
J. OPERATOR THEORY
77:1(2017), 61–76

doi: 10.7900/jot.2015nov13.2126

© Copyright by THETA, 2017

HYPERCONTRACTIVITY OF HEAT SEMIGROUPS ON
FREE QUANTUM GROUPS

UWE FRANZ, GUIXIANG HONG, FRANÇOIS LEMEUX, MICHAËL ULRICH
and HAONAN ZHANG

Communicated by Hari Bercovici

ABSTRACT. In this paper we study two semigroups of completely positive
unital self-adjoint maps on the von Neumann algebras of the free orthogonal
quantum group O+

N and the free permutation quantum group S+
N . We show

that these semigroups satisfy ultracontractivity and hypercontractivity esti-
mates. We also give results regarding spectral gap and logarithmic Sobolev
inequalities.
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INTRODUCTION

Since the 70s, when the word “hypercontractivity” was coined (see [18]),
it has yielded a fruitful area of mathematics. Stronger than the classical notion
of contractivity, it has been shown that hypercontractivity is strongly linked to a
class of inequalities called logarithmic Sobolev inequalities, which in turn have
many applications such as in statistical mechanics (see for instance [12] for the
investigation of the Ising model based on log-Sobolev inequalities). With the rise
of noncommutative mathematics, hypercontractivity has also been studied in the
context of noncommutative Lp-spaces, for instance in [15].

The hypercontractivity for semigroups on some cocommutative compact
quantum groups such as von Neumann algebras of discrete groups, e.g. free
products of Z2, etc., has been recently studied by Junge et al., see [13] and the
references therein.

The goal of this paper is to investigate hypercontractivity for semigroups
on the free orthogonal quantum group and the free permutation quantum group.
Different definitions for a Brownian motion (and hence for a heat semigroup)
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could be considered on these quantum groups; we will be interested in the ad-
invariant generating functionals in order to select semigroups that could pretend
to the role of heat semigroups.

This paper is only a short introduction to this topic and it is the authors’
hope that much more work will be done in this direction.

1. COMPACT QUANTUM GROUPS AND HEAT SEMIGROUPS

1.1. COMPACT QUANTUM GROUP: DEFINITION. Compact quantum groups are a
generalization of compact groups in the context of noncommutative mathematics.
They are defined in the following way:

DEFINITION 1.1. A compact quantum group is a pair G = (A, ∆) such that A
is a unital C∗-algebra and ∆ : A → A⊗ A is a comultiplication, i.e. it is a unital
∗-algebra homomorphism and it verifies

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and, moreover, the quantum cancellation properties are verified, i.e.

Lin[(1⊗ A)∆(A)] = Lin[(A⊗ 1)∆(A)] = A⊗ A

where Lin is the norm-closure of the linear span.
The C∗-algebra A is also noted C(G).

It is indeed a generalization, because for any compact group G, (C(G), ∆G)
with the comultiplication arising from the group multiplication

∆G :
C(G)→ C(G× G) ' C(G)⊗ C(G)

f 7→ ((x, y) 7→ f (x · y))

is a compact quantum group. The relevant examples for this article were defined
by Wang, see [9], [22], [23].

EXAMPLE 1.2 (Free orthogonal quantum group, see [22]). Let N > 2 and
Cu(O+

N) be the universal unital C∗-algebra generated by the N2 self-adjoint ele-
ments uij, 1 6 i, j 6 N verifying the relations:

∑
k

ukiukj = δij = ∑
k

uikujk.

We define a comultiplication ∆ by setting ∆(vij) = ∑
k

vik ⊗ vkj. Then (C(O+
N), ∆)

is a compact quantum group called the free orthogonal quantum group. If we
impose in addition commutativity, we recover the classical orthogonal group.

EXAMPLE 1.3 (Free permutation quantum group, see [23]). Let N > 2 and
C(S+

N) be the universal unital C∗-algebra generated by N2 elements uij, 1 6 i, j 6
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N such that for all 1 6 i, j 6 N:

u2
ij = uij = u∗ij, ∑

k
uik = 1 = ∑

k
ukj.

We define a comultiplication ∆ by setting ∆(uij) = ∑
k

uik ⊗ ukj. Then, (C(S+
N), ∆)

is a compact quantum group called the free permutation quantum group. If we
impose in addition commutativity, we find the classical permutation group.

For G = O+
N , S+

N , we denote by Pol(G) the ∗-algebra generated by the gen-
erators uij, 1 6 i, j 6 N and contained in C(G). It has a bialgebra structure by
setting

ε(uij) = δij.

It is called the algebra of polynomials of G.
Moreover, every compact quantum group is endowed with a Haar state, i.e.

a normalized positive functional h : C(G)→ C such that (h⊗ id)∆(a) = h(a)1 =
(id⊗ h)∆(a) for each a ∈ G.

The Haar state allows us to define the reduced C∗-algebra of a compact
quantum group. If G is a compact quantum group, then we have the GNS rep-
resentation of its Haar state h, i.e. a ∗-homomorphism π : Pol(G) → B(H) with
H a Hilbert space and Ω ∈ H a unit vector, such that h(x) = 〈Ω, π(x)Ω〉 for all
x ∈ Pol(G). The reduced C∗-algebra Cr(G) is the norm completion of π(Pol(G))
in B(H). In this article, we will always consider the reduced C∗-algebra rather
than the universal one. The reason for this is that the Haar state is faithful on the
reduced C∗-algebra. The faithfulness of h is important to define the Lp-spaces,
which is done as follows. The space L∞(G) = Cr(G)′′ is the von Neumann alge-
bra generated by Cr(G). We define Lp(G) for 1 6 p < ∞ as the completion of
L∞(G) for the norm ‖x‖p = [h((x∗x)p/2)]1/p. We recall here that the Haar state is
a trace (i.e. h(ab) = h(ba)) whenever the compact quantum group is of Kac type,
which is the case for the quantum groups O+

N and S+
N treated in this paper. See

[16] and the references therein for non-tracial Lp-spaces.
Let us now say a few words about corepresentations, for more details and

notations we refer to [8], [10]. A corepresentations of a compact quantum group
G is a unitary matrix v ∈ Mk ⊗ G such that (id ⊗ ∆)(v) = v12v23, it is irre-
ducible if the only scalar matrices that commute with v are multiples of the iden-
tity matrix. The set of all (equivalence classes of) irreducible corepresentations
is denoted Irr(G). In the case of O+

N and S+
N , the irreducible corepresentations

can be indexed by N and we denote by (u(s)
ij )16i,j6dim Vs the coefficients of the sth

irreducible corepresentation, Vs being their linear span.

1.2. MARKOV SEMIGROUPS. In order to investigate hypercontractivity of heat
semigroups, one must be able to define heat semigroups on the quantum groups
at hand. We recall here for clarity’s sake a certain number of important results,
without proofs. More on this topic might be found in [8].
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We can define Lévy processes on quantum groups (Definition 2.4 in [8]). If
(jt)t>0 is such a process, then we can associate to it a Markov semigroup Tt by
putting Tt = (id⊗ φt) ◦∆ where φt = Φ ◦ jt is the marginal distribution of jt. The
Lévy process (jt)t is also associated to a generator L = dφt

dt |t=0 (actually, there is
a one-to one correspondence between generators and Lévy processes, called the
Schoenberg correspondence).

It is important to mention the domain of the Markov semigroup. The opera-
tor Tt can either be seen as Tt : Cu(G)→ Cu(G) or as Tt : Cr(G)→ Cr(G). We will
in the sequel take the second definition, due to our use of the reduced C∗-algebra.
The semigroup is associated to a Markovian generator TL : Pol(G) → Pol(G)

which is defined by TL = (id⊗ L) ◦∆ = dTt
dt |t=0.

The two semigroups treated in this paper are KMS-symmetric (even GNS-
symmetric, which means that TL and Tt are self-adjoint on L2(G, h)), therefore
they extend to σ-weakly continuous semigroups on the von Neumann algebra
L∞(G) = Cr(G)′′, see, e.g., Theorem 2.39 of [7].

Now, in the classical case, a heat semigroup is the Markov semigroup as-
sociated to a Brownian motion, which is a particular kind of Lévy process. So if
we had a definition of such a Brownian motion on O+

N or S+
N , we could define a

heat semigroup and this semigroup should be naturally privileged in our study.
Unfortunately, to define such an object is not an easy matter. In the classical case,
Brownian motions are defined on Lie groups via the Laplace–Beltrami operator.
On quantum groups, we do not have a differential structure which would allow
us to define a quantum analogue to the Laplace–Beltrami operator. Alternative
approaches must thus be found.

One way to do so is to use the notion of gaussianity first introduced by
Schürmann (as is done for instance in Section 5.3 of [19] to exhibit a Brownian
motion on the unitary dual group). This approach nevertheless fails for S+

N , as
indicated by Proposition 8.6 of [10], since there are no gaussian generators on S+

N .
As an alternative, we will be interested in the class of ad-invariant gener-

ating functionals (see Section 6 of [8]), i.e. the functionals invariant under the
adjoint action. Linear functionals L : Pol(G) → C are ad-invariant if and only if
there exist numbers (cs)s such that L(u(s)

ij ) = csδij for s ∈ Irr(G). They are classi-

fied for O+
N in Section 10 of [8] and in Section 10.4 of [10] for S+

N . In the classical
case of Lie groups, Propositions 4.4, 4.5 of [14] shows that ad-invariant processes
(or, equivalently, conjugate-invariant processes) on compact simple Lie groups
have a generator constituted of the Laplace–Beltrami operator plus a part due to
the Lévy measure. It therefore seems reasonable to define a Brownian motion
from within the class of ad-invariant functionals and this will be the approach
which we will use in this paper.

1.3. HEAT SEMIGROUP ON THE FREE ORTHOGONAL QUANTUM GROUP. We will
need the definition of Chebyshev polynomials of the second kind.
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DEFINITION 1.4. The Chebyshev polynomials of the second kind are the polyno-
mials Us given by the relation

Us(X) =
bs/2c

∑
p=0

(−1)p
(

s− p
p

)
Xs−2p.

They are an orthonormal family for the scalar product defined via the semicircu-
lar measure.

We recall the following proposition, found in Proposition 10.3 of [8], show-
ing that ad-invariant functionals on O+

N are classified by pairs (b, ν) where b is
a non-negative real number and ν a finite measure with support on the interval
[−N, N].

PROPOSITION 1.5. The ad-invariant generating functional on Pol(O+
N) with

characteristic pair (b, ν) (b > 0 and ν a finite measure on [−N, N]) acts on the coef-
ficients of unitary irreducible representations of O+

N as

L(u(s)
ij ) =

δij

Us(N)

(
− bU′s(N) +

N∫
−N

Us(x)−Us(N)

N − x
ν(dx)

)
for s ∈ N, where Us denotes the sth Chebyshev polynomial of the second kind.

The generator of the Markov semigroup, which is defined by TL = (id⊗
L) ◦∆, acts as

TL(u
(s)
ij ) =

1
Us(N)

(
− bU′s(N) +

N∫
−N

Us(x)−Us(N)

N − x
ν(dx)

)
u(s)

ij .

The Markov semigroup is given by Tt = exp(tTL). Here we will be interested in
in the case b = 1 and ν = 0. Indeed, our formula is similar to Hunt’s formula in
the case of Lévy processes on Lie groups and it seems natural to take ν = 0, since
it seems to play a role analogous to the Lévy measure in Hunt’s formula.

Let us now investigate further this Markovian semigroup. We have

L(u(s)
ij ) = −

δij

Us(N)
U′s(N).

Therefore, the eigenvalues of TL are given by

λs = −
U′s(N)

Us(N)

with eigenspace Vs = span{u(s)
ij , 1 6 i, j} and multiplicity ms = (dim u(s))2 =

Us(N)2 (see Section 10 of [8]). Now, since the leading coefficient of Us is equal to
one, we can write these polynomials with the help of their zeros

Us(x) = (x− x1) · · · (x− xs)
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and therefore we have the following, for x ∈ R\{x1, . . . , xs}:

U′s(x)
Us(x)

=
s

∑
k=1

1
x− xk

.

The following classical lemma about Chebyshev polynomials will be useful
to us in this section and also in the next.

LEMMA 1.6. The zeros of Us are comprised between −2 and 2.

Proof. We will use the fact that the Chebyshev polynomials of the second
kind constitute an orthonormal family with regard to Wigner’s semicircle law
1
π

√
4− x2 on [−2, 2]. Let ∈ N. Let us denote by S = {y1, . . . , yl} the set of all

zeros of Us in (−2, 2) that have an odd multiplicity. We set Q =
l

∏
k=1

(X − xk).

It is obvious that Q divides Us. Let us now assume that deg Q < s = deg Us.
Therefore, we have:

2∫
−2

Q(x)Us(x)
1
π

√
4− x2dx = 0.

But the very definition of Q means that the zeros of UsQ that are in (−2, 2) have
an even multiplicity, i.e. UsQ has a constant sign on this interval. For the integral
to be zero, we must have UsQ = 0, which is absurd. Therefore we must have
Us = Q and this proves the lemma.

We thus have the following lemma.

LEMMA 1.7. For N > 2,

s
N

6 −λs =
U′s(N)

Us(N)
=

s

∑
k=1

1
N − xk

6
s

N − 2

where, for N = 2, we take the convention that 1
0 = ∞.

Proof. The upper bound of −λs is a consequence of the previous lemma. To

obtain the lower bound, note that N−xk >0 for 16k6n. Since
n
∑

k=1
xk =0, we have

−λs =
s

∑
k=1

1
N − xk

>
s2

sN −∑s
k=1 xk

=
s
N

.

1.4. HEAT SEMIGROUPS ON THE FREE PERMUTATION QUANTUM GROUP. We rely
on the results of [10] for S+

N . We consider semigroups with generating functionals
defined by

L(u(s)
ij ) = −

δijU′2s(
√

N)

2
√

NU2s(
√

N)
.
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We follow the same reasoning as before. The eigenvalues are

λs = −
U′2s(
√

N)

2
√

NU2s(
√

N)

with eigenspace Vs = {u(s)
ij , 1 6 i, j 6 dim Vs} and multiplicity ms = U2s(

√
N)2.

We find the following estimate.

LEMMA 1.8. For N > 4,

s
N

6 −λs =
1

2
√

N

2s

∑
k=1

1√
N − xk

6
s√

N(
√

N − 2)

where, for N = 4, we take the convention that 1
0 = ∞.

2. ULTRACONTRACTIVITY AND HYPERCONTRACTIVITY

When we need to distinguish the semigroups, we will denote by TO
t (re-

spectively TS
t ) the semigroup we introduced on O+

N (respectively S+
N).

2.1. ULTRACONTRACTIVITY. We say that a semigroup Tt is ultracontractive if it
is bounded from L2 into L∞ for all t > 0. In the sequel, we will denote by ‖ · ‖∞ =

‖ · ‖ the operator norm and by ‖x‖p
p = h((x∗x)p/2) the p-norm (h being the Haar

state). We will prove the following result.

THEOREM 2.1. Let Tt be a semigroup on a Kac-type compact quantum group, such
that the following assumptions hold:

(i) The subspaces Vs spanned by the coefficients of the irreducible corepresentations us

are eigenspaces for the generator TL of the Markov semigroup, i.e., we have the following,
for x ∈ Vs:

TLx = λsx.

(ii) We have an estimate of the form λs 6 −αs for some α > 0.
(iii) We have an inequality of the form

‖x‖∞ 6 (βs + γ)‖x‖2

for x ∈ Vs, with β, γ > 0 and β, γ are independent of s.
Then, Tt is ultracontractive: ‖Ttx‖∞ 6

√
f (t)‖x‖2, where

f (t) =
β2e−2αt(1 + e−2αt) + 2βγe−2αt(1− e−2αt) + γ2(1− e−2αt)2

(1− e−2αt)3 .

Proof. We have for x = ∑
s

xs with xs ∈ Vs:

‖Ttx‖∞ 6 ∑
s∈N
‖Ttxs‖∞ = ∑

s
eλst‖xs‖∞ 6 ∑

s
e−αst‖xs‖∞
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6 ∑
s

e−αst(βs + γ)‖xs‖2 6
(

∑
s
(βs + γ)2e−2αst

)1/2(
∑

s
‖xs‖2

2

)1/2
=
√

f (t)‖x‖2

where we used the Cauchy–Bunyakovsky–Schwarz inequality.
The computation of f (t) = ∑

s
(β2s2 + 2βγs + γ2)e−2αst is done via the clas-

sical series:

∑
k∈N

e−λk =
1

1− e−λ
, ∑

k∈N
ke−λk =

e−λ

(1− e−λ)2 , ∑
k∈N

k2e−λk =
e−λ(1 + e−λ)

(1− e−λ)3 .

Let us mention the following nice consequence.

COROLLARY 2.2. We have for any heat semigroup satisfying the assumptions of
Theorem 2.1 (with f the same function as in Theorem 2.1):

‖Ttx‖∞ 6 f (t/2)‖x‖1.

Let us remark that, when t goes to zero, f (t) is equivalent to 1
t3 . On Rd, the

behavior when t goes to zero of a heat semigroup is in 1
td/2 , as can be seen e.g. in

Property Rn, Section II.1 of [20], so that we have here a behavior as if we were in
“dimension” 6.

Proof. We are follow the reasoning of Corollary 3 in [2].
The semigroup is self-adjoint on L2(G, h), since L(u(s)

ij ) = L(u(s)
ji ) is real. So

we can dualize the inequality of Theorem 2.1 to obtain ‖Ttx‖2 6
√

f (t)‖x‖1. We
can then combine it to get:

‖Ttx‖∞ 6
√

f (t/2)‖Tt/2x‖2 6 f (t/2)‖x‖1.

As a consequence of the theorem, we deduce that the semigroup we consid-
ered on the free orthogonal quantum group is ultracontractive. Indeed, the proof
of Theorem 2.2 in [5] shows that there exists a constant D (depending on N) such
that

(2.1) ‖x‖∞ 6 D(s + 1)‖x‖2

when x ∈ Vs. Thus we can apply Theorem 2.1 with α = 1
N and β = γ = D.

In the same way, Theorem 4.10 of [4] shows that there exists a constant C
(depending on N) such that on S+

N and for x ∈ Vs, we have

(2.2) ‖x‖∞ 6 C(2s + 1)‖x‖2.

This means that we can obtain ultracontractivity for our semigroup on S+
N by

applying Theorem 2.1 with α = 1
N , β = 2C and γ = C.

2.2. SPECIAL CASES O+
2 AND S+

4 . We can say more in the case of O+
2 . We have

Us(2)= s+1 and, differentiating the recurrence relation, we get U′s(2)=
s(s+1)(s+2)

6 .
Therefore we know the exact value of the eigenvalues:

λs = −
s(s + 2)

6
.
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If we take up the computations from Theorem 2.1, we get better estimates:

‖Ttx‖∞ 6
√

D2 ∑
s

e−(s(s+2)/3)t(s + 1)2‖x‖2.

Observe now that

∑
s

e−(s(s+2)/3)t(s + 1)2 6 ∑
s

e−(s
2/3)t(s + 1)2

and, moreover,
∞

∑
s=0

e(−s2/3)t 6 1 +
∞

∑
s=1

se−(s
2/3)t 6 1 +

∞

∑
s=1

s2e−(s
2/3)t.

This yields the inequality

‖Ttx‖∞ 6
√

g(t)‖x‖2 with g(t) = 4D2
∞

∑
s=1

s2e−(s
2/3)t + D2.

The function s 7→ s2e−s2t/3 is decreasing on [
√

3
t ,+∞[ and increasing on [0,

√
3
t ].

Let’s set s0 =
√

3
t . For fixed t, we have:

s0∫
0

s2e−s2t/3ds 6
s0

∑
s=1

s2e−s2t/3 6

s0∫
0

s2e−s2t/3ds +
3
et

,

∞∫
s0

s2e−s2t/3ds 6
∞

∑
s=s0

s2e−s2t/3 6
3
et

+

∞∫
s0

s2e−s2t/3ds.

We do the change of variable u = s
√

t
3 :

(3
t

)3/2
1∫

0

u2e−u2
du 6

s0

∑
s=1

s2e−s2t/3 6
(3

t

)3/2
1∫

0

u2e−u2
du +

3
et

,

(3
t

)3/2
∞∫

1

u2e−u2
du 6

∞

∑
s=s0

s2e−s2t/3 6
3
et

+
(3

t

)3/2
∞∫

1

u2e−u2
du.

And by combining:(3
t

)3/2
∞∫

0

u2e−u2
du 6

3
et

+
∞

∑
s=0

s2e−s2t/3 6 2
3
et

+
(3

t

)3/2
∞∫

0

u2e−u2
du.

In other words, when t goes to zero, g(t) behaves like t−3/2, and, in the spirit of
the remark following Corollary 2.2, this yields a “dimension” 3 for the semigroup.

The same reasoning for S+
4 yields the eigenvalues λs = − s(s+1)

6 and the
“dimension” of the semigroup on S+

4 is also 3.
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2.3. HYPERCONTRACTIVITY.

DEFINITION 2.3. We say that a semigroup Tt is hypercontractive if for each
2 < p < ∞, there exists a τp > 0 such that for all t > τp we have

(2.3) ‖Ttx‖p 6 ‖x‖2.

Let us remark that if the semigroup Tt is hypercontractive, then the inequal-
ity (2.3) is also true for 1 6 p 6 2 because for such a p and for any x ∈ C(G) we
have ‖Ttx‖p 6 ‖x‖p 6 ‖x‖2. We can also notice that due to duality, we have

‖Ttx‖2 6 ‖x‖q

for t > τp and q such that 1
p + 1

q = 1. Therefore, for t big enough, Tt is also a

contraction from Lq to L2 for any 1 < q < 2.
Denote by DN and CN the constants from the inequalities (2.1) and (2.2),

respectively. We know from the proof of Theorem 2.2 of [5] and Theorem 4.10 of
[4] that DN > 1, CN > 1.

THEOREM 2.4. The semigroup TO
t (respectively TS

t ) we consider on O+
N (respec-

tively S+
N) is hypercontractive.

Proof. We use the inequality

‖x‖2
p 6 ‖h(x)1‖2

p + (p− 1)‖x− h(x)1‖2
p x ∈ L∞(G),

for 2 < p < ∞, shown in Theorem 1 of [17]. It can indeed be applied in our
setting, with L∞(G) = Cr(G)′′ a von Neumann algebra and h a faithful, finite
normal trace on it. We will write x = h(x)1 + ∑

s>1
xs with xs ∈ Vs. We have

h(Tt(x))1 = Tt(h(x)1) because the Vs are eigenspaces for Tt. Therefore,

‖Tt(x)‖2
p 6 ‖Tt(h(x)1)‖2

p + (p− 1)‖Tt(x− h(x)1)‖2
p

6 |h(x)|2+(p−1)
(

∑
s>1
‖Tt(xs)‖p

)2
6 |h(x)|2+(p−1)

(
∑
s>1

eλst‖xs‖p

)2

6 |h(x)|2 + (p− 1)
(

∑
s>1

eλst‖xs‖∞

)2

6 |h(x)|2 + (p− 1)
(

∑
s>1

eλst(βs + γ)‖xs‖2

)2

6 |h(x)|2 + (p− 1) ∑
s>1

((βs + γ)eλst)2 ∑
s>1
‖xs‖2

2 6 ‖x‖2
2

for t > τp with τp such that

(p− 1) ∑
s>1

(βs + γ)2e2λsτp 6 1.
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PROPOSITION 2.5. Hypercontractivity is achieved for TO
t at least from the time

τ
(O)
p given by

τ
(O)
p = −N

2
log X,

where X is the smallest real positive root of X3−3X2+4X
(1−X)3 = 1

(p−1)D2
N

.

Hypercontractivity is achieved for TS
t at least from the time τ

(S)
p given by

τ
(S)
p = −N

2
log Y,

where Y is the smallest real positive root of Y3−2Y2+9Y
(1−Y)3 = 1

(p−1)C2
N

.

Proof. We use the expression

(p− 1) ∑
s>1

(βs + γ)2e2λsτp = 1

drawn from the proof of Theorem 2.4. The precise value of the eigenvalues is too
cumbersome to compute, therefore we use a minoration of them:

λs 6 −
s
N

for O+
N , λs 6 −

s
N

for S+
N .

By then setting X = exp
(
− 2τ

(O)
p
N ) and Y = exp

(
− 2τ

(S)
p

N ) and using the classical
series that were already used in the proof of Theorem 2.1, we obtain the desired
equations for X and Y. The fact that the root must be the smallest real one (indeed
one can easily check that there exists at least one root between 0 and 1) comes
from the fact that we need to take the biggest time τp such that the inequalities

X3 − 3X2 + 4X
(1− X)3 6

1
(p− 1)D2

N
,

Y3 − 2Y2 + 9Y
(1−Y)3 6

1
(p− 1)C2

N
,

are verified always for t > τp. But X and Y diminish when the time increases.
Therefore we need to choose the smallest positive root.

For p > 4− ε0 with ε0 a nonnegative constant, we can obtain a better esti-
mate of τ

(O)
p (respectively τ

(N)
p ) as the following theorem shows.

THEOREM 2.6. There exists ε0 > 0 such that for any p > 4− ε0,

‖TO
t ‖2→p 6 1, for all t >

cN
2

log(p− 1) +
(

1− 2
p

)
N log DN ,

‖TS
t ‖2→p 6 1, for all t >

dN
2

log(p− 1) +
(

1− 2
p

)
N log CN ,

with c = 2 log(
√

3+1)
log 3 ≈ 1.8297 . . ., and d =

log(11+
√

105)−log 2
log 3 ≈ 2.15096 . . ..
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Proof. We only prove this theorem for O+
N , the case for S+

N is similar. We use
again the inequality

‖x‖2
p 6 ‖h(x)1‖2

p + (p− 1)‖x− h(x)1‖2
p x ∈ L∞(G),

for 2 < p < ∞, shown in Theorem 1 of [17]. By the Hölder inequality, for p > 1,

‖xs‖p 6 (DN(s + 1))1−(2/p)‖xs‖2, xs ∈ Vs.

Therefore,

‖Tt(x)‖2
p 6 |h(x)|2 + (p− 1)

(
∑
s>1

eλst‖xs‖p

)2

6 |h(x)|2 + (p− 1)
(

∑
s>1

eλst(DN(s + 1))1−(2/p)‖xs‖2

)2

6 |h(x)|2 + (p− 1) ∑
s>1

e2λst(DN(s + 1))2(1−(2/p)) ∑
s>1
‖xs‖2

2.

When t > cN
2 log(p− 1) +

(
1− 2

p
)

N log DN and s > 1, we have

2λst 6 −cs log(p− 1)− 2
(

1− 2
p

)
s log DN 6 −cs log(p− 1)− 2

(
1− 2

p

)
log DN ,

and e2λst 6 (p− 1)−csD−2(1−(2/p))
N . So it suffices to show that for some ε0 > 0, for

any p > 4− ε0,

Rp := ∑
s>1

φs(p) = ∑
s>1

(p− 1)1−cs(s + 1)2(1−(2/p)) 6 1.

An easy computation implies that φ′s(p) 6 0 if and only if

4(p− 1)
p2 6

cs− 1
log(s + 1)

.

Note that f1(p) = 4(p−1)
p2 is decreasing for p > 2, and f2(s) = cs−1

log(s+1) is increasing

for s > 1, thus from c = 2 log(
√

3+1)
log 3 ≈ 1.83 > 1.69 ≈ 1 + log 2 we deduce that

f1(p) 6 f1(2) = 1 <
c− 1
log 2

= f2(1) 6 f2(s) for all p > 2, s > 1.

Hence each φs is decreasing for p > 2, and Rp is also decreasing for p > 2. Since

R4 = ∑
s>1

s + 1
3cs−1 =

3(2 · 3c − 1)
(3c − 1)2 = 1,

we have Rp 6 1 for all p > 4. So there exists ε0 > 0 such that ‖TO
t ‖2→p 6 1.

REMARK 2.7. We can see from the proof of Theorem 2.2 of [5] that

DN 6 (1− q2)−1
r

∏
s=1

(1− q2s)−3,
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with r > 1 and N = q + 1
q , 0 < q < 1. Thus we deduce that lim

N→+∞
N log DN = 0,

which implies that the latter part of τO
p in Theorem 2.6,

(
1− 2

p
)

N log DN , disap-
pears as N → +∞. Indeed, it suffices to show that

lim
q→0

1
q

log
(
(1− q2)∏r

s=1(1− q2s)3
)
= 0.

So it is done when we prove for all s > 1:

lim
q→0

1
q

log(1− q2s) = 0.

This is clear, since lim
q→0

1
q2s log(1− q2s) = −1 for all s > 1.

We have not been able to prove a similar result for S+
N , since by Theorem 4.10

of [4], CN → +∞ as N → +∞.

3. FURTHER PROPERTIES OF THE SEMIGROUPS

We will note Pol(G)+ the subset of Pol(G) consisting of all such x such that
|x| = x.

3.1. SPECTRAL GAP.

DEFINITION 3.1. We say that Tt verifies a spectral gap inequality with con-
stant m > 0 if we have for all x ∈ Pol(G)+,

m‖x− h(x)‖2
2 6 −h(xTLx).

PROPOSITION 3.2. Our semigroup TO
t on O+

N verifies the spectral gap inequality
with constant m = 1

N .

Proof. The eigenvalues of the generator TL are of the form

λs = −
U′s(N)

Us(N)
= −

s

∑
i=1

1
N − xi

,

and we have shown that λs > s
N for N > 2.

Let us now write x = ∑
s

xs. We then get

h(xTLx) = ∑
s
−U′s(N)

Us(N)
‖xs‖2

2.

Using the fact that the Vs are in orthogonal direct sum, we deduce that −h(xTLx)
> 1

N ‖x‖2
2. But, we also see that ‖x− h(x)‖2 6 ‖x‖2 and thus we finally get

‖x− h(x)‖2
2 6 −Nh(xTLx).

We can prove the following in the same way.
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PROPOSITION 3.3. Our semigroup TS
t on S+

N verifies the spectral gap inequality
with constant m = 1

N .

3.2. LOGARITHMIC SOBOLEV INEQUALITIES. Hypercontractivity is equivalent to
logarithmic Sobolev inequalities, or, shorter, log-Sobolev inequalities, see, e.g.,
[11] or Theorem 3.8 of [15]. We derive here a log-Sobolev inequality for the gener-
ators of our heat semigroups. There is nothing new in this subsection, we include
it only for comparison.

PROPOSITION 3.4. There exists a constant t0 > 0, such that, if we denote q(t) =
4

2−t/t0
, we then have for 0 6 t 6 t0, and where G = O+

N or S+
N ,

‖TG
t : L2 → Lq(t)‖ 6 1.

Proof. We take for t0 the optimal time for hypercontractivity Tt : L2 → L4,
then we have q(t0) = 4, and T0 = Id : L2 → L2 and Tt0 : L2 → L4 are contractions.
The proposition therefore follows by Stein interpolation.

THEOREM 3.5. For x ∈ L∞(G)+ ∩ D(TG
L ) and with the same assumptions as in

Proposition 3.4, we have the following inequality, where c = t0
2 ,

h(x2 log x)− ‖x‖2
2 log ‖x‖2 6 − c

2
h(xTLx).

Proof. We define F(t) = ‖xt‖q(t), where we note xt = Ttx. Because of Propo-
sition 3.4, we know that log F(t) 6 log F(0). Hence

d
dt

log F(t)|t=0 6 0.

As in Lemma 3.7 of [15] this term is given by

d
dt

log ‖xt‖q =
d
dt

(1
q

log ‖xt‖q
q

)
= − q̇

q
log ‖xt‖q +

1
q‖xt‖q

q

d
dt
‖xt‖q

q

= − q̇
q

log ‖xt‖q +
1

q‖xt‖q
q
(qh(xq−1

t TL(xT)) + q̇h(xq
t log(xt))).

From this we obtain the desired inequality, because q(0) = 2, q̇(0) = 2
t0

.

4. CONCLUSION

We have studied in this paper two Markov semigroups, one on O+
N and the

other on S+
N , which could be candidates for a Brownian motion on these quantum

groups. We have shown that these semigroups are hypercontractive and satisfy
log-Sobolev inequalities.

Several natural questions are: What can be said about other semigroups on
O+

N or S+
N? What are the optimal times for hypercontractivity? What happens on

other quantum groups, e.g. SUq(2), which are not Kac-type?
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