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CONTRACTIVE BARYCENTRIC MAPS
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ABSTRACT. We first develop in the context of complete metric spaces a one-
to-one correspondence between the class of means G = {Gn}n>2 that are
symmetric, multiplicative, and contractive and the class of contractive (with
respect to the Wasserstein metric) barycentric maps on the space of L1-prob-
ability measures. We apply this equivalence to the recently introduced and
studied Karcher mean on the open cone P of positive invertible operators on
a Hilbert space equipped with the Thompson metric to obtain a correspond-
ing contractive barycentric map. In this context we derive a version of earlier
results of Sturm and Lim and Palfia about approximating the Karcher mean
with the more constructive inductive mean. This leads to the conclusion that
the Karcher barycenter lies in the strong closure of the convex hull of the sup-
port of a probability measure. This fact is a crucial ingredient in deriving a
version of Jensen’s inequality, with which we close.
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INTRODUCTION

In [28] K.-T. Sturm develops a theory of barycenters of probability measures
for metric spaces of nonpositive curvature, particularly that class of metric spaces
known as CAT(0)-spaces or alternatively Hadamard spaces. For these spaces one
has available a method for “averaging” a finite set of points, or more generally
finding the barycenter of a probability measure, via an approach stretching back
to Cartan by finding the point that minimizes the sum or integral of the distances
squared to the point. A particularly important example of a Hadamard space is
the open cone of positive definite matrices equipped with the trace metric. Since
this cone forms a Hadamard space, one can use the least squares mean for av-
eraging, which can be useful in a variety of applications where positive definite
matrices appear as “data points”.
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Our main goal in this paper is to extend this theory to the integrable mea-
sures on the open cone of positive operators on an arbitrary Hilbert space. The
appropriate metric to consider in this case is the Thompson metric, but for this
metric one no longer has unique minimizers. However, in this setting the Karcher
equation, which in the finite-dimensional case captures the fact that the gradient
of the least squares mapping vanishes, still has a unique solution that defines a
mean retaining most of the properties of the Cartan mean [22], [23]. We develop in
Section 3 general methods of extending means to barycentric maps on measures,
which apply in the setting of the open cone of positive operators (Section 5). We
suggest that the method we introduce of obtaining barycentric maps via means
or finitely supported measures is a useful technique in a much broader range of
settings.

Sturm [28] uses an approximation of the least squares or Cartan mean via
the inductive mean, a mean built up inductively and constructively from the
two-variable mean, to drive his development of the theory of the least squares
barycenter. We show, using a key result of Lim and Palfia [25], that one can do a
similar approximation in the strong topology for the Karcher mean (Section 6). To
demonstrate the usefulness of this result we derive some results about convexity
and the Karcher mean with the main application being a derivation of a version
of Jensen’s inequality in this setting.

A key distinctive feature of our considerations is the fact that although the
open cone of positive operators equipped with the Thompson metric is a geodesic
metric space, the geodesics are no longer unique. Our approach is to identify for
each pair of points a distinguished geodesic between the points and work with
this family of geodesics. We think that this setting, metric spaces with distin-
guished geodesics, is important to consider, because it is often the situation one
encounters in the infinite-dimensional setting.

1. METRIC SPACES

A path in a metric space (X, d) is a continuous map α : I → X, where I =
[a, b] is some closed interval in R. Given any partition of a = t0 < t1 < · · · <
tn = b of [a, b], one can form the sum

n
∑

k=1
d(α(tk−1), α(tk)), and the length L(α)

is the supremum of such sums over all partitions of [a, b]. The path α is called a
geodesic path if L(α|[c,d]) = d(α(c), α(d)) for all subintervals [c, d] of I. From the
triangle inequality geodesics are paths of minimal length, namely the distance
d(α(a), α(b)). Any geodesic path can be reparametrized by arc length, and the
resulting parametrization is an isometry. The image of a geodesic path is called a
geodesic segment. We note that one can define geodesic paths and segments more
generally that satisfy locally the preceding conditions, in which case what we
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have defined are then called minimal geodesic paths and segments, but we will
have no need of the more general notion.

The space X is called a geodesic space if for any two points x, y ∈ X, there
exists a geodesic path α defined on some interval I = [a, b] such that α(a) = x and
α(b) = y. In general one may have a myriad of geodesic segments between two
points. A geodesic selector σ chooses for each (x, y) a geodesic path σx,y : [0, 1]→ X
such that σx,y(0) = x and σx,y(1) = y. We alternatively write σx,y(t) as x#ty and
σx,y(1/2), a midpoint, simply as x#y. A geodesic metric space equipped with a
geodesic selector is called a distinguished geodesic space. A selector is said to be
symmetric if for all (x, y), σx,y(t) = σy,x(1− t), i.e., x#ty = y#1−tx. In particular
x#y = y#x in this case.

Of course the important case in which a geodesic space has a unique geo-
desic segment between any two points is an example of a distinguished geodesic
space. An important specific example is that of Hadamard spaces, complete metric
spaces satisfying for all x, y, z the semiparallelogram law

d2(x, y) 6
1
2

d2(x, z) +
1
2

d2(y, z)− 1
4

d2(x#y, z),

where x#y is the midpoint, necessarily unique, between x and y. In the litera-
ture these are often referred to as (global) CAT(0)-spaces or spaces of nonpositive
curvature (NPC), see K.-T. Sturm [28] for the latter terminology.

For a metric space X, let B(X) be the algebra of Borel sets, the smallest σ-
algebra containing the open sets. Let P(X) be the set of all probability measures
on (X,B(X)) with support that is separable and has measure 1 and P0(X) the set

of all µ ∈ P(X) of the form µ = (1/n)
n
∑

j=1
δxj with n ∈ N, where δx is the point

measure of mass 1 at x.

REMARK 1.1. It is known, apparently not widely so, that in any metric space
X the support of a Borel probability measure, the points for which each neighbor-
hood has positive measure, is separable. Additionally the support has measure 1
if the metric space is separable, but for general metric spaces one needs to require
that this be true.

For p ∈ [1, ∞) let P p(X) ⊆ P(X) be the set of probability measures µ with
finite p-moment: for some (and hence all) x ∈ X,∫

X

dp(x, y)dµ(y) < ∞.

For p = ∞, P∞(X) denotes the set of probability measures with bounded sepa-
rable support.

For metric spaces X and Y, a continuous f : X → Y induces a push-forward
map f∗ : P(X) → P(Y) defined by f∗(µ)(B) = µ( f−1(B)) for µ ∈ P(X) and
B ∈ B(Y). Note that supp( f∗(µ)) = f (supp(µ))−, the closure of the image of the
support of µ; in particular f∗(µ) has separable support.
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We say that ω ∈ P(X × X) is a coupling for µ, ν ∈ P(X) and that µ, ν are
marginals for ω if for all B ∈ B(X)

ω(B× X) = µ(B) and ω(X× B) = ν(B).

Equivalently µ and ν are the push-forwards of ω under the projection maps π1
and π2 respectively. We note that one such coupling is the product measure µ×
ν, and that for any coupling ω it must be the case that supp(ω) ⊆ supp(µ) ×
supp(ν). We denote the set of all couplings by Π(µ, ν).

For 1 6 p < ∞, the p-Wasserstein distance wp (alternatively Kantorovich–
Rubinstein distance) on P p(X) is defined by

wp(µ1, µ2) :=
(

inf
π∈Π(µ1,µ2)

∫
X×X

dp(x, y)dπ(x, y)
)1/p

.

It is known that wp is a complete metric on P p(X) whenever X is a complete
metric space and P0(X) is wp-dense in P p(X) [5], [28]. Furthermore, it follows
from the Hölder inequality that wp 6 wp′ whenever p 6 p′. The last observa-
tion makes possible the definition of w∞(µ1, µ2) = lim

p→∞
wp(µ1, µ2) on P∞(X).

The limit is finite on the bounded measures and yields a complete metric space.
Alternatively the ∞-metric is given by

(1.1) w∞(µ, ν) = inf
π∈Π(µ,ν)

sup{d(x, y) : (x, y) ∈ supp(π)}.

For the following see the introduction of [30], also [4], [6], [26].

EXAMPLE 1.2. For µ = (1/n)
n
∑

j=1
δxj , ν = (1/n)

n
∑

j=1
δyj , and 1 6 p < ∞

wp(µ, ν) = min
σ∈Sn

( 1
n

n

∑
j=1

dp(xj, yσ(j))
)1/p

where Sn denotes the permutation group on n-letters. For the case p = ∞,

w∞(µ, ν) = min
σ∈Sn

max{d(xj, yσ(j)) : 1 6 j 6 n}.

LEMMA 1.3. Let f : X → Y be a Lipschitz map with Lipschitz constant C. Then
f∗ : P p(X)→ P p(Y) is Lipschitz with Lipschitz constant C for 1 6 p 6 ∞.

Proof. We note first that for any coupling π of µ, ν ∈ P , it is straightforward
to verify that ( f × f )∗(π) is a coupling of f∗(µ), f∗(ν) ∈ P(Y). Using a standard
change of variables, we have for µ, ν ∈ P p(X), 1 6 p < ∞,

w
p
p( f∗(µ), f∗(ν)) = inf

π∈Π( f∗(µ), f∗(ν))

∫
Y×Y

dp(y1, y2)dπ

6 inf
π∈Π(µ,ν)

∫
Y×Y

dp(y1, y2)d( f × f )∗(π)
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= inf
π∈Π(µ,ν)

∫
X×X

dp( f (x1), f (x2))dπ

6 inf
π∈Π(µ,ν)

∫
X×X

Cpdp(x1, x2)dπ = Cpw
p
p(µ, ν).

Taking the p-th root of both sides yields the desired result. For p = ∞ the lemma
follows directly from equation (1.1).

2. CONTRACTIVE MEANS AND BARYCENTERS

Throughout this section let (X, d) be a complete metric space. An n-mean Gn
on X for n > 2 is a continuous map Gn : Xn → X that is idempotent in the sense
that Gn(x, . . . , x) = x for all x ∈ X. An n-mean Gn is symmetric or permutation
invariant if Gn(xσ) = Gn(x), where xσ = (xσ(1), . . . , xσ(n)) for each permuation
σ of {1, . . . , n}. A (symmetric) mean G on X is a sequence of means {Gn}, one
(symmetric) mean for each n > 2.

For x = (x1, . . . , xn) ∈ Xn, we let

xk = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn) ∈ Xnk,

where the number of blocks is k. We define the carrier S(x) of x to be the set of
entries in x, i.e., the smallest finite subset F such that x ∈ Fn. We set [x] equal
to the equivalence class of all n-tuples obtained by permuting the coordinates of
x = (x1, . . . , xn). Note that the operation [x]k = [xk] is well-defined and that all
members of [x] all have the same carrier set S(x).

A tuple x = (x1, . . . , xn) ∈ Xn induces a finitely supported probability mea-

sure µ on S(x) by µ =
n
∑

i=1
(1/n)δxi , where δxi is the point measure of mass 1 at xi.

Since the tuple may contain repetitions of some of its entries, each singleton set
{x} for x ∈ {x1, . . . , xn} will have measure k/n, where k is the number of times
that it appears in the listing x1, . . . , xn. Note that every member of [x] induces the
same finitely supported probability measure.

LEMMA 2.1. For each probability measure µ on X with finite support F for which
µ(x)(= µ({x})) is rational for each x ∈ F, there exists a unique [x] inducing µ such
that any [y] inducing µ is equal to [x]k for some k > 1.

Proof. For each x ∈ F, µ(x) is a positive rational number, which we may
assume is reduced to lowest terms. Let n be the least common multiple of the
denominators of µ(x) for x ∈ F, and let µ(x) = kx/n for each x ∈ F. Let x ∈ Fn

be chosen so that each x ∈ F appears kx times in x. Then [x] induces µ.
Suppose that y ∈ Fm induces µ. If jx is the number of times that x ∈ F,

appears in y, then it must be the case the jx/m = µ(x) = kx/n. Thus m is a
common multiple of the reduced denominators of the µ(x), x ∈ F, and hence a
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multiple of the least common multiple n, i.e., m = qn. It follows that jx = qkx for
each x ∈ F, and hence that [x]q = [y].

DEFINITION 2.2. A mean G = {Gn} on X is said to be multiplicative if for all
n, k > 2 and all x = (x1, . . . , xn) ∈ Xn,

Gn(x) = Gnk(x
k).

If G is also symmetric, then G is called intrinsic.

We have the following corollary to Lemma 2.1.

COROLLARY 2.3. Let G be an intrinsic mean. Then for any finitely supported
probability measure µ with support F and taking on rational values, we may define
G(µ) = Gn(x), for any x ∈ Fn that induces µ.

Proof. By Lemma 2.1 such x exist and any such will yield the same result
since G is intrinsic.

The following notion of what we call a contractive mean has appeared in
other work; see e.g. [17].

DEFINITION 2.4. An n-mean Gn : Xn → X is said to be p-contractive for
p ∈ [1, ∞) if

(2.1) d(Gn(x), Gn(y)) 6
( 1

n

n

∑
j=1

dp(xj, yj)
)1/p

=
1

n1/p

( n

∑
j=1

dp(xj, yj)
)1/p

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn. The special case p = 1 we refer to
simply as a contractive n-mean:

d(Gn(x), Gn(y)) 6
1
n

n

∑
j=1

d(xj, yj).

The limiting case of p-contractivity for p = ∞ is given by

d(Gn(x), Gn(y)) 6 max{d(xi, yi) : 1 6 i 6 n} = lim
p→∞

( 1
n

n

∑
j=1

dp(xj, yj)
)1/p

.

A mean G = {Gn} is p-contractive for p ∈ [1, ∞] if each Gn is p-contractive.

We observe that our notion of a contractive mean implies that it is strictly
contractive coordinatewise. Indeed Gn is p-contractive, 1 6 p < ∞, if and only if
it is coordinatewise (1/n1/p)-contractive: for all x, y, aj ∈ X and j = 1, . . . , n:

d(Gn(a1, . . . , aj−1, x, aj+1, . . . , an), Gn(a1, . . . , aj−1, y, aj+1, . . . , an)) 6
1

n1/p d(x, y).

REMARK 2.5. Recall that for a1, . . . , an > 0, the power means are defined for
1 6 p < ∞ by

Mp(a1, . . . , an) =
( 1

n

n

∑
j=1

ap
i

)1/p
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and for p = ∞ byM∞(a1, . . . an) = max{ai : 1 6 i 6 n}. In terms of these means
the definition of a p-contractive mean Gn : Xn → X can be rewritten as

d(Gn(x), Gn(y)) 6Mp(d(x1, y1), . . . , d(xn, yn)).

We find this a useful alternative notation.

We generalize the notion of Sturm [28] of a contractive barycentric map on
the set of probability measures of finite first moment on a complete metric space.

DEFINITION 2.6. A barycentric map β : P p(X)→ X is p-contractive if
(i) β(δx) = x for all x;

(ii) d(β(µ1), β(µ2)) 6 wp(µ1, µ2) for all µ1, µ2 ∈ P p(X).

A complete metric space having a contractive barycentric map must be a
geodesic metric space [28]. Indeed it is naturally a distinguished geodesic space
with distinguished geodesics for x, y ∈ X given by t 7→ x#ty := β((1− t)δx + tδy),
a geodesic from x to y. Moreover, β((1/2)δx + (1/2)δy) is a midpoint between
x and y and the distance function t 7→ d(x#ty, a#tb) is convex. Sturm [28] has
established an empirical law of large numbers from a contractive barycentric map
on a complete metric space via “barycentric mean values”.

A fundamental relationship exists between contractive intrinsic means and
barycentric maps, as worked out in the following.

PROPOSITION 2.7. In a complete metric space (X, d) for 1 6 p < ∞, there is a
bijective correspondence Φ between the set of p-contractive intrinsic means G on X and
the set of p-contractive barycentric maps β on P p(X). The correspondence Φ is uniquely
determined by the requirement that Φ(G) = β precisely when for all (x1, . . . , xn) ∈ Xn

Gn(x1, . . . , xn) = β
(
(1/n)

n
∑

j=1
δxj

)
. The result remains valid for p = ∞ if one restricts

to the domain of β to Pcpt(X), the space of Borel measures with compact support.

Proof. Let G = {Gn} be a p-contractive and intrinsic mean for 1 6 p <

∞. Let µ = (1/k)
k
∑

i=1
δxi , ν = (1/m)

m
∑

i=1
δyi ∈ P0(X) and correspondingly let

x = (x1, . . . , xk) ∈ Xk and y = (y1, . . . , ym) ∈ Xm. Then xm, yk ∈ Xmk, Gk(x) =
Gkm(xm) and Gm(y) = Gmk(yk) since G is intrinsic, and by Lemma 2.1 xm induces
µ and yk induces ν. Let n = km. Then by (2.1), Example 1.2, and the symmetric
property

d(Gk(x), Gm(y))=d(Gn(xm), Gn(yk))6min
σ∈Sn

( 1
n

n

∑
j=1

dp(xj, yσ(j))
)1/p

=wp(µ, ν).

By density of P0(X) in P p(X) and completeness of (X, d), the contractive map

(1/n)
n
∑

j=1
δxj 7→ Gn(x1, . . . , xn) extends uniquely to a map βG : P p(X)→ X which

satisfies (ii) of Definition 2.6.
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Conversely, let β : P p(X) → X be a p-contractive barycentric map. Then

the mean G = {Gn} defined by Gn : Xn → X, Gn(x) := β
(
(1/n)

n
∑

j=1
δxj

)
is a

p-contractive intrinsic mean.
Similarly for p = ∞

d(Gn(x), Gn(y)) 6 min
σ∈Sn

max{d(xj, yσ(j) : 1 6 j 6 n} = w∞(µ, ν).

However, P0(X) need not, in general, be dense inP∞(X), but is dense inPcpt(X),
in which case the previous proof goes through for p = ∞.

REMARK 2.8. A metric space is sometimes called proper if bounded and
closed sets are compact. Such metric spaces are complete and Pcpt(X) = P∞(X),
so in this setting the preceding proposition holds for the case p = ∞.

EXAMPLE 2.9. We consider the arithmetic mean A = {An} on a Banach

space E defined by An(x1, . . . , xn) = (1/n)
n
∑

i=1
xi. It is easily checked to be sym-

metric and multiplicative, i.e., intrinsic. To see that A is contractive we compute
with the help of the triangle inequality for x = (x1, . . . , xn) and y = (y1, . . . , yn)
in En,

d(An(x), An(y)) =
∥∥∥ 1

n

n

∑
i=1

xi −
1
n

n

∑
i=1

yi

∥∥∥ 6 1
n

n

∑
i=1
‖xi − yi‖ =

1
n

n

∑
i=1

d(xi, yi).

Hence A extends to a contractive barycentric map βA : P1(E)→ E.

EXAMPLE 2.10. On a Hadamard space X the Cartan barycenter is a well-
known and classical notion of a barycenter [28]. The Cartan barycentric map carries
µ ∈ P1(X) to the unique point that minimizes (independently of y) the function

z 7→
∫
X

[d2(z, x)− d2(y, x)]dµ(x).

It is known that the Cartan barycentric map is contractive for the Wasserstein met-
ric w1, a property that has been called the fundamental contraction property ([28],
Theorem 6.3). By Proposition 2.7 the Cartan barycentric map is Φ(Λ), where Λ is
the least squares mean given by Λn(x1, . . . , xn) = x∗ if and only if x∗ is the unique

minimizer of the function x 7→
n
∑

i=1
d2(x, xi). In particular, we conclude that the

least squares mean on Hadamard spaces is contractive.

PROPOSITION 2.11. Let X and Y be complete metric spaces equipped with p-
contractive intrinsic means G and H respectively. Let Φ(G) = β : P p(X) → X
and Φ(H) = θ : P p(Y) → Y be the corresponding contractive barycentric maps. Then
X × Y equipped with the product mean G× H = {Gn × Hn}, which is intrinsic, may
be equipped with a complete metric generating the product topology such that G × H
is p-contractive and the projection maps X × Y → X and X × Y → Y are Lipschitz
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continuous. For any metric on X × Y satisfying these two conditions, the contractive
barycentric map Φ(G× H) : P p(X×Y)→ X×Y is given by ω 7→ (β(ωX), θ(ωY)),
where ωX , respectively ωY is the X-marginal, respectively Y-marginal of ω.

Proof. The fact that G × H operates coordinatewise and that G and H are
intrinsic directly implies that G× H is intrinsic. Define a metric ρ on X×Y by

ρ((x1, y1), (x2, y2)) = (dp(x1, x2) + dp(y1, y2) )
1/p.

For (x1, . . . , xn), (u1, . . . , un) ∈ Xn and (y1, . . . , yn), (v1, . . . , vn) ∈ Yn

ρp(Gn × Hn((x1, y1), . . . , (xn, yn)), Gn × Hn((u1, v1), . . . , (un, vn)))

= ρp((Gn(x1, . . . , xn), Hn(y1, . . . , yn)), (Gn(u1, . . . , un), Hn(v1, . . . , vn)))

= dp(Gn(x1, . . . , xn), Gn(u1, . . . , un)) + dp(Hn(y1, . . . , yn), Hn(v1, . . . , vn))

6
n

∑
i=1

dp(xi, ui) +
n

∑
i=1

dp(yi, vi) =
n

∑
i=1

ρ((xi, yi), (ui, vi))
p,

which establishes that G×H is p-contractive. The projection maps πX : X×Y →
X and πY : X×Y → Y are clearly Lipschitz with Lipschitz constant 1.

For the last assertion, the fact that G × H is intrinsic and p-contractive im-
plies that a corresponding contractive barycentric map Φ(G×H) exists by Propo-
sition 2.7. Since

Φ(G× H)
( 1

n

n

∑
i=1

δ(xi ,yi)

)
= (Gn × Hn)((x1, y1), . . . , (xn, yn))

= (Gn(x1, . . . , xn), Hn(y1, . . . , yn))

=
(

β
( 1

n

n

∑
i=1

δxi

)
, θ
( 1

n

n

∑
i=1

δyi

))
,

Φ(G×H) agrees with ω 7→ (β(ωX), θ(ωY)) onP0(X×Y). Since πX : X×Y → X
is Lipschitz, by Lemma 1.3 the function (πX)∗ : P p(X× Y)→ P p(X) is continu-
ous. Since the first coordinate of ω 7→ (β(ωX), θ(ωY)) is equal to the composition
β(πX)∗, it is continuous and similarly the second coordinate is continuous. Since
P0(X × Y) is dense in P p(X × Y), there is at most one continuous extension, so
the two maps agree on all of P p(X×Y).

3. A CONSTRUCTION

In this section we consider a construction that under appropriate hypothe-
ses can convert a mean G that is not intrinsic into a mean G∗ that is intrinsic while
preserving the p-contractive property.

LEMMA 3.1. Let G= {Gn} be a mean on a metric space X such that for each x∈
Xn, n>2, the limit Gnk(xk) as k→∞ exists and is denoted by G∗n(x). Then G∗={G∗n}
is multiplicative, respectively symmetric, respectively p-contractive whenever G is.
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Proof. The multiplicative property of G∗ is immediate from

G∗nk(x
k) = lim

l→∞
Gnkl(x

kl) = G∗n(x).

If G is symmetric, then G∗n(xσ) = lim
k→∞

Gnk((xσ)k) = lim
k→∞

Gnk(xk) = G∗n(x) for all

permutations σ. From

d(G∗n(x), G∗n(y)) = lim
k→∞

d(Gnk(x
k), Gnk(y

k)) 6 lim
k→∞

( 1
nk

k

∑
i=1

n

∑
j=1

dp(xj, yj)
)1/p

=
( 1

n

n

∑
j=1

dp(xj, yj)
)1/p

,

each G∗n is p-contractive if G is.

There are two different motivations that might lead one to employ the pre-
ceding construction. The first is that one wants to use some useful approximation
to study some specific barycentric map. The prime example has been the approxi-
mation of the Cartan barycentric map of Example 2.10 with what Sturm [28] calls
the inductive mean. We recall that in a metric space (X, d) equipped with dis-
tinguished geodesics, the inductive mean S is defined inductively by S1(a1) = a1
and Sk(a1, . . . , ak) = Sk−1(x1, . . . , xk−1)#1/kxk. In [28] Sturm showed that in a
Hadamard space the Cartan barycentric map and related least squares mean
could be approximated almost everywhere (in an appropriate sense) as a limit
of the inductive mean. Lim and Palfia [25] showed that for the case of n points
the least squares mean could be approximated deterministically by the inductive
mean. We recall a slightly recast and simplified version of the main result of Lim
and Palfia.

THEOREM 3.2. Let x = (x1, . . . , xn) ∈ Xn, where X is a Hadamard space. Then
lim
k→∞

Skn(xk) = Λn(x), where S is the inductive mean and Λ the least squares mean.

This convergence takes place uniformly over all Hadamard spaces in the sense that for
each k

(3.1) d(Λ(x), Skn(x)) 6
4
k

∆2(x1, . . . , xn),

where ∆(x1, . . . , xn) is the diameter of the set {x1, . . . , xn}, the maximum distance be-
tween any pair of the points in the set.

The theorem shows that Λ = S∗ and thus, in particular, that S∗ exists. What
is a bit surprising about this example is that a non-symmetric mean S gives rise
to a symmetric S∗ = Λ.

REMARK 3.3. It is interesting to note that one sees easily (by induction) that
the inductive mean on a Hadamard space is contractive, hence Λ is contractive as
well, and thus by Proposition 2.7 we conclude that the Cartan barycentric map is
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contractive also. This approach to these results gives an alternative to the proba-
bilistic one of Sturm.

In extending various theories such as ergodic theory to the setting of metric
spaces there is sometimes a need to have available a contractive barycentric map
that is invariant under isometries. This need can provide a second motivation
for employing the machinery of Lemma 3.1. We briefly mention an important
example without going into the details.

The construction scheme in Lemma 3.1 for a specific contractive mean on
metric spaces of nonpositive curvature in the sense of Busemann (a weaker no-
tion than that of a Hadamard space) has been used by Es-Sahib and Heinich in [8].
Its convergence in the sense of Lemma 3.1 has been established more generally
with a more elementary proof by A. Navas [26]. The resulting limiting intrinsic
mean plays a key role in establishing a general version of the Birkhoff ergodic the-
orem on Busemann NPC spaces [26]. The starting contractive mean of Es-Sahib
and Heinich is constructed inductively by an approach that has been called the
symmetrization procedure. Surprisingly, this symmetrization procedure arose in-
dependently in work by Ando, Li, and Mathias [1], who used it to give a solution
of the long standing open problem of extending the matrix geometric mean to
from two to n variables. It has become one of the standard procedures for pro-
viding contractive symmetric means. Quite general conditions for the existence
of the mean in metric spaces were given in [20].

4. THE KARCHER MEAN AND ITS BARYCENTRIC MAP

For a Hilbert space H let B(H) be the Banach space of bounded linear op-
erators on H equipped with the operator norm, S(H) the closed subspace of
bounded self-adjoint linear operators, and let P = P(H) ⊆ S(H) be the open con-
vex cone of positive definite operators. The Banach–Lie group GL(H) of bounded
invertible linear operators (with operation composition) acts on P via congruence
transformations: ΓC(X) = CXC∗. For X, Y ∈ S(H), we write X 6 Y if Y − X is
positive semidefinite, and X < Y if Y− X is positive definite. Note that X 6 Y if
and only if 〈x, Xx〉 6 〈x, Yx〉 for all x ∈ H.

For A, B ∈ P and t ∈ R, the t-weighted geometric mean of A and B is
defined by

(4.1) A#tB = A1/2(A−1/2BA−1/2)t A1/2.

Some basic properties of the t-weighted mean are:

(i) (Loewner–Heinz inequality) A#tB 6 C#tD for A 6 C, B 6 D and t ∈ [0, 1];
(ii) M(A#tB)M∗ = (MAM∗)#t(MBM∗) for M ∈ GL(H);

(iii) A#tB 6 (1− t)A + tB for t ∈ [0, 1].



98 JIMMIE D. LAWSON AND YONGDO LIM

For t = 1/2, A#1/2B = B#1/2 A is called simply the geometric mean of A
and B and denoted A#B.

The Thompson metric on P is defined by d(A, B) = ‖ log(A−1/2BA−1/2)‖,
where ‖X‖ denotes the operator norm of X. It is known that d is a complete metric
on P, that the metric topology agrees with the relative topology induced by the
operator norm, and that

d(A, B) = max{log M(B/A), log M(A/B)},

where M(B/A) = inf{α > 0 : B 6 αA}; see [7], [27], [29]. Furthermore, A#B is
a midpoint of A and B in the Thompson metric and t 7→ A#tB, 0 6 t 6 1, is a
metric geodesic from A to B.

We note that the Thompson metric (in the second form) exists on all normal
cones of real Banach spaces. For instance,

(4.2) d((s1, . . . , sn), (t1, . . . , tn)) = max
16i6n

∣∣∣ log
si
ti

∣∣∣
on Rn

+, where R+ = (0, ∞).
The Karcher mean Λ = {Λn} on P is defined as the unique solution in P of

the Karcher equation

X = Λn(A1, . . . An)⇔
n

∑
i=1

log(X−1/2 AiX−1/2) = 0.

It has been shown in [23] that this equation does indeed have a unique solution
in P and that the resulting mean Λn for n > 2 has the following properties:

(i) Λn is symmetric and idempotent;
(ii) (Monotonicity) If Bi 6 Ai for all 1 6 i 6 n, then Λn(B1, . . . , Bn) 6 Λn(A1,

. . . , An);

(iii) (Contractivity) d(Λn(A1, . . . , An), Λn(B1, . . . , Bn)) 6 (1/n)
n
∑

i=1
d(Ai, Bi) for

the Thompson metric d.

We note also that the Karcher mean Λ is intrinsic since the left hand side of
the Karcher equation for (A1, . . . , An)k is just k times that for (A1, . . . , An), and
hence still equal to 0 for the same X. We thus have from Proposition 2.7 the next
proposition.

PROPOSITION 4.1. The correspondence of Proposition 2.7 yields a uniquely deter-

mined contractive barycentric map βΛ : P1(P) → P satisfying β
(
(1/n)

n
∑

i=1
δAi

)
=

Λn(A1, . . . , An).
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5. APPROXIMATION OF THE KARCHER MEAN

We maintain the setting in which B(H) denotes the C∗-algebra of bounded
linear operators on a Hilbert space H, S(H) is the closed subspace of bounded
hermitian operators, and P is the open cone of positive operators. The next lemma
asserts a variant of normality for the closed cone P0 = {A ∈ S(H) : 0 6 A} in
S(H).

LEMMA 5.1. Assume that 0 6 Bα 6 Aα for nets {Bα} and {Aα}, that {Aα}
converges strongly to 0, and that the set {Bα} is bounded above. Then the net {Bα}
converges strongly to 0.

Proof. If 0 6 Bα 6 C for each α, then 0 6 B1/2
α 6 C1/2 by the Loewner–

Heinz theorem, and thus ‖B1/2
α ‖ 6 ‖C1/2‖ (see, e.g., Lemma 2.3(ii) of [23]). For

x ∈ H,
0 6 〈B1/2

α x, B1/2
α x〉 = 〈x, Bαx〉 6 〈x, Aαx〉.

By hypothesis the right hand side converges to 0, so ‖B1/2
α (x)‖2 → 0. Then

‖Bα(x)‖ = ‖B1/2
α B1/2

α (x)‖ 6 ‖C1/2‖ ‖B1/2
α (x)‖ → 0

and thus Bα → 0 strongly.

LEMMA 5.2. Suppose that {Aα}, {Bα}, {Cα} are nets in S(H) satisfying:
(i) Cα 6 Bα 6 Aα for each α;

(ii) the set {Bα} is bounded above and the net Cα is bounded below in S(H);
(iii) the nets {Aα} and {Cα} both converge strongly to some B ∈ S(H).

Then the net {Bα} converges strongly to B.

Proof. Suppose that Bα 6 D and E 6 Cα for each α. Set Fα = Aα − Cα and
Gα = Bα − Cα. Then for each α, 0 6 Gα 6 Fα, Gα 6 D − E. Furthermore, the
net {Fα} converges strongly to B− B = 0. It then follows from Lemma 5.1 that
Gα → 0 strongly. Therefore the net Bα = (Bα − Cα) + Cα converges strongly to
0 + B = B.

A subset K of S(H) is said to be order-convex if A, C ∈ K and C 6 B 6 A
implies that B ∈ K. If for an arbitrary set K, one takes 〈K〉o to be the set of all
B ∈ S(H) such that C 6 B 6 A for some A, C ∈ K, then 〈K〉o is the smallest
order convex set containing K.

LEMMA 5.3. Let D 6 E in S(H), set [D, E] = {A ∈ S(H) : D 6 A 6 E}, let
X ∈ [D, E], and let V be a strongly open set containing X. Then there exists a strongly
open set U such that

X ∈ U ∩ [D, E] ⊆ 〈U ∩ [D, E]〉o ⊆ V.

Hence the order interval [D, E] equipped with the relative strong topology has a basis of
order-convex neighborhoods at each of its points.
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Proof. Let D 6 X 6 E and let V be a strongly open set containing X. Sup-
pose that 〈U ∩ [D, E]〉o is not contained in V for every strongly open set U con-
taining X. Then there exist nets D 6 Cα 6 Bα 6 Aα 6 E, where the indices α
run over the strongly open neighborhoods U of X, such that Cα, Aα → X in the
strong topology, but Bα /∈ V. But this contradicts Lemma 5.2.

Let HS(H) denote the bilateral ideal of Hilbert–Schmidt operators of B(H).
Then with respect to the norm ‖A‖2 =tr(AA∗)1/2, HS(H) is a Banach algebra
(without unit). In B(H) we define

HC = {A + λI : A ∈ HS(H), λ ∈ C},

a complex linear subalgebra that we call the extended Hilbert–Schmidt algebra. There
is a natural Hilbert space structure for this subspace (where scalar operators are
orthogonal to Hilbert–Schmidt operators) given by the inner product

〈A + λI, B + µI〉2 = trAB∗ + λµ.

Our focus is on the symmetric or real part ofHC,

HR = {A + λI : A∗ = A, A ∈ HS(H), λ ∈ R},

which with the restricted inner product becomes a real Hilbert space, and on its
positive part Σ = P∩HR, the open subcone of positive definite operators inHR.
We note that λ > 0 is a necessary condition for membership in Σ.

We define a Riemannian metric on Σ by identifying TΣ with Σ×HR, and
endowing the tangent space at A ∈ Σ with the Hilbert metric

〈X, Y〉A = 〈A−1X, YA−1〉2.

We note that ‖X‖A = 〈X, X〉1/2
A = ‖A−1/2XA−1/2‖2.

The structure of the Riemannian manifold Σ closely parallels that of the
finite dimensional Riemannian manifolds of positive definite matrices equipped
with the Riemannian trace metric, as has been worked out by Larotonda [16]; see
also the last part of [25]. In particular Σ is a Riemannian manifold of nonpositive
curvature, and hence equipped with its distance metric δ is a Hadamard space.
Hence the least squares minimizer

Λn(A1, . . . , An) = arg min
X∈P

n

∑
i=1

δ2(X, Ai)

uniquely exists. Furthermore, the topology induced by the metric δ on Σ agrees
with the relative topology of Hilbert space topology of HR, and is finer than the
relative operator norm topology.

One can identify the tangent space TI(Σ) at I with HR and the exponential
mapping on the tangent space with the usual exponential mapping of operators.
The mapping exp : HR → Σ is a diffeormorphism with inverse denoted log. Us-
ing methods of Riemannian geometry and Karcher’s result ([11], Theorem 1.2) or
a more operator-theoretic approach [23], one can show the least squares mean
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is the unique point where the gradient of the least squares objective function

f (X) =
n
∑

i=1
δ2(X, Ai) vanishes, which leads to the alternative characterization of

the least squares mean as the unique solution to the Karcher equation, which (up
to a scalar multiple) arises from setting the gradient equal to 0. We summarize:

THEOREM 5.4. The least squares mean of (A1, . . . , An) ∈ Σn in the Riemannian
manifold Σ is the Karcher mean Λ(A1, . . . , An), the solution of the Karcher equation

(5.1)
n

∑
i=1

log(X1/2 A−1
i X1/2) = 0.

It follows from Theorem 5.4 that the least squares mean in Σ is the restriction
of the Karcher mean on P to Σ. We now present a reverse construction: extend-
ing the least squares mean, equivalently the restricted Karcher mean, on Σ to P.
Let {α}α∈∆ denote the collection of non-zero finite-dimensional subspaces of H
ordered by inclusion, a directed family. Let Pα : H → H denote the orthogo-
nal projection onto the subspace α. We note that each Pα is hermitian, positive
semidefinite, idempotent, and has finite rank, hence is Hilbert–Schmidt. We view
{Pα : α ∈ ∆} as a monotonically increasing net indexed by ∆ that strongly con-
verges to its supremum, the identity I, since for any x ∈ H, Pα(x) = x for all large
enough α.

Since {Pα : α ∈ ∆} is bounded, the net {Pα APα} strongly converges to A for
any A ∈ B(H). For A hermitian, it is a monotonically increasing net with supre-
mum A. (One can show that A is the supremum directly or use the standard fact
that any monotonically increasing net of symmetric operators that is bounded
above strongly converges to its supremum.)

PROPOSITION 5.5. For A1, . . . , An ∈ P choose m large enough such that e−m I <
Ai < em I for 1 6 i 6 n. Then

Xα = Λ(em I − Pα(em I − A1)Pα, . . . , em I − Pα(em I − An)Pα)

is a monotonically decreasing net in Σ bounded below by e−m I that strongly converges
to its infimum, which is equal to the Karcher mean Λ(A1, . . . , An). Similarly

Zα = Λ(e−m I + Pα(A1 − e−m I)Pα, . . . , e−m I + Pα(An − e−m I)Pα)

is a monotonically increasing net in Σ bounded above by em I that strongly converges to
its supremum, again the Karcher mean Λ(A1, . . . , An).

Proof. Since the net {Pα(em I − Ai)Pα}α is a monotonically increasing net
strongly converging to its supremum em I − Ai, the net {em I − Pα(em I − Ai)Pα}α

is a decreasing net strongly converging to its infimum em I − (em I − Ai) = Ai >
e−m I. By the idempotency and monotonicity ([23], Theorem 6.8) of the Karcher
mean, we have that Xα is a decreasing net bounded below by e−m I, and hence
strongly converges to its infimum, call it Y.
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By Theorem 5.4 each Xα satisfies the Karcher equation

n

∑
i=1

log(X1/2
α B−1

i,α X1/2
α ) = 0,

where Bi,α = em I − Pα(em I − Ai)Pα. Since (by the previous paragraph) Bi,α con-

verges strongly to Ai and since the function f (X) =
n
∑

i=1
log(X1/2 A−1

i X1/2) is

strongly continuous on the bounded order interval [e−m I, em I] by Lemma 5.4 of
[23], we conclude that

0 = f (Y) =
n

∑
i=1

log(Y1/2 A−1
i Y1/2).

Hence Y is equal to the Karcher mean Λ(ω; A1, . . . , An). The similar assertions
for the net Zα follow in an analogous manner.

From the proof of Proposition 5.5 one extracts the following special case of
strong continuity of Λ.

COROLLARY 5.6. Let Aα = (A1,α, . . . , An,α) be a decreasing respectively in-
creasing net in Pn that strongly converges to its infimum respectively supremum A =
(A1, . . . , An) ∈ Pn. Then Λ(Aα) is a decreasing respectively increasing net strongly
converging to Λ(A).

We come now to our generalization of the Lim–Palfia theorem, Theorem 3.2.

THEOREM 5.7. For A = (A1, . . . , An) ∈ Pn, we have

Λ(A1, . . . , An) = lim
k→∞

Skn(Ak),

where the limit is taken in the strong topology.

Proof. Let V be a strongly open set containing Â = Λ(A1, . . . , An). Pick

e−m I 6 Zα 6 Â 6 Xα 6 em I

as in Proposition 5.5. By Lemma 5.3 there exists a strongly open set U contain-
ing Â such that 〈U ∩ [e−2m I, e2m I]〉o ⊆ V. The strong convergence Zα, Xα → Â
implies there exists β such that Zα, Xα ∈ U ∩ [e−m I, em I] for α > β.

It is a standard result that the Hilbert–Schmidt norm ‖ · ‖2 bounds the oper-
ator norm ‖ · ‖ on HS(H). Thus for A + λI ∈ Σ

‖A + λI‖HR = ‖A‖2 + λ > ‖A‖+ λ > ‖A + λI‖.

Since the set Q = {Y ∈ P : e−2m I < Y < e2m} is open in the Thompson metric,
hence norm topology, and contains [e−m I, em I], there exists ε > 0, such that the
norm open balls of radius ε around Zβ and Xβ respectively are contained in Q∩U.
Then the smaller ε-balls Nε(Zβ) and Nε(Xβ) inHR will also lie in Q ∩U.
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Let Xj,β = em I − Pβ(em I − Aj)Pβ for 1 6 j 6 n. By definition Xβ =
Λ(X1,β, . . . , Xn,β). Similarly Zβ = Λ(Z1,β, . . . , Zn,β) for Zj,β defined in an anal-
ogous manner. Then by Theorem 3.2 for the inductive mean sequences

lim
k→∞

Skn((X1,β, . . . , Xn,β)
k) = Λ(X1,β, . . . , Xn,β) = Xβ,

where the limit is taken in the manifold topology of Σ, which is the relative
Hilbert space topology of HR. Similarly lim

k→∞
Skn((Z1,β, . . . , Zn,β)

k) = Zβ. Thus

for large enough N,

SNn((X1,β, . . . , Xn,β)
N), SNn((Z1,β, . . . , Zn,β)

N) ∈ Nε(Xβ) ∪Nε(Zβ)

⊆ [e−2m I, e2m I] ∩U.

Since the two-variable weighted geometric means X#tY are monotonic for 0 <
t < 1, it follows easily by induction that the inductive means are monotonic.
Hence

SNn((Z1,β, . . . , Zn,β)
N) 6 SNn((A1, . . . , An)

N) 6 SNn((X1,β, . . . , Xn,β)
N),

and thus by the order convexity of 〈[e−2m I, e2m I]∩U〉o, SNn((A1, . . . , An)N) ∈ V
for large enough N.

6. CONVEXITY AND JENSEN’S INEQUALITY

A subset K of P is said to be convex if A#tB ∈ K, 0 < t < 1, whenever
A, B ∈ K. Since any A#tB can be approximated arbitrarily close in the norm
topology (which is also the metric topology for the Thompson metric) by iterated
midpoints, a closed subset is convex if and only if it is closed under taking mid-
points A#B. Since the intersection of (closed) convex sets is again (closed) convex,
every subset has a (closed) convex hull, the smallest such containing the subset.

LEMMA 6.1. Suppose that a convex set K ⊆ P is bounded in the Thompson metric,
i.e., contained in the order interval [e−m I, em I] for some m > 0. Then the strong closure
of K is convex.

Proof. Since the cone P0 of positive semidefinite operators is closed in the
strong topology, it follows that [e−m I, em I] = (e−m I +P0)∩ (em I−P0) is strongly
closed. Let Aα → A, Bα → B in the strong topology, where {Aα}, {Bα} ⊆ K. Then
A, B ∈ [e−m I, em I] ⊆ P. By Lemma 5.4(iii) of [23] the map sending X, Y to X#tY
for 0 6 t 6 1 is jointly continuous with respect to the strong topology when
restricted to [e−m I, em I]. From this it follows that Aα#tBα → A#tB strongly, and
thus the closure is convex.

PROPOSITION 6.2. For A1, . . . , An ∈ P, Λ(A1, . . . , An) is in the strong closure
of the convex hull of {A1, . . . , An}, in particular in the closed convex hull.
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Proof. This result is a corollary of Theorem 5.7, since each member in the
sequence of inductive means belongs to the convex hull of {A1, . . . , An}.

PROPOSITION 6.3. Let βΛ : P1(P) → P be the contractive barycentric map of
Proposition 4.1. Then for µ ∈ P1(P), βΛ(µ) belongs to the strong closure of the convex
hull of the support of µ.

Proof. Let Σ be the support of µ. Then βΛ

(
(1/n)

n
∑

i=1
δAi

)
= Λ(A1, . . . , An)

is in the strong closure of the convex hull of Σ for each A1, . . . , An ∈ Σ by Propo-
sition 6.2. Since P0(Σ) is dense in P1(Σ), its image under βΛ is dense, hence
strongly dense, in the image of P∞(P), and hence βΛ(µ) is in the strong closure
of the convex hull of Σ.

REMARK 6.4. (i) For P × R equipped with d((A, a), (B, b)) = d(A, B) +
d(a, b), the sum of the Thompson metric and the usual metric on R and hence
a complete metric, we define the product mean G = {Gn} on P×R by

Gn((A1, a1), . . . , (An, an) ) =
(

Λn(A1, . . . , An),
1
n

n

∑
i=1

ai

)
.

For G2 the mean yields the standard midpoint pair (A1#A2, a1/2 + a2/2) with
corresponding geodesic paths t 7→ (A1#t A2, (1− t)a1 + ta2) for 0 6 t 6 1.

(ii) That G is intrinsic and contractive follows from Proposition 2.11, from
which we also conclude that there is an induced contractive barycentric map βG
that is defined by taking the barycenter of each of the marginals of any given
member of P1(X×R).

(iii) For A = (A1, . . . , An) ∈ Pn and a = (a1, . . . , an) ∈ Rn, we observe for the
inductive mean S = {Sn} that

(6.1) lim
k→∞

Skn(A, a)k =
(

Λn(A),
1
n

n

∑
i=1

ai

)
= Gn(A, a) = βG

( 1
n

n

∑
i=1

δ(Ai ,ai)

)
,

where in the first coordinate the limit is taken in the strong topology. The first
equality follows in the first coordinate from Theorem 5.7 and in the second from

the fact, easily established by induction, that Sm(a1, . . . , am) = (1/m)
m
∑

i=1
ai.

PROPOSITION 6.5 (Jensen’s inequality). Let F : P → R be lower semicontin-
uous with respect to the strong topology and convex, i.e., F(A#tB) 6 (1− t)F(A) +
tF(B) for all A, B ∈ P. Then for any measure µ ∈ P1(P), F(βΛ(µ)) 6

∫
P

F(X)dµ(X).

Proof. We equip P×R with the product structure of the preceding remark.
We observe that the set K = {(A, a) : F(A) 6 a} is closed in P × R in the
product of the strong and standard topologies by the lower semicontinuity as-
sumption and convex by the convexity of F. For A = (A1, . . . , An) ∈ Pn and
a = (a1, . . . , an) ∈ Rn such that (A, a) ∈ K, we have from the inductive definition
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of S that Skn(A, a)k ∈ K for each k, since K is convex. It follows from equation (6.1)

that βG

(
(1/n)

n
∑

i=1
δ(Ai ,ai)

)
∈ K from the fact that K is appropriately closed.

For µ ∈ P1(P) consider the map j : P→ P×R defined by j(A) = (A, F(A)).
The image of P under j is contained in K, so the push-forward measure j∗(µ) has
support contained in K. Since P0(K) is dense in P1(K), βG is continuous, and K
is closed, we conclude from the previous paragraph that βG(j∗(µ)) ⊆ K.

From part (ii) and equation (6.1) of the preceding remark, it follows that
βG acts on P1(P × R) by applying βΛ × βR to the marginals of any µ, where
βR is the contractive barycentric map corresponding to the arithmetic mean on
R. Since j followed by the projection into P is the identity, we conclude that
βG(j∗(µ)) = (βΛ(µ), βR(F∗(µ))). Since this ordered pair is in K by the preceding
paragraph, we conclude that

βΛ(µ) 6 βR(F∗(µ)) =
∫
P

F(X)dµ(X).

This concludes the proof.

7. SUBALGEBRAS

For convenience and ease of presentation we have limited our considera-
tions in Sections 5, 6, and 7 to the full algebra B(H) of bounded linear operators.
However, we observe that the constructions can be carried out in large classes of
subalgebras (which we assume always to contain the identity I), and hence by the
Gelfand–Naimark theorem hold for large classes of C∗-algebras. For any norm-
closed C∗-subalgebra A of B(H), PA = A ∩ P will be its open cone of positive
operators, and will be closed under the operation of taking weighted geometric
means A#tB. However to obtain the existence of the Karcher mean, one needs to
assume further that the subalgebra A is monotone complete (actually, monotone
σ-complete will suffice). Since the von Neumann subalgebras are strongly closed,
the previous results hold in that setting.

8. AN OPEN PROBLEM

In [28] Sturm has derived a version of the strong law of large numbers
(SLLN) for random variables into a Hadamard space. An interesting question
is whether a similar SLLN holds for the space P(H) of positive operators on a
Hilbert space. Theorem 6.7 may be viewed as a deterministic version of this re-
sult for measures with finite support.
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