that
the restrictions πϕ|M and πϕ|N define normal maps on M and N, respectively.

Indeed, let x =
n
∑

j=1
aj ⊗ bj and y =

m
∑

k=1
a′k ⊗ b′k be elements of M � N. Denoting

the images of x and y in Hϕ by Λ(x) and Λ(y), respectively, we then have that
the map

M× N 3 (a, b) 7→ 〈πϕ(a⊗ b)Λ(x), Λ(y)〉 = ∑
j,k

ϕ(((a′k)
∗aaj)⊗ ((b′k)

∗bbj))

is separately weak* continuous. Since Λ(M � N) is dense in Hϕ, it follows that
πϕ|M is WOT-WOT continuous on the unit ball of M. Therefore πϕ|M is normal
and, similarly, πϕ|N is also normal. So ‖ · ‖bin 6 ‖ · ‖w∗-max.

Now let α : M� N → B(H) be a ∗-representation which satisfies the condi-
tions required for a weak* tensor product. It is clear that (a, b) 7→ 〈α(a⊗ b)ξ, η〉
is separately weak* continuous for all ξ, η ∈ H and, so, ‖ · ‖w∗-max 6 ‖ · ‖bin.
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4. CHARACTERIZATION OF THE WEAK* TENSOR UNIQUENESS PROPERTY

In this section we study the WTU property and give a complete characteri-
zation of the von Neumann algebras with this property. We have already seen in
Section 2 that a factor M has the WTU property if and only if M is of type I. We
will show in this section that a von Neumann algebra M has the WTU property
if and only if M is a direct product of type I factors.

LEMMA 4.1. Let {Mi : i ∈ I} be a set of von Neumann algebras. Then M :=
∏
i∈I

Mi has the WTU property if and only if Mi has the WTU property for each i ∈ I.

Proof. We first suppose that there exists an index j ∈ I so that Mj fails to
have the WTU property. Then there exist two inequivalent weak* tensor prod-
ucts Mj⊗αN and Mj⊗βN for some von Neumann algebra N. Let Mi⊗αi N and
Mi⊗βi N for i ∈ I be arbitrary weak* tensor products such that αj = α and β j = β.
Then M⊗⊕

i αi N and M⊗⊕
βi N are inequivalent weak* tensor products since α is

not quasi-equivalent to β implies that
⊕

i
αi is not quasi-equivalent to

⊕
i

βi.

Next, for each index j let ej : ∏
i∈I

Mi → Mj be the restriction to the jth com-

ponent and suppose that Mi has the WTU property for every i ∈ I. Let N be an
arbitrary von Neumann algebra and ∏

i∈I
(Mi)⊗αN a weak* tensor product of ∏

i
Mi

and N. Then ej ⊗ 1 ∈ (M⊗αN)′ since ej ⊗ 1 commutes with a⊗ b for all a ∈ M,
b ∈ N and M� N is weak* dense in M⊗αN. Since ∑

i∈I
ei ⊗ 1 = 1, it follows that

M⊗αN = ∏
i∈I

(ei ⊗ 1)M⊗αN = ∏
i∈I

Mi⊗αi N

where αi denotes α|Mi�N . But Mi⊗αi N = M⊗N for each i ∈ I by the WTU
property. Therefore M⊗αN = ∏

i∈I
Mi⊗N and, hence, we conclude that M has the

WTU property.

Choi and Effros showed in Lemma 2.1 of [2] that a von Neumann algebra
M ⊂ B(H) is injective if and only if the multiplication map m : M�M′ → B(H)
is continuous with respect to the minimal tensor product norm. It is interesting
to see in the following theorem that an analogous characterization of the WTU
property also holds.

THEOREM 4.2. The following are equivalent for a von Neumann algebra M ⊂
B(H):

(i) M has the WTU property.
(ii) The weak* tensor products M⊗M′ and M⊗w∗-maxM′ are equivalent.

(iii) The multiplication map m : a⊗ b 7→ ab extends to a normal ∗-homomorphism
from M⊗M′ to B(H).

(iv) M is of the form ∏
i∈I

B(Hi) for some choices of Hilbert spaces Hi.
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Proof. (i)⇒ (ii). This is trivial.
(ii)⇒ (iii). If the weak* tensor products M⊗M′ and M⊗w∗-maxM′ are equiv-

alent, then every ∗-representation of M�M′ whose restrictions to M and M′ are
normal is quasi-contained in the spatial inclusion ι : M � M′ → B(H ⊗ H). In
particular, the multiplication map m is quasi-contained in ι and, hence, extends
to a normal ∗-representation from M⊗M′ to B(H).

(iii) ⇒ (iv). Suppose that m extends to a normal ∗-homomorphism m̃ :
M⊗M′ → B(H). We claim that Z(M) = M ∩M′ must then be of the form `∞(S)
for some set S. Indeed, suppose otherwise. Then, without loss of generality, we
may assume that Z(M) = L∞(X, µ) for some locally compact space X equipped
with a necessarily nondiscrete positive Radon measure µ of full support. Since µ
is nondiscrete, there exists a Borel subset E of X such that µ(E) > ∑

x∈E
µ({x}).

By inner regularity of µ, we can then find a compact subset K0 of X so that
µ(K0) > ∑

x∈K0

µ({x}). Let {U1, . . . , Un} be a finite covering for K0 consisting of

precompact open sets and define K be the closure of
n⋃

i=1
Ui. Observe that K also

has the property that µ(K) > ∑
x∈K

µ({x}) since µ is a positive measure, K ⊃ K0,

and µ(K) < ∞. Further, C(K) injects into L∞(X) in the natural way since K is the
closure of an open subset of X. We will show that µ being non-discrete leads to a
contradiction of the normality of m̃.

Let f1, . . . , fn and g1, . . . , gn be functions in C(K) ⊂ L∞(X). Then

m( f1 ⊗ g1 + · · ·+ fn ⊗ gn)(x) = ( f1 ⊗ g1 + · · ·+ fn ⊗ gn)(x, x)

for x ∈ X. By norm continuity, it follows that m̃( f )(x) = f (x, x) for every f ∈
C(K× K) = C(K)⊗min C(K) ⊂ L∞(X)⊗L∞(X).

Choose a sequence of descending relatively open subsets U1 ⊃ U2 ⊃ · · · of
K × K so that Un contains ∆ := {(x, x) : x ∈ K} for every n and (µ× µ)(Un) →
(µ × µ)(∆) as n → ∞. By Urysohn’s lemma, there exists functions f1, f2, . . . ∈
C(K × K) ⊂ L∞(X)⊗L∞(X) mapping into [0, 1] such that fn(x, x) = 1 for every
x ∈ K and fn(x, y) = 0 for (x, y) 6∈ Un. Then, by Lebesgue’s dominated conver-
gence theorem,∫

fn(x, y)g(x, y)dµ(x)dµ(y)→
∫
∆

g(x, y)dµ(x)dµ(y)

as n→ ∞ for every g ∈ L1(X× X). Hence, fn → 1∆ in the weak* topology. Then,
since m̃ is normal and m̃( fn) = 1K for every n, we have that m̃(1∆) = 1K.

Next, define a net of elements in L∞(X×X) indexed under inclusion by the
finite subsets F of K by hF = ∑

x∈F
1{(x,x)} = ∑

x∈F
1{x} ⊗ 1{x}. Then

∫
hF(x, y)g(x, y)dµ(x)dµ(y) = ∑

x∈F
g(x, x)µ(x)2 → ∑

x∈K
g(x, x)µ(x)2
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=
∫
∆

g(x, y)dµ(x)dµ(y)

in the limit as F → K for every g ∈ L1(X× X). Hence, hF converges weak* to 1∆.
Observe that∫

K

m(hF)(x)dµ(x) = ∑
x∈F

µ({x})→ ∑
x∈K

µ({x})

as F → K. Recall that µ(K) > ∑
x∈K

µ({x}). It follows that m̃(hF) does not converge

to 1K. This contradicts the normality of m̃ and, so, we conclude that µ must be a
discrete measure. Hence, Z(M) is of the form `∞(S) for some set S.

Since Z(M) is of the form `∞(S), there exists a set {ei : i ∈ S} of minimal
central projections in M such that ∑

i∈S
ei = 1. Then M = ∏

i∈S
ei M where each term

ei M ⊂ B(ei H) is a factor by the minimality of ei. Therefore the desired result
follows from Lemma 4.1 since a factor has the WTU property if and only if it is of
type I.

(iv)⇒ (i). This is clear from Proposition 2.8 and Lemma 4.1.

5. WEAK* TENSOR PRODUCT COMPLETIONS OF L∞(R)� L∞(R)

This section is dedicated to studying weak* tensor product completions of
L∞(R)� L∞(R). The main result theorem of this section is the construction of 2c

distinct such weak* tensor product completions. As a consequence of our con-
structions, we also find that the weak* maximal tensor product

L∞(R)⊗w∗-maxL∞(R)

does not have a separable predual despite L∞(R) having separable predual L1(R).
The approach that we take in constructing weak* tensor products is to use

the fact that L∞(R) contains a weak* dense copy of the continuous bounded func-
tions Cb(R) (we choose to use Cb(R) over C0(R) for convenience since Cb(R)
is unital) and, hence, any weak* tensor product completion L∞(R)⊗αL∞(R) of
L∞(R)� L∞(R) must contain a weak* dense copy of Cb(R)⊗min Cb(R). In partic-
ular, this implies that if π : Cb(R)⊗min Cb(R)→ B(H) is a ∗-representation such
that the restrictions π|Cb(R)⊗1 and π|1⊗Cb(R) are quasi-contained in the canoni-
cal representation σ : Cb(R) → L∞(R), then π extends uniquely to a normal
∗-representation π̃ : L∞(R)⊗w∗-maxL∞(R)→ B(H).

We will identify Cb(R)⊗min Cb(R) as being a C∗-subalgebra of Cb(R×R).
For every x ∈ R, define an (unbounded) measure µx on R×R by∫

f dµx =
∫
R

f (y, x + y)dy
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for f ∈ Mb(R×R), the set of bounded measurable functions. Further, we let

πx : Cb(R)⊗min Cb(R)→ L∞(R×R, µx)

be the natural inclusion. These ∗-representations πx will be our building blocks
in constructing many weak* tensor product completions of L∞(R)� L∞(R).

LEMMA 5.1. For every x ∈ R, the ∗-representations πx|Cb(R)⊗1 and πx|1⊗Cb(R)
are unitarily equivalent to the canonical representation σ : Cb(R)→ L∞(R).

Proof. Define a map from U : L2(µx) → L2(R) by U(g)(y) = g(y, x + y).
Then U is clearly a well defined surjective isometry. Further, we observe that if
f ∈ Cb(R) and ξ ∈ L2(µx), then

U(πx( f ⊗ 1)ξ)(y) = f (y)ξ(y, x + y) = (σ( f )U(ξ))(y)

for almost every y ∈ R. So we have shown that πx|Cb(R)⊗1 is unitarily equivalent
to σ. A similar argument shows that the same holds for πx|1⊗Cb(R).

The author wishes to thank N. Spronk for suggesting the following lemma.
Let X be a measure space. We say that a measure µ on X is absolutely

continuous with respect to a family of measures {νi : i ∈ I} on X if νi(E) = 0 for
every i ∈ I implies that µ(E) = 0 whenever E ⊂ X is a measurable subset.

LEMMA 5.2. Let X be a σ-compact locally compact space, and µ and {νi : i ∈ I} be
Radon measures on X. Denote the canonical inclusions of Cb(X) in L∞(µ) and L∞(νi)
by π and σi, respectively. Then π is quasi-contained in

⊕
i∈I

σi if and only if µ is absolutely

continuous with respect to {νi : i ∈ I}.
Proof. We will first suppose that µ is absolutely continuous with respect to

{νi : i ∈ I}. For each index i, we can decompose µ as µ1,(i) + µ2,(i) where µ1,(i)
is absolutely continuous with respect to νi and µ2,(i) is singular to νi. Let fi be a
Radon–Nikodym derivative of µ1,(i) with respect to νi and define a real valued
function gi on X by gi(x) = 1/ fi(x) if fi(x) 6= 0 and gi(x) = 0 otherwise. Further,
let Vi : L2(µ)→ L2(νi) be defined by ξ 7→ giξ. We will show that

⊕
i∈I

Vi : L2(µ)→⊕
i

L2(νi) is an isometry which intertwines π and
⊕
i∈I

σi.

Let L2(µ) = L2(µ1,(i))⊕ L2(µ2,(i)) be the canonical decomposition for each
i ∈ I. Observe that if f ∈ ⋂

i∈I
L2(µ2,(i)), then the set E := {x ∈ X : f (x) 6= 0} has

measure 0 with respect to µ since νi(E) = 0 for every i ∈ I. Thus
⋂
i∈I

L2(µ2,(i)) =

{0}. Since Vi|L2(µ1,(i))
is an isometry and Vi|L2(µ2,(i))

≡ 0 for each i ∈ I, we there-

fore conclude that
⊕
i∈I

Vi is an isometry on L2(µ). Since
⊕
i∈I

Vi clearly intertwines π

and
⊕
i∈I

σi, we have therefore shown that π is unitarily equivalent to a subrepre-

sentation of
⊕
i∈I

σi.
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Next we suppose towards a contradiction that π is quasi-contained in the
representation

⊕
i∈I

σi, but µ is not absolutely continuous with respect to {νi : i ∈ I}.

Since π is quasi-contained in
⊕
i∈I

σi, there exists a cardinal ω such that π is unitarily

equivalent to a subrepresentation of the amplification ω ·⊕
i∈I

σi. Note that since µ

is not absolutely continuous with respect to {νi : i ∈ I}, there exists a compact
set K such that µ(K) > 0 but νi(K) = 0 for every i ∈ I by inner regularity. So the
function ϕ : Cb(X)→ C defined by

ϕ( f ) =
∫
K

f dµ = 〈π( f )ξ, ξ〉,

where ξ ∈ L2(µ) is the characteristic function 1K, is a vector state of π(Cb(X)).
This implies that ϕ must also be a vector state of ω ·⊕

i∈I
σi(Cb(X)).

Observe that the Hilbert space on which ω ·⊕
i∈I

σi acts is

⊕
i∈I

L2(νi)
⊕ω.

So, assuming that ϕ is a vector state of ω ·⊕
i∈I

σi(Cb(X)), then we can approximate

ϕ arbitrarily well in norm by maps ψ : Cb(X)→ C of the form

ψ( f ) =
m

∑
j=1

nj

∑
k=1
〈σij( f )ξ jk, ξ jk〉 =

m

∑
j=1

nj

∑
k=1

∫
f |ξ jk|2 dνij

for choices of m, nj ∈ N, ij ∈ I, and ξ jk ∈ L2(νij). We will show that this is not
possible.

By outer regularity, we can choose a decreasing sequence of open subsets
U1 ⊃ U2 ⊃ · · · of X containing K such that νij(Up) → 0 as p → ∞ for all j =
1, . . . , m. By Urysohn’s lemma, there exists continuous functions fp : X → [0, 1]
such that fp(x) = 1 for x ∈ K and fp(x) = 0 for x 6∈ Up. So, by Lebesgue’s
dominated convergence theorem,∫

fp|ξ jk|2 dµij → 0

as p → ∞ and all j = 1, . . . , m and k = 1, . . . , nj. Hence, ψ( fp) → 0 as p → ∞.
Since ϕ( fp) = µ(K) for every p, this implies that ‖ψ − ϕ‖ > µ(K) > 0. This
contradicts that ϕ can be approximated arbitrarily well by functionals of the form
ψ. So we conclude that π is not quasi-contained in

⊕
i∈I

σi.

COROLLARY 5.3. For each x ∈ R, the representation πx is not quasi-contained in⊕
x′ 6=x

πx′ ⊕ σ,
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where σ : Cb(R)⊗min Cb(R)→ L∞(R)⊗L∞(R) denotes the canonical inclusion.

Before proving the main theorem of this section, we pause to note a further
corollary of the proof of Lemma 5.2.

COROLLARY 5.4. The von Neumann algebra L∞(R)⊗w∗-maxL∞(R) does not
have a separable predual.

Proof. For each x ∈ R, let ϕx : Cb(R) ⊗min Cb(R) → C be the function
defined by

ϕx( f ) =
∫

[0,1]

f (y, x + y)dy = 〈πx( f )ξ, ξ〉

where ξ ∈ L2(µx) is the characteristic function 1[0,1]×[x,1+x]. Then, as ϕx is a vector
state of πx(Cb(X)), it follows that ϕx is in the predual of L∞(R)⊗w∗-maxL∞(R). So
the predual of L∞(R)⊗w∗-maxL∞(R) cannot be separable since, by an argument
similar to the proof of Lemma 5.2, ‖ϕx − ϕy‖ > 1 for all distinct x, y ∈ R.

THEOREM 5.5. L∞(R)� L∞(R) admits 2c nonequivalent weak* tensor products.

Proof. Let σ : Cb(R)⊗min Cb(R) → L∞(R)⊗L∞(R) be the canonical inclu-
sion. For each subset S ⊂ R, define αS =

⊕
x∈S

πx ⊕ σ. Then, by Lemma 5.1, the

restrictions αS|Cb(R)⊗1 and αS|1⊗Cb(R) are each quasi-equivalent to the canonical
inclusion Cb(R) → L∞(R). Further, since αS contains σ as a subrepresentation,
we conclude that each αS extends to a ∗-representation α̃S of L∞(R) � L∞(R)
which satisfies the conditions required to construct a weak* tensor product. It is
clear from Corollary 5.3 that these weak* tensor products L∞(R)⊗α̃S

L∞(R) are
pairwise nonequivalent for S ⊂ R. Hence, L∞(R)� L∞(R) admits 2c nonequiva-
lent weak* tensor products.

REMARK 5.6. Let M be any infinite dimensional abelian von Neumann al-
gebra with separable predual. Recall that then M = `∞(N), M = L∞(R) or
M = L∞(R) ⊕ `∞(S) where S = {1, . . . , n} for some n ∈ N or S = N. In par-
ticular, it follows that if M does not have the WTU property (or, equivalently,
M 6= `∞(N)), then M�M admits 2c distinct weak* tensor product completions.
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