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ABSTRACT. We show that in many cases a one-parameter group of automor-
phisms on a C∗-algebra of an étale groupoid is given by a real-valued ho-
momorphism on the groupoid if and only if the KMS weights of the one-
parameter group is given by measures on the unit space. The results are ap-
plied to graph C∗-algebras.
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1. INTRODUCTION

Recent years have seen an increasing interest in the investigation of KMS
states for one-parameter actions on C∗-algebras. While the original motivation
for the introduction of KMS states came from the interpretation of these states as
equilibrium states in models from quantum statistical mechanics, the renewed in-
terest stems also from more purely mathematical considerations, where the KMS
states have been related to objects and structures from other fields, such as num-
ber theory or dynamical systems. In the present paper we investigate relations
between properties of the KMS states and properties of the one-parameter action
giving rise to them. As we shall now explain, we show that the existence of a
“diagonal” KMS state or weight implies that the action itself must be “diagonal”.

For most if not all the one-parameter actions on C∗-algebras for which we
have been able to determine the structure of the KMS states or KMS weights, the
underlying C∗-algebra can be presented as the C∗-algebra of a locally compact
groupoid, as introduced by Renault in [9], and the action described as arising
from a continuous real-valued homomorphism on the groupoid by a canonical
procedure also introduced in [9]. For this reason the results of Neshveyev, [7],
which extend results of Renault and give a general and abstract description of the
KMS states for such actions on a groupoid C∗-algebra are of utmost importance.
In the following we call these actions diagonal.
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When the groupoid and the associated C∗-algebra is fixed, it is certainly not
all one-parameter actions that are diagonal. It follows from Neshveyev’s theo-
rem, Theorem 1.3 in [7], that a diagonal action has the property that if a KMS
state exists, there will also be one which factorizes through the canonical condi-
tional expectation onto the abelian C∗-subalgebra generated by the continuous
compactly supported functions on the unit space. In the following we call these
states diagonal. The present work sprang from the realization that in many cases
the property that there is a diagonal KMS state characterizes the diagonal actions.
That is, for many groupoid C∗-algebras a one-parameter action is diagonal if and
only if the action admits a diagonal KMS state. The simplest example of this is
perhaps the following.

Consider the C∗-algebra Mn of complex n by n matrices. A continuous one-
parameter group α of automorphisms on Mn is inner in the sense that there is a
self-adjoint matrix A ∈ Mn such that

αt(B) = eitABe−itA

for all t ∈ R and all B ∈ Mn. For each β ∈ R there is a unique β-KMS state ωβ for
α given by

ωβ(B) =
Tr(e−βAB)
Tr(e−βA)

.

It can be shown that for β 6= 0 the state ωβ factorizes through the canonical (and
unique) conditional expectation from Mn onto the C∗-subalgebra of diagonal ma-
trices if and only if A is diagonal. It is this fact we will generalize. For this
note that Mn is the groupoid C∗-algebra of the groupoid G = {1, 2, 3, . . . , n} ×
{1, 2, 3, . . . , n} with operations

(a, b)(b, c) = (a, c) and (a, b)−1 = (b, a).

When Mn is identified with the C∗-algebra C∗(G) of G, the diagonal matrices
in Mn constitute the C∗-algebra C(G(0)) of (continuous) functions on G whose
support is contained in the unit space

G(0) = {(k, k) : k ∈ {1, 2, . . . , n}}

of G. In this picture the conditional expectation onto the diagonal matrices is the
map

P : C∗(G)→ C(G(0))
which restricts functions to G(0). Furthermore, the matrix A will be diagonal if
and only if there is a groupoid homomorphism c : G → R such that

(1.1) αt( f )(a, b) = eic(a,b)t f (a, b)

for all t ∈ R, (a, b) ∈ G and all f ∈ C∗(G). Because the whole setup is so trans-
parent in this case, we can easily conclude that there is an equivalence between
the following conditions:
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(1) α is diagonal in the sense that there is a groupoid homomorphism c : G →
R such that (1.1) holds.

(2) There is a β 6= 0 and a β-KMS state ωβ for α which is diagonal in the sense
that it factorizes through the conditional expectation C∗(G)→ C(G(0)).

(3) αt( f ) = f for all t ∈ R and all f ∈ C(G(0)).
(4) All β-KMS states of α, for β 6= 0, are diagonal.

Our main result is that these equivalences hold much more generally as we
shall now explain.

2. NOTATION AND MAIN RESULT

Let G be a second countable locally compact Hausdorff étale groupoid with
unit space G(0). Let r : G → G(0) and s : G → G(0) be the range and source
maps, respectively. For x ∈ G(0) put Gx = r−1(x), Gx = s−1(x) and Gx

x =
s−1(x) ∩ r−1(x). Note that Gx

x is a group, the isotropy group at x. The space Cc(G)
of continuous compactly supported functions is a ∗-algebra when the product is
defined by

( f1 ∗ f2)(g) = ∑
h∈Gr(g)

f1(h) f2(h−1g)

and the involution by f ∗(g) = f (g−1). To define the reduced groupoid C∗-algebra
C∗r (G), let x ∈ G(0). There is a representation πx of Cc(G) on the Hilbert space
l2(Gx) of square-summable functions on Gx given by

πx( f )ψ(g) = ∑
h∈Gr(g)

f (h)ψ(h−1g).

C∗r (G) is the completion of Cc(G) with respect to the norm

‖ f ‖r = sup
x∈G(0)

‖πx( f )‖.

Note that C∗r (G) is separable since we assume that the topology of G is second
countable.

We shall here be concerned not only with KMS states, but more generally
with KMS weights. Let A be a C∗-algebra and A+ the convex cone of positive
elements in A. A weight on A is a map ψ : A+ → [0, ∞] with the properties that
ψ(a+ b) = ψ(a)+ψ(b) and ψ(λa) = λψ(a) for all a, b ∈ A+ and all λ ∈ R, λ > 0.
By definition ψ is densely defined when {a ∈ A+ : ψ(a) < ∞} is dense in A+ and
lower semi-continuous when {a ∈ A+ : ψ(a) 6 α} is closed for all α > 0. We will
use [5], [6] as our source for information on weights, and we say that a weight is
proper when it is non-zero, densely defined and lower semi-continuous. Let ψ be
a proper weight on A. Set Nψ = {a ∈ A : ψ(a∗a) < ∞} and note that

Mψ = Span{a∗b : a, b ∈ Nψ}
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is a dense ∗-subalgebra of A, and that there is a unique well-defined linear map
Mψ → C which extends ψ : Mψ ∩ A+ → [0, ∞). We denote also this densely
defined linear map by ψ.

Let α : R→ Aut A be a continuous one-parameter group of automorphisms
on A. Let β ∈ R. Following [2] we say that a proper weight ψ on A is a β-KMS
weight for α when

(i) ψ ◦ αt = ψ for all t ∈ R, and
(ii) for every pair a, b ∈ Nψ ∩N ∗ψ there is a continuous and bounded function

F defined on the closed strip Dβ in C consisting of the numbers z ∈ C whose
imaginary part lies between 0 and β, and is holomorphic in the interior of the
strip and satisfies that

F(t) = ψ(aαt(b)), F(t + iβ) = ψ(αt(b)a)

for all t ∈ R.
Compared to [2] we have changed the orientation in order to have the same

sign convention as in [1], for example. It will be important for us that there is an
alternative characterization of when a proper weight is a β-KMS weight. Specifi-
cally, by Proposition 1.11 in [6] a proper weight ψ is a β-KMS weight for α if and
only if it is α-invariant (as in (i) above) and

(2.1) ψ(a∗a) = ψ(αiβ/2(a)αiβ/2(a)∗)

for all a in the domain D(αiβ/2) of αiβ/2; the closure of the restriction of αiβ/2 to
the analytic elements for α, cf. [5]. A β-KMS weight ψ with the property that

sup{ψ(a) : 0 6 a 6 1} = 1

will be called a β-KMS state.
Returning to the case A = C∗r (G), note that the map Cc(G) → Cc(G(0))

which restricts functions to G(0) extends to a conditional expectation P : C∗r (G)→
C0(G(0)). Via P a regular Borel measure m on G(0) gives rise to a weight ϕm :
C∗r (G)+ → [0, ∞] defined by the formula

(2.2) ϕm(a) =
∫
G(0)

P(a) dm.

It follows from Fatou’s lemma that ϕm is lower semi-continuous. Since ϕm( f a f )
< ∞ for every non-negative function f in Cc(G(0)), it follows that ϕm is also
densely defined, i.e. ϕm is a proper weight on C∗r (G) if and only if m is not the
zero measure. In the following we say that a proper weight ψ on C∗r (G) is di-
agonal when ψ = ϕm for some regular Borel measure m on G(0). By the Riesz
representation theorem this occurs if and only if ψ ◦ P = ψ.

Given a continuous homomorphism c : G → R there is a continuous one-
parameter group σc on C∗r (G) such that

(2.3) σc
t (g)(ξ) = eitc(ξ)g(ξ)
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for all t ∈ R, all g ∈ Cc(G) and all ξ ∈ G, cf. [9]. A one-parameter action of this
kind will be called diagonal in the following. We can then formulate our main
result as follows.

THEOREM 2.1. Let G be a locally compact second countable Hausdorff étale
groupoid such that for at least one element x ∈ G(0) the isotropy group Gx

x is trivial,
i.e. Gx

x = {x}, and that G is minimal in the sense that s(r−1(y)) is dense in G(0) for all
y ∈ G(0). Furthermore, assume that G(0) is totally disconnected.

Let α = (αt)t∈R be a continuous one-parameter group of automorphisms on C∗r (G)
and assume that for some β0 6= 0 there is a β0-KMS weight for α.

The following are equivalent:
(i) There is a β1 6= 0 and a diagonal β1-KMS weight for α.

(ii) Whenever β 6= 0 and there is a β-KMS weight for α, there is also a diagonal
β-KMS weight for α.

(iii) αt( f ) = f for all t ∈ R and all f ∈ C0(G(0)).
(iv) αt(C0(G(0))) ⊆ C0(G(0)) for all t ∈ R.
(v) α is diagonal.

Some of the (non-trivial) implications hold with fewer assumptions. Specif-
ically, (i)⇒(iii) holds without the assumption that the unit space is totally dis-
connected by Proposition 4.1, and the implication (iii)⇒(v) holds assuming only
that the points with trivial isotropy are dense in G(0) (i.e. if G is topologically
principal) by Proposition 4.3. The implication (v)⇒(ii) holds whenever G(0) is
totally disconnected, without any further assumptions, as it follows from Corol-
lary 3.4. It may be that this implication is true in general and if so the theorem
with (iv) removed is true also when G(0) is not totally disconnected. However,
the first two assumptions on G which are equivalent to topological principal-
ity and minimality of G are certainly necessary for the implication (iii)⇒(i) to
hold, cf. Example 4.9. Finally, the gauge action on the C∗-algebra of a strongly
connected (row-finite) graph with infinite Gurevich entropy does not admit any
KMS weights at all, cf. [14], showing that it is necessary to assume the existence
of some KMS-weight for the implication (v)⇒(i) to hold.

3. NESHVEYEV’S THEOREM FOR KMS WEIGHTS

LEMMA 3.1. Let A be a C∗-algebra, α a continuous one-parameter group of auto-
morphisms on A and ψ a KMS weight for α. Let p ∈ A be a projection in the fixed point
algebra of α. Then ψ(p) < ∞.

Proof. Assume that a > 0, ψ(a) < ∞ and that a1/2 is analytic for α. Then
Proposition 1.11 in [6] applies to conclude that

(3.1) ψ(pap)=ψ(αiβ/2(a1/2)pαiβ/2(a1/2)∗)6ψ(αiβ/2(a1/2)αiβ/2(a1/2)∗)=ψ(a).
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Let {bk} be a sequence of positive elements in A such that lim
k→∞

bk = p and ψ(bk) <

∞ for all k. For each n ∈ N, set

ck,n =

√
n
π

∫
R

αt(bk)e
−nt2

dt.

Then ck,n is analytic for α and ψ(c2
k,n) 6 ‖ck,n‖ψ(ck,n) 6 ‖ck,n‖ψ(bk) < ∞ for all

k, n. It follows therefore from (3.1) that ψ(pc2
k,n p) 6 ψ(c2

k,n) < ∞ for all k, n. Note
that

lim
k→∞

lim
n→∞

c2
k,n = lim

k→∞
b2

k = p2 = p.

It follows that there are k, n such that ‖p− pc2
k,n p‖ 6 1/2, and then spectral theory

tells us that pc2
k,n p > (1/2)p. Hence ψ(p) 6 2ψ(pc2

k,n p) < ∞.

Let G be a locally compact second countable Hausdorff étale groupoid and
c : G → R a continuous homomorphism. Let µ be a regular Borel measure on
G(0) and β ∈ R a real number. We say that µ is (G, c)-conformal with exponent β, as
in [14], or that µ is quasi-invariant with Radon–Nikodym cocycle e−βc, as in [7], when

(3.2) µ(s(W)) =
∫

r(W)

eβc(r−1
W (x)) dµ(x)

for every open bi-section W ⊆ G, where r−1
W denotes the inverse r : W → r(W).

For each x ∈ G(0) we can consider the full group C∗-algebra C∗(Gx
x ) of the discrete

group Gx
x , the isotropy group at x. As in [7] we denote for g ∈ Gx

x by ug the char-
acteristic function of the element g when we consider C∗(Gx

x ) as a completion of
Cc(Gx

x ). Thus ug, g ∈ Gx
x , are the canonical unitary generators of C∗(Gx

x ). Follow-
ing [7] we say that a collection ϕx, x ∈ G(0), of states on C∗(Gx

x ) is a µ-measurable
field when the function

G(0) 3 x 7→ ∑
g∈Gx

x

f (g)ϕx(ug)

is µ-measurable for all f ∈ Cc(G). We identify two µ-measurable fields {ϕx}x∈G(0)
and {ϕ′x}x∈G(0) when ϕx = ϕ′x for µ-almost every x.

The following theorem is a version for weights of Theorem 1.3 in [7]. Note
that it deals with the full groupoid C∗-algebra C∗(G) which is an extension of the
reduced groupoid C∗r (G). We refer to [9] for the definition of the full groupoid C∗-
algebra. To understand the following theorem and its proof it suffices to know
that C∗(G), like C∗r (G), is a completion of Cc(G) and that a continuous homomor-
phism c : G → R also defines a continuous one-parameter group σc on C∗(G) via
the formula (2.3).

THEOREM 3.2 (Neshveyev’s theorem for weights). Let G be a locally compact
second countable Hausdorff étale groupoid and let c : G → R be a continuous homomor-
phism. Assume that the unit space G(0) of G is totally disconnected.
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There is a bijective correspondence between the β-KMS weights for σc on C∗(G)
and the pairs (µ, {ϕx}x∈G(0)), where µ is a regular Borel measure on G(0) and {ϕx}x∈G(0)
is a µ-measurable field of states ϕx on C∗(Gx

x ) such that:
(i) µ is quasi-invariant with Radon–Nikodym cocycle e−βc,

(ii) ϕx(ug) = ϕr(h)(uhgh−1) for µ-almost every x ∈ G(0) and all g ∈ Gx
x , h ∈ Gx,

and
(iii) ϕx(ug) = 0 for µ-almost every x ∈ G(0) and all g ∈ Gx

x\c−1(0).
The β-KMS weight φ corresponding to the pair (µ, {ϕx}x∈G(0)) has the properties

that Cc(G) ⊆Mφ and

(3.3) φ( f ) =
∫
G(0)

∑
g∈Gx

x

f (g)ϕx(ug) dµ(x)

when f ∈ Cc(G).

Proof. Let φ be a β-KMS weight for σc. Since G(0) is totally disconnected by
assumption there is a sequence p1 6 p2 6 p3 6 · · · of projections in Cc(G(0))
with the property that {pn} is an approximate unit for C∗(G). It follows from
Lemma 3.1 that φ(pn) < ∞ for all n. Since φ 6= 0 we can assume, without loss of
generality, that φ(pn) > 0 for all n. Since φ( f ) < ∞ for every non-negative func-
tion in Cc(G(0)) it follows that Cc(G) ⊆ Mφ and from the Riesz representation
theorem that there is a unique regular Borel measure µ on G(0) such that

φ( f ) =
∫
G(0)

f (x) dµ(x)

for all f ∈ Cc(G(0)). Let Un be the compact and open support of pn, and set

Gn = G|Un = {ξ ∈ G : r(ξ), s(ξ) ∈ Un}

and cn = c|Gn . Note that φ(pn)−1φ restricts to a β-KMS state on pnC∗(G)pn =
C∗(Gn). It follows from Neshveyev’s theorem [7] that there is a probability mea-
sure µn on Un, and a µn-measurable field {ϕn

x}x∈Un of states such that:

(an) µn is quasi-invariant on Gn with cocycle e−βcn ,
(bn) ϕn

x(ug) = ϕn
r(h)(uhgh−1) for µn-almost every x ∈ Un and all g ∈ Gx

x , h ∈
(Gn)x,

(cn) ϕn
x(ug) = 0 for µn-almost every x ∈ Un and all g ∈ Gx

x\c−1
n (0),

and

φ(pn)
−1φ( f ) =

∫
Un

∑
g∈Gx

x

f (g)ϕn
x(ug) dµn(x)
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when f ∈ Cc(Gn). For every f ∈ Cc(Un) we get that:

φ(pn)
−1
∫

Un

f (x) dµ(x) = φ(pn)
−1

∫
G(0)

f (x) dµ(x) = φ(pn)
−1φ( f )

=
∫

Un

∑
g∈Gx

x

f (g)ϕn
x(ug) dµn(x) =

∫
Un

f (x) dµn(x)

so µ|Un = φ(pn)µn. Notice that since φ(pn) > 0, being a µ null set in Un is the
same as being a µn null set. For a Borel set V ⊆ Un ⊆ Un+1 we have that:

φ(pn+1)µn+1(V) = µ(V) = φ(pn)µn(V).

So µn = φ(pn+1)/φ(pn)µn+1|Un . For every f ∈ Cc(Gn) we get that:∫
Un

∑
g∈Gx

x

f (g)ϕn
x(ug) dµn(x) = φ(pn)

−1φ( f ) =
φ(pn+1)

φ(pn)
φ(pn+1)

−1φ( f )

=
φ(pn+1)

φ(pn)

∫
Un+1

∑
g∈Gx

x

f (g)ϕn+1
x (ug) dµn+1(x)

=
∫

Un

∑
g∈Gx

x

f (g)ϕn+1
x (ug) dµn(x).

Since µn by choice satisfy (an), and since it is easily seen that {ϕn+1
x }x∈Un satisfy

(bn) and (cn), the uniqueness statement in Neshveyev’s theorem gives that ϕn
x =

ϕn+1
x for a.e. x ∈ Un. Hence for a.e. x ∈ G(0) we can define a state on C∗(Gx

x ) by:

ϕx(d) = lim
n→∞

ϕn
x(d).

For every f ∈ Cc(G) there is a N ∈ N such that f ∈ Cc(GN), and hence:

φ( f ) = φ(PN)
∫

UN

∑
g∈Gx

x

f (g)ϕN
x (ug) dµN(x) =

∫
G(0)

∑
g∈Gx

x

f (g)ϕx(ug) dµ(x).

The properties (i)–(iii) follow from (an)–(cn), and measurability of x 7→
∑

g∈Gx
x

f (g)ϕx(ug) follows from measurability of x 7→ ∑
g∈Gx

x

f (g)ϕn
x(ug).

For the converse, assume we are given a pair (µ, {ϕx}x∈G(0)) for which (i),
(ii) and (iii) hold. As shown by Neshveyev in the proof of Theorem 1.1 in [7]
every x gives rise to a state ψx on C∗(G) such that

ψx( f ) = ∑
g∈Gx

x

f (g)ϕx(ug)

when f ∈ Cc(G). Note that x → ∑
g∈Gx

x

f (g)ϕx(ug) is µ-measurable by assumption,

and then x → ψx(a) is also for each a ∈ C∗(G). For a > 0 we can therefore define

φ(a) =
∫
G(0)

ψx(a) dµ(x).
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φ is a lower semi-continuous weight by Fatous lemma and by regularity

φ(pnapn) =
∫

Un

ψx(a) dµ(x) 6 ‖a‖µ(Un) < ∞

for all n, so it is also densely defined. Note that Cc(G) ⊆Mφ and that (3.3) holds
by construction. Since the pair (φ(pn)−1µ, {ϕx}x∈Un) represents φ(pn)−1φ in the
sense of Theorem 1.1 in [7] it follows from Theorem 1.3 in [7] that φ is a bounded
β-KMS weight on pnC∗(G)pn. Since

ψx(pnapn) =

{
ψx(a) x ∈ Un,
0 x /∈ Un,

we find that lim
n→∞

φ(pnapn) = lim
n→∞

∫
Un

ψx(a) dµ(x) = φ(a) for all a > 0 in C∗(G).

Now note that for every a in the domain of σc
−iβ/2,

φ(pna∗apn) = φ(σc
−iβ/2(apn)σ

c
−iβ/2(apn)

∗) = φ(σc
−iβ/2(a)pnσc

−iβ/2(a)∗)

since φ is a bounded β-KMS weight on pnC∗(G)pn. Since

lim
n→∞

φ(σc
−iβ/2(a)pnσc

−iβ/2(a)∗) = φ(σc
−iβ/2(a)σc

−iβ/2(a)∗)

by the lower semi-continuity of φ, we conclude that

φ(a∗a) = φ(σc
−iβ/2(a)σc

−iβ/2(a)∗),

showing that φ is indeed a β-KMS weight for σc.
If (µ, {ϕx}x∈G(0)) and (µ′, {ϕ′x}x∈G(0)) represent the same β-KMS weight it

follows from the uniqueness part of the Riesz representation theorem that µ = µ′.
By using (3.3) we find that

(3.4)
∫
G(0)

k(x) ∑
g∈Gx

x

f (g)ϕx(ug) dµ(x) =
∫
G(0)

k(x) ∑
g∈Gx

x

f (g)ϕ′x(ug) dµ(x)

when f ∈ Cc(G) and k ∈ Cc(G(0)). It follows from this that

∑
g∈Gx

x

f (g)ϕx(ug) = ∑
g∈Gx

x

f (g)ϕ′x(ug)

for µ-almost all x ∈ G(0) and all f ∈ Cc(G). Thanks to the separability of C∗(G)
we conclude that ϕx = ϕ′x for µ-almost all x.

COROLLARY 3.3. Let G be a locally compact second countable Hausdorff étale
groupoid and let c : G → R be a continuous homomorphism. Assume that the unit
space G(0) of G is totally disconnected and that the isotropy groups Gx

x , x ∈ G(0), are all
amenable.

There is a bijective correspondence between the β-KMS weights for σc on C∗r (G)
and the pairs (µ, {ϕx}x∈G(0)), where µ is a regular Borel measure on G(0) and {ϕx}x∈G(0)
is a µ-measurable field of states ϕx on C∗r (Gx

x ) such that:
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(i) µ is quasi-invariant with cocycle e−βc,
(ii) ϕx(ug) = ϕr(h)(uhgh−1) for µ-almost every x ∈ G(0) and all g ∈ Gx

x , h ∈ Gx,
and

(iii) ϕx(ug) = 0 for µ-almost every x ∈ G(0) and all g ∈ Gx
x\c−1(0).

The β-KMS weight φ corresponding to the pair (µ, {ϕx}x∈G(0)) has the properties
that Cc(G) ⊆Mφ and

(3.5) φ( f ) =
∫
G(0)

∑
g∈Gx

x

f (g)ϕx(ug) dµ(x)

when f ∈ Cc(G).
Proof. It suffices to show that the assumption on the isotropy groups im-

plies that every β-KMS weight φ on C∗(G) factorises through C∗r (G). To this
end note that it follows from Lemma 2.1 in [13] that for each n ∈ N there is a
bounded β-KMS weight φ̃n on pnC∗r (G)pn such that φ̃n(pnπ(a)pn) = φ(pnapn)
for all a ∈ C∗(G) where π : C∗(G) → C∗r (G) is the canonical surjection. Then
φ̃n(pnbpn) 6 φ̃n+1(pn+1bpn+1) for all b > 0 in C∗r (G) and we can define a lower
semi-continuous weight φ̃ on C∗r (G) such that φ̃(b) = lim

n→∞
φ̃n(pnbpn). It follows

that φ̃ ◦ π = φ.

It is an interesting problem if Corollary 3.3 remains true without the
amenability assumption on the isotropy groups. For the proof of our main re-
sult the following suffices.

COROLLARY 3.4. Let G be a locally compact second countable Hausdorff étale
groupoid and let c : G → R be a continuous homomorphism. Assume that the unit space
G(0) of G is totally disconnected. If there is a β-KMS weight for σc on C∗r (G) there is also
one which is diagonal.

Proof. Let φ be a β-KMS weight for σc on C∗r (G) and let π : C∗(G)→ C∗r (G)
be the canonical surjection. Then φ ◦ π is a β-KMS weight for σc on C∗(G) and
we can consider the corresponding regular Borel measure µ. Since µ is quasi-
invariant with cocycle e−βc it follows from Proposition 2.1 in [14] that µ defines a
diagonal β-KMS weight by the formula (2.2).

4. CONDITIONS ON A KMS WEIGHT THAT IMPLY DIAGONALITY OF THE ACTION

4.1. WHEN KMS WEIGHTS FACTOR THROUGH THE CONDITIONAL EXPECTATION

ONTO AN ABELIAN SUBALGEBRA. A weight ω is faithful when a > 0, ω(a) =
0⇒ a = 0.

PROPOSITION 4.1. Let A be a C∗-algebra and γ a continuous one-parameter
group of automorphisms on A. Let D ⊆ A be an abelian C∗-subalgebra and P : A→ D
a conditional expectation.
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Assume that ω is a faithful β-KMS weight for γ, β 6= 0, such that ω ◦ P = ω. It
follows that γt(d) = d for all t ∈ R and all d ∈ D.

Proof. Let f ∈ D, f > 0. Since ω is densely defined there is a sequence {an}
of positive elements in A such that lim

n→∞
an = f and ω(an) < ∞ for all n. Then

lim
n→∞

P(an) = f and ω(P(an)) = ω(an) < ∞. It suffices therefore to consider

f ∈ D, f > 0 such that ω( f ) < ∞ and show that γt( f ) = f for all t ∈ R.
We find that

(4.1) ω(a f ) = ω(P(a) f ) = ω( f P(a)) = ω( f a)

for all a ∈ Mω. Since f ∈ Mω and this is a subalgebra, the desired conclusion
follows from Result 6.29 in [5].

COROLLARY 4.2. Let A be a simple C∗-algebra and γ a continuous one-parameter
group of automorphisms on A. Let D ⊆ A be an abelian C∗-subalgebra and P : A→ D
a conditional expectation.

Assume that ω is a β-KMS weight for γ, β 6= 0, such that ω ◦ P = ω. It follows
that γt(d) = d for all t ∈ R and all d ∈ D.

Proof. It suffices to show that ω is faithful. For a ∈ A and k ∈ N, set:

Qk(a) =

√
k
π

∫
R

e−kt2
γt(a)dt.

Note that Qk(a) is analytic for γ and that lim
k→∞

Qk(a) = a. Standard approximation

arguments establish the following orservation: Assume that a ∈ Mω. It follows
that √

k
π

∫
R

e−k(t+is)2
γt(a)dt ∈ Mω

for all s ∈ R.
This will be used to show that ω is faithful in the following way: Assume

that b = b∗ ∈ A and that ω(b2) = 0. For a c ∈ Mω it follows from the observation
that Qk(c), γiβ(Qk(c)∗) ∈ Mω, hence by an application of the Cauchy–Schwarz
inequality

|ω(Qk(c)∗b2Qk(c))|2 = |ω(b2Qk(c)γiβ(Qk(c)∗))|2 6 0.

Lower semi-continuity now implies that ω(c∗b2c) = 0 and by using Cauchy–
Schwarz again we deduce that

(4.2) ω(SpanMωb2Mω) = {0}.
Since Mω is dense in A the closure of SpanMωb2Mω is a (closed two sided)
ideal in A. If b 6= 0 this ideal must be all of A because we assume that A
is simple. But then we reach a contradiction the following way: let a > 0.
Choose a sequence {xn} ⊆ SpanMωb2Mω such that lim

n→∞
xn =

√
a. Since
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xnx∗n ∈ SpanMωb2Mω and lim
n→∞

xnx∗n = a, it follows from (4.2) and the lower

semi-continuity of ω that ω(a) = 0. This is a contradiction because ω 6= 0. Hence
b = 0.

4.2. ONE-PARAMETER GROUPS TRIVIAL ON THE DIAGONAL. The following re-
sult has a predecessor in the von Neumann algebra setting in Theorem 2 of [3].

PROPOSITION 4.3. Let G be a locally compact Hausdorff étale groupoid and α =
(αt)t∈R a continuous one-parameter group of automorphisms on C∗r (G) such that

αt( f ) = f

for all f ∈ C0(G(0)) and all t ∈ R. Assume that the elements of G(0) with trivial isotropy
group in G are dense in G(0). There is a continuous homomorphism c : G → R such that

αt(g)(ξ) = eitc(ξ)g(ξ)

for all t ∈ R, all g ∈ Cc(G) and all ξ ∈ G.

Proof. We shall use the continuous linear embedding j : C∗r (G) → C0(G)
introduced by Renault in Proposition 4.2 in [9].

OBSERVATION 4.4. Let f ∈ Cc(G) be supported in an open subset U ⊆ G
such that r : U → G(0) is injective. Assume that f (ξ) = 0 for some ξ ∈ U. It
follows that j(αt( f ))(ξ) = 0 for all t ∈ R.

To prove this, let ε > 0. There is an open bisection W of ξ such that W ⊆ U
and | f (µ)| 6 ε for all µ ∈ W. Let ϕ ∈ Cc(G(0)) be such that 0 6 ϕ 6 1, supp ϕ ⊆
r(W) and ϕ(r(ξ)) = 1. By use of Proposition 4.2 in [9] we find that

(4.3) j(αt( f ))(ξ) = ϕ(r(ξ))j(αt( f ))(ξ) = j(ϕαt( f ))(ξ) = j(αt(ϕ f ))(ξ).

Note that supp(ϕ f ) ⊆W and that ‖ϕ f ‖∞ 6 ε. It follows that

‖j(αt(ϕ f ))‖∞ 6 ‖αt(ϕ f )‖ = ‖ϕ f ‖ = ‖ϕ f ‖∞ 6 ε,

where the last identity follows from Lemma 2.4 in [12]. In particular, |j(αt(ϕ f ))(ξ)|
6 ε, and then (4.3) shows that |j(αt( f ))(ξ)| 6 ε. This proves Observation 4.4.

In the same way we obtain the following.

OBSERVATION 4.5. Let f ∈ Cc(G) be supported in an open subset U ⊆ G
such that s : U → G(0) is injective. Assume that f (ξ) = 0 for some ξ ∈ U. It
follows that j(αt( f ))(ξ) = 0 for all t ∈ R.

OBSERVATION 4.6. Let ξ ∈ G, and let h, h′ ∈ Cc(G) be supported in (not
necessarily the same) open bisections in G. Assume that h(ξ) = h′(ξ) = 1. Then

(4.4) j(αt(h))(ξ) = j(αt(h′))(ξ)

for all t ∈ R.
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To show this, let h · h′ be the point wise product of h and h′. It follows from
Observation 4.4 that

j(αt(h · h′ − h′))(ξ) = j(αt(h · h′ − h))(ξ) = 0,

which yields (4.4): j(αt(h))(ξ) = j(αt(h · h′))(ξ) = j(αt(h′))(ξ).
It follows from Observation 4.6 that we can define a map Gt : G → C such

that
Gt(ξ) = j(αt(h))(ξ),

where h is any element of Cc(G) which is supported in an open bisection and
takes the value 1 at ξ. Note that Gt is continuous by construction.

OBSERVATION 4.7. For every f ∈ Cc(G) and every ξ ∈ G,

(4.5) j(αt( f ))(ξ) = Gt(ξ) f (ξ).

To show this, we may assume that there are open bisections U ⊆ V such
that supp f ⊆ U and U ⊆ V. Assume first that ξ /∈ U. We must show that
j(αt( f ))(ξ) = 0 in this case. By continuity and the assumption on G we may
assume that s(ξ) has trivial isotropy. If µ ∈ U and r(µ) = r(ξ), s(µ) = s(ξ), we
see that

r(µ−1ξ) = s(µ) = s(ξ) and s(µ−1ξ) = s(ξ)

which is impossible since ξ 6= µ. It follows that we can write f as a finite sum

f = ∑
i

fi

such that each fi ∈ Cc(U) is supported in an open set Wi ⊆ U such that either
s(ξ) /∈ s(Wi) or r(ξ) /∈ r(Wi). It follows that j(αt( fi))(ξ) = 0; in the first case
thanks to Observation 4.5, in the second thanks to Observation 4.4. Hence

j(αt( f ))(ξ) = ∑
i

j(αt( fi))(ξ) = 0,

as desired. Assume then that ξ ∈ U ⊆ V. Choose ε > 0 such that f (ξ) + ε 6= 0
and a function ϕ ∈ Cc(V) such that ϕ(ξ) = 1. Then

j(αt( f + εϕ))(ξ) = j
(

αt

( f + εϕ

f (ξ) + ε

))
(ξ)( f (ξ) + ε) = Gt(ξ)( f (ξ) + ε).

Letting ε→ 0 we obtain (4.5).
Note that it follows from Observation 4.7 that αt(Cc(G)) ⊆ Cc(G), and

αt( f )(ξ) = Gt(ξ) f (ξ)

for all f ∈ Cc(G) and all ξ ∈ G. Since ‖ f ‖ = ‖αt( f )‖ this implies that |Gt(ξ)| = 1.
Furthermore, if h ∈ Cc(G) is supported in a bisection and h(ξ) = 1, we find that

Gt+s(ξ) = αt(αs(h))(ξ) = αs(h)(ξ)αt

( αs(h)
αs(h)(ξ)

)
(ξ)

= αs(h)(ξ)Gt(ξ) = Gs(ξ)Gt(ξ).
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Since t 7→ Gt(ξ) is continuous, this implies that there is a unique real-valued
function c : G → R such that

(4.6) Gt(ξ) = eitc(ξ).

To show that c is a homomorphism, let γ1, γ2 ∈ G such that s(γ1) = r(γ2). Set
γ = γ1γ2. Let U be an open bisection containing γ and Ui an open bisection
containing γi, i = 1, 2, such that µ1µ2 ∈ U when (µ1, µ2) ∈ G(2) ∩ (U1 × U2).
Choose hi ∈ Cc(Ui) such that hi(γi) = 1. Then h1h2(γ) = 1 and

Gt(γ) = j(αt(h1h2))(γ) = αt(h1)αt(h2)(γ)

= αt(h1)(γ1)αt(h2)(γ2) = Gt(γ1)Gt(γ2).
(4.7)

Hence Gt is a homomorphism as asserted. Combining (4.6) and (4.7) and taking
derivatives with respect to t, it follows that c is a homomorphism, i.e.

c(γ1γ2) = c(γ1) + c(γ2)

when s(γ1) = r(γ2).
Finally, to show that c is continuous, let ξ ∈ G and ε > 0 be given. Choose

open bisections U ⊆ V such that ξ ∈ U ⊆ U ⊆ V and h ∈ Cc(V) a function such
that h = 1 on U. Then

Gt(γ) = αt(h)(γ)

for all t ∈ R and all γ ∈ U. Let K ⊆ R be a compact set. There are finitely many
points ti ∈ K, i = 1, 2, . . . , N, such that for every t ∈ K there is an i such that

‖αt(h)− αti (h)‖∞ = ‖αt(h)− αti (h)‖ 6 ε.

By continuity of αti (h) there is an open neighborhood W ⊆ U of ξ such that

|αti (h)(γ)− αti (h)(ξ)| 6 ε

for all γ ∈W and i = 1, 2, . . . , N. It follows that |Gt(γ)− Gt(ξ)| 6 3ε for all t ∈ K
and all γ ∈W. By Pontryagin duality this implies that c is continuous.

THEOREM 4.8. Let G be a locally compact Hausdorff étale groupoid such that for
at least one element x ∈ G(0) the isotropy Gx

x is trivial, i.e. Gx
x = {x}, and that G is

minimal in the sense that s(r−1(y)) is dense in G(0) for all y ∈ G(0). Let α = (αt)t∈R
be a continuous one-parameter group of automorphisms on C∗r (G) and assume that for
some β ∈ R\{0} there is a diagonal β-KMS weight for α. Then α is diagonal, i.e. there
is a continuous homomorphism c : G → R such that

(4.8) αt(g)(ξ) = eitc(ξ)g(ξ)

for all t ∈ R, all g ∈ Cc(G) and all ξ ∈ G.

Proof. Combine Corollary 4.2 and Proposition 4.3, using that in the presence
of a single unit with trivial isotropy group the minimality of G is equivalent to the
simplicity of C∗r (G) by Corollary 2.18 in [12].
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We can now put the pieces together for a Proof of Theorem 2.1. (i)⇒(iii) fol-
lows from Proposition 4.1. That (iii) is equivalent to (iv) follows from a standard
argument using that G(0) is totally disconnected. The implication (iii)⇒(v) fol-
lows from Proposition 4.3 and (v)⇒(ii) from Corollary 3.4. This gives the equiv-
alence of all five conditions since (ii)⇒(i) is trivial.

EXAMPLE 4.9. Let G = F2 be the free group on two generators. Then C∗r (F2)

is a simple C∗-algebra and C0(G(0)) = C1. Let A = A∗ ∈ C∗r (F2) and set

αt(a) = eitAae−itA.

Note that αt acts trivially on C0(G(0)) = C1. Let Ux, x ∈ F2, be the canonical
unitaries generating C∗r (F2). Assume that there is a homomorphism c : F2 →
R such that αt(Ux) = eitc(x)Ux for all t, x. By differentiation this leads to the
conclusion that AUx −Ux A = c(x)Ux and hence that U∗x AUx = A + c(x)1. The
last equation implies that the spectrum σ(A) of A satisfies σ(A) = σ(A) + c(x),
i.e. c(x) = 0. But then αt(Ux) = Ux for all t, x, i.e. αt = id for all t ∈ R. This
implies by differentiation that AX = XA for all X ∈ C∗r (F2), i.e. A is in the
center of C∗r (F2). So by choosing A /∈ R1, we have an example showing that
Proposition 4.3 does not always hold when there are no units with trivial isotropy
in G. In relation to Theorem 2.1 note that there are β-KMS weights for α for all
β ∈ R. Indeed, when ω is the tracial state on C∗r (F2), the functional

C∗r (F2) 3 a 7→ ω(e−βAa)

is a bounded β-KMS weight. Since condition (iii) in Theorem 2.1 holds while (v)
does not, it follows that it is necessary, in Theorem 2.1, to assume the existence of
a unit with trivial isotropy group.

Similarly, by considering a disjoint union F2 tH, whereH is an appropriate
groupoid, it is easy to obtain examples showing that the implication (iv)⇒(i) in
Theorem 2.1 fails in general if G is not minimal.

5. APPLICATIONS TO GRAPH C∗-ALGEBRAS

In this section we apply the results obtained above to the study of KMS
weights on graph C∗-algebras. For this we first show how a graph C∗-algebra can
be realized as the groupoid C∗-algebra of a locally defined local homeomorphism
as it was introduced by Renault in [10]. Recall that graph C∗-algebras were origi-
nally introduced for row-finite graphs in [4] as the C∗-algebra of the left-shift on
the space of infinite paths in the graph. We show that in general, when the graph
may have infinite emitters, its C∗-algebra is still the groupoid C∗-algebra of a lo-
cal homeomorphism which is generally only defined on a dense open subset of a
locally compact Hausdorff space.
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5.1. THE RENAULT GROUPOID OF A LOCAL HOMEOMORPHISM. Let X be a lo-
cally compact second countable Hausdorff space. Let U ⊆ X be an open subset
and ϕ : U → X a local homeomorphism, i.e. for every u ∈ U there is an open sub-
set V ⊆ U such that u ∈ V, ϕ(V) is open and ϕ : V → ϕ(V) is a homeomorphism.
Set ϕ0 = idX (with domain D(ϕ0) = X) and for n > 1, set

D(ϕn) = U ∩ ϕ−1(U) ∩ ϕ−2(U) ∩ · · · ∩ ϕ−n+1(U)

and let ϕn be the map

ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ : D(ϕn)→ X.

Set

Gϕ = {(x, n−m, y) ∈ X×Z× X : x ∈ D(ϕn), y ∈ D(ϕm), ϕn(x) = ϕm(y)}

which is a groupoid with product (x, k, y)(y, l, z) = (x, k + l, z) and inversion
(x, k, y)−1 = (y,−k, x). Sets of the form

{(x, n−m, y) : ϕn(x) = ϕm(y), x ∈W, y ∈ V}

for some open subsets W ⊆ D(ϕn), V ⊆ D(ϕm), constitute a basis for a topol-
ogy in Gϕ which turns it into a locally compact second countable Hausdorff étale
groupoid.

Let F : X → R be a function which is continuous on U. We can then define
cF : Gϕ → R such that

cF(x, n−m, y) =
n

∑
i=0

F(ϕi(x))−
m

∑
i=0

F(ϕi(y)).

Note that cF is a continuous homomorphism, and if F′ : X → R is a function
which agrees with F on U, then cF′ = cF.

PROPOSITION 5.1. Let c : Gϕ → R be a continuous homomorphism. There is a
map F : X → R which is continuous on U such that c = cF.

Proof. Define F : X → R such that

F(x) =

{
c(x, 1, ϕ(x)) x ∈ U,
0 x /∈ U.

It is straightforward to verify that F is continuous on U and that c = cF.

It follows that the continuous homomorphisms Gϕ → R are in bijective
correspondence with the continuous maps U → R.

A point x ∈ X is aperiodic under ϕ when

x ∈ D(ϕn) ∩ D(ϕm), ϕn(x) = ϕm(x) ⇒ n = m.

Under the identification of X with the unit space of Gϕ the aperiodic points are the
elements with trivial isotropy group. We can therefore combine Proposition 5.1
with Proposition 4.3 to obtain the following.
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PROPOSITION 5.2. Let X be a locally compact second countable Hausdorff space,
U ⊆ X an open subset and ϕ : U → X a local homeomorphism. Assume that α =
(αt)t∈R is a continuous one-parameter group of automorphisms on C∗r (Gϕ) such that

αt( f ) = f

for all f ∈ C0(X) ⊆ C∗r (Gϕ) and all t ∈ R. Assume also that the aperiodic points of ϕ
are dense in X.

There is a continuous map F : U → R such that

αt(g)(ξ) = eitcF(ξ)g(ξ)

for all t ∈ R, all g ∈ Cc(Gϕ) and all ξ ∈ Gϕ.

For n, m ∈ N∪ {0}, set

ϕ−m(ϕn(x)) =

{
∅ when x /∈ D(ϕn),
{y ∈ D(ϕm) : ϕm(y) = ϕn(x)} when x ∈ D(ϕn).

We say that ϕ is minimal when

(5.1)
⋃

n,m∈N∪{0}
ϕ−m(ϕn(x))

is dense in X for all x ∈ X. Note that (5.1) is the orbit of x under the action of Gϕ

on its unit space. Thus ϕ is minimal if and only if Gϕ is.

PROPOSITION 5.3. Let X be a locally compact second countable Hausdorff space,
U ⊆ X an open subset and ϕ : U → X a local homeomorphism. Assume that ϕ
is minimal and that there is at least one aperiodic point for ϕ. Let α = (αt)t∈R be a
continuous one-parameter group of automorphisms on C∗r (Gϕ).

If, for some β 6= 0, there is a diagonal β-KMS weight for α, then there is a contin-
uous map F : U → R such that

(5.2) αt(g)(ξ) = eitcF(ξ)g(ξ)

for all t ∈ R, all g ∈ Cc(Gϕ) and all ξ ∈ Gϕ.

Proof. In view of Corollary 4.2 and Proposition 5.2 it suffices to observe that
C∗r (Gϕ) is simple under the present assumptions, cf. Proposition 2.5 in [10].

5.2. A LOCAL HOMEOMORPHISM FROM AN INFINITE GRAPH. Let G be a directed
graph with vertexes V and edges E. We assume that G is countable in the sense
that V and E are both countable sets. We let r and s denote the maps r : E → V
and s : E → V which associate to an edge e ∈ E its target vertex r(e) and source
vertex s(e), respectively. A vertex v is an infinite emitter when s−1(v) contains
infinitely many edges and a sink when s−1(v) is empty. The union of sinks and
infinite emitters constitute a set which will be denoted by V∞. The graph C∗-
algebra C∗(G) is by definition the universal C∗-algebra generated by a collection
Se, e ∈ E, of partial isometries and a collection Pv, v ∈ V, of mutually orthogonal
projections subject to the conditions that:
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(1) S∗e Se = Pr(e), ∀e ∈ E,
(2) ∑

e∈F
SeS∗e 6 Pv for every finite subset F ⊆ s−1(v) and all v ∈ V, and

(3) Pv = ∑
e∈s−1(v)

SeS∗e , ∀v ∈ V\V∞.

Let Pf (G) and P(G) denote the set of finite and infinite paths in G, respectively.
The range and source maps, r and s, extend in the natural way to Pf (G); the
source map also to P(G). Set ΩG = P(G) ∪Q(G), where

Q(G) = {p ∈ Pf (G) : r(p) ∈ V∞}

is the set of finite paths that terminate at a vertex in V∞. In particular, V∞ ⊆ Q(G)
because vertexes are considered to be finite paths of length 0. For any p ∈ Pf (G),
let |p| denote the length of p. When |p| > 1, set

Z(p) = {q ∈ ΩG : |q| > |p|, qi = pi, i = 1, 2, . . . , |p|}, and

Z(v) = {q ∈ ΩG : s(q) = v},

when v ∈ V. When ν ∈ Pf (G) and F is a finite subset of Pf (G), set

(5.3) ZF(ν) = Z(ν)\
(⋃

µ∈F
Z(µ)

)
.

The sets ZF(ν) form a basis of compact and open subsets for a locally compact
Hausdorff topology on ΩG. When µ ∈ Pf (G) and x ∈ ΩG, we can define the
concatenation µx ∈ ΩG in the obvious way when r(µ) = s(x). The groupoid GG
consists of the elements in ΩG ×Z×ΩG of the form

(µx, |µ| − |µ′|, µ′x),

for some x ∈ ΩG and some µ, µ′ ∈ Pf (G). The product in GG is defined by

(µx, |µ| − |µ′|, µ′x)(νy, |ν| − |ν′|, ν′y) = (µx, |µ|+ |ν| − |µ′| − |ν′|, ν′y),

when µ′x = νy, and the involution by (µx, |µ|− |µ′|, µ′x)−1 = (µ′x, |µ′|− |µ|, µx).
To describe the topology on GG, let ZF(µ) and ZF′(µ

′) be two sets of the form (5.3)
with r(µ) = r(µ′). The topology we shall consider has as a basis the sets of the
form

(5.4) {(µx, |µ| − |µ′|, µ′x) : µx ∈ ZF(µ), µ′x ∈ ZF′(µ
′)}.

With this topology GG becomes an étale locally compact second countable Haus-
dorff groupoid and we can consider the reduced C∗-algebra C∗r (GG) as in [9]. As
shown by Paterson in [8] there is an isomorphism C∗(G)→ C∗r (GG) which sends
Se to 1e, where 1e is the characteristic function of the compact and open set

{(ex, 1, r(e)x) : x ∈ ΩG} ⊆ GG,

and Pv to 1v, where 1v is the characteristic function of the compact and open set

{(vx, 0, vx) : x ∈ ΩG} ⊆ GG.
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In the following we use the identification C∗(G) = C∗r (GG) and identify ΩG with
the unit space of GG via the embedding ΩG 3 x 7→ (x, 0, x).

Note that ΩG\V∞ is an open subset of ΩG and that we can define a local
homeomorphism

σ : ΩG\V∞ → ΩG

such that σ is the usual left shift on P(G), defined such that σ(x)i = xi+1, while
σ(e1e2 · · · en) is defined as follows when e1e2 · · · en ∈ Q(G):

σ(e1e2 · · · en) =

{
e2e3 · · · en when n > 2,
r(e1) when n = 1.

It is straightforward to check that there is an identification

GG = Gσ,

as topological groupoids. In particular, it follows that any continuous function
F : ΩG\V∞ → R defines a continuous homomorphism cF : GG → R such that

cF(µx, |µ| − |µ′|, µ′x) =
|µ|

∑
n=0

F(σn(µx))−
|µ′ |

∑
n=0

F(σn(µ′x)).

To simplify notation the one-parameter group σcF defined from cF will be denoted
by σF. It follows from Proposition 5.1 that every continuous homomorphism
GG → R arises from a continuous function F : ΩG\V∞ → R as above. We can
therefore formulate Corollary 3.3 in the following way for graph C∗-algebras.

THEOREM 5.4. Let F : ΩG\V∞ → R be a continuous function. There is a
bijective correspondence between the β-KMS weights for σF on C∗(G) and the pairs
(µ, {ϕx}x∈ΩG ), where µ is a regular Borel measure on ΩG and {ϕx}x∈ΩG is a µ-
measurable field of states ϕx on C∗r ((GG)

x
x) such that:

(i) µ is eβF-conformal for σ,
(ii) ϕx(ug) = ϕr(h)(uhgh−1) for µ-almost every x ∈ ΩG and all g ∈ (GG)

x
x, h ∈

(GG)x, and
(iii) ϕx(ug) = 0 for µ-almost every x ∈ ΩG and all g ∈ (GG)

x
x\c−1

F (0).
The β-KMS weight φ corresponding to the pair (µ, {ϕx}x∈ΩG ) has the properties

that Cc(GG) ⊆Mφ and

(5.5) φ( f ) =
∫

ΩG

∑
g∈(GG)

x
x

f (g)ϕx(ug) dµ(x)

when f ∈ Cc(GG).

Similarly, for graph C∗-algebras our main result takes the following form.

THEOREM 5.5. Let G be a countable directed graph such that C∗(G) is simple.
Let α = (αt)t∈R be a continuous one-parameter group of automorphisms on C∗(G) and
assume that for some β0 6= 0 there is a β0-KMS weight for α.

The following are equivalent:
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(i) There is a β1 6= 0 and a diagonal β1-KMS weight for α.
(ii) Whenever β 6= 0 and there is a β-KMS weight for α, there is also a diagonal

β-KMS weight for α.
(iii) αt( f ) = f for all t ∈ R and all f ∈ C0(ΩG).
(iv) There is a continuous function F : ΩG\V∞ → R such that α = σF.

It follows from Theorem 5.4 (and Proposition 5.1) that all KMS weights for
a diagonal action on the C∗-algebra of a graph without loops are diagonal. This is
not true in general; not even for finite strongly connected graphs as shown in [15].
However, we can now show that it holds for strongly connected graphs when the
function F has bounded local variation in the a sense we now make precise.

Let v be a vertex in G and set

Varn,v(F) = sup
x,y

∣∣∣ n−1

∑
j=0

F(σj(x))−
n−1

∑
j=0

F(σj(y))
∣∣∣

where we take the supremum over all pairs x, y ∈ P(G) with the property that
xi = yi, i = 1, 2, . . . , n, and s(x1) = s(y1) = v. The following condition (5.6)
should be compared with Bowen’s condition used by Walters, cf. [16].

PROPOSITION 5.6. Let G be a countable directed graph such that C∗(G) is simple
and let F : ΩG\V∞ → R be a continuous function such that for some vertex v,

(5.6) sup
n

Varn,v(F) < ∞.

Then every KMS weight for σF is diagonal.

Proof. The assumption that C∗(G) is simple means that G is cofinal in the
sense used (e.g.) in [14] and that every minimal loop in G has an exit, cf. [11]. It is
easily seen that the set of vertexes v for which (5.6) holds is both hereditary and
saturated. Under the present assumptions it will therefore hold for all v. Consider
a β-KMS weight φ and the pair (µ, {ϕx}x∈ΩG ) associated to it by Theorem 5.4. It
suffices to show that the elements x ∈ ΩG for which the isotropy group (GG)

x
x is

non-trivial is a null set with respect to µ. The isotropy group of a point x ∈ ΩG
is non-trivial if and only if x is an infinite pre-periodic path in G, and there are at
most countably many such points. It suffices therefore to show that µ({x}) = 0
for any infinite pre-periodic path x. There is an m ∈ N such that x0 = σm(x) is
periodic. It follows from (3.2) that

µ({x}) = e−β ∑m−1
j=0 F(σj(x))

µ({x0}),
so it suffices to show that µ({x0}) = 0. Since x0 is periodic there is a finite loop
δ in G such that x0 = δ∞, and since G is cofinal and every loop in G has an exit
there is also a finite loop δ′ in G such that δ′ * x0 and s(δ′) = s(δ). By prolonging
δ and δ′ if necessary we may assume that the length of δ and δ′ are the same, say
p. For each k ∈ N set

yk = δkδ′x0.
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Since x0 is p-periodic it follows from (3.2) that

µ({x0}) = e−β ∑
kp−1
j=0 F(σj(x0))µ({x0}),

for all k ∈ N, and the desired conclusion follows if −β
kp−1

∑
j=0

F(σj(x0)) is not zero

for some k. Consider therefore now the case where −β
kp−1

∑
j=0

F(σj(x0)) = 0 for all

k ∈ N. Since (5.6) holds we find then that

(5.7)
∣∣∣β kp−1

∑
j=0

F(σj(yk))
∣∣∣ = ∣∣∣β kp−1

∑
j=0

F(σj(yk))− β
kp−1

∑
j=0

F(σj(x0))
∣∣∣ 6 |β|K

for all k, where K = sup
n

Varn,v(F) and v = s(δ) is the source of δ. Now apply

(3.2) again to find that

µ({yk}) = e−β ∑
(k+1)p−1
j=0 F(σj(yk))µ({x0}).

Inserting (5.7) this leads to the conclusion that

µ({yk}) > e−|β|Ke−β ∑
p−1
j=0 F(σj(z))

µ({x0}),

where z = δ′x0 = σkp(yk). Since
∞

∑
k=1

µ({yk}) 6 µ(Z(v)) < ∞,

we conclude that µ({x0}) = 0, as desired.

It follows from Proposition 5.6 that a generalized gauge action on a graph
C∗-algebra, considered for example in [14], where F only depends on the first
edge only has gauge-invariant KMS weights, at least as long as the algebra is
simple.

REMARK 5.7. It should be emphasized that the conclusion in Proposition 5.6
does not hold without some condition on F. To see this observe that the example
presented in [15] shows that already for the canonical finite graph G for which
C∗(G) is a copy of the Cuntz algebra O2, namely the graph consisting of one ver-
tex and two arrows, there are continuous non-negative functions F : ΩG → R
such that σF admits non-diagonal KMS states. In the example from [15] there
is at least a single extremal KMS state which is diagonal, namely the extremal
KMS-state corresponding to the lowest inverse temperature β0. Here we want
to indicate how to modify the example in [15] to get an example where no ex-
tremal KMS state is diagonal. The basis for this is a sequence {bn}∞

n=1 of positive
numbers with the following properties:

(a) bn > bn+1 ∀n,



470 JOHANNES CHRISTENSEN AND KLAUS THOMSEN

(b) lim
n→∞

bn+1
bn

= 1,

(c)
∞
∑

n=1
bn < 1, and

(d)
∞
∑

n=1
bs

n = ∞ for all s < 1.

We leave the reader to verify the existence of such a sequence. Set a1 = − log b1
and ak = log bk−1 − log bk, k > 2, and identify the infinite path space ΩG with
{0, 1}N by labelling the two arrows in G by 0 and 1. Define then T : {0, 1}N → R
such that T((xi)

∞
i=1) = ak where k = min{i : xi = 0} when (xi)

∞
i=1 6= 1∞, and

set T(1∞) = 0. (As in [15] 1∞ is the infinite string of 1’s.) This is a continuous
non-negative function. By using Theorem 2.2 in [15] and arguing exactly as in
Section 3 of [15], but with the sequence {n−1} replaced by {an}, it follows that
there are β-KMS states for σT if and only if β > 1, and for each β > 1 the extremal
KMS states are parametrised by the circle, and none are diagonal. As guaranteed
by Theorem 5.5 there are for each β > 1 also one which is diagonal. As explained
in [15] it arises by integrating the extremal ones with respect to Lebesgue measure
on the circle.

Acknowledgements. We thank the referee for remarks which among others led to a
substantial shortening of the proof of Proposition 4.1.

REFERENCES

[1] O. BRATTELI, D.W. ROBINSON, Operator Algebras and Quantum Statistical Mechan-
ics. I, II, Texts Monogr. Phys., Springer-Verlag, New York-Heidelberg-Berlin 1979 and
1981.

[2] F. COMBES, Poids associé à une algèbre hilbertienne à gauche, Compos. Math. 23(1971),
49–77.

[3] J. FELDMAN, C.C. MOORE, Ergodic equivalence relations, cohomology, and von
Neumann algebras. II, Trans. Amer. Math. Soc. 234(1977), 325–359.

[4] A. KUMJIAN, D. PASK, I. RAEBURN, J. RENAULT, Graphs, groupoids, and Cuntz–
Krieger algebras, J. Funct. Anal. 144(1997), 505–541.

[5] J. KUSTERMANS, KMS-weights on C∗-algebras, arXiv:funct-an/9704008.

[6] J. KUSTERMANS, S. VAES, Locally compact quantum groups, Ann. Sci. École Norm.
Sup. (4) 33(2000), 837–934.

[7] S. NESHVEYEV, KMS states on the C∗-algebras of non-principal groupoids, J. Operator
Theory 70(2013), 513–530.

[8] A.L.T. PATERSON, Graph inverse semigroups, groupoids and their C∗-algebras, J.
Operator Theory 48(2002), 645–662.

[9] J. RENAULT, A Groupoid Approach to C∗-Algebras, Lecture Notes in Math., vol. 793,
Springer-Verlag, Berlin-Heidelberg-New York 1980.



DIAGONALITY OF ACTIONS AND KMS WEIGHTS 471

[10] J. RENAULT, Cuntz-like algebras, in Operator Theoretical Methods (Timisoara, 1998),
Theta Foundation, Bucharest 2000, pp. 371–286.

[11] W. SZYMANSKI, Simplicity of Cuntz–Krieger algebras of infinite matrices, Pacific J.
Math. 122(2001), 249–256.

[12] K. THOMSEN, Semi-étale groupoids and applications, Ann. Inst. Fourier 60(2010), 759–
800.

[13] K. THOMSEN, KMS-states and conformal measures, Comm. Math. Phys. 316(2012),
615–640.

[14] K. THOMSEN, KMS weights on groupoid and graph C∗-algebras, J. Funct. Anal.
266(2014), 2959–2988.

[15] K. THOMSEN, Phase transition in O2, arXiv:1510.07513[math.OA]

[16] P. WALTERS, Convergence of the Ruelle operator for a function satisfying Bowen’s
condition, Trans. Amer. Math. Soc. 353(2001), 327–347.

JOHANNES CHRISTENSEN, DEPARTMENT OF MATHEMATICS, AARHUS UNI-
VERSITY, NY MUNKEGADE 118, 8000 AARHUS C, DENMARK

E-mail address: johannes@math.au.dk

KLAUS THOMSEN, DEPARTMENT OF MATHEMATICS, AARHUS UNIVERSITY, NY

MUNKEGADE 118, 8000 AARHUS C, DENMARK

E-mail address: matkt@math.au.dk

Received December 15, 2015; revised June 3, 2016.


	1. INTRODUCTION
	2. NOTATION AND MAIN RESULT
	3. NESHVEYEV'S THEOREM FOR KMS WEIGHTS
	4. CONDITIONS ON A KMS WEIGHT THAT IMPLY DIAGONALITY OF THE ACTION
	4.1. When KMS weights factor through the conditional expectation onto an abelian subalgebra
	4.2. One-parameter groups trivial on the diagonal

	5. APPLICATIONS TO GRAPH C*-ALGEBRAS
	5.1. The Renault groupoid of a local homeomorphism
	5.2. A local homeomorphism from an infinite graph

	REFERENCES

