ON THE SYMMETRIZATION OF GENERAL WIENER-HOPF OPERATORS

A. BÖTTCHER and F.-O. SPECK
For Florian-Horia Vasilescu on his 75th birthday

Communicated by Marius Dădârlat

Abstract

This article focuses on general Wiener-Hopf operators given as $W=\left.P_{2} A\right|_{P_{1} X}$ where X, Y are Banach spaces, $P_{1} \in \mathcal{L}(X), P_{2} \in \mathcal{L}(Y)$ are any projectors and $A \in \mathcal{L}(X, Y)$ is boundedly invertible. It presents conditions for W to be equivalently reducible to a Wiener-Hopf operator in a symmetric space setting where $X=Y$ and $P_{1}=P_{2}$. The results and methods are related to the so-called Wiener-Hopf factorization through an intermediate space and the construction of generalized inverses of W in terms of factorizations of A.

Keywords: Wiener-Hopf operator, symmetrization, factorization, generalized inverse.

MSC (2010): Primary 47A68; Secondary 47B35.

1. INTRODUCTION AND MAIN RESULTS

We investigate operators of the form

$$
\begin{equation*}
W=\left.P_{2} A\right|_{P_{1} X}: P_{1} X \rightarrow P_{2} Y \tag{1.1}
\end{equation*}
$$

under the basic assumptions that X and Y are Banach spaces, $P_{1} \in \mathcal{L}(X)$ and $P_{2} \in \mathcal{L}(Y)$ are projectors, and $A \in \mathcal{L}(X, Y)$. Such operators are called general Wiener-Hopf operators (WHO) [10], [19] or simply truncations or compressions of an operator [14]. In the symmetric setting, where $X=Y, P_{1}=P_{2}=P$, the operator W is commonly written in the form $W=T_{P}(A)=\left.P A\right|_{P X}: P X \rightarrow P X$. Following [22], the setting in which $X \neq Y$ or $P_{1} \neq P_{2}$ is referred to as the asymmetric space setting. Throughout this paper we assume that the so-called underlying operator A is invertible, i.e., that A is a linear homeomorphism of X onto Y. For brevity and by tradition, thinking of the group $G \mathcal{L}(X)$ of the invertible elements in the Banach algebra $\mathcal{L}(X)$, we denote the set of invertible operators in $\mathcal{L}(X, Y)$ by $G \mathcal{L}(X, Y)$. The requirement that A be in $G \mathcal{L}(X, Y)$ is satisfied in many important applications. This requirement is in fact no limitation of generality, since if
W is any operator given by 1.1 , we may suitably change X, Y, P_{1}, P_{2} so that W is of the form (1.1) with an invertible operator A; see, e.g., Proposition 5.1 of [24].

A fundamental idea to solve equations $W f=g$ consists in the construction of certain factorizations of the underlying operator A that yield explicit formulas for generalized inverses of W. Various "general" factorization theorems are known in the existing literature. See, for instance, [8], [10], [16], [21], [22], [25]. We will here not embark on the constructive factorization of scalar or matrix functions; for an overview on that wide research area see [1], [4], [9], [15], [20] and the literature cited therein.

In 1968, Čebotarev [8] considered so-called abstract Wiener-Hopf equations in a purely algebraic context: given a unital ring \mathcal{R}, an element $p \in \mathcal{R}$ satisfying $p^{2}=p$, and an invertible element $a \in \mathcal{R}$, he studied, in terms of certain factorizations of a, the one-sided invertibility of $w=$ pap in the subring $\mathcal{R}_{p}=\{t \in \mathcal{R}: t=p t p\}$. In 1969, Devinatz and Shinbrot [10] introduced the notion of a general Wiener-Hopf operator. They worked in the symmetric setting with separable Hilbert spaces $X=Y$ and with orthogonal projectors $P_{1}=P_{2}=P$, which implied that they had to deal with both topological and algebraical questions, and they proved a criterion for the invertibility of $T_{P}(A)$ in terms of a factorization of A. We should mention that the original idea of operator factorization was proposed before by Shinbrot [19] in 1964 in the context of one-dimensional singular integral operators. For more details of the pre-history we refer the reader to [22].

General asymmetric Wiener-Hopf operators were first investigated in [21]. A strong motivation to study the operator (1.1) in an asymmetric space setting is given by the theory of pseudo-differential operators, which naturally act between Sobolev-like spaces of different orders; see Eskin's book [13]. Their symmetrization (lifting) by generalized Bessel potential operators is considered in [11]. Furthermore, Toeplitz operators with singular symbols are another source of motivation for considering symmetrization. We will briefly touch these two concrete applications in the examples later in Section 2.

In [22], the second author introduced the notion of a cross factorization and proved that the generalized invertibility of W is equivalent to the existence of a cross factorization of A. In the recent paper [24], two further kinds of operator factorizations were studied, the Wiener-Hopf factorization of A through an intermediate space and the full range factorization $W=L R$ where L is left invertible and R is right invertible. The main theorem of [24] states the equivalence between all three factorizations, partly under the restrictive condition that the two projectors P_{1} and P_{2} are equivalent. Unfortunately, one proof in [24] contains a gap. This gap, which will be filled in Section 4 of the present paper, actually motivated us to look after the matter again. Our efforts resulted in a symmetrization criterion (Theorem 1.1] below) and a new proof of a basic theorem of [24] (Theorem 1.2 below).

Our first topic here is the symmetrization of asymmetric WHOs. To be precise, we call the setting X, Y, P_{1}, P_{2} symmetrizable if there are a Banach space Z, operators $M_{+} \in G \mathcal{L}(X, Z), M_{-} \in G \mathcal{L}(Z, Y)$, and a projector $P \in \mathcal{L}(Z)$ such that

$$
\begin{equation*}
M_{+}\left(P_{1} X\right)=P Z, \quad M_{-}(Q Z)=Q_{2} Y \tag{1.2}
\end{equation*}
$$

where $Q=I_{Z}-P$ and $Q_{2}=I_{Y}-P_{2}$. Note that the invertibility of M_{+}and M_{-} in conjunction with 1.2 implies that

$$
\begin{equation*}
U_{+}:=\left.M_{+}\right|_{P_{1} X}: P_{1} X \rightarrow P Z, \quad V_{-}:=\left.M_{-}\right|_{Q Z}: Q Z \rightarrow Q_{2} Y \tag{1.3}
\end{equation*}
$$

are invertible. As will be made explicit below in (2.2), the invertibility of V_{-}yields (and is in fact equivalent to) the invertibility of

$$
V_{+}:=\left(\left.P M_{-}^{-1}\right|_{P_{2} Y}\right)^{-1}: P Z \rightarrow P_{2} Y
$$

If the setting X, Y, P_{1}, P_{2} is symmetrizable, then asymmetric WHOs may also be symmetrized: given an operator of the form (1.1), there is an operator $\widetilde{A} \in \mathcal{L}(Z)$ such that $A=M_{-} \widetilde{A} M_{+}$and $W=V_{+} \widetilde{W} U_{+}=V_{+} T_{P}(\widetilde{A}) U_{+}$. Indeed, we have $\widetilde{A}=M_{-}^{-1} A M_{+}^{-1}$, and since $P M_{-}^{-1}=P M_{-}^{-1} P_{2}$ and $P M_{+} P_{1}=M_{+} P_{1}$, we get

$$
\begin{aligned}
V_{+} \widetilde{W} U_{+} & =\left.\left(\left.P M_{-}^{-1}\right|_{P_{2} Y}\right)^{-1} P M_{-}^{-1} A M_{+}^{-1}\right|_{P Z}\left(\left.P M_{+}\right|_{P_{1} X}\right) \\
& =\left.\left(\left.P M_{-}^{-1}\right|_{P_{2} Y}\right)^{-1} P M_{-}^{-1} P_{2} A M_{+}^{-1} M_{+}\right|_{P_{1} X}=\left.P_{2} A\right|_{P_{1} X}=W
\end{aligned}
$$

As usual, we call two operators T and S equivalent, written $T \sim S$, if there exist linear homeomorphisms E and F such that $T=F S E$. Thus, in the case of a symmetrizable setting, $W \sim T_{P}(\widetilde{A})$.

Here is our first main result. Given two Banach spaces Z_{1} and Z_{2}, we write $Z_{1} \cong Z_{2}$ if the two spaces are isomorphic, that is, if there exists an operator A in $G \mathcal{L}\left(Z_{1}, Z_{2}\right)$. We also put $Q_{1}=I_{X}-P_{1}, Q_{2}=I_{Y}-P_{2}$.

THEOREM 1.1. The following are equivalent:
(i) the setting X, Y, P_{1}, P_{2} is symmetrizable;
(ii) $P_{1} X \cong P_{2} Y$ and $Q_{1} X \cong Q_{2} Y$;
(iii) $P_{1} \sim P_{2}$.

The theorem implies in particular that every setting given by two separable Hilbert spaces X, Y and two infinite-dimensional bounded projectors P_{1}, P_{2} is symmetrizable.

In Section 3, we will recall two types of factorizations of the underlying operator A, the cross factorization (CFn) and the Wiener-Hopf factorization through an intermediate space (FIS). Note that the existence of a CFn for A is equivalent to the generalized invertiblity of W in the sense that there exists an operator $W^{-} \in \mathcal{L}\left(P_{2} Y, P_{1} X\right)$ such that $W W^{-} W=W$. Herewith our second main result.

THEOREM 1.2. The following are equivalent:
(i) A has a CFn and $P_{1} \sim P_{2}$;
(ii) A has a FIS.

Theorem 1.2 is already in [24], and it is the theorem whose proof in that paper contains a gap. We here give another, more straightforward proof. In addition, in Section 4, we will repair the gap of the proof in [24], thus saving also the original proof. Theorems 1.1 and 1.2 will be proved in Sections 2 and 3, respectively. There we will also present concrete examples.

2. SYMMETRIZATION

In this section we prove Theorem 1.1 In what follows we repeatedly use the following well known fact whose proof can be found, for example, on p. 332 of [3], pp. 16-17 of [18], or pp. 21-22 of [22].

Lemma 2.1. If B is in $G \mathcal{L}\left(Z_{1}, Z_{2}\right)$ and $R_{1}, S_{1} \in \mathcal{L}\left(Z_{1}\right), R_{2}, S_{2} \in \mathcal{L}\left(Z_{2}\right)$ are projectors such that $R_{1}+S_{1}=I_{Z_{1}}$ and $R_{2}+S_{2}=I_{Z_{2}}$, then

$$
\begin{align*}
& \left.R_{2} B\right|_{\mathrm{im} R_{1}}: \operatorname{im} R_{1} \rightarrow \operatorname{im} R_{2} \text { is invertible } \tag{2.1}\\
& \left.\Leftrightarrow S_{1} B^{-1}\right|_{\operatorname{im} S_{2}}: \operatorname{im} S_{2} \rightarrow \operatorname{im} S_{1} \text { is invertible }
\end{align*}
$$

and in the case of invertibility, the Schur complement identity

$$
\begin{equation*}
\left(\left.S_{1} B^{-1}\right|_{S_{2} Z_{2}}\right)^{-1}=\left.S_{2} B\right|_{S_{1} Z_{1}}-\left.S_{2} B R_{1}\left(\left.R_{2} B\right|_{R_{1} Z_{1}}\right)^{-1} R_{2} B\right|_{S_{1} Z_{1}} \tag{2.2}
\end{equation*}
$$

holds.
Proof of Theorem 1.1 (i) \Rightarrow (ii) Assume that the setting X, Y, P_{1}, P_{2} is symmetrizable and let M_{+}, M_{-}, P be the corresponding operators defined in 1.3). Combining (2.1) and the invertibility of the operators 1.3 , we obtain that the operators

$$
U_{-}:=\left.Q_{1} M_{+}^{-1}\right|_{Q Z}: Q Z \rightarrow Q_{1} X, \quad V_{+}:=\left.P M_{-}^{-1}\right|_{P_{2} Y}: P_{2} Y \rightarrow P Z
$$

are invertible. Hence $V_{+}^{-1} U_{+}: P_{1} X \rightarrow P_{2} Y$ and $V_{-} U_{-}^{-1}: Q_{1} X \rightarrow Q_{2} Y$ are isomorphisms.
(ii) \Rightarrow (iii) Let $U: P_{1} X \rightarrow P_{2} Y$ and $V: Q_{1} X \rightarrow Q_{2} Y$ be isomorphisms. Consider the operators E and F defined by

$$
E:=U P_{1}+V Q_{1}: X \rightarrow Y, \quad F:=U^{-1} P_{2}+V^{-1} Q_{2}: Y \rightarrow X
$$

It can be straightforwardly verified that $E F=I_{Y}$ and $F E=I_{X}$, that is, these two operators are invertible. Moreover, we have

$$
\begin{aligned}
E P_{1} F & =E P_{1}\left(U^{-1} P_{2}+V^{-1} Q_{2}\right)=E P_{1} U^{-1} P_{2}+E P_{1} V^{-1} Q_{2} \\
& =E U^{-1} P_{2}+E P_{1} Q_{1} V^{-1} P_{2}=E U^{-1} P_{2}=\left(U P_{1}+V Q_{1}\right) U^{-1} P_{2} \\
& =U P_{1} U^{-1} P_{2}+V Q_{1} U^{-1} P_{2}=U U^{-1} P_{2}+V Q_{1} P_{1} U^{-1} P_{2}=P_{2}
\end{aligned}
$$

which shows that $P_{1} \sim P_{2}$.
(iii) \Rightarrow (i) Suppose $P_{2}=E P_{1} F$ with $E \in G \mathcal{L}(X, Y)$ and $F \in G \mathcal{L}(Y, X)$. The operator $U:=\left.E\right|_{P_{1} X}: P_{1} X \rightarrow P_{2} Y$ is clearly injective together with E, and since $P_{2} y=E P_{1} F y$, it is also surjective. Consider the linear map

$$
\Phi: X / P_{1} X \rightarrow Y / P_{2} Y, \quad \Phi\left(x+P_{1} X\right)=E x+P_{2} Y
$$

This map is well-defined, since if $x_{1}+P_{1} X=x_{2}+P_{1} X$, then $x_{1}-x_{2} \in P_{1} X$ and hence $E x_{1}-E x_{2}=E\left(x_{1}-x_{2}\right) \in P_{2} Y$. The map Φ is injective, because if $E x=P_{2} y \in P_{2} Y$, then $E x=E P_{1} F y$, whence $x=P_{1} F y \in P_{1} X$. Finally, Φ is surjective because so is E. It follows that Φ is an isomorphism. Consequently, $X / P_{1} X \cong Y / P_{2} Y$, and since $X / P_{1} X \cong Q_{1} X$ and $Y / P_{2} Y \cong Q_{2} Y$, we arrive at the conclusion that $Q_{1} X \cong Q_{2} Y$. Let $V: Q_{1} X \rightarrow Q_{2} Y$ be any isomorphism.

We claim that X, Y, P_{1}, P_{2} is symmetrized by $Z:=P_{1} X \times Q_{2} Y$, the projector $P: Z \rightarrow Z$ defined by $P\left(z_{1}, z_{2}\right):=z_{1}$, and the operators $M_{ \pm}$given by

$$
M_{+}: X \rightarrow Z, x \mapsto\left(P_{1} x, V Q_{1} x\right), \quad M_{-}: Z \rightarrow Y,\left(z_{1}, z_{2}\right) \mapsto U z_{1}+z_{2}
$$

The operator M_{+}is obviously injective and surjective. The injectivity of M_{-}can be seen as follows: if $U z_{1}+z_{2}=0$ with $z_{1}=P_{1} x \in P_{1} X$ and $z_{2}=Q_{2} y \in Q_{2} Y$, then $U P_{1} x+Q_{2} y=0$, which implies that $U z_{1}=U P_{1} x \in P_{2} Y \cap Q_{2} Y$, whence $U z_{1}=0$ and thus $z_{2}=0$, and since $U: P_{1} X \rightarrow P_{2} Y$ is invertible, we conclude that $z_{1}=0$. The surjectivity of M_{-}is again obvious: if $y \in Y$, then $y=P_{2} y+Q_{2} y=$ $U P_{1} x+Q_{2} y$ with $P_{1} x \in P_{1} X$. Finally, we have

$$
\begin{aligned}
M_{+}\left(P_{1} X\right) & =\left\{\left(P_{1} x, 0\right): x \in X\right\}=P Z \\
M_{-}(Q Z) & =M_{-}\left(\left\{\left(0, Q_{2} y\right): y \in Y\right\}\right)=\left\{Q_{2} y: y \in Y\right\}=Q_{2} Y
\end{aligned}
$$

which shows that 1.2 is satisfied. The proof of Theorem 1.1 is complete.
REMARK 2.2. From Theorem 1.1 we see that if $P_{1} \sim P_{2}$, then

$$
\begin{aligned}
& P_{1} X \times Q_{2} Y \cong P_{1} X \times Q_{1} X \cong P_{1} X \oplus Q_{1} X=X \\
& P_{1} X \times Q_{2} Y \cong P_{2} Y \times Q_{2} Y \cong P_{2} Y \oplus Q_{2} Y=Y
\end{aligned}
$$

and hence

$$
\begin{equation*}
X \cong P_{1} X \times Q_{2} Y \cong Y \tag{2.3}
\end{equation*}
$$

However, 2.3 does not imply that $P_{1} \sim P_{2}$. A counterexample is provided by the setting $X=Y=\ell^{2}(\mathbb{Z})$,

$$
\begin{aligned}
& P_{1}:\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(\ldots, 0,0,0, x_{1}, x_{2}, \ldots\right), \\
& P_{2}:\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(\ldots, 0,0, x_{0}, 0,0, \ldots\right) .
\end{aligned}
$$

Indeed, condition (2.3) holds because $X, Y, P_{1} X, Q_{2} Y$ are infinite-dimensional separable Hilbert spaces, but P_{1} and P_{2} are clearly not equivalent.

EXAMPLE 2.3. A concrete case where symmetrization was used (without calling it symmetrization) occurs in the proof of the Fisher-Hartwig conjecture
in [2]; see also pp. 281-283 of [3]. A Fisher-Hartwig symbol is a function on the complex unit circle \mathbb{T} of the form

$$
a(t)=b(t) \prod_{j=1}^{N}\left|t-t_{j}\right|^{2 \alpha_{j}}, \quad t \in \mathbb{T},
$$

where b is a piecewise continuous function on \mathbb{T} that is invertible in $L^{\infty}, t_{1}, \ldots, t_{N}$ are distinct points on \mathbb{T}, and $\alpha_{1}, \ldots, \alpha_{N}$ are complex numbers whose real parts lie in the interval $(-1 / 2,1 / 2)$. The Toeplitz operator generated by a is an operator of the form $T(a)=\left.P_{2} M(a)\right|_{i m} P_{1}$, where $M(a)$ acts on certain Lebesgue spaces over \mathbb{T} by the rule $f \mapsto a f$ and P_{1}, P_{2} are the Riesz projectors of the Lebesgue spaces onto their Hardy spaces. The operators $M(a)$ and $T(a)$ are in general neither bounded nor invertible on L^{p} and the corresponding Hardy spaces H^{p}. However, things can be saved by passing to weighted spaces. Put $\varrho(t)=\prod_{j=1}^{N}\left|t-t_{j}\right|^{\operatorname{Re} \alpha_{j}}$. For $1<p<\infty$, let

$$
L^{p}\left(\varrho^{ \pm 1}\right)=\left\{f \in L^{1}:\|f\|^{p}:=\int_{\mathbb{T}}|f(t)|^{p} \varrho(t)^{ \pm p}|\mathrm{~d} t|<\infty\right\}
$$

The Riesz projector P, which may be defined as $P=(I+S) / 2$ with the Cauchy singular integral operator S given by

$$
(S f)(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \mathrm{i}} \int_{|\tau-t|>\varepsilon} \frac{f(\tau)}{\tau-t} \mathrm{~d} \tau, \quad t \in \mathbb{T}
$$

is bounded on the spaces $L^{p}\left(\varrho^{ \pm 1}\right)$ if $\operatorname{Re} \alpha_{j} \in(-1 / r, 1 / r)$ where $r=\max (p, q)$ with $1 / p+1 / q=1$. Thus, assume the real parts $\operatorname{Re} \alpha_{j}$ are all in $(-1 / r, 1 / r)$. Finally, consider the setting

$$
X=L^{p}(\varrho), \quad P_{1}=P, \quad Y=L^{p}\left(\varrho^{-1}\right), \quad P_{2}=P
$$

It turns out that $M(a) \in G \mathcal{L}(X, Y)$ and hence we are in the setting 1.1) with the invertible operator $A=M(a)$. The Toeplitz operator $T(a)$ acts from $P L^{p}(\varrho)$ to $P L^{p}\left(\varrho^{-1}\right)$. Thus, it is a WHO in an asymmetric setting. It can be shown that the setting X, Y, P_{1}, P_{2} is symmetrized by $Z=L^{p}, P=$ Riesz projector, $M_{+}:=M(\eta)$, $M_{-}:=M(\xi)$, where

$$
\eta(t)=\prod_{j=1}^{N}\left(1-\frac{t}{t_{j}}\right)^{\alpha_{j}}, \quad \xi(t)=\prod_{j=1}^{N}\left(1-\frac{t_{j}}{t}\right)^{\alpha_{j}}
$$

We have $T(a)=V_{+} T(b) U_{+}$with $T(b) \in \mathcal{L}\left(L^{p}, L^{p}\right)$, which reduces the study of $T(a)$ to the investigation of the much simpler operator $T(b)$.

EXAMPLE 2.4. Another useful application of symmetrization is the reduction of WHOs and pseudo-differential operators in scales of Sobolev spaces to operators acting in L^{p} spaces by Bessel potential operators for a half-line, halfspace, quarter plane, or Lipschitz domain [12], [13], [17]. The same idea works
for Wiener-Hopf plus/minus Hankel operators, convolution type operators with symmetry, and convolutionally equivalent operators [7], and it also works for other scales of spaces such as the Sobolev-Slobodetski spaces $W^{s, p}$ and the Zygmund spaces Z^{S}, as well as for matrix operators, cf. [5]. To illustrate the strategy, we here confine us to the basic variant of classical WHOs in Bessel potential spaces (one-dimensional, scalar, $p=2$).

Let \mathcal{F} be the Fourier transformation, $(\mathcal{F} f)(\xi)=\int_{\mathbb{R}} f(x) \mathrm{e}^{\mathrm{i} \xi x} \mathrm{~d} x$, and let H^{s} denote the Sobolev space of all distributions f on \mathbb{R} such that $\lambda^{s} \mathcal{F} f \in L^{2}$, where $\lambda(\xi)=\left(\xi^{2}+1\right)^{1 / 2}$. The well-known Bessel potential operators are given by

$$
\begin{aligned}
& \Lambda^{s}:=A_{\lambda^{s}}:=\mathcal{F}^{-1} \lambda^{s} \cdot \mathcal{F}: H^{r} \rightarrow H^{r-s} \\
& \Lambda_{ \pm}^{s}:=A_{\lambda_{ \pm}^{s}}:=\mathcal{F}^{-1} \lambda_{ \pm}^{s} \cdot \mathcal{F}: H^{r} \rightarrow H^{r-s}
\end{aligned}
$$

where $\lambda_{ \pm}(\xi)=\xi \pm \mathrm{i}$; see, for example, [11], [13], [17]. Here r and s are real numbers. Let H_{+}^{s} and H_{-}^{s} stand for the subspace of all distributions in H^{s} that are supported on $[0, \infty)$ and $(-\infty, 0]$, respectively. We then have

$$
\Lambda_{+}^{s}\left(H_{+}^{r}\right)=H_{+}^{r-s}, \quad \Lambda_{-}^{s}\left(H_{-}^{r}\right)=H_{-}^{r-s} .
$$

In terms of operator identities, this may be rephrased as follows. If $P_{1}^{(s)}$ and $P_{2}^{(s)}$ are any bounded projectors on H^{s} such that $\operatorname{im} P_{1}^{(s)}=H_{+}^{s}$ and $\operatorname{ker} P_{2}^{(s)}=H_{-}^{s}$, then

$$
\Lambda_{+}^{s} P_{1}^{(r)}=P_{1}^{(r-s)} \Lambda_{+}^{s} P_{1}^{(r)}, \quad P_{2}^{(r-s)} \Lambda_{-}^{s}=P_{2}^{(r-s)} \Lambda_{-}^{s} P_{2}^{(r)}
$$

In accordance with [13], a classical Wiener-Hopf operator is given by

$$
T=\left.r_{+} A_{\Phi}\right|_{H_{+}^{r}}: H_{+}^{r} \rightarrow H^{s}\left(\mathbb{R}_{+}\right)
$$

where $H^{s}\left(\mathbb{R}_{+}\right)$is the common Hilbert space of all restrictions of distributions in H^{s} to $\mathbb{R}_{+}=(0, \infty), r_{+}:\left.f \mapsto f\right|_{\mathbb{R}_{+}}$is the restriction operator, and A_{Φ} is a convolution (or translation invariant) operator of order $r-s$, that is, A_{Φ} is of the form

$$
A_{\Phi}=\mathcal{F}^{-1} \Phi \cdot \mathcal{F}: H^{r} \rightarrow H^{s} \quad \text { with } \lambda^{s-r} \Phi \in L^{\infty}(\mathbb{R})
$$

Obviously, T is equivalent to the general Wiener-Hopf operator W given by

$$
W=\left.P_{2}^{(s)} A_{\Phi}\right|_{H_{+}^{r}}: P_{1}^{(r)} H^{r} \rightarrow P_{2}^{(s)} H^{s}
$$

where $P_{2}^{(s)}:=\ell^{(s)} r_{+} \in \mathcal{L}\left(H^{s}\right)$ and $\ell^{(s)}: H^{s}\left(\mathbb{R}_{+}\right) \rightarrow H^{s}$ is any bounded extension operator that is left invertible by r_{+}. The projector $P_{1}^{(r)}$ may be an arbitrary projector in $\mathcal{L}\left(H^{r}\right)$ such that im $P_{1}^{(r)}=H_{+}^{r}$. The equivalence between T and W is simply given by $W=\ell^{(s)} T$ and $T=r_{+} W$. Thus, in the case at hand the setting X, Y, P_{1}, P_{2} is $H^{r}, H^{s}, P_{1}^{(r)}, P_{2}^{(s)}$. As an interpretation of results in Section 2 of [17], a symmetrization of W is achieved by the so-called lifting to L^{2} : choosing

$$
\mathrm{Z}:=H^{0}=L^{2}(\mathbb{R}), \quad M_{+}:=\Lambda_{+}^{r}, \quad M_{-}:=\Lambda_{-}^{-s}, \quad P:=\ell_{0} r_{+},
$$

where $\ell_{0}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow L^{2}(\mathbb{R})$ denotes the extension by zero, we get, with $\Phi_{0}:=$ $\lambda_{-}^{s} \Phi \lambda_{+}^{-r}, P_{1}^{(0)}:=\ell_{0} r_{+}, P_{2}^{(0)}:=\ell_{0} r_{+}$,

$$
\begin{aligned}
W & =\left.P_{2}^{(s)} A_{\Phi}\right|_{H_{+}^{r}}=\left.P_{2}^{(s)} \Lambda_{-}^{-s} A_{\Phi_{0}} \Lambda_{+}^{r}\right|_{H_{+}^{r}} \\
& =\left.\left.\left.P_{2}^{(s)} \Lambda_{-}^{-s}\right|_{P_{2}^{(0)} H^{0}} P_{2}^{(0)} A_{\Phi_{0}}\right|_{H_{+}^{0}} P_{1}^{(0)} \Lambda_{+}^{r}\right|_{H_{+}^{r}} \\
& =\left.\left.\left.P_{2}^{(s)} \Lambda_{-}^{-s}\right|_{L_{+}^{2}} P A_{\Phi_{0}}\right|_{L_{+}^{2}} P \Lambda_{+}^{r}\right|_{H_{+}^{r}}=: E W_{0} F .
\end{aligned}
$$

3. FACTORIZATIONS

Definition 3.1. Let X, Y be Banach spaces, let $P_{1} \in \mathcal{L}(X), P_{2} \in \mathcal{L}(Y)$ be projectors, and let A be an operator in $G \mathcal{L}(X, Y)$. A factorization

$$
\begin{aligned}
A & =A_{-} C A_{+} \\
& : Y \leftarrow Y \leftarrow X \leftarrow X
\end{aligned}
$$

is referred to as a cross factorization of A (with respect to X, Y, P_{1}, P_{2}), in brief CFn, if the factors $A_{ \pm}$and C possess the properties

$$
\begin{equation*}
A_{+} \in G \mathcal{L}(X), \quad A_{-} \in G \mathcal{L}(Y), \quad A_{+}\left(P_{1} X\right)=P_{1} X, \quad A_{-}\left(Q_{2} Y\right)=Q_{2} Y \tag{3.1}
\end{equation*}
$$

and $C \in G \mathcal{L}(X, Y)$ splits the spaces X, Y both into four complemented subspaces such that

The last property means that C maps each X_{j} bijectively onto $Y_{j}, j=0,1,2,3$, i.e., the complemented subspaces $X_{0}, X_{1}, \ldots, Y_{3}$ are images of the corresponding projectors $p_{0}, p_{1}, \ldots, q_{3}$, namely

$$
\begin{array}{ll}
X_{1}=p_{1} X=C^{-1} P_{2} C P_{1} X, & X_{0}=p_{0} X=C^{-1} Q_{2} C P_{1} X \\
X_{2}=p_{2} X=C^{-1} P_{2} C Q_{1} X, & X_{3}=p_{3} X=C^{-1} Q_{2} C Q_{1} X \tag{3.3}\\
Y_{1}=q_{1} Y=C P_{1} C^{-1} P_{2} Y, & Y_{2}=q_{2} Y=C Q_{1} C^{-1} P_{2} Y \\
Y_{0}=q_{0} Y=C P_{1} C^{-1} Q_{2} Y, & Y_{3}=q_{3} Y=C Q_{1} C^{-1} Q_{2} Y .
\end{array}
$$

The operators $A_{ \pm}$are called strong WH factors and C is said to be a cross factor, since it maps a part of $P_{1} X$ onto a part of $Q_{2} Y\left(X_{0} \rightarrow Y_{0}\right)$ and a part of $Q_{1} X$ onto a part of $P_{2} Y\left(X_{2} \rightarrow Y_{2}\right)$, which are all complemented subspaces.

The last two equalities in (3.1) can be formulated in various different ways, for instance as

$$
A_{+} P_{1}=P_{1} A_{+} P_{1}, A_{+}^{-1} P_{1}=P_{1} A_{+}^{-1} P_{1}, P_{2} A_{-}=P_{2} A_{-} P_{2}, P_{2} A_{-}^{-1}=P_{2} A_{-}^{-1} P_{2}
$$

The cross factorization theorem tells us that if $A \in G \mathcal{L}(X, Y)$, then W is generalized invertible if and only if a cross factorization of A exists. In that case a formula for a generalized inverse of W is given by

$$
W^{-}=\left.A_{+}^{-1} P_{1} C^{-1} P_{2} A_{-}^{-1}\right|_{P_{2} Y}: P_{2} Y \rightarrow P_{1} X
$$

A crucial consequence is the equivalence of W and $\left.P_{2} C\right|_{P_{1} X}$, that is, $\left.W \sim P_{2} C\right|_{P_{1} X}$:

$$
W=\left.\left.\left.P_{2} A_{-}\right|_{P_{2} Y} P_{2} C\right|_{P_{1} X} P_{1} A_{+}\right|_{P_{1} X}=\left.E P_{2} C\right|_{P_{1} X} F
$$

where E, F are linear homeomorphisms. We refer to [22] for more details.
In [6], [24] another type of factorization was studied. This factorization is quite different from the previous and more interesting for certain applications.

Definition 3.2. Suppose X, Y are Banach spaces, $P_{1} \in \mathcal{L}(X), P_{2} \in \mathcal{L}(Y)$ are projectors, and A is an operator in $G \mathcal{L}(X, Y)$. A factorization

$$
\begin{aligned}
A & = \\
& A_{-} \quad C \quad A_{+} \\
& : \quad Y \leftarrow Z \leftarrow Z \leftarrow X
\end{aligned}
$$

is called a Wiener-Hopf factorization through an intermediate space Z (with respect to the setting X, Y, P_{1}, P_{2}), in brief FIS, if $Z, A_{ \pm}$, and C possess the following properties:
(i) Z is a Banach space;
(ii) $A_{+} \in G \mathcal{L}(X, Z), C \in G \mathcal{L}(Z), A_{-} \in G \mathcal{L}(Z, Y)$;
(iii) there exists a projector $P \in \mathcal{L}(Z)$ such that, with $Q:=I_{Z}-P$,

$$
\begin{equation*}
A_{+}\left(P_{1} X\right)=P Z, \quad A_{-}(Q Z)=Q_{2} Y \tag{3.4}
\end{equation*}
$$

(iv) C splits the space Z twice into four complemented subspaces such that

Thus, C maps each X_{j} bijectively onto $Y_{j}, j=0,1,2,3$, i.e., the complemented subspaces $X_{0}, X_{1}, \ldots, Y_{3}$ are again images of corresponding projectors $p_{0}, p_{1}, \ldots, q_{3}$, namely $X_{0}=p_{0} Z=C^{-1} Q C P Z, X_{1}=p_{1} Z=C^{-1} P C P Z, \ldots, Y_{3}=q_{3} Z=$ $C Q C^{-1} Q Z$, similarly as in (3.3) (with X and Y replaced by Z).

Again $A_{ \pm}$are called strong WH factors and C is said to be a cross factor, now acting from a space Z onto the same space Z. If the factor C in a FIS is the identity, we speak of a canonical FIS.

Proof of Theorem 1.2 We begin with the proof of the implication (i) \Rightarrow (ii). Since $P_{1} \sim P_{2}$, we infer from Theorem 1.1 that the setting X, Y, P_{1}, P_{2} is symmetrizable. So let $Z, P, M_{ \pm}, U_{ \pm}, V_{ \pm}$be as in Section 1. Since A has a CFn, the operator $W=\left.P_{2} A\right|_{P_{1} X}$ is generalized invertible. Consider the operators

$$
\widetilde{A}:=M_{-}^{-1} A M_{+}^{-1}: Z \rightarrow Z, \quad \widetilde{W}:=\left.P \widetilde{A}\right|_{P Z}
$$

Since $\widetilde{W}=U_{-} W U_{+}^{-1}$, the operator \widetilde{W} is generalized invertible together with W. It follows that \widetilde{A} has a CFn $\widetilde{A}=A_{-} C A_{+}$. But as A is an operator from Z to Z, this CFn is automatically a FIS. We so have $A=\left(M_{-} A_{-}\right) C\left(A_{+} M_{+}\right)$, and because

$$
\begin{aligned}
& A_{+} M_{+}\left(P_{1} X\right)=A_{+} U_{+}\left(P_{1} X\right)=A_{+}(P Z)=P Z \\
& M_{-} A_{-}(Q Z)=M_{-}(Q Z)=V_{-}(Q Z)=Q_{2} Y
\end{aligned}
$$

the factorization $A=\left(M_{-} A_{-}\right) C\left(A_{+} M_{+}\right)$is a FIS. This completes the proof of the implication (i) \Rightarrow (ii).
(ii) \Rightarrow (i) Let $A=A_{-} C A_{+}$be a FIS. A straightforward computation along the lines of pp. 27-29 in [22] shows that

$$
\begin{equation*}
W^{-}:=\left.A_{+}^{-1} P C^{-1} P A_{-}^{-1}\right|_{P_{2} Y}: P_{2} Y \rightarrow P_{1} X \tag{3.6}
\end{equation*}
$$

is a generalized inverse of W. Hence A has a CFn. From 3.4 we see that

$$
\left.A_{+}\right|_{P_{1} X}=\left.P A_{+}\right|_{P_{1} X}: P_{1} X \rightarrow P Z,\left.\quad A_{-}\right|_{Q Z}=\left.Q_{2} A_{-}\right|_{Q Z}: Q Z \rightarrow Q_{2} Y
$$

are invertible operators. Now (2.1) implies that

$$
\left.Q_{1} A_{+}^{-1}\right|_{Q Z}: Q Z \rightarrow Q_{1} X,\left.\quad P A_{-}^{-1}\right|_{P_{2} Y}: P_{2} Y \rightarrow P Z
$$

are also invertible. Consequently,

$$
P_{1} X \cong P Z \cong P_{2} Y, \quad Q_{1} X \cong Q Z \cong Q_{2} Y
$$

which, by Theorem 1.1. completes the proof.
REMARK 3.3. We want to repeat outside the proof that 3.6 is a generalized inverse of the operator W. We also remark that a FIS of A implies the equivalence

$$
W=\left.\left.\left.P_{2} A_{-}\right|_{P Z} P C\right|_{P Z} P A_{+}\right|_{P_{1} X}=\left.E P C\right|_{P Z} F
$$

This factorization of W is nicer than the corresponding factorization resulting from a CFn because the middle factor C in a FIS sorts the spaces as in 3.5, which is of higher quality than (3.2).

EXAMPLE 3.4. Consider the situation of Example 2.3. For simplicity, suppose b is identically 1. Then $T(b)=I_{L^{p}}$ is invertible and hence so also is $T(a)=$ $V_{+} U_{+}: P L^{p}(\varrho) \rightarrow P L^{p}\left(\varrho^{-1}\right)$. From the cross factorization theorem we deduce that $M(a)$ has a CFn

$$
\begin{array}{rcccc}
M(a) & = & A_{-} & C & A_{+} \\
& : & L^{p}\left(\varrho^{-1}\right) \leftarrow L^{p}\left(\varrho^{-1}\right) \leftarrow L^{p}(\varrho) \leftarrow L^{p}(\varrho) .
\end{array}
$$

Let P be the Riesz projector and put $Q=I-P$; the underlying space is suppressed in this notation. Furthermore, let us simply write c for the operator $M(c)$ of multiplication by c. The operator $\left.P a\right|_{\text {im } P}: P L^{p}(\varrho) \rightarrow P L^{p}\left(\varrho^{-1}\right)$ may be identified with the invertible Toeplitz operator $T(a)$. From (2.1) we deduce that $\left.Q a^{-1}\right|_{\mathrm{im} Q}: Q L^{p}\left(\varrho^{-1}\right) \rightarrow Q L^{p}(\varrho)$ is also invertible. The last operator may be identified with $J T\left(\widetilde{a}^{-1}\right) J: Q L^{p}\left(\varrho^{-1}\right) \rightarrow Q L^{p}(\varrho)$, where $J: \operatorname{im} Q \rightarrow \operatorname{im} P$ is the flip operator and \widetilde{a} is defined by $\widetilde{a}(t):=a(1 / t)$. One can show that

$$
\begin{aligned}
& T(a)=T(\widetilde{\xi}) T(\eta), \quad[T(a)]^{-1}=T\left(\eta^{-1}\right) T\left(\xi^{-1}\right), \\
& J T\left(\widetilde{a}^{-1}\right) J=J T\left(\widetilde{\eta}^{-1}\right) T\left(\widetilde{\xi}^{-1}\right) J, \quad\left[J T\left(\widetilde{a}^{-1}\right) J\right]^{-1}=J T(\widetilde{\xi}) T(\widetilde{\eta}) J .
\end{aligned}
$$

A concrete CFn is given by

$$
A_{-}=I+Q a P(P a P)^{-1} P, \quad C=P a P+\left(Q a^{-1} Q\right)^{-1} Q, \quad A_{+}=I+(P a P)^{-1} P a Q
$$

here and in the following we use the abbreviations

$$
\left(\left.P a\right|_{\operatorname{im} P}\right)^{-1}=:(P a P)^{-1}, \quad\left(\left.Q a^{-1}\right|_{\mathrm{im} Q}\right)^{-1}=:\left(Q a^{-1} Q\right)^{-1}
$$

The inverses of A_{-}, C, and A_{+}are

$$
A_{-}^{-1}=I-Q a P(P a P)^{-1} P, \quad C=(P a P)^{-1}+Q a^{-1} Q, \quad A_{+}^{-1}=I-(P a P)^{-1} P a Q
$$

To verify the equality $A=A_{-} C A_{+}$note that

$$
A_{-} C=P a P+\left(Q a^{-1} Q\right)^{-1} Q+Q a P
$$

whence

$$
\begin{aligned}
A_{-} C A_{+} & =\left(P a P+\left(Q a^{-1} Q\right)^{-1} Q+Q a P\right)\left(I+(P a P)^{-1} P a Q\right) \\
& =P a P+P a Q+\left(Q a^{-1} Q\right)^{-1} Q+Q a P+Q a P(P a P)^{-1} P a Q
\end{aligned}
$$

and since

$$
\left(Q a^{-1} Q\right)^{-1} Q=Q a Q-Q a P(P a P)^{-1} P a Q
$$

due to (2.2), we obtain that

$$
A_{-} C A_{+}=P a P+P a Q+Q a P+Q a Q=a=A
$$

Finally, the last two equalities in (3.1) are obvious in the case at hand. The splitting (3.2) now takes the form

$$
\begin{aligned}
& L^{p}(\varrho)=\overbrace{P L^{p}(\varrho)}^{P L^{p}(\varrho)} \oplus \overbrace{\{0\} \quad \oplus \quad}^{Q L^{p}(\varrho)} \overbrace{Q L^{p}(\varrho)} \\
& L^{p}\left(\varrho^{-1}\right)=\underbrace{P L^{p}\left(\varrho^{-1}\right) \oplus \quad\{0\}}_{P_{2} \Upsilon} \oplus
\end{aligned}
$$

Since the setting X, Y, P_{1}, P_{2} is symmetrizable, Theorems 1.1 and 1.2 imply that $M(a)$ also admits a FIS

$$
\begin{array}{rlc}
M(a) & = & B_{-} \quad D \quad B_{+} \\
& : & L^{p}\left(\varrho^{-1}\right) \leftarrow L^{p} \leftarrow L^{p} \leftarrow L^{p}(\varrho) .
\end{array}
$$

It is easily seen that a concrete FIS is given by $B_{+}=M(\eta), B_{-}=M(\xi), D=I_{L^{p}}$. Thus, in this case (3.5) becomes

It is obvious that the FIS is much simpler than the CFn.
Example 3.5. The great advantage of the "equivalent reduction" of W to W_{0} performed in Example 2.4 is that the generalized inversion of W is reduced to a factorization of Φ_{0}. In applications we often have $\Phi_{0} \in G C^{\mu}(\ddot{\mathbb{R}})$, i.e., Φ is Hölder continuous on the two-point compactification $\ddot{\mathbb{R}}=[-\infty,+\infty]$ of the real line with Hölder conditions at $\pm \infty$. The factorization problem for this class of functions is completely solved; see [17]. Instead of embarking on the subtleties of factorization of functions in $G C^{\mu}(\ddot{\mathbb{R}})$, we move from the real line to unit circle \mathbb{T} and to the Wiener-Hopf factorization of functions defined on \mathbb{T}. In this context things are a little easier.

The "middle factor" of a Wiener-Hopf factorization is a function of the form $c(t)=t^{n}(t \in \mathbb{T})$ with $n \in \mathbb{Z}$. The multiplication operator $M(c): L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$ is unitarily equivalent to $U^{n}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$, where U the shift operator defined by $(U x)_{j}=x_{j-1}$. So let us work in $\ell^{2}(\mathbb{Z})$. Given a set $E \subset \mathbb{Z}$, we denote by $\ell^{2}(E)$ the subspace of the sequences in $\ell^{2}(\mathbb{Z})$ which are supported in E. After the symmetrization described in Example 2.4 and after passing from \mathbb{R} to \mathbb{Z}, we are in the context where $X=Y=Z=\ell^{2}(\mathbb{Z}), P$ is the orthogonal projection of $\ell^{2}(\mathbb{Z})$ onto $\ell^{2}(\{0,1,2, \ldots\})$, and $Q=I-P$. Let further $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$, $\mathbb{Z}_{-}=\{-1,-2,-3, \ldots\}, B_{n}^{+}=\{0, \ldots, n-1\}, A_{n}^{-}=\{-1, \ldots,-n\}$. For $C=U^{n}$ with $n \geqslant 0$, the splittings (3.2) and (3.5) are

$$
\begin{aligned}
\ell^{2}(\mathbb{Z})= & \overbrace{\ell^{2}\left(\mathbb{Z}_{+}\right) \oplus \oplus \quad\{0\}}^{\ell^{2}\left(\mathbb{Z}_{+}\right)} \oplus \overbrace{\ell^{2}\left(A_{n}^{-}\right) \oplus \ell^{2}\left(\mathbb{Z}_{-} \backslash A_{n}^{-}\right)}^{\ell^{2}\left(\mathbb{Z}_{-}\right)} \\
& \downarrow \\
\ell^{2}(\mathbb{Z})= & U_{\ell^{n} \nsucc} \underbrace{\ell^{2}\left(\mathbb{Z}_{+} \backslash B_{n}^{+}\right) \oplus \ell^{2}\left(B_{n}^{+}\right)}_{\ell^{2}\left(\mathbb{Z}_{+}\right)} \oplus \underbrace{\{0\} \quad \oplus \ell^{2}\left(\mathbb{Z}_{-}\right)}_{\ell^{2}\left(\mathbb{Z}_{-}\right)}
\end{aligned}
$$

while for $C=U^{-n}$ with $n \geqslant 0$, we obtain

$$
\begin{aligned}
\ell^{2}(\mathbb{Z})= & \overbrace{\ell^{2}\left(\mathbb{Z}_{+} \backslash B_{n}^{+}\right) \oplus \ell^{2}\left(B_{n}^{+}\right)}^{\ell^{2}\left(\mathbb{Z}_{+}\right)} \oplus \overbrace{\{0\} \quad \oplus \quad \ell^{2}\left(\mathbb{Z}_{-}\right)}^{U^{-n} \nprec} \begin{array}{l}
\downarrow \\
\\
\downarrow \\
\ell^{2}\left(\mathbb{Z}_{-}\right) \\
\ell^{2}(\mathbb{Z})
\end{array}=\underbrace{\ell^{2}\left(\mathbb{Z}_{+}\right) \oplus \quad\{0\}}_{\ell^{2}\left(\mathbb{Z}_{+}\right)} \oplus \underbrace{\ell^{2}\left(A_{n}^{-}\right) \oplus \ell^{2}\left(\mathbb{Z}_{-} \backslash A_{n}^{-}\right)}_{\ell^{2}\left(\mathbb{Z}_{-}\right)} .
\end{aligned}
$$

Note that the cross factors arising in the Wiener-Hopf factorization of matrix functions are of the form $\operatorname{diag}\left(U^{n_{1}}, \ldots, U^{n_{k}}\right)$ with $n_{1}, \ldots, n_{k} \in \mathbb{Z}$; see [9], [15].

4. ADDENDUM TO [24]

One of the main results of [24] is Theorem 2.2 on page 399, which is identical to Theorem 1.2 of the present paper. In the first part of the proof of Theorem 2.2 (page 405, lines 22-23) we find the conclusion "The factor properties of A_{+}imply $P_{1} \sim P$ and the factor properties of A_{-}imply $P_{2} \sim P$, therefore $P_{1} \sim P_{2}$ is necessarily satisfied", which is not correct. One can here directly conclude that $\operatorname{im} P_{1} \cong \operatorname{im} P$ and $\operatorname{ker} P_{2} \cong \operatorname{ker} P$ but not that $P_{1} \sim P_{2}$.

To fix the gap we now replace that text "..." by the following: "The factor properties of A_{+}and A_{-}imply that the definition of $\widetilde{A}=A_{-} A_{+}$contains a canonical FIS (with respect to X, Y, P_{1}, P_{2}) through the same intermediate space Z that appeared in the (non-canonical) FIS of $A=A_{-} C A_{+}$. Hence $\widetilde{W}=\left.P_{2} \widetilde{A}\right|_{P_{1} X}$ is invertible and $\operatorname{im} P_{2} \cong \operatorname{im} P_{1}$. By a symmetry argument we prove that $\operatorname{ker} P_{2} \cong$ ker P_{1} holds, as well, exchanging the roles of X and Y, of P_{1} and Q_{2}, and of P_{2} and Q_{1}. Namely $A^{-1}=A_{+}^{-1} C^{-1} A_{-}^{-1}$ can be seen as a FIS of A^{-1} with respect to Y, X, Q_{2}, Q_{1}. Therefore $\widetilde{A}^{-1}=A_{+}^{-1} A_{-}^{-1}$ is a canonical FIS with respect to Y, X, Q_{2}, Q_{1} through the same space Z as before, $\widetilde{W}_{*}=\left.Q_{1} A_{+}^{-1} A_{-}^{-1}\right|_{Q_{2} Y}$ is invertible and $\operatorname{im} Q_{1} \cong \operatorname{im} Q_{2}$, i.e., $\operatorname{ker} P_{2} \cong \operatorname{ker} P_{1}$. Together with $\operatorname{im} P_{2} \cong \operatorname{im} P_{1}$ we arrive at $P_{2} \sim P_{1}{ }^{\prime \prime}$. The rest of the proof of Theorem 2.2 is then correct in the existing form.

Beside of this change two misprints have to be corrected.
(i) The first obvious misprint occurs in formula (1.5) on page 397. Line 4 has to start with $Y_{0}=q_{0} Y=C P_{1} C^{-1} Q_{2} Y$.
(ii) The second appears in Corollary 2.5 on page 400 where the assumption ker $P_{2} \cong \operatorname{ker} P_{1}$ was forgotten. Under the general assumption that A is boundedly invertible, this corollary correctly reads as follows. If W is generalized invertible and if $P_{1} \sim P_{2}$, there exists a FIS of A with $Z=X$ and a FIS with $Z=Y$ (and a FIS with any prescribed intermediate space that is isomorphic to X and Y).

Acknowledgements. The work was supported by FCT — Portuguese Foundation for Science and Technology through the Center for Functional Analysis, Linear Structures and Applications at Instituto Superior Técnico, Universidade de Lisboa, and by a voluntary agreement between the Instituto Superior Técnico and the second author.

REFERENCES

[1] A. Böttcher, Yu.I. Karlovich, I.M. Spitkovsky, Convolution Operators and Factorization of Almost Periodic Matrix Functions, Oper. Theory Adv. Appl., vol. 131, Birkhäuser, Basel 2002.
[2] A. Böttcher, B. Silbermann, Toeplitz matrices and determinants with FisherHartwig symbols, J. Funct. Anal. 62(1985), 178-214.
[3] A. BÖttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer, Berlin 2006.
[4] A. BÖTtcher, I.M. Spitkovsky, The factorization problem: some known results and open questions, in Advances in Harmonic Analysis and Operator Theory. The Stefan Samko Anniversary Volume, Oper. Theory Adv. Appl., vol. 229, Birkhäuser, Basel 2013, pp. 101-122.
[5] L.P. Castro, R. Duduchava, F.-O. Speck, Asymmetric factorizations of matrix functions on the real line, in Modern Operator Theory and Applications. The Igor Borisovich Simonenko Anniversary Volume, Oper. Theory Adv. Appl., vol. 170, Birkhäuser, Basel 2006, pp. 53-74.
[6] L.P. Castro, F.-O. Speck, On the characterization of the intermediate space in generalized factorizations, Math. Nachr. 176(1995), 39-54.
[7] L.P. CASTRO, F.-O. SPECK, Convolution type operators with symmetry in Bessel potential spaces, in Recent Trends in Operator Theory and Partial Differential Equations. The Roland Duduchava Anniversary Volume, Oper. Theory Adv. Appl., vol. 258, Birkhäuser, Basel 2017, to appear.
[8] G.N. Čebotarev, Several remarks on the factorization of operators in a Banach space and the abstract Wiener-Hopf equation [Russian], Mat. Issled. 2(1968), 215-218.
[9] K.F. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser, Basel 1981.
[10] A. Devinatz, M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145(1969), 467-494.
[11] R. Duduchava, Integral Equations with Fixed Singularities, Teubner, Leipzig 1979.
[12] R. Duduchava, F.-O. SPECK, Pseudodifferential operators on compact manifolds with Lipschitz boundary, Math. Nachr. 160(1993), 149-191.
[13] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Transl. Math. Monogr., vol. 52, Amer. Math. Soc., Providence, RI 1981.
[14] I. Gohberg, N. Krupnik, One-Dimensional Linear Singular Integral Equations. I, II, Oper. Theory Adv. Appl., vol. 53, 54, Birkhäuser, Basel 1992.
[15] G.S. Litvinchuk, I.M. Spitkovsky, Factorization of Measurable Matrix Functions, Oper. Theory Adv. Appl., vol. 25, Birkhäuser, Basel 1987.
[16] E. Meister, F.-O. Speck, Modern Wiener-Hopf methods in diffraction theory, in Ordinary and Partial Differential Equations, Vol. II, Longman, London 1989, pp. 130171.
[17] A. Moura Santos, F.-O. Speck, F.S. Teixeira, Minimal normalization of WienerHopf operators in spaces of Bessel potentials, J. Math. Anal. Appl. 225(1998), 501-531.
[18] V.V. Prasolov, Problems and Theorems in Linear Algebra, Transl. Math. Monogr., vol. 134, Amer. Math. Soc., Providence, RI 1994.
[19] M. Shinbrot, On singular integral operators, J. Math. Mech. 13(1964), 395-406.
[20] I.B. Simonenko, Some general questions in the theory of the Riemann boundary problem [Russian], Izv. Akad. Nauk SSSR Ser. Mat. 32(1968), 1138-1146; Math. USSR Izv. 2(1970), 1091-1099, [English].
[21] F.-O. SPECK, On the generalized invertibility of Wiener-Hopf operators in Banach spaces, Integral Equations Operator Theory 6(1983), 458-465.
[22] F.-O. Speck, General Wiener-Hopf Factorization Methods, Pitman, London 1985.
[23] F.-O. SPECK, Mixed boundary value problems of the type of Sommerfeld half-plane problem, Proc. Royal Soc. Edinburgh 104(1986), 261-277.
[24] F.-O. Speck, Wiener-Hopf factorization through an intermediate space, Integral Equations Operator Theory 82(2015), 395-415.
[25] F.-O. SPECK, A class of interface problems for the Helmholtz equation in \mathbb{R}^{n}, Math. Meth. Appl. Sci., to appear. DOI 10.1002/mma. 3386.

ALbRECHT BÖTTCHER, FAKUltÄT FÜr Mathematik, Technische UniverSität Chemnitz, 09107, Germany
E-mail address: aboettch@mathematik.tu-chemnitz.de
FRANK-OLME SPECK, Departamento de Matemática, Instituto Superior
TÉcnico, Universidade de Lisboa, 1049-001, Portugal
E-mail address: fspeck@tecnico.pt

Received November 21, 2015; revised June 11, 2016.

