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ABSTRACT. Let A and B be positive semidefinite matrices. It is shown that
|Tr(AwBz A1−wB1−z)| 6 Tr(AB) for all complex numbers w, z for which |Re w
− 1

2 | + |Re z − 1
2 | 6

1
2 . This is a generalization of a trace inequality due to

T. Ando, F. Hiai, and K. Okubo for the special case when w, z are real num-
bers, and a recent trace inequality proved by T. Bottazzi, R. Elencwajg, G.
Larotonda, and A. Varela when w = z with 1

4 6 Re z 6 3
4 .

As a consequence of our new trace inequality, we prove that ‖AwBz +
B1−z A1−w‖2 6 ‖AwBz + A1−wB1−z‖2 for all complex numbers w, z for which
|Re w− 1

2 |+ |Re z− 1
2 | 6

1
2 . This is a generalization of a recent norm inequal-

ity proved by M. Hayajneh, S. Hayajneh, and F. Kittaneh when w, z are real
numbers.

KEYWORDS: Unitarily invariant norm, Hilbert–Schmidt norm, Schatten p-norm,
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1. INTRODUCTION

In their investigation of trace inequalities for multiple products of powers
of two matrices, T. Ando, F. Hiai, and K. Okubo [1] proved that

| tr(AµBν A1−µB1−ν)| 6 tr(AB),(1.1)

where A, B are positive semidefinite matrices and µ, ν are positive real numbers
for which ∣∣∣µ− 1

2

∣∣∣+ ∣∣∣ν− 1
2

∣∣∣ 6 1
2

.(1.2)

In this paper, using complex interpolation related to the Hadamard three
lines theorem, we generalize the inequality (1.1) by proving that the inequality

| tr(AwBz A1−wB1−z)| 6 tr(AB)(1.3)
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holds for all complex numbers w, z for which∣∣∣Re w− 1
2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2

.(1.4)

This generalization gives a new way of proving the Ando–Hiai–Okubo trace in-
equality [1] without using the method of log majorization and the technique of
antisymmetric tensor products.

A special case of the inequality (1.3) when w = z is the inequality

| tr(AzBz A1−zB1−z)| 6 tr(AB).(1.5)

Recently, T. Bottazzi et al. [5] proved the inequality (1.5) under the condition that

1
4
6 Re z 6

3
4

.(1.6)

It is important to see that the inequality (1.3) under the condition (1.4) is a gener-
alization of the inequality (1.5) under the condition (1.6).

This type of trace inequalities has many applications in the spectra of func-
tional calculus of matrices and operators, including a question of J.C. Bourin and
a conjecture posed by S. Hayajneh and F. Kittaneh.

In [7], and in his work on subadditivity of concave functions of positive
semidefinite matrices, J.C. Bourin asked whether the unitarily invariant norm in-
equality

‖|ApBq + Bp Aq|‖ 6 ‖|Ap+q + Bp+q|‖

holds true for any positive semidefinite matrices A, B and any positive real num-
bers p, q. The related well-known Heinz inequality says that

‖|ApBq + AqBp|‖ 6 ‖|Ap+q + Bp+q|‖.

For an equivalent version and a generalization of this inequality, we refer to p. 265
of [4].

In a recent paper [9], and in their investigations of the Lieb–Thirring trace
inequalities, and in their attempt to answer Bourin’s question, S. Hayajneh and
F. Kittaneh proposed the following conjecture for commuting positive semidefi-
nite matrices.

CONJECTURE 1.1. Let A1, A2, B1, B2 be positive semidefinite matrices such that
A1B1 = B1 A1 and A2B2 = B2 A2. Then, for every unitarily invariant norm,

‖|A1B2 + A2B1|‖ 6 ‖|A1B2 + B1 A2|‖.(1.7)

An important special case of the inequality (1.7) is the inequality

‖|AsBp + Bq At|‖ 6 ‖|AsBp + AtBq|‖,

where A, B are positive semidefinite matrices and s, t, p, q are positive real num-
bers. Replacing A and B by A1/(s+t) and B1/(p+q), we see that this inequality is
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equivalent to saying

‖|AµBν + B1−ν A1−µ|‖ 6 ‖|AµBν + A1−µB1−ν|‖,(1.8)

for µ, ν ∈ [0, 1].
The Hilbert–Schmidt norm version of (1.8) is the inequality

‖AµBν + B1−ν A1−µ‖2 6 ‖AµBν + A1−µB1−ν‖2.(1.9)

Recently, M. Hayajneh, S. Hayajneh, and F. Kittaneh [8] proved the inequality
(1.9) under the condition (1.2). A special case of the inequality (1.9) when ν =
1− µ is the inequality

‖AµB1−µ + Bµ A1−µ‖2 6 ‖AµB1−µ + A1−µBµ‖2.(1.10)

In [3], R. Bhatia proved the inequality (1.10) under the condition

1
4
6 µ 6

3
4

,(1.11)

which is a significant improvement on a recent result of S. Hayajneh and F. Kit-
taneh [9], where they proved it only for certain special values of µ.

The following norm inequality is another special case of the inequality (1.9)
with µ = 1

2 :

‖A1/2Bν + B1−ν A1/2‖2 6 ‖A1/2Bν + A1/2B1−ν‖2.(1.12)

It has been pointed out to the authors by J.C. Bourin that the inequality (1.12) can
also be concluded from Theorem 2.2 in [6]. In [9], S. Hayajneh and F. Kittaneh
proved the inequality (1.12) using some number theory tools, and the proof goes
in an algorithmic way.

In Section 2, as an application of the inequality (1.3) under the condition
(1.4), we also generalize the inequality (1.9) to complex values under the condi-
tion (1.4). In fact, we prove that the inequality

‖AwBz + B1−z A1−w‖2 6 ‖AwBz + A1−wB1−z‖2(1.13)

holds for the complex numbers w, z under the condition (1.4).
It should be noted that the inequality (1.13) gives a partial answer of Con-

jecture 1.1 for the Hilbert–Schmidt norm with the matrices Aw, Bz, B1−z, A1−w,
which are not necessarily positive semidefinite matrices. So, it would be interest-
ing to find all such cases of commuting matrices for which the Hilbert–Schmidt
norm version of Conjecture 1.1 holds true when dropping the condition of posi-
tive semidefiniteness.

Bottazzi et al. [5] gave a counterexample to the following special case of the
inequality (1.7):

‖|AµB1−µ + Bµ A1−µ|‖ 6 ‖|AµB1−µ + A1−µBµ|‖,(1.14)

where 0 6 µ 6 1. They answered it in the negative for just the spectral (or the
usual operator) norm by giving a pair of positive semidefinite matrices such that
the claim does not hold. Though the inequality (1.14) is not true for the spectral



80 MOSTAFA HAYAJNEH, SAJA HAYAJNEH AND FUAD KITTANEH

norm, in view of the inequality (1.10), which is valid under the condition (1.11), it
would be interesting to discuss the inequality (1.14) for other unitarily invariant
norms like the Schatten p-norms.

2. MAIN RESULTS

We introduce some notations regarding vertical strips in the complex plane.
Let

S = {z ∈ C : 0 6 Re z 6 1}, S1 =
{

z ∈ C : 0 6 Re z 6
1
2

}
, and

S2 =
{

z ∈ C :
1
2
6 Re z 6 1

}
.

For 0 6 s 6 1, we define the following strips:

As =
{

z ∈ C :
1
2
− s 6 Re z 6

1
2
+ s
}
=
{

z ∈ C :
∣∣∣Re z− 1

2

∣∣∣ 6 s
}

and

Bs =
{

z ∈ C : s− 1
2
6 Re z 6

3
2
− s
}
=
{

z ∈ C :
∣∣∣Re z− 1

2

∣∣∣ 6 1− s
}

.

Recall that a norm ‖| · |‖ on the space of all complex square matrices of a
fixed order is called unitarily invariant if ‖|UXV|‖ = ‖|X|‖ for all X and for all
unitary matrices U, V. An important example of unitarily invariant norms is the
Schatten p-norm, denoted by ‖ · ‖p and defined for 1 6 p 6 ∞ as

‖X‖p = (tr |X|p)1/p,

where |X| = (X∗X)1/2. The values p = 1, p = 2, and p = ∞ correspond to the
trace norm, the Hilbert–Schmidt norm, and the spectral norm, respectively.

A basic property of unitarily invariant norms says that for any matrices
X, Y, Z, we have

‖|XYZ|‖ 6 ‖X‖∞‖|Y|‖‖Z‖∞(2.1)

(see, e.g., p. 94 of [4]).
The generalized Hölder inequality for the Schatten p-norm will be frequently

used in proving our main results. This inequality says that for any matrices
X, Y, Z and any real numbers p, q, r > 1 with 1

p + 1
q +

1
r = 1, we have

| tr(XYZ)| 6 ‖XYZ‖1 6 ‖X‖p‖Y‖q‖Z‖r.(2.2)

For more details about the inequality (2.2), see Theorem 2.8 of [12]. The following
lemma, taken from [5], is an immediate consequence of the famous Araki–Lieb–
Thirring trace inequality. For more information about this inequality, we refer
to [2].

LEMMA 2.1. Let A, B be positive semidefinite matrices, and let r > 2. Then

‖A1/rB1/r‖r 6 (tr(AB))1/r.
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The following lemma can be found in [10].

LEMMA 2.2. Let A, B be positive semidefinite matrices, and let X be any matrix.
Then, for 0 6 ν 6 1 and for every unitarily invariant norm,

‖|AνXB1−ν|‖ 6 ‖|AX|‖ν‖|XB|‖1−ν.

Another useful lemma for our purpose is the following.

LEMMA 2.3. Let A, B be positive semidefinite matrices, and let w, z ∈ C with
s = Re w and r = Re z. If 0 6 r, s 6 1, then

| tr(AwBz A1−wB1−z)| 6 min{‖A‖∞‖B‖1, ‖A‖1‖B‖∞}.
Proof. Without loss of generality, we may assume that A, B are invertible.

The general case follows by a continuity argument.
Let w = s + ix and z = r + iy with 0 6 r, s 6 1 and x, y ∈ R. Then

| tr(AwBz A1−wB1−z)|

6 ‖AwBz A1−wB1−z‖1 (by the inequality (2.2))

6 ‖Aw‖∞‖Bz A1−wB1−z‖1 (by the inequality (2.1))

= ‖As‖∞‖Br A1−wB1−r‖1 (since Aix and Biy are unitary)

6 ‖A‖s
∞‖BA1−w‖r

1‖A1−wB‖1−r
1 (by Lemma 2.2)

= ‖A‖s
∞‖BA1−s‖r

1‖A1−sB‖1−r
1

6 ‖A‖s
∞‖B‖r

1‖A1−s‖r
∞‖A1−s‖1−r

∞ ‖B‖1−r
1 (by the inequality (2.1))

= ‖A‖s
∞‖B‖r

1‖A‖(1−s)r
∞ ‖A‖(1−s)(1−r)

∞ ‖B‖1−r
1 = ‖A‖∞‖B‖1.

Similarly, it can be shown that

| tr(AwBz A1−wB1−z)| 6 ‖A‖1‖B‖∞.

Thus, | tr(AwBz A1−wB1−z)| 6 min{‖A‖∞‖B‖1, ‖A‖1‖B‖∞}.

Now, we are ready to state our first main result. In the proof of this result,
we use the Hadamard three lines theorem (see, e.g., p. 33 of [11] or p. 387 of [13]).

THEOREM 2.4. Let A, B be positive semidefinite matrices, and let w, z ∈ C with
s = Re w. Then the following hold:

(i) If w ∈ S1 and z ∈ As, then

| tr(AwBz A1−wB1−z)| 6 tr(AB).

(ii) If w ∈ S2 and z ∈ Bs, then

| tr(AwBz A1−wB1−z)| 6 tr(AB).

Proof. Without loss of generality, we may assume that A, B are invertible.
The general case follows by a continuity argument. To prove part (i), let w =

s + ix ∈ S1, x ∈ R. Then 0 6 s 6 1
2 .
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For z = 1
2 − s + iy, using the inequality (2.2) for the partition 1

p + 1
q + 1

r =

s + ( 1
2 − s) + 1

2 = 1 and noting that with p = 1
s , q = 1

1/2−s , r = 2 > 2, we have

| tr(AwBz A1−wB1−z)|

= | tr(As+ixB1/2−s+iy A1−s−ixB1/2+s−iy)|

= | tr(As AixBiyB1/2−s A1/2−s A−ix A1/2B1/2B−iyBs)|

= | tr(Bs As AixBiyB1/2−s A1/2−s A−ix A1/2B1/2B−iy)|

6 ‖Bs As AixBiyB1/2−s A1/2−s A−ix A1/2B1/2B−iy‖1

6 ‖Bs As Aix‖p‖BiyB1/2−s A1/2−s A−ix‖q‖A1/2B1/2B−iy‖r

= ‖Bs As‖p‖B1/2−s A1/2−s‖q‖A1/2B1/2‖r (since Aix and Biy are unitary)

6 (tr(AB))s+(1/2−s)+1/2 (by Lemma 2.1)

= tr(AB).

For z = 1
2 + s + iy, using the inequality (2.2) for the partition 1

p + 1
q + 1

r =

s + 1
2 + ( 1

2 − s) = 1 and noting that with p = 1
s , q = 2, r = 1

1/2−s > 2, we have

| tr(AwBz A1−wB1−z)|

= | tr(As+ixB1/2+s+iy A1−s−ixB1/2−s−iy)|

= | tr(Aix AsBsBiyB1/2 A1/2 A−ix A1/2−sB1/2−sB−iy)|

6 ‖Aix AsBsBiyB1/2 A1/2 A−ix A1/2−sB1/2−sB−iy‖1

6 ‖Aix AsBsBiy‖p‖B1/2 A1/2 A−ix‖q‖A1/2−sB1/2−sB−iy‖r

= ‖AsBs‖p‖B1/2 A1/2‖q‖A1/2−sB1/2−s‖r (since Aix and Biy are unitary)

6 (tr(AB))s+1/2+(1/2−s) (by Lemma 2.1)

= tr(AB).

Since for a positive invertible matrix X, the matrix-valued function ψ(z) =

Xz =exp(z ln X)=
∞
∑

k=0

zk(ln X)k

k! is entire, it follows that the complex-valued function

ϕ(z) = tr(AwBz A1−wB1−z)

is entire. Moreover, by Lemma 2.3, the function is bounded on the vertical strip
0 6 Re z 6 1. Since [ 1

2 − s, 1
2 + s] ⊆ [0, 1], it follows that the function is bounded

on the vertical strip 1
2 − s 6 Re z 6 1

2 + s. Since |ϕ(z)| 6 tr(AB) on the edges
Re z = 1

2 − s and Re z = 1
2 + s, it follows by the Hadamard three lines theorem

that |ϕ(z)| 6 tr(AB) for all z in the vertical strip 1
2 − s 6 Re z 6 1

2 + s. This proves
part (i).

To prove part (ii), let w = s + ix ∈ S2, x ∈ R. Then 1
2 6 s 6 1.
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For z = s− 1
2 + iy, using the inequality (2.2) for the partition 1

p + 1
q + 1

r =

(s− 1
2 ) + (1− s) + 1

2 = 1 and noting that with p = 1
s−1/2 , q = 1

1−s , r = 2 > 2, we
have

|tr(AwBz A1−wB1−z)|= | tr(As+ixBs−1/2+iy A1−s−ixB3/2−s−iy)|

= | tr(As AixBs−1/2Biy A1−s A−ixB3/2−sB−iy)|

= | tr(Aix As−1/2Bs−1/2Biy A−ix A1−sB1−sB−iyB1/2 A1/2)|

6‖Aix As−1/2Bs−1/2Biy A−ix A1−sB1−sB−iyB1/2 A1/2‖1

6‖Aix As−1/2Bs−1/2Biy‖p‖A−ix A1−sB1−sB−iy‖q‖B1/2 A1/2‖r

=‖As−1/2Bs−1/2‖p‖A1−sB1−s‖q‖B1/2 A1/2‖r

6 (tr(AB))(s−1/2)+(1−s)+ 1
2 (by Lemma 2.1)

= tr(AB).

For z = 3
2 − s + iy, using the inequality (2.2) for the partition 1

p + 1
q + 1

r =
1
2 + (1− s) + (s− 1

2 ) = 1 and noting that with p = 2, q = 1
1−s , r = 1

s−1/2 > 2, we
have

| tr(AwBz A1−wB1−z)|

= | tr(As+ixB3/2−s+iy A1−s−ixB−1/2+s−iy)|

= | tr(As AixB3/2−sBiy A1−s A−ixBs−1/2B−iy)|

= | tr(Aix A1/2B1/2BiyB1−s A1−s A−ixB−iyBs−1/2 As−1/2)|

6 ‖Aix A1/2B1/2BiyB1−s A1−s A−ixB−iyBs−1/2 As−1/2‖1

6 ‖Aix A1/2B1/2Biy‖p‖B1−s A1−s A−ix‖q‖B−iyBs−1/2 As−1/2‖r

= ‖A1/2B1/2‖p‖B1−s A1−s‖q‖Bs−1/2 As−1/2‖r (since Aix and Biy are unitary)

6 (tr(AB))1/2+(1−s)+(s−1/2) (by Lemma 2.1)

= tr(AB).

By Lemma 2.3, the function

ϕ(z) = tr(AwBz A1−wB1−z)

is bounded on the vertical strip 0 6 Re z 6 1. Since [s − 1
2 , 3

2 − s] ⊆ [0, 1], it
follows that the function is bounded on the vertical strip s− 1

2 6 Re z 6 3
2 − s.

Since |ϕ(z)| 6 tr(AB) on the edges Re z = s− 1
2 and Re z = 3

2 − s, it follows by
the Hadamard three lines theorem that |ϕ(z)| 6 tr(AB) for all z in the vertical
strip s− 1

2 6 Re z 6 3
2 − s. This proves part (ii).

To understand the conditions related to the strips given in Theorem 2.4 in a
more clear way, we need the following lemma.
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LEMMA 2.5. Let w, z be complex numbers with s = Re w. Then∣∣∣Re w− 1
2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2
⇐⇒ (w ∈ S1 and z ∈ As) or (w ∈ S2 and z ∈ Bs).

Proof. (=⇒) Suppose that |Re w− 1
2 |+ |Re z− 1

2 | 6
1
2 . Then |Re w− 1

2 | 6
1
2 .

Therefore, 0 6 Re w 6 1, and so we have the following two cases.
Case 1. If w ∈ S1, then∣∣∣Re w− 1

2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2
⇐⇒ 1

2
− Re w +

∣∣∣Re z− 1
2

∣∣∣ 6 1
2

⇐⇒
∣∣∣Re z− 1

2

∣∣∣ 6 Re w

⇐⇒ z ∈ As.

Case 2. If w ∈ S2, then∣∣∣Re w− 1
2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2
⇐⇒ Re w− 1

2
+
∣∣∣Re z− 1

2

∣∣∣ 6 1
2

⇐⇒
∣∣∣Re z− 1

2

∣∣∣ 6 1− Re w

⇐⇒ z ∈ Bs.

(⇐=) Case 1. If w ∈ S1 and z ∈ As, then∣∣∣Re w− 1
2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ = 1
2
− Re w +

∣∣∣Re z− 1
2

∣∣∣ 6 1
2
− Re w + Re w =

1
2

.

Case 2. If w ∈ S2 and z ∈ Bs, then∣∣∣Re w− 1
2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ = Re w− 1
2
+
∣∣∣Re z− 1

2

∣∣∣ 6 Re w− 1
2
+ 1− Re w =

1
2

.

This completes the proof.

Now, using Lemma 2.5 and Theorem 2.4, we have the following corollary,
which is a generalization of the Ando–Hiai–Okubo trace inequality [1].

COROLLARY 2.6. Let A, B be positive semidefinite matrices, and let w, z be com-
plex numbers such that ∣∣∣Re w− 1

2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2

.

Then

| tr(AwBz A1−wB1−z)| 6 tr(AB).

As an application of Corollary 2.6, we obtain our second main result, which
is a generalization of the norm inequality (1.9), under the condition (1.2), to com-
plex values.
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THEOREM 2.7. Let A, B be positive semidefinite matrices, and let w, z be complex
numbers such that ∣∣∣Re w− 1

2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2

.(2.3)

Then

‖AwBz + B1−z A1−w‖2 6 ‖AwBz + A1−wB1−z‖2.(2.4)

Proof. We can see that the square of the left-hand side of the inequality (2.4)
is equal to

tr(Aw+wBz+z + Bz AwB1−z A1−w + A1−wB1−z AwBz + A2−(w+w)B2−(z+z))

and the square of the right-hand side is equal to

tr(Aw+wBz+z + 2AB + A2−(w+w)B2−(z+z)).

Here, we have used the fact that for all matrices X, Y, ‖X‖2 = (tr X∗X)1/2 and
the cyclicity of the trace, i.e., tr XY = tr YX.

Therefore, the inequality (2.4) is equivalent to the statement

Re tr(AwBz A1−wB1−z) 6 tr(AB).(2.5)

By Corollary 2.6 and the fact that for every matrix X, Re tr X 6 | tr X|, the
inequality (2.5) holds provided∣∣∣Re w− 1

2

∣∣∣+ ∣∣∣Re z− 1
2

∣∣∣ 6 1
2

.

Hence, the inequality (2.4) is valid under the condition (2.3).
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