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ABSTRACT. We provide necessary and sufficient conditions on the existence
of common hypercyclic vectors for multiples of the backward shift operator
along sparse powers. Our main result strongly generalizes corresponding re-
sults which concern the full orbit of the backward shift. Some of our results
are valid in a more general context, in the sense that they apply for a wide
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1. INTRODUCTION

We consider the space `2 of square summable sequences over the field of
complex numbers C endowed with the topology that is induced by the `2-norm
‖ · ‖2 : `2 → R+, where

‖x‖2 :=
( +∞

∑
j=1
|xj|2

)1/2
for every x = (x1, x2, . . . , xn, . . .) ∈ `2.

We write ‖ · ‖ := ‖ · ‖2 for simplicity. Let B be the unweighted backward shift
operator on `2, that is

B((x1, x2, x3, . . .)) = (x2, x3, . . .), for (x1, x2, . . .) ∈ `2.

Let λ ∈ C. We define the iterates of the operator λB as follows: (λB)1 := λB
and (λB)n+1 = (λB)n ◦ (λB), for n = 1, 2, . . ., where we denote (λB)n ◦ (λB) the
usual composition of the operators (λB)n and λB. Let λ ∈ C, and consider the
set of hypercyclic vectors for λB, that is

HC(λB) := {x = (x1, x2, . . .) ∈ `2 : {(λB)n(x), n = 1, 2, . . .} = `2}.
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A comprehensive treatment on hypercyclicity can be found in the books [5], [11].
For the reader’s convenience we include the relevant definitions. A sequence
of continuous operators (Tn) acting on a Frechet space X is called hypercyclic
provided there exists a vector x ∈ X so that the set {Tn(x) : n = 1, 2, . . .} is
dense in X. Such a vector is called hypercyclic for (Tn) and the set of hypercyclic
vectors for (Tn) is denoted by HC(Tn). Let T : X → X be an operator. We define
the iterates of T as follows:

T1 := T and Tn+1 := Tn ◦ T for n = 1, 2, . . .

where we denote Tn ◦ T the usual composition of the operators Tn and T.
When Tn comes from the iterates of a single operator we say that T is hy-

percyclic andHC(T) denotes the set of hypercyclic vectors for T, i.e.

HC(T) = {x ∈ X : {Tn(x) : n = 1, 2, . . .} is dense in X}.

It is well known that for every fixed λ ∈ C with |λ| > 1 the set HC(λB) is a
dense, Gδ subset of (`2, ‖ · ‖) and as the reader may guess Baire’s theorem should
be involved in the arguments. The following question arises naturally. If we fix
an uncountable subset J ⊂ {z ∈ C : |z| > 1}, is it true that

⋂
λ∈J
HC(λB) 6= ∅ ? In

this direction, Abakumov and Gordon [1] proved that:

⋂
|λ|>1

HC(λB) 6= ∅,

the best possible result one can expect concerning the existence of common hy-
percyclic vectors for multiples of the backward shift. Later on, Costakis and Sam-
barino [9] gave a different proof of this result, which, roughly speaking, is based
on the so called common hypercyclicity criterion. In this criterion, Baire’s cate-
gory theorem appears. Actually, Costakis and Sambarino showed that

⋂
|λ|>1
HC(λB)

is a Gδ and dense subset of (`2, ‖ · ‖); hence non-empty. What is interesting here
is the uncountable range of λ’s, which makes things harder if one wishes to apply
Baire’s theorem.

One can refine the above problem as follows. Let (kn) be a fixed strictly
increasing subsequence of natural numbers. It is known, and very easy to prove,
that the sequence ((λB)kn) is also hypercyclic, that is, there exists x ∈ `2 such
that the set {(λB)kn(x) : n = 1, 2, . . .} is dense in `2. Such a vector is called
hypercyclic for ((λB)kn) and the set of these vectors is denoted by HC((λB)kn).
From the above it should be also clear, or at least expected, thatHC((λB)kn) is Gδ

and dense subset of (`2, ‖ · ‖).
Now we are ready to ask the following.
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QUESTION 1.1. Fix a strictly increasing sequence (kn) of natural numbers.
For which uncountable sets J ⊂ {λ ∈ C : |λ| > 1} ,⋂

λ∈J
HC((λB)kn) 6= ∅ ?

It turns out that the answer to this question depends heavily on the se-
quence (kn). In particular, what matters is how sparse the sequence (kn) has
been chosen. Our main result is the following.

THEOREM 1.2. Let (kn) be a strictly increasing sequence of positive integers.

(i) If
+∞
∑

n=1
(1/kn) < +∞ then

⋂
λ∈I
HC((λB)kn) = ∅ for every non-degenerate inter-

val I in (1,+∞).

(ii) If
+∞
∑

n=1
(1/kn) = +∞ then the set

⋂
λ∈(1,+∞)

HC((λB)kn) is residual in `2, i.e. it

contains a Gδ and dense set in `2; hence
⋂

λ∈(1,+∞)
HC((λB)kn) 6= ∅.

(iii) If
+∞
∑

n=1
(1/kn)=+∞ there exists a Gδ and dense subset P in {λ∈C : |λ|>1} with

full 2-dimensional Lebesgue measure in {λ∈C : |λ|> 1} such that
⋂

λ∈P
HC((λB)kn) is

residual in `2. In particular,
⋂

λ∈P
HC((λB)kn) 6= ∅.

Unfortunately we are unable to show whether P in item (iii) of Theorem 1.2
can be replaced by {λ ∈ C : |λ| > 1}. So, this remains an open problem. On the
other hand, both items (i) and (iii) hold in a more general setting (there is noth-
ing special if one choses to work with the backward shift) and this is evident if
one follows the relevant proofs, see Sections 2 and 4. For instance, the interested
readers will have no difficulties in formulating general statements for items (i)
and (iii) that involve operators T so that for a given sequence of positive integers
(kn), the sequence((λT)kn) is hypercyclic for every λ lying in some interval or
annulus, possibly with infinite length or infinite area. We mention that a kind
of similar line of research is pursued in [2], [10], [18], [19], [20], where questions
similar to the above one are studied for translation type operators acting on the
space of entire functions. Results on the existence of common hypercyclic vectors
for uncountable families of operators and, in particular, of backward shift opera-
tors can be found in [1], [4], [6], [7], [8], [9], [14], [15], [17]. Our paper is organized
as follows. Each one of the following Sections 2, 3, 4, is devoted to the proof of
items (i), (ii), (iii) of Theorem 1.2, respectively.

The proof of item (i) relies on an estimate which concerns the size (in terms
of Lebesgue measure) of the set{z ∈ C : |zn · w − 1| < ε} ∩ [m, M], for given
w ∈ C, ε > 0, 1 < m < M, n positive integer. This approach is implicit in [4],
[5], [17] and refines an idea of Borichev. The common hypercyclicity criterion
due to Costakis and Sambarino cannot be applied in order to conclude item (ii).
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What we do, is to refine in a sense this criterion in the particular case of backward
shift. It seems plausible that our method will possibly work for other operators
as well. We mention that there are quite a few, relatively new and powerful,
criteria establishing the existence of common hypercyclic vectors for uncountable
families of operators, see [4], [5], [17]. However, it is not clear to us whether
these criteria can be used in our case. Finally, the proof of item (iii) relies on the
following three ingredients: (1) item (ii), (2) a metric result of Weyl which says
that, if (kn) is a given sequence of distinct integers then the sequence (knx) is
uniformly distributed mod 1, see Theorem 4.1, Chapter 1, page 32 in [13], and (3)
Fubini’s theorem, see page 149 in [12]. Actually, to prove item (iii) we elaborate
on the proof of Proposition 5.2 from [3].

Recently F. Bayart gave a new light in the subject of common hypercyclic
vectors for multiples of an operator in this magnificent article [2].

2. A NEGATIVE RESULT

Fix a subsequence (kn) of natural numbers such that
+∞
∑

n=1
(1/kn) < +∞. Our

goal, in this section, is to show that
⋂

λ∈J
HC((λB)kn) = ∅, where J is a non-

degenerate closed interval of the set of positive numbers.
We proceed with the following.

LEMMA 2.1. Let z0 ∈ C, N0 ∈ N, N0 > 1, ε0 ∈ (0, 1), 1 < µ0 < M0 < +∞ be
fixed. We consider the open in [µ0, M0] set

G := G(µ0, M0, z0, N0, ε0) := {λ ∈ [µ0, M0] : |λN0 z0 − 1| < ε0}.

We denote m1 the 1-dimension Lebesgue measure on the real line. We have the following
estimation:

m1(G) 6 M0 ·
(

N0

√
1 + ε0

1− ε0
− 1
)

.

Proof. Suppose that G 6= ∅, (the other case is trivial). We denote δ(G) the
diameter of G. Because G is a bounded and open subset of [µ0, M0] we get G ⊆
[inf G, sup G] and then

(2.1) m1(G) 6 m1([inf G, sup G]) = sup G− inf G = δ(G).

In order to prove the desired inequality it suffices to prove

δ(G) 6 M0

(
N0

√
1 + ε0

1− ε0
− 1
)

by (2.1). Observe that the set G has two different elements s, t. Suppose s < t. Of
course s > 0. We write z0 = x0 + iy0, where x0, y0 ∈ IR, x0 = Re(z0). Because
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s, t ∈ G we get

|sN0 z0 − 1| < ε0,(2.2)

|tN0 z0 − 1| < ε0.(2.3)

Considering only the real parts we get by (2.2) and (2.3)

1− ε0 < sN0 x0 < 1 + ε0 and(2.4)

1− ε0 < tN0 x0 < 1 + ε0.(2.5)

Since s, t > 0, this forces x0 > 0, and it follows immediately by (2.4) and (2.5)
that (t/s)N0 < (1 + ε0)/(1− ε0), which gives the required bound (2.1) on the
diameter, that completes the proof.

THEOREM 2.2. Let (kn) be a subsequence of natural numbers such that
+∞
∑

n=1
(1/kn)

< +∞. Then ⋂
λ∈I
HC((λB)kn) = ∅,

where I is a nondegenerate interval in the set of positive numbers.

Proof. Let some ε ∈ (0, 1), say ε = 1/2. We suppose that I = [µ0, M0], where
µ0, M0 to be two real numbers such that 1 < µ0 < M0. Let also some absolute
constant a > 1, such that

(2.6)
1 + ε

1− ε
< ea.

Of course we have lim
n→+∞

(1 + a/n)n = ea. So by (2.1) there exists some N0 ∈ N,

such that

(2.7)
(

1 +
a
n

)n
>

1 + ε

1− ε
for every n ∈ N, n > N0.

To arrive at a contradiction, suppose that
⋂

λ∈[µ0,M0]
HC((λB)kn) 6= ∅. We fix some

x0 = (x1, x0, . . .) ∈ ⋂
λ∈[µ0,M0]

HC((λB)kn), and let e1 := (1, 0, 0, . . .) ∈ `2, ε1 ∈ (0, ε)

and N1 > N0.
Let arbitrary λ ∈ [µ0, M0]. There exists a subsequence (µn) of (kn) such that

(λB)µn(x0)→ e1. There exists some n1 ∈ N, n1 > N1 such that

(2.8) ‖(λB)µn1 (x0)− e1‖ < ε1.

By (2.8) we get

(2.9) |λµn1 xµn1+1 − 1| < ε1.

Let µn1 = kn2 for some n2 ∈ N. Of course n2 > n1.
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Hence, (2.9) implies that for every λ ∈ [µ0, M0] there exists some natural
number n > N1 such that:

(2.10) |λkn xkn+1 − 1| < ε1.

Setting

L := {λ ∈ [µ0, M0] | ∃ n > N1 : |λkn xkn+1 − 1| < ε1},
we get L = [µ0, M0], by (2.10).

Consider the set

N1 := {v ∈ N | v > N1 and ∃ λ ∈ [µ0, M0] : |λkv xkv+1 − 1| < ε1}.

Then N1 : 6= ∅ by (2.10).
Let v ∈ N1 and define the set

Gv := {λ ∈ [µ0, M0] : |λkv xkv+1 − 1| < ε1}.

It is obvious that Gv 6= ∅ for every v ∈ N1. The set Gv is open in [µ0, M0] for
every v ∈ N1 and it is obvious that

(2.11) [µ0, M0] =
⋃

v∈N1

Gv.

By the properties of Lebesgue measure, Lemma 2.1 and (2.11) we have

M0−µ0=m1([µ0, M0])=m1

( ⋃
v∈N1

Gv

)
6 ∑

v∈N1

m1(Gv)6 ∑
v∈N1

M0

(
kv

√
1 + ε1

1−ε1
−1
)

6 M0 ·
+∞

∑
v=N1

(
kv

√
1 + ε1

1− ε1
− 1
)

.(2.12)

Observe that

(2.13)
1 + ε1

1− ε1
<

1 + ε

1− ε
, since ε1 ∈ (0, ε).

By (2.7) and (2.13) we get

(2.14)
kn

√
1 + ε1

1− ε1
− 1 <

a
kn

for every n > N1.

By (2.12) and (2.14) we take

(2.15) M0 − µ0 6 M0 ·
+∞

∑
n=N1

a
kn

.

The facts that (2.15) holds for every m > N1 instead of N1 and
+∞
∑

n=1
(1/kn) <

+∞ gives that M0 −m0 6 0 that is false of course.
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3. THE POSITIVE CASE IN THE HALF LINE (1,+∞)

Throughout this section we fix a strictly increasing subsequence (kn) of nat-

ural numbers such that
+∞
∑

n=1
(1/kn) = +∞. We shall prove the following.

THEOREM 3.1. The set
⋂

λ∈(1,+∞)
HC((λB)kn) is a residual subset of (`2, ‖ · ‖).

The proof of this theorem will be completed at the end of Section 4. Firstly,
we need the two following lemmas.

LEMMA 3.2. Let a0, b0 be two positive real numbers such that 1 < a0 < b0 <

+∞. Let (kn) be a subsequence of natural numbers such that
+∞
∑

n=1
(1/kn) = +∞. Then

for every positive number ε > 0 there exist two natural numbers n0 and i0 and a finite
number of terms kn0 , kn0+1, . . . , kn0+i0 of (kn) and positive numbers β1, β2, . . . , βi0+1
such that: for every λ ∈ [a0, b0], there exists some j ∈ {0, 1, . . . , i0} such that

|λkn0+j β j+1 − 1| < ε.

Proof. We fix some positive number

ε0 ∈ (0, min{1, (b0/a0)
2/3 − 1}).

After we fix some natural number n0 such that:

(3.1) kn0 >
log(1 + ε0)

log(b0/a0)
.

Of course
+∞
∑

j=0
(1/kn0+j) = +∞. So by the fact that the sequence (kn), n = 1, 2, . . . is

strictly increasing and the choice of the number ε0 there exists the unique natural
number i0 ∈ {2, 3, . . .} such that

(3.2) (1 + ε0)
∑

i0
j=0(1/kn0+j) 6

b0

a0
and (1 + ε0)

∑
i0+1
j=0 (1/kn0+j) >

b0

a0
.

We set β1 := 1/a
kn0
0 . Then for every λ ∈ [a0, b0] such that λ < a0 ·

kn0√1 + ε0, we
get |λkn0 · β1 − 1| < ε0.

After we set a1 := a0 ·
kn0√1 + ε0 and β2 := 1/a

kn0+1
1 .

Then, for every λ ∈ [a1, b0] with λ < a1 ·
kn0+1√

1 + ε0 we have |λkn0+1 β2 −
1| < ε0.

We continue inductively.

We suppose that we have defined the number aj = a0(1 + ε0)
∑

j−1
i=0(1/kn0+i)

for some j ∈ {1, 2, . . . , i0 − 1}.
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After we define β j+1 := 1/a
kn0+j
j and for every λ ∈ [ai, b0] with λ < aj ·

kn0+j√
1 + ε0 we get |λkn0+j · β j+1 − 1| < ε0.
Finally, after a finite number of steps we get the conclusion of this lemma

with the following data.
We have

aj = a0 ·
j−1

∏
i=0

(1 + ε0)
1/kn0+i for every j = 1, 2, . . . , i0,

β j+1 =
1

a
kn0+j
j

for every j = 0, 1, . . . , i0.

It follows that for every λ ∈ [aj, b0] where λ < aj ·
kn0+j√

1 + ε0 we have:

|λkn0+jβ j+1 − 1| < ε0 for every j = 0, 1, . . . , i0.

With the above data the proof of this lemma is completed.

LEMMA 3.3. Let (kn) be a strictly increasing subsequence of natural numbers such

that
+∞
∑

n=1
(1/kn) = +∞.

Then for every positive number M > 0 there exists a subsequence (µn) of (kn)
such that:

(i) µn+1 − µn > M for every n = 1, 2, . . . and

(ii)
+∞
∑

n=1
(1/µn) = +∞.

Proof. Let some positive number M > 1. Let N := [M] + 1 (where [x] is the
integer part of the real number x).

We consider the subsequences of (kn), µ
j
ρ := kρN+j, ρ = 1, 2, . . ., for j =

0, 1, . . . , N − 1. We get
+∞
∑

n=1
(1/kn) =

N−1
∑

j=0

+∞
∑

ρ=1
(1/µ

j
ρ). By this equality and the

fact that
+∞
∑

n=1
(1/kn) = +∞ we conclude easily that there exists a subsequence of

(µ
j
ρ)ρ∈N, for some j ∈ {0, 1, . . . , N − 1} at least that satisfies (i) and (ii).

In order to prove Theorem 3.1 we assign some notations and terminology.
Let D := {x = (x1, x2, . . .) ∈ `2 : {n ∈ N : xn 6= 0} is a finite subset of N
and xn ∈ Q+ iQ for every n = 1, 2, . . .}, where Q is the set of rational numbers,
The set D is countable and dense in (`2, ‖ · ‖2). We set 0 := (0, 0, . . .) ∈ `2 and
D∗ := D \ {0}. Let Ψ := {y1, y2, y3, . . . , yn, . . .} be an enumeration of D∗. We
fix a strictly decreasing sequence of positive numbers (an) such that an → 1 (for
example an := 1 + (1/n), n = 1, 2, . . . ) and we also fix a strictly increasing
sequence (βn) of positive numbers such that βn → +∞ and a1 < β1 (for example
βn = n + 2, n = 1, 2, . . . ). Then we set ∆n := [an, βn], n = 1, 2, . . . . Of course, the
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sequence of compact sets ∆n, n = 1, 2, . . . forms an exhausting family of (1,+∞),

i.e. (1,+∞) =
+∞⋃
n=1

∆n.

For every n, j, s ∈ N we define the sets E∆n(j, s) :=
{

x = (x1, x2, . . .) ∈ `2 :
for every λ ∈ ∆n there exists some v ∈ N, such that ‖(λB)kv(x)− yj‖ < 1/s

}
.

We finally set

G :=
+∞⋂
n=1

+∞⋂
j=1

+∞⋂
s=1

E∆n(j, s).

It is easy to show that the sets E∆n(j, s) are open for every j, s, n ∈ N and that
G =

⋂
λ∈(1,+∞)

HC((λB)kn).

From this result we have that the set
⋂

λ∈(1,+∞)
HC((λB)kn) is a Gδ subset of

(`2, ‖ · ‖).
Now we are ready to prove the most important result of this paper.

LEMMA 3.4. For every n, j, s ∈ N the set E∆n(j, s) is dense in (`2, ‖ · ‖).
Proof. We fix n0, j0, s0 ∈ N and we will show that the set E∆n0

(j0, s0) is dense
in (`2, ‖ · ‖).

We set E := E∆n0
(j0, s0) for simplicity.

Let yj0 := (q1, q2, . . . , qv0 , 0, 0, . . .) where qv0 6= 0, yj0(v) = qv, for every
v = 1, 2, . . . , v0, yj0(v) = 0 for every v > v0 + 1, and qj ∈ Q + iQ for every
j = 1, 2, . . . , v0, for some fixed v0 ∈ N.

We fix ε0 > 0 and c0 = (c1, c2, . . . , cv1 , 0, 0, . . .) ∈ D∗ where cv1 6= 0, v1 ∈ N,
fixed, c0(v) = cv for every v = 1, 2, . . . , v1, c0(v) = 0 for every v > v1 + 1,
cj ∈ Q+ iQ for every j = 1, 2, . . . , v1. We consider the ball B`2(c0, ε0) := {x ∈ `2 :
‖x− c0‖ < ε0}.

We will show that

(3.3) E ∩ B`2(c0, ε0) 6= ∅.

In order to show the relation (3.3) it suffices to show that there exists some x0 =
(x1, x2, . . . , xn, . . .) ∈ `2 and m0 ∈ N such that:

(i) ‖x0 − c0‖ < ε0 and
(ii) for every λ ∈ ∆n0 there exists some v ∈ N, such that

(3.4) ‖(λB)kv(x0)− yj0‖ <
1
s0

.

We will achieve (i) and (ii) above as follows.

From the data of the problem we define a finite number of complex numbers
xj, j = 1, 2, . . . , `0 for some fixed `0 ∈ N.

Afterwards, we define the sequence x0 := (x1, x2, . . . , x`0 , 0, 0) where x0(j) =
xj for every j = 1, 2, . . . , `0 and x0(j) = 0 for every j > `0 + 1. So we have x0 ∈ `2.
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Finally, we show that x0 satisfies properties (i) and (ii) of (3.4) as above.
Without loss of generality let ∆n0 :=[a0, b0], where 1< a0<b0<+∞. We set

M1 := max{|qj|, j = 1, 2, . . . , v0} > 0.

We also set

M2 :=
1

2 log a0
· log

(2s2
0 ·M2

1 · v0

1− (1/a0)

)
.

By Lemma 3.3 we choose a subsequence (µn) of (kn) such that the following two
properties hold:

(i) µn+1 − µn > max{M2, v0} for every n = 1, 2, . . . and

(ii)
+∞
∑

n=1
(1/µn) = +∞.

We set ε1 := 1/(
√

2v0 · s0 ·M1).
Now we can choose some fixed natural number v2 ∈ N such that the fol-

lowing three inequalities hold:

(a) µv2 > v1 + 1;
(b) µv2 > log(1 + ε1)/log(b0/a0);

(c) µv2 > (1/(2 log a0)) · log
(

v0·M2
1

ε2
0·(1−(1/a0))

)
.

Because
+∞
∑

n=1
(1/µn) = +∞ we have

+∞
∑

j=0
(1/µv2+j) = +∞.

Let i0 be the unique natural number i0 ∈ {2, 3, . . .} such that

(3.5) (1 + ε1)
∑

i0
i=0(1/µv2+i) 6

b0

a0
and (1 + ε1)

∑
i0+1
i=0 (1/µv2+i) >

b0

a0
.

We define the numbers

aj := a0 ·
j−1

∏
i=0

(1 + ε1)
1/µv2+i for every j = 1, . . . , i0 and

β j+1 :=
1

a
µv2+j
j

for every j = 0, 1, . . . , i0 − 1.

Now, we are ready to define the vector x0 = (x1, x2, . . .) ∈ `2 with full
details.

We define xj = cj for every j = 1, 2, . . . , v1. We define xj = 0 for every j ∈ N
such that v1 + 1 6 j 6 µv2 .

Because
+∞
∑

n=1
(1/µn) = +∞, we can apply Lemma 3.2 for the sequence (µn).

By the relations (b) and (3.5) above that the numbers v2 and ε1, i0 satisfy and using
Lemma 3.2 for the sequence (µn) we take as above that for every λ ∈ [a0, b0] there
exists unique j ∈ {0, 1, . . . , i0} such that

(3.6) |λµv2+jβ j+1 − 1| < ε1.
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We remark by the previous Lemma 3.2 that for every λ ∈ [a0, b0] there exists
unique aj, j ∈ {0, 1, . . . , i0} such that aj 6 λ 6 aj+1 if i 6 i0 − 1 or ai0 6 λ 6 b0.

So, we have defined completely the positive numbers β j+1, for j=0, 1, . . . , i0.
Now, we define xµv2+j+i = β j+1qi for every j = 0, 1, . . . , i0 and for every

i = 1, 2, . . . , v0.
The previous terms xµv2+j+i for j = 0, 1, . . . , i0, i = 1, 2, . . . , v0 are defined

because µn+1−µn >v0 for every n=1, 2, . . . by the definition of the sequence (µn).
Finally, we define that xi = 0 for every i ∈ N, i > µv2 for which there are not

j ∈ {0, 1, . . . , i0} and i1 ∈ {1, 2, . . . , v0} such that i = µv2+j + i1.
By the previous procedure we have defined completely the vector x0 =

(x1, x2, . . . , xn, . . .) where {n ∈ N : xn 6= 0} is finite and thus x0 ∈ `2 obviously.
Now, we show that the vector x0 satisfies relation (3.4).
Firstly we prove that x0 ∈ B`2(c0, ε0).
By the definition of the vector x0 we get:

‖x0 − c0‖2 : =
+∞

∑
j=1
|xj − cj|2 =

+∞

∑
j=v1+1

|xj|2 =
i0

∑
i=0

v0

∑
j=1
|xµv2+j+i|2

=
v0

∑
j=1

i0

∑
i=0
|xµv2+j+i|2 =

v0

∑
j=1

i0

∑
i=0
|β j+1qi|2 =

v0

∑
j=1
|qi|2

i0

∑
i=0
|β j+1|2

6 v0M2
1 ·

i0

∑
i=0
|β j+1|2 = v0M2

1 ·
i0

∑
i=0

1

a
2µv2+j
j

6 v0M2
1 ·

i0

∑
i=0

1

a
2µv2+j
0

< v0M2
1 ·

+∞

∑
v=2µv2

1
av

0

= v0M2
1

1

a
2µv2
0

· 1
1− (1/a0)

< ε2
0(3.7)

by the inequality (c) above for µv2 .
Inequality (3.7) gives that x0 ∈ B`2(c0, ε0), so property (i) of (3.4) holds.
We show now that property (ii) also holds.
We fix some λ ∈ [a0, b0]. Then there exists unique ρ0 ∈ {1, 2, . . . , i0 − 1}

such that aρ0 6 λ < aρ0 · (1 + ε0)
1/(µv2+ρ0) or ai0 6 λ 6 b0.

We show that

‖(λB)µv2+ρ0 (x0)− yj0‖ <
1
s0

.

We have:

‖(λB)µv2+ρ0 (x0)−yj0‖
2=

v0

∑
i=1
|λµv0+ρ0 xµv2+ρ0+i−qj|2+

+∞

∑
i=v0+1

|λµv2+ρ0 xµv2+ρ0+i|2.(3.8)

By definition we have for i=1, 2, . . . , v0 xµv2+ρ0+i = βρ0+1qi. So, for j=1, 2, . . . , v0

and λ ∈ [aρ0 , aρ0+1], where aρ0+1 = aρ0 · (1+ ε1)
1/(µv2+ρ0) or λ ∈ [aρ0 , b0] if ρ0 = i0
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we have

|λµv2+ρ0 xµv2+ρ0+i − qi|2 = |λµv2+ρ0 βρ0+1qi − qi|2 = |λµv2+ρ0 βρ0+1 − 1|2|qi|2

6 |λµv2+ρ0 βρ0+1 − 1|2 ·M2
1 < ε2

1M2
1 =

1
2v0s2

0
.

So we have:

(3.9)
v0

∑
i=1
|λµv2+ρ0 xµv2+ρ0+i − qi|2 <

1
2s2

0
.

If ρ0 = i0 the second member of (3.8) is 0 and the conclusion holds by (3.9).
So for the sequel we suppose that ρ0 6 i0 − 1. In this case we get

+∞

∑
i=v0+1

|λµv2+ρ0 xµv2+ρ0+i|2

=λ2µv2+ρ0

v0

∑
i=1

j0−ρ0

∑
j=1
|xµv2+ρ0+j+i|2 = λ2µv2+ρ0

v0

∑
i=1
|qj|2

i0−ρ0

∑
j=1
|βρ0+j+1|2

6λ2µv2+ρ0 v0M2
1

j0−ρ0

∑
j=1
|βρ0+j+1|2 = λ2µv2+ρ0 v0M2

1

i0−ρ0

∑
j=1

1

(a
µv2+ρ0+j
ρ0+j )2

<λ2µv2+ρ0 v0M2
1

+∞

∑
v=2µv2+ρ0+1

1
av

ρ0+1
=λ2µv2+ρ0 v0M2

1
1

a
2µv2+ρ0+1
ρ0+1

· 1
1− (1/aρ0+1)

< a
2µv2+ρ0
ρ0+1 v0M2

1
1

a
2µv2+ρ0+1
ρ0+1

· 1
1− (1/a0)

=
v0M2

1
1− (1/a0)

· 1

a
2(µv2+ρ0+1−µv2+ρ0 )

ρ0+1

<
v0M2

1
1− (1/a0)

· 1

a
2(µv2+ρ0+1−µv2+ρ0 )

0

<
1

2s2
0

(3.10)

because µv+1 − µv > M2 for every v > v2 by the hypothesis (i) for the sequence
(µn) and the definition of M2.

By (3.8), (3.9) and (3.10) we get that ‖(λB)µv2+ρ0 (x0) − yj0‖ < 1/s0 for the
arbitrary λ ∈ [a0, b0]. This completes property (ii) of (3.4) and the proof of this
Lemma 3.4 is completed.

4. A RESULT IN MEASURE AND CATEGORY

In this section we prove item (iii) of Theorem 1.2. Actually, we shall prove
the following, more general, result. As we already mentioned in the Introduction,
its proof elaborates on the proof of Proposition 5.2 from [3].
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THEOREM 4.1. Let (kn) be a strictly increasing sequence of positive integers. Let
T be a bounded linear operator acting on a (complex) Banach space X such that ((λT)kn)
is hypercyclic for every λ ∈ C with |λ| > 1 and assume in addition that⋂

λ∈(1,+∞)

HC({(λT)kn}) 6= ∅.

Then, there exists a Gδ and dense subset P in {λ ∈ C : |λ| > 1} with full 2-dimensional
Lebesgue measure in {λ ∈ C : |λ| > 1} such that

⋂
λ∈P
HC({(λT)kn}) is residual in X.

In particular,
⋂

λ∈P
HC({(λT)kn}) 6= ∅.

Proof. By performing a change of variables it suffices to prove the following.

Claim. Fix x ∈ ⋂
λ∈(1,+∞)

HC({(λT)kn}). Then there exists a Gδ and dense

subset A of (1,+∞)× R with full (2-dimensional) Lebesgue measure such that the set
{((rT)kn x, e2πiknθ) : n = 1, 2, . . .} is dense in X×T for every (r, θ) ∈ A.

Here T denotes the unit circle, i.e. T = {z ∈ C : |z| = 1}.
Proof of Claim. Let {xj : j ∈ N}, {tl : l ∈ N} be dense subsets of X, T

respectively. For every j, l, s, n ∈ N define the set

Aj,l,s,n :=
{
(r, θ) ∈ (1,+∞)×R : ‖(rT)kn x− xj‖ <

1
s

, |e2πiknθ − tl | <
1
s

}
.

We shall prove that the set A :=
⋂

j,l,s

⋃
n

Aj,l,s,n has the desired properties. Since

Aj,l,s,n is open we conclude that A is Gδ. Let us show that A is dense in (1,+∞)×
R. In view of Baire’s theorem it suffices to prove that for any fixed j, l, s ∈ N the
set

⋃
n

Aj,l,s,n is dense in (1,+∞)×R. To this end, fix j, l, s ∈ N and let b > 1, a ∈ R
and ε > 0. We seek r > 0, θ ∈ R and n ∈ N such that

|b− r| < ε, |a− θ| < ε, |tl − e2πiknθ | and ‖(rT)kn x− xj‖ <
1
s

.

Define the set B := {kn : ‖(bT)kn x− xj‖ < 1/s} and consider its elements in an
increasing order, say kρ1 < kρ2 < · · · . Of course, we have B = {kρn : n ∈ N}.
Now we use Weyl’s theorem, see Theorem 4.1, Chapter 1, in page 32 from [13], to
conclude that the sequence (kρn θ) is uniformly distributed modulo 1 for almost
all θ in R. Hence, there exists θ ∈ R such that the set {e2πikρn θ : n ∈ N} is dense
in T and |a− θ| < ε. Finally, setting r := b and from all the above we conclude
that there exists n := ρm for some m ∈ N such that

|b− r| < ε, |a− θ| < ε, |tl − e2πiknθ | and ‖(rT)kn x− xj‖ <
1
s

,

which is what we wanted to prove. It remains to show that A has full measure in
(1,+∞)×R. Actually, it is enough to prove that the set

⋃
n

Aj,l,s,n has full measure

in (1,+∞) × R for every j, l, s ∈ N. Fix j, l, s ∈ N and take any four numbers
d1, d2, d3, d4 with d1 < d2, 1 < d3 < d4. For any subset B of (1,+∞) × R the



16 N. TSIRIVAS

symbol Br stands for its section, i.e. Br := {θ ∈ R : (r, θ) ∈ E} and for simplicity
reasons we set E :=

⋃
n

Aj,l,s,n. Observe that the proof of denseness result implies

that for every r ∈ [d3, d4] we have (r, θ) ∈ E for almost every θ in R (of course the
set of such θ’s depends on r). It now follows that

µ((E∩([d3, d4]×[d1, d2]))r)=d2−d1=µ(([d3, d4]×[d1, d2])r) for every r∈ [d3, d4],

where µ denotes the Lebesgue measure, and by Fubini theorem, see page 149 (5),
in [12], we conclude that

µ× µ(E ∩ ([d3, d4]× [d1, d2])) = (d2 − d1)(d4 − d3).

Thus, E has full measure in (1,+∞)×R. This completes the proof of the Claim
and hence that of Theorem 4.1.

Item (ii) of Theorem 1.2 and Theorem 4.1 directly imply item (iii) of Theo-
rem 1.2.

Now by Lemmas 3.4 and the facts that the space (`2, ‖ · ‖) is a complete
metric space and Baire’s category theorem the proof of Theorem 3.1 is completed.
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