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1. INTRODUCTION

A fundamental result in group theory is Young’s inequality which was first
studied by Young [20] in 1912. Let G be a locally compact group with a modular
function ). Suppose 1 +1 = % + %, p,q,v € [1,00] and norms and convolu-
tion are defined with relative to a left Haar measure. Then Klein and Russo [11]
formulate Young's inequality as

1/p
1f 885" llr < IIf 1pllg g,

where f € LP(G),g € L1(G) and % + % = 1. Now one could ask the following
two natural questions:

(1) Is the coefficient 1 of || f||,||g||4 the best constant for Young's inequality?
(2) Do extremal functions for Young’s inequality exists? If so what are they?

For the first question, it is not true in general and Beckner [1]] proved a sharp
Young's inequality for convolution on R":

1f*8llr < (ApAgAr)" [ fllpllgllq,
where f € LP(R"), g € LI(R"), p,q,r € [L,o0], 1 +1 = %—F%, L+ L=,

Ay = (mY/"m’ / m/))l/ 2, In 1977, Fournier [8] proved that the coefficient 1 is the
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best constant for Young’s inequality for a unimodular locally compact group if
and only if it contains a compact open subgroup.

For the second question, Fournier [8] proved for unimodular locally com-
pact groups that if the best constant for Young’s inequality is 1, then f and g are a
left translation and a right translation of a subcharacter respectively. Beckner [1]
showed for R" in which case the best constant is not 1, that the extremal functions
are Gaussian. Klein and Russo [11] showed that the sharp Young’s inequality for
Heisenberg groups does not admit any extremal functions.

There are several ways to generalize locally compact groups. One of them
is Kac algebra which was elaborated independently by Enock and Schwartz [7],
and by Kac and Vainermann in the 1970s. In 2000, Kustermans and Vaes [13]
introduced the locally compact quantum group which is a generalization of Kac
algebra. Note that the subfactor [10] also can be viewed as a generalization of
Kac algebra. It was shown by Enock and Nest [6] that there is a one to one cor-
respondence between Kac algebras and irreducible depth-2 subfactors. For the
finite-index case, C. Jiang, Z. Liu and J. Wu [9] proved Young’s inequality for
subfactors.

In this paper, our goal is to generalize Young’s inequality for locally compact
quantum groups. We show that

MAIN 1.1 (Theorem 3.4). Let G be a locally compact quantum group. For 1 <
pqr<2withl+1= %—i— %, let p' be such that % —|—% = 1. Suppose x € LF(G)
and y € L1(G). Then

[x % p_i/p (W)lr < [[xllpllyllg-

We refer to Section 2 for the notations.

When the scaling automorphism group 7 of G is nontrivial, Young’s in-
equality is not true for 1 < p,q,r < oo in general. If the scaling automorphism
group is trivial, we have the following theorem.

MAIN 1.2 (Theorem [3.13). Let G be a locally compact quantum group whose
scaling automorphism group is trivial. Suppose 1 < p,q,r < oo, % + % = % Ifo=1,

then for x € LP(G) and y € L1(G), we have

eyl < lIxllpllyllg-

If ¢ is tracial, then for x € LP(G) and y € L1(G), we have

_ /
x5y~ Pl < [l pllyllg-

Note that the noncommutative LP-space given here is taken with respect
to the left Haar weight. So is the convolution. One could define the convolu-
tion with respect to the right Haar weight when the noncommutative LP-space is
taken with respect to the right Haar weight.
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We also give the definition of shifts of group-like projections and show that
they are extremal element for the Hausdorff-Young inequality given in [4]. Simi-
lar results for Young’s inequality is also obtained. But we are not sure that all the
extremal elements for the Hausdorff-Young inequality are shifts of group-like
projections.

The rest of the paper is organized as follows. In Section 2 we give a brief
introduction to locally compact quantum groups and noncommutative L”-spaces.
In Section 3 we prove Young's inequality for locally compact quantum groups.
In Section 4 we investigate the properties of shifts of group-like projections and
show that they are extremal functions for Hausdorff-Young inequality.

2. PRELIMINARIES

In this section we will recall the definition of locally compact quantum
groups and noncommutative LP-spaces. Let M be a von Neumann algebra with
a normal, semi-finite, faithful weight ¢. Recall that

My = {x € M: g(x*x) < oo}, My = MN;M,,

where 0, is a *-subalgebra of M. Denote by H, the Hilbert space obtained by
completing MN,. The map Ay : Ny — H,y is the inclusion map. Denote by 7,
the x-isomorphism of M on H, given by 7y (a)Ay(b) = Ay(ab) for any a € M,
b € Ny. The triplet (7y, Hy, Ay) is the semi-cyclic representation of M. We
denote by V,, the modular operator for ¢, o/ the modular automorphism group
for ¢, t € R, ], the conjugate unitary on H,,.

A locally compact quantum group G = (M, A, ¢, ) consists of

(1) a von Neumann algebra M,
(2) a normal, unital, *-homomorphism A : M — M®M such that (A® 1) o
A=(1®A4)oA,

(3) a normal, semi-finite, faithful weight ¢ such that (1 ® ¢)A(x) = ¢(x)1,
Vx € M ; anormal, semi-finite, faithful weight g such that (p @ 1)A(x) = y(x)1,
Vx € 9ﬁ$ ,

where ® denotes the von Neumann algebra tensor product and ¢ denotes the
identity map. The normal, unital, *-homomorphism A is a comultiplication of
M, ¢ is the left Haar weight, and ¢ is the right Haar weight.

We assume that M acts on H,. There exists a unique unitary operator W €
B(Hy ® H,) which is known as the multiplicative unitary defined by

W* (Ap(a) @ Ag(h)) = (A ® Ap)(A(b)(a® 1)), a,beN,.

Moreover for any x € M, A(x) = W*(1® x)W.
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For the locally compact quantum group G = (M, A, ¢, 1) above, there exist
the unitary antipode R, the scaling automorphism group 7, t € R and the an-
tipode S on M. There exists a modular element ¢ such that y = ¢; = @R. For
these properties, we refer to [13] for more details.

For G = (M, A, ¢,9), there always exists a dual locally compact quantum
group G= (M\ , A, §, ). The corresponding von Neumann algebra acting on He
is given by

M= {(w@1)(W):w e B(Hy),}ostrons,
The element (w ® ¢)(W) is denoted by A(w) in general which is also known as
the Fourier transform of the restriction w| ¢ of w on B(#). The comultiplication
Ais given by
Alx)=W(1@x)W, W=ZIW'L,

where X is the flip on H, @ Hy. The dual left Haar weight ¢ is defined to be the
unique normal, semi-finite, faithful weight on M with GNS triple (H(p, L K) such
that A(Z) is a core for A and A(A(w)) = &(w),w € T, where

T ={we Mi:Ap(x) = w(x*),x €Ny isbounded},

and ¢(w) is given by w(x*) = (&(w), Ap(x)). The dual right Haar weight ¢ =
@R, where R is the dual unitary antipode. For more details on dual quantum
groups, we refer to [13] again.

A locally compact quantum group G is a Kac algebra if its scaling automor-
phism group 7 is trivial and ¢? = ¢¥. A locally compact quantum group is of
compact type if ¢ = 1 is a state.

Now we would like to recall some notations on noncommutative L spaces.
Let M be a von Neumann algebra with a normal semifinite faithful weight ¢.
Denote by

Ty = {x € M : x is analytic with respect to ¢ and 0 (x) € 9, NN, Vz € C}.
Let
Ly={xe M:3p™ € M, such thatVa,b € T, :
o (a*b) = (x]pV 2 Ap(a), Jo Vi 2 Ay (D)) ).

Denote by x¢ the functional given by x¢(y) = ¢(yx) and ¢x the functional given
by (¢x)(y) = @(xy). If there exists a bounded functional ¢(*) € M, such that
e (y) = (x¢)(y) for any y in the domain D(x¢), then we denote ¢(¥) by x¢
again for simplicity i.e. 9(¥) = xg for x in L,. We reserve ¢y for ¢(x'/2 - x1/2)
when x is a positive self-adjoint element affiliated with M. For any functional ¢,
we denote by ¢ the functional given by @(x) = w(x*) for any x in M.

Let Ry = {x* : x € Ly}. Then for any x € Ry, px € M, under the
convention above. In [3], Caspers showed that ’7'(;2 C Ly
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For any x € L, the norm is defined by

1l 2, = max{|[x[l, [|xe]}-

Then for p € (1,0), LP(G) is the complex interpolation space (M, M. )1/, and
LY(G) = M., L®(G) = M.
We quote the Theorem 4.1.2 in [2] for future use in the paper.

PROPOSITION 2.1. Let 6 € [0,1]. Let T be a morphism between compatible cou-
ples (Eo, E1) and (Fo, Fy). Then it restricts to a bounded linear map T : (Eo, E1)[g) —

(Fo, F1)(g)- The norm is bounded by || T|| < ||T : Eg — BT : Ey — F|°.

In [3], Caspers proved that H, " M = N, and M, NHy = Z. Moveover
(Hop, Mi)ppyp—1) = LP(G) for p € (1,2] and (M, Hy)p/q) = LI(G) for q € [2,0).
For more details on this, we refer to [3].

Hence for p € [1,2] and w € Z, the L?-Fourier transform

=~ 1 1
Fp: LP(G) = L1(G), PRt
is given by F(&p(w)) = Kq(A(w)), where ¢, : T — LP(G) is the inclusion map
for1<p<2, Kq 1N — Lq(@) is the inclusion map for q > 2.
The Hausdorff-Young inequality says that || F, | < 1.
Let ¢ be a normal, semi-finite faithful weight on M’ acting on H,. For
p € [1,00), the Hilsum's LP-space L?(¢) is the space of closed densely defined
operators x on the GNS-space H, of ¢ such that if x = u|x| is the polar decom-
position, then |x|? is the spatial derivative of a positive linear functional w € M,
and u € M. For more details on noncommutative LP-spaces, we refer to [19]. Let

d= j—g be the spatial derivative relative to ¢. In [3]], they prove that there is an

isometric isomorphism @, : L (¢) — LP(G) such that
@, : [abd"/P] > 1P (ab), a,b €T,

where [P : L, — LP(G) is the inclusion map, and [x] is the closure of a preclosed
operator x.

LEMMA 2.2. Let G = (M, A, ¢, ) be a locally compact quantum group. If a is
an automorphism of M, then for any x in L,

[ES

P = HtX(X) ppa—ls

where p-norm || - ||, is the norm of complex interpolation LP-space relative to a normal
semi-finite weight n on M.
If « is an anti-automorphism of M, then for any x in Ly, we have

1l = (™)l a1

The proof follows directly from Proposition[2.1}
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3. YOUNG'S INEQUALITY

Let G = (M, A, ¢,1) be a locally compact quantum group. Suppose that
w, B € M. Then the convolution w * 8 € M, of w and 6 is defined by

(w*0)(x) = (w®0)A(x)
for any x in M. We then see that
3.1) [lw 0] < [lewl}[}6]]-
If we identify M, with L!(G), then the inequality is
(32 lx =yl < llxllillyll,  xy € LY(G).

In [13], Kusterman and Vaes prove that for any w € M, and 6 € Z,

S(w*0) = Mw)S(0).
Note that A (w) = (w ® 1) (W), we have

(3.3) 1€(w % 0) || < [[wll[E(O)]]-
If we identify H,, with L?(G), then the inequality is

(3.4) Ix * yll2 < llxlllyll2,  x € LY(G),y € LY(G) N L*(G).

Note that L!(G) N L?(G) = Z is dense in L?>(G). Hence the convolution x * y
of x € LY(G) and y € L?(G) is well-defined by continuity and moreover the
inequality is true for x € L'(G) and y € L?(G).

Now by applying the interpolation theorem, we have

PROPOSITION 3.1. Forany x € LY(G) and y € LP(G), 1 < p < 2, we have

lex yllp < lxllallyllp-

Recall that p; is the norm continuous one-parameter representation of R on
M., such that p(w) = w(67#71_4(x)) for w € My, x € M and t € R. By
Remark 8.12 of [13] the set Z, = {w € T : w is analytic with respect to p} is dense
inZ C M,. By Lemma 1.1 of [12] we see that {(Z,) is dense in {(Z) C H,.
Therefore {,(Z,) is dense in LP(G) for 1 < p < 2.

In Proposition 8.11 of [13] it was showed that for w € 7 and 6 € D(p;,2),
wx6 €1 and

G(wx0) = U A(pi/2(0)) UG (w),
where U : Hy — H, is an anti-unitary such that UI'(x) = Ay(R(x*)) for any
x € Ny, where (Hy, 7, ') is the GNS-construction for iy = ¢s constructed from
(Hy, 7, Ay) via § (see Notation 7.13 in [13]).
Inspired by the equation above, we are able to show the following proposi-
tion.
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PROPOSITION 3.2. Suppose1 < p,q < 2and % + % = 3. Let p/, q' be such that
% + % =1, % + ? =1, Suppose that w, 8 € T and 0 is analytic with respect to p. Then
we have &(w * p_j/py (0)) € L%(G) and

16(cw % pi/pr (Ol < [IEp ()l plIEq(8)]lg-

Proof. Note that w x p_j;,(0) € M. Since p_j;(0) € T (see Remark 8.12
in [13] and Result 8.6 in [13]), we have w * p_;,,(0) € Z. Hence

G(w*pisp(0) = AA(w*p_iyp(6))).
Note that A(w * p_j/p (0)) € Ng. By Theorem 23 in [18], we have
1A (@ * pi/p (O = (@ * iy (0))d 2]y 125,

where ¢ is a normal semi-finite faithful weight on M’ and L2 () is the Hilsum
space.
By the fact that A(w) € N5 and the property of A, we have

1A (@ 0/ ()21 125 = A (pipr ()Y VT | 125

By Theorem 2.4 in [4] and Proposition 8.9 in [13], A(p_;/,/(6)) is analytic with
respect to ¥ and

A (@ p_i/p (0))d 25 125 = M)A P AOT ||y 125
T1/p 71/q
< [Mw)d P Hp/,Lp’(@)H)\(G)d 1 ”q/,m/(@'

Now applying Hausdorff-Young inequality for locally compact quantum groups
in [4], we have

16 (@ * o iy O < A (@)Y 5 [AO) |
1Sp(@)lplIEq(0)[lg-

Since {,(7) is dense in LP(G) for any 1 < p < 2, we then have

<! 717 @)
<

PROPOSITION 3.3. Suppose 1 < p,q < 2 and % + % = % Let p" be such
that % V =1, x € LP(G), y € LUG). We define x*p_i;p(y) to be the limit
of &(wn * p_i/p (Om)) in L*(G), where (wn)y C T is a bounded net in T such that

(¢p(wn))n converges to x in LP(G) and (6)m C I is a bounded net such that 6,, is
analytic with respect to p and ($q(0m))m converges toy in L1(G). Then x xp_;;, (y) €

L*(G) and
s 0—iyp (W) ll2 < Mlxlpllyllg-

Proof. By the proposition above, we have

16 (n * i/ p (Bm)) | < [1€p(wn)llplISq(Om)llg-
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By the assumption, we see that {&,(wy)}n and {G(0) }m are Cauchy nets, and
hence {&(wy * p_i/p(0m)) }nm is a Cauchy net. By taking the limits, we obtain
that

x*p_i/p (W2 < llxllpllyllg-

Now by Stein’s interpolation theorem [17], we have

THEOREM 3.4. Let G be a locally compact quantum group. For 1 < p,q,r < 2
with1 +1 = %4— %, let p' be such that % +% = 1. Supposex € LF(G)andy € L1(G).
Then

2% i/ Wl < lIx[lpllyllg-

REMARK 3.5. In Theorem X * p_j/p(y) is similarly defined to be the
limit of &;(wn * p_i/p (6m)) in L*(G), where (wy)n C T is a bounded net in Z
such that (¢, (wy))y converges to x in LP(G) and (6i)m C Z is a bounded net
such that 6,, is analytic with respect to p and ({4 (6))m converges to y in L1(G).

COROLLARY 3.6. Let G be a compact quantum group. Then for1 < p,q,r,p’ <2
with 1 41 = % + %, % + % =1,x € LP(G) and y € L1(G), we have

[l Ty (Dl < Nlxllpllyllg-

Proof. Suppose that x,y € L, = M. It suffices to compute p_;/, (y¢p). We
assume that y € D(tj,,7) and z € D(7_i/,). Then by Proposition 6.8 in [13],

(0-i/p (y9))(2) = (W) (T (2)) = 9Ty (2T () = (2T p (1))-
Since D(T_j/,r) is o-strongly* dense in M, we have p_;/ (y@) = Ti/p () p. 1
PROPOSITION 3.7. For1 < p,q,vr <2,x € LP(G) and y € L1(G), we have
S F (ko iy () = B, Fp(x) @, Fo(y).
Proof. By continuity of LP-Fourier transform, we only have to check
B F (& (w oy (0))) = B, Fp (Ep () Fy(84(6))

for w,0 € Z and 6 analytic with respect to p. Since w * p_;;,y(8) € Z, by Theo-
rem 3.1 in [4], we have

By Fr(Gr(w s poigy (8))) = M@)Alp—iyp (6))d V7 = A(w)d VP A6)d /T
= q’;/lfp(gp(w))qj,;lfq(éq(e))r
where the products are strong products. &

In general, we do not have Young’s inequality for 1 < p,q,r < oo. For
example, let G = SU,(2), we will show that ||x * y|je < ||x]|1]|y][c is not true
for all x € L'(G) and y € L®(G). Firstly we need the following proposition for
convolutions.



YOUNG’S INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS 117

PROPOSITION 3.8. Let G be a compact quantum group. Then the convolution
xxyofx € D(S)andy € M is given by
xxy = ((x)S7 @ )A(y).
The convolution x xy of x € M and y € D(S™!) is given by
xxy = ((1® (y9)S)Ax)).
Proof. Since G is compact, £, = M. If x € D(S), z € D(S!) since
I(x@)S~H(2)]l = ll9S~ ' (S(x)2)]| < [IS(x)[[][z]l, we see that (xg)S~" extends to

a bounded linear functional on M, denoted by (x¢)S~! again. Then for any
zeM,

((x@) = (y9))A(z) = (x@)((1® ¢)(Alz) (1 ®Y))) = (x9)S (1 ® ) (1 ®2)A(y))
= ¢(z(((x@)S' ® )A(y))).
Ify € D(S!), z € D(S), we then have

Iy@)S@)1 = lleszs— ) < ST w)lllIzll,

and (y¢)S extends to a bounded linear functional on M, denoted by (y¢)S again.
Then for any z € M,

((x@) * (y9))A(z) = () ((9 © )(A(2) (x @1))) = (y9)S((¢ ® 1)(z©1)A(x))
= ¢(z((t® (y)S)A(x))).

Now we consider SU,(2). For y € [-1,1]\{0}, SU,(2) is the universal
unital C*-algebra generated by 4, ¢ subject to the conditions:

a*atc'c=1, aa* +p*c*c=1, c*c=cc*, ac=puca, ac* = puc*a.

Moreover ||a"|| = 1 forany n € Nand (1 — pu2)"/2 < ||c|| < 1.
The comultiplication A on SU,(2) is given by

Ala)=a®@a—uc*®@c, Alc)=c®a+a*®c.
The antipode S on SU,,(2) is given by
S(a) =a*, S(a*)=a,S(c*) = —pu~tc*.
Let

gkexmen k>0,
Akmn = a

sokermen <0,
The Haar state ¢ of SU,(2) is given by
2

i_iy u# =+l

(p(akmn) = 5’(,061’”,71 1 yzm_;'_zr

Suppose x=c**" and y=c?" for € N. Then A(y) = (c ® a + a* ® ¢)?* and
B = ()5 @ DA = (—p g,
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and so [|c*?" * 2| = p~2(c**" * ¢2"). On the other hand, ||c**"||; = ¢(c*"c")
and (1 — %)% < ||c|| € 1. Hence

HC*Zn " c2”|| - ‘uon(l _ Vz)(l _ y2n+2> B ‘1472”(1 _ H2n+2)

> _ S (] 242,
TN R e B (R S G

Hence when u # +1,

Q.

su Myl
P =
0xe11 (@),02ver(c) X 11Y]

When a locally compact quantum group G has trivial scaling automorphism

group, we have Young’s inequality for 1 < p,q,r < o0 if ¢ = 9P or ¢ is tracial.

PROPOSITION 3.9. Let G = (M, A, ¢, ¢) be a locally compact quantum group
whose scaling automorphism group is trivial. Then the convolution x x y of x € L, and
y € Ly is given by

xxy = ((xp)R®1)A(y) € L.

Proof. Note that 7; is trivial and S = R. By Proposition 1.22 in [13], for any

z € Ry,

((x9) * (y9))A(z) = (x¢) (1@ 9)(A(2) (1@ y))) = (x@)R((: @ ¢)(1® 2)A(y))
= ((x¢)R @ (92))A(y) = ¢(z(((x¢)R @ )A(y)))-
Note that R is o-strongly* dense in M and ||x * y|| < [|x¢]|[|y|| < co. We have x *
y = ((x¢)R®1)A(y) € M.Sincey € L, C Ny, we have ((x¢)R @ 1)A(y) € Ny
by Result 2.3 in [13]. Therefore x * y = ((x@)R ®1)A(y) € L, by Proposition 2.14
in[3]. 1

COROLLARY 3.10. Let G be a locally compact quantum group whose scaling au-
tomorphism group is trivial. Then for x € LY(G),y € LP(G), 1 < p < oo,

e yllp < lxllallyllp-

Proof. From Proposition[3.9) we have ||x x y|| < [|x][1[y|. Recall [[x *y|; <
llx|l1]lyl1 for x,y € L'(G). Then by complex interpolation theorem we have

s yllp < llxllallyllp,
forallx € L'(G)and y € LP(G). &
Recall that §; (w)(x) = w(é'x) for any x € M. By interchanging the role of
x, y in Proposition 3.9 we have

PROPOSITION 3.11. Let G be a locally compact quantum group whose scaling
automorphism group is trivial. Suppose w € M is analytic with respect to 6*. Then
the convolution x x w of x € Ly and w is given by

yxw = (1®;(w)R)A(x) € M.
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Ify € Ly and yg is analytic with respect to 6*, then
xxy = (1®6%(yp)R)A(x) € M.

Proof. For any z,x € 7'(3, ((xp) *w)(z) = p(((t @ w)A(z))x).

We define e, = % [ exp(—n?t?)s'dt. Then e, is analytic with respect to o9
which implies Ngye;, € MNp.

As in the proof of Proposition 8.11 in [13], we have

51210 w)Alenz) = (1 ®(5fi/2(w))A(5_l/zenz) €My,
Hence
P(((1© w)A(enz))xem) = (6~ *((1® w)A(enz))xend™"/?)
=9((1® 5fi/2(w))A(&‘l/zenz)xemé_l/z)
=% (@) (Y @ 1)(AE 2enz) (xend ™2 ©1)))
= 8% (W)R((Y @ 1)((67 ez 0 1) A(xend™12)))
= 0% 2 (w)R((9 ® 1) ((enz ® 1) A(xend™'/?) (6" @ 1))).
Now applying A(6) = ¢ ® J, we obtain
(1 © w)A(enz))xem) = 6%/ (W)R((9 @ 1)((enz ® 1)A(xew))5~/?)
= 6%/2(w) (8" *R((9 @ 1) ((enz ® 1) Axem)))
= 0%(w)(R((9 @ 1) ((enz @ 1)A(xem))))

— plenz(19 0" ()R)A(xen)).
Hence x x w = (1 ® 6*;(w)R)A(x) for x € 7'4?. Since 7'(3 is o-strongly* dense in

Ly, wehave x xw = (1®6*;(w)R)A(x) forallx € Ly. 1

PROPOSITION 3.12. Let G be a locally compact quantum group whose scaling
automorphism group is trivial. Suppose 1 < p,q < oo, % + % =1 If ¢ = ¢, then for
x € LP(G) and y € L1(G), we have

1% ylleo < [Ix[lpllylg-
If @ is tracial, then for x € LP(G) and y € L1(G), we have
[+ y™ oo < flxllp 1yl
Proof. Suppose that ¢ = 1. Note that for any x,y € L,
lx*ylle =~ sup  g(z(x*y)).

lz*[1=1z€Ry

Now we will calculate ¢(z(x * y)). By the condition ¢ = 1, we see that ¢z =
(R(z)¢@)R and then

p(z(x*xy)) = (xp@yp)A(z) = (x¢)((t® ¢)(A(z)(1®@Y)))
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= (x¢R)((1® ¢)(1®2)A(y)) = (xR @ 9z)A(y)
= (xpR @ R(z)pR)A(y) =(R(2)p @ x¢)A(R(y)) = ¢(R(y)(R(z) * x)).

Moreover we assume that x,y,z € 7'(’? Let ¢ be a normal semi-finite faithful
weight on M. By Corollary m 3.10jand Lemma [2.2 n we have

l9(z(x )| = lp(RW(R(E) +x))] = | [(R(z) * x)dR(y)dg)
< [IR(2) *x||p||R Mo < IR Illxlpllylly = 25l lx[p 1y lg-
Therefore ||x * yljco < [[x[lp[lyllg-
Suppose that ¢ is tracial. Let e, = ﬁ [ exp(—n?t?)sitdt. Then we have

(x¢R @ gemz) (A(yend™1/7)))|
(x¢R @ R(2)emd@R) (A(yend/7))|
(R(2)embg @ x9) A6 TenR (y) )]
= [9(6"%euR (y) (R(2)em * x))|
< 116" %enR (y)llq | R(2)end * xllp < llyenllqllz*emll1 1]l

|9 (emz(x % yend /7)) =

The last inequality follows from Corollary [3.10} Hence

s+ ya ™ 9leo < flxllpllyllg-

THEOREM 3.13. Let G be a locally compact quantum group whose scaling auto-
morphism group is trivial. Suppose 1 < p,q,r < 0o, - —|— . % If ¢ = 1, then for
x € LP(G) and y € L1(G), we have

lx syl < lIxllpllyllg-
If ¢ is tracial, then for x € LP(G) and y € L1(G), we have

_ /
x5y~ Pl < [1x [y llyllg-

The proof comes directly from the interpolation theorem.

4. SHIFTS OF GROUP-LIKE PROJECTIONS

Suppose that G = (M, A, ¢, ) is a locally compact quantum group. A
projection h in L*(G) is a group-like projection if A(h)(1®h) =h® hand h # 0.

A projection h in L®(G) N L'(G) is a biprojection if F;(he) is a multiple of
a projection in L*(G).

REMARK 4.1. In [5], [16], the group-like projection is defined for x-algebraic

quantum groups. In subfactor theory, the biprojection is defined for planar alge-
bras etc.
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PROPOSITION 4.2. Suppose G is a locally compact quantum group and h € N,
is a group-like projection. Then
(i) S(h) = h, R(h) = h, and ©(h) = h for all t € R. Moreover the scaling constant
v=L1
(i) Ah)(h®1) = h ® h.
(i) i = of (k) = o (n) forall t € R.
(iv) ho = hy.
Proof. (i) Note that ¢(1) = @(h*h) < oo, we have h € 9N, NN, and R(h) €
0Ty, NNy Applymg 1@@toA(h)(1®h) =h®h, weobtain (1 ® ¢)(A(h)(1®h)) =
@(h)h. Then h is in D(S) and

¢(h)S(h) = S((L@ @)(AR) (1@ h))) = (1@ @) (1@ h)A(R))

= (@) (A @h)) = ¢(h)h,

ie. S(h) = h.
By Proposition 5.5 in [13], we have that
(¥ @ )(AR(M)(R(h) ©1))G € G(¢ @ 1) (AR(R))(R(h) ©1)).
Applying the equation (R ® R)A = AR, we see that
(Y@ (AR(R))(R(h)@1)) = (R&YR)((10h)A(h)) = (9@ R) (hh) = ¢(h)R(h).

Hence R(h)G C GR(h) and R(h)G* C G*R(h). Since G = IN'/2, we obtain
that R(1)N C NR(h) and R(h)N#* = N¥R(h). Since 7;(x) = N #xNi, we see
that Rt;(h) = R(h) and (h) = h. Hence h is analytic with respect to T and
T:ti/Z(h) =h. Fmally R(h) =h.

There is another way to show R(h) = h and (h) = h. By S(h) = h, we
have t_j(h) = h. Leth, = ﬁfexp(—n%z)n(h)dt. Then t_;(hy;) = hy. This
implies that 7 (h,) = h, and ©;(h) = h. Hence h is analytic with respect to T and
Tyi/2(h) = h. Then we can obtain R(h) = h.

By Proposition 6.8 in [13], we have ¢(h) = ¢(1:(h)) = v 'p(h) and v =1
for any t € R. This implies that v = 1.

(ii) We have

A(h)(h@1) :A(R( D(R(B) @1) = (R R)xA(R))(R(h) ©1)
X((R@R)(A(h)) (1@ R(R))) = x(R©R)((1@h)A(h))
_X(R®R)(h®h) R(h)®@ R(h) =h® h.

(iii) By the relation Aty = (0} ® Al ;)A in Proposition 6.8 in [13], we have for
anyn € N,

Ah) = A(ti(h)) = % / exp(—n22)A(t (h))dt
n

= = [exp(-r2)(of @ o atn)t,
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i.e. A(h) is analytic with respect to 09 ® (o'¥) ~! Moreover (of ® o JA(h) = A(h).
Let h, = # [ exp(—n?t?)0, (h)dt Then hy, is analytic with respect to ¥.
Since R(h) = h and RO’ZP = 0”,R, we have R(h,) = ﬁ [exp(—n2t?)a? (h)dt,
i.e. R(hy) is analytic with respect to 0.
By Kaplansky density theorem, there is a net { flf }x of self-adjoint elements
in the unit ball of 91, N 97, such that flzp — 1 in the o-strong* topology. We then
define the net of elements {eq)} by

= [ew-Ri

It is known that o (¢/) — 1 in the o-strong* topology for z € C and ||o¥ (¢f)|| <
exp((Sz)?), where Sz is the imaginary part of z.
Now

@)1 @ef)AR)(1® hy))
— (oY) \F/exp —n22) 1@ e!)A(h) (1 @ o (h))dt

@
€

= T [exp(=r2?)(0®, @ 9) (10 0* () (o @ oY) (AM) (1 @ hdt

= 7= [ e )0 & 9) (1 0 0¥ (o) (Al (1 @ )t

= ﬁ/exp —n?t? ((Tft(h) ®1/J((Tﬂ(e;f)h))dt.

Since e;f — 1in o-strong* topology, we have

(1® ) (A()) = (1 Phy) (A(h)).
Repeating the above calculation with h,, and e;f switched, we obtain that
(1 hp)(A(R)) = Rha)p(h).
Then for any a € 7,, we obtain
(9@ )(a®hef) (@ @ %) (AR)(eh @)
= (9@ 9)((¢7,(a) @ o] (hnel)) A(h) (ehy @ €f))
= (ehgo? (@) @ ) (1@ o) (e AR (1 @ e hn))

= ((ehgo?i(@) @ (el huyef () (A(H).
Lete) — 1and e;f — 1in o-strong* topology. We have

(¢ phy)((a®1)A(R) = (¢ © Pha) ((a @ 1)(0] @ 0¥,)A(R))
= (@ hu)((c?;(a) @ 1)A(h)) = p(c?;(a)R(hn))3p(h)
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and on the other hand,

(¢ @ phn)((a©1)A ()) @(aR (hn))p(h).

Now we see that ¢(ac; (R(hy))) = @(aR(hy)) for any a € T,, and hence we
obtain that o (R(I,)) = (hn) Furthermore ol (R(hy)) = R(hy) and o (h) = h
for t € R. Applying Rcrt = %R, we have ¢, ( ) =hforteR.
(iv) Since R(h) = h, h € ‘ﬁq, N Ny. For any a in 9y, N Ny, we have
p(ah)g(h) = (¢ @ he)A(ah) = (¢ © ¢)(A(a)A(h) (1))

= (pe9)(A@)Ah)(he1))

= (hp @ @)A(ah) = p(h)p(ah) = ¢(h)p(ah),
i.e. ¢(ah) = ¢(ah). By Proposition 1.14 in [15] and Proposition 6.8 in [13], 91, N
Ny is a core for A, and hence hyp = he. I

REMARK 4.3. Proposition indicates that a locally compact quantum
group G whose scaling constant v # 1 has no group-like projection in L'(G) N
L®(G). A compact quantum group always has a group-like projection in L!(G) N
L*(G) as the identity is such a projection.

PROPOSITION 4.4. Suppose G is a locally compact quantum group and h is a
group-like projection in Ly, then ¢(h)~'Fy(h) is a group-like projection. Moreover,
@(h)P(R(F1(h))) = 1, where R(F1(h)) is the range projection of Fy(h).

Proof. Since there is a group-like projection h, by Proposition we see
that v = 1. For any b in D(S™!), by Proposition 6.8 in [I3] and Proposition
we have that

p(STH()n)] = |p(S7! (1b))| = |@(R(hb))| = |heR(b)| < [|he|l||b]|
which implies that hpS~! extends a bounded linear functional h¢R on M.
For any 4 in R, we have

(hg x he)(a) = (hg @ hg)A(a) = heS~ ((1® ¢)((1®a)A(h)))
= (hgS™" @ ga)A(h) = ga((hgR @ 1)A(h))
= @aR((t® he)A(h)) = aR(@(h)h) = ¢(ah)p(h),

ie. hxh = @(h)h. By taking the Fourier transform Fj, we obtain A(hg)? =
@(h)A(he). For any b in D(S), we have that

hp(S(b))] = |p(S(hb))| = [hpR(b)| < [[hell][].
This implies that 1pS extends to a bounded linear functional on M. Hence
(hg)* € M.,. By Proposition 2.4 in [14] and Proposition 4.2} we have that

(A(h@))" = A((he)") = A(hgS) = A(hgR) = A(hp) = A(hg).
Therefore ¢(h)'A(hg) is a projection in L®(G).
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Now by a routine computation, we obtain

P(MP(R(F1(1))) = §(F1(h) = ()" p(A(hg)*A(he)) = () p(h*h) =1
Fi(h
A(A

To see ¢(h) ™! ) is a group-like projection, we have to check

(h9)) (1@ A(hg)) = A(hg) © A(hg).
Applying A® A, we se that
(ADA)(A(A(h9)) (A(hp)@1)) = W* (A(A(hg)) @ A(A(h ))) EWZ(A(h)@A(h))
=IW((A®A)(h@h))=ZW(ARA)(A(h) (1&h))
=Z((A0A)(hoh)) = ( A)(h@h)

A(Mhg))@A(A(hg)).

Hence A(A(h9))(A(hg) 1) = A(hg) @ A(hg). By the equation R(A(w)) =
A(wR) in Proposition 8.17 of [13] and h¢R = h¢, we have that

A(A(h9)) (1@ Alhe)) = A(he) ® A(hg).

Hence ¢(h)~1F;(h) is a group-like projection in L*(G). #

REMARK 4.5. In Proposition we see that R(Fi(h)) = @(h) "1 Fi(h) is
a group-like projection in £5. Now we can apply the Fourier transform Fi to
obtain that ¢(h)~1h = Fy(R(Fy(h))).

COROLLARY 4.6. Let G be a locally compact quantum group. Suppose that h is a
group-like projection in L. Then 8'h = hé'" = h forall t € R.

Proof. 1f h is a group-like projection in L, then A(h¢) is a group-like pro-
jection again. By Proposition we have that 7/ (A(hg)) = A(hg). Hence
pt(he) = he for any t € R. Now for any b in 9}, we have

¢(bh) = (he)(b) = pr(hg)(b) = (5~ T4 (b) 1) = (67 'bh) = @(bhs™™).
This implies that h = hé ! forallt € R. &

PROPOSITION 4.7. Suppose G a locally compact quantum group. Suppose that ¢
is tracial or ¢ = . Then a projection h € L is a group-like projection if and only if h is
a biprojection.

Proof. Proposition[d.4showed thatif i € L, is a group-like projection, then
h is a biprojection. Now we will prove the reverse.

Suppose h is a biprojection. Then Fj () is a multiple of a projection. Sup-
pose Fi(h) = A(hg) = uhy for some projection hg in L®(G) and u € C\{0}.
Then A(hg)? = pA(hg) and A(hg)* = EA(hg).
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By Proposition 2.4 in [14], we have that (h¢)* is bounded i.e. ¢S extends to
a bounded linear functional on M. By (h¢)* = E he, we see that hpS~! extends
to a bounded linear functional %(h(p) on M. Hence heS™1 = }’j(h(p) = Coh.
For any 4 in R, we have
(he * ho)(a) =ho((t @ he)A(a)) = he((1® ¢)(A(a)(1® h)))
= oS ((19)(18m)A(0) = E(phopn)ah) = Zo(a(phn (AR))
ie. jih = (ph®1)(A(h)). Applying ¢ to the equation, we have

fip(h) = (ph ® )(A(h)) = @(h)*.
Hence u = ¢(h).

Note that
p(hh = (ph©1)(A(h)) = (he ©1)(A(h)) = (he @ 1)(A(h)(1 @ h))
= (ph @ 1)(1®h)A(h)) = (he @ 1)(1 @ h)A(h)(1 @ h))
= (ph®)((1®h)A(h)(1®h)), and
)

(1e@h)Ah) —h@h)(Ah)(1®h) —h®h)
=(1ohAh)(1oh)-1@h)Ah)(h@h)—(h®@h)A(h)(1®h)+h® h.
If ¢ is tracial, we have
(9@ @)(1@h)A(h) —h@h)(AR)(1&@h) — (h@ h))
= (p@e)(Qanah)(1eh) — (¢ e) (1 n)AMR)(hh))
—(p@e)(hem)Ah)(1@h)) + (9@ ¢)(h@h)
= ¢(1)* — p(h)> = g(h)> + p(h)* =0
ie. (1®h)A(h) = h ® h. This indicates that & is a group-like projection.
If ¢ =y, we have
e(h)y(h) = (p@)(h@h)Ah) (1 ®h) = (¢ @)1 h)Ah)(h & h).
By the right invariance of i, we have
(p @ hoh)A(h) = (p @ @)1 @) AMR) (L@ h) = p(h)g(h).
Since ¢ = ¥ and
(p® @) (L@ n)Ah)—h@h)(A(h) (1@ h)~h@ h)=p(h)? — p(h)*—g(h)*+¢(h)?,
we see that (1 ® h)A(h) = h® h and h is a group-like projection. 1
QUESTION 4.8. Is there a biprojection h in a locally compact quantum group
which is not a group-like projection?

PROPOSITION 4.9. Let G be a locally compact quantum group with a group-like
projection in LY(G) N L*(G). Then Young's inequality in Theoremand Hausdorff-
Young inequality in [4] are sharp.
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Proof. Suppose h is a group-like projection in £,. Since h is analytic with
respect to 0? and A () is analytic with respect to 7%, we have that hd'/P C d'/Ph
for 1 < p < 2and A(hg)d /1 = dV9A(hg) for 2 < g < oo from Theorem 2.4 in
[4]. Now

llp = 10" PV, 10(g) = ()P and
[A(ho)llq = ||[A(h(l’)jl/q]||q,m(¢) = g(h)a=/a,

If % + % =1, wehave || Fy(h)||; = [|h]|p forany 1 < p < 2.

Since /\qfél;fa)) is a group-like projection, we see that 0;(A(h¢)) = A(h¢) and
r(A(he)) = Apt(he)). Hence pt(hg) = he for t € R and |he *p_p/(h(p)H, =
le(Mhel, = M)/ for1 < r < 2. f1+1 = %Jr %, we have ||he *

p—p (ho)llr = [[hpllplhellg. 1

DEFINITION 4.10. Let G be a locally compact quantum group. A projection
x in L®(G) is a right shift of a group-like projection h if (x) = ¢(h),

Ax)(h@l)=h®x, Ah)(x®1)=x® R(x).

A projection x in L*(G) is a left shift of a group-like projection h if ¢(x) = ¢(h)
and
AX)(1®h)=x®h, Ah)(1®x)=R(x)®x.

REMARK 4.11. If x is a right shift of a group-like projection #, then R(x) is a
left shift of k.

REMARK 4.12. Let G be a locally compact group and H a subgroup of G.
Suppose 1,y is the characteristic function on a left coset xH of H. Then 1,y is a
left shift of 1.

PROPOSITION 4.13. Let G be a locally compact quantum group. Suppose x € Ly
is a right shift of a group-like projection h € Ly andy € Ly is a left shift of h. Then

7(x) = x, a;/}(x) =x, x0' = plly,
for some py > 0andall t € R and
wy) =y, of )=y vy =y,
for some py > O0and all t € R.
Proof. Suppose x € Ly is a right shift of h. Then

p(h)x = (e )(Ax)(he1), P)R(x) = (p@)(AMR)(x@1)).

Now we see that x is in D(S), and

P(h)S(x) = (p @) ((x ©1)A(h)) = p(x)R(x).

Hence 7;(x) = x forall t € R.



YOUNG’S INEQUALITY FOR LOCALLY COMPACT QUANTUM GROUPS 127

By the relation Aty = ((ffo ® aft)A in Proposition 6.8 of [13], we have

pe?i(x) = (yof @ Y(AX) (1) = (p @ ) (A(n(x)) (o] (1) © 1))
= (pe)(Ax)(he1)) = ph)x.

By the relation A(§) = 6 ® 6 in Proposition 7.12 of [13] and Corollary [4.6| we

have
Stx @ 6¥R(x) = (6" @ 6HA(h) (x @ 1) = A(6¥h)(x ®1) = x ® R(x).

Therefore for any w € L'(G), we have w(§*R(x))d*x = w(R(x))x. Hence there
exists piy > 0 such that 6i'x = pifx.

Following the argument above, we have similar properties for a left shift of
a group-like projection. 1

COROLLARY 4.14. Let G be a locally compact quantum group. Suppose x €
Ly is a left shift of a group-like projection h € Ly. Then ?rf(}"l (x)) = uxtF(x),
T (Fi(x)) = Fi(x) and 6 Fy(x) = Fy(x) forall t € R.

Proof. By Proposition[4.13] we have

o (Fi(x)) = 5] (Mx9)) = Mer(xg)) = ji;"A(xg) and
T (F1(x)) = AM(x@) 1) = A(x9).
By the fact that 0y (x) = x, we see that § ! 7y (x) = Fy(x) forall t € R. ¥

REMARK 4.15. Suppose G is a locally compact quantum group such that the
scaling automorphism group 7 is trivial and ¢ = ¢ is a tracial weight. Then the
assumption A(x)(h ® 1) = h ® x is equivalent to the assumption A(h)(x ® 1) =
x ® R(x).

DEFINITION 4.16. Let G be a locally compact quantum group. A nonzero
element x in L, is a bi-partial isometry if x and J; (x) are multiples of partial isome-
tries.

PROPOSITION 4.17. Let G = (M, A, ¢, ) be a locally compact quantum group.
Suppose h € L is a group-like projection and x € Ly is a left shift of h. Then x is a
bi-partial isometry. Moreover F1(x)*F1(x) = @(h)F1(h) and || F1(x)||e = @(h).

Proof. Since x is a left shift of i, we have 7:(x) = x, 0/ (x) = x, ditx = pilx

for some px > 0 and all t € R. Hence A(xp) = Fi(x) satisfyes 7/ (A(xg)) =
Mpi(x@)) = pe " Alxg).

Note that (1® ¢)(A(h)(1®x)) = ¢(x)R(x), we then see that x x h = ¢@(h)x
and F1(x)F1(h) = @(h) F1(x).

We shall show that x is a bi-partial isometry. For any b in D(S) such that
S(b) € Ny,

(x)*(b) = X9(S(b)) = @(S(b)*x) = p(x5(b))
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= ¢S(bS71(x)) = pR(bR(x)) = (R(x)y) (D).
Hence (x¢)* = R(x). Note that
AMxg)*Axg) = AR(x)P)A(xg) = A(R(x)Y * x¢).
For any b in R, we then have
(R(x)yp + x9) (D) = (R(x)yp © x)A(b
= (R)ps™)((t®
For any ain D(S~1) NN, such that S~1(

) = R(X)) (1@ ¢)(A(b)(1®x)))
9)(1®b)A(x))).

a) € 0y, we have

(R(x)ps~1)(a) = p(S™ (a)R(x)) = S~ (S(R(x))a) = ¢(xa),
ie. R(x)pS~! = px = xp. Now we see that R(x)y * xp = (x¢p @ 1)(A(x))g. We
will show that (x¢ ® 1)(A(x)) = @(h)h. Since 0 (x) = x and x is a projection, we
see that (x¢ ®1)(A(x)) > 0. By the relation A(x)(1 ® h) = x ® h, we have that
)

(A(x)) = (x¢ @ 1)(A(x))h = ¢(x)h = ¢(h)h.
Therefore (x¢ ® 1)(A(x)) = ¢(h)h. On the other hand, we have
o((xp @ 1)(A(x))) = ¢(x)* = p(h)*.

Hence (x¢ ® 1)(A(x)) = ¢(h)h and A(x¢@)*A(xp) = @(h)A(he). Moreover,
[F1(3)[leo = @(h). u

h(xp®1

DEFINITION 4.18. Suppose G is a locally compact quantum group. An el-
ement x in L1(G) N L?(G) is said to be p-extremal if || Fy(x)|; = Ap(G)||x]|,,
where p € [1,2], % + %, and A,(G) is the best constant for the inequality. A pair
(x,y) is said to be (p, q)-extremal if ||[x + p_i/p (y)|lr = Bpq(G)||x[lpllyllq, where
xy €LY G)NLAG), pge (L2, 1 +1= % + %, and B, 4(G) is the best constant
for the inequality.

REMARK 4.19. Suppose G is a locally compact quantum group with a group-
like projection in £,. Then, by Proposition every group-like projection / in
L is p-extremal and every pair (1, h) is (p, q)-extremal.

COROLLARY 4.20. Suppose G is a locally compact quantum group and x is a left
shift of a group-like projection h. Then x is p-extremal. If ¢ = @, then (R(x),x) is
(p,q)-extremal.

Proof. Note that o/ (x) = x and ¢(x) = ¢(h), we have
xllp = llxd Pl r () = ()P = [|R]] -

By Proposition we have [|A(x¢)|; = [[A(he)| ;. Hence x is p-extremal.
Note that R(x) * xp = @(h)hg, we can see that ||[R(x) * x||, = @(h)!/"1,
IR()p = @(B)VP, ||x[lg = () /7. n
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DEFINITION 4.21. Suppose G is a locally compact quantum group and K is a
group-like projection in L, 1 is the range projection of 73 (/). A nonzero element
x in L, is said to be a bi-shift of a biprojection h if there exist a left shift x, of h and a

left shift x;, of h and an element y € L, such that 7:(y) = o (y) = y forall t € R
and

X = (xhy) * ./?1 (Xﬁ)
THEOREM 4.22. Suppose G is a locally compact quantum group and x € L is
a bishift of a group-like projection h as above. Then o} (x) = x, é'tx = y%fhx for all
t € R, some py, > 0, x is bi-partial isometry and || Fi(x)|lco = ||x||1. Moreover, x is
p-extremal for 1 < p < 2.

Proof. By Proposition[4.13] we have ;(x;) = x), and hence

x = (((xpy) )R @ AT (x3)).

By Corollary we see the following, for some piy, > 0andall f € R:
W(Fi(x)) = Fi(x;), of (Filx;)) = V;;tﬁl (x7,)-
From the relation Aa;’) =(u® (th) )A, we have

of (x) = ((xpy) R @ 0 )A(F1(x5)) = ((xwy)pRT @ 07 ) A(Fy(x7))
= ((ny)pR @ DA(F1 (x)) = p'x,
ie ol (x) = y;ﬁitx and o (x*x) = x*x.
From the relation 6% ® 4! = A(6"), we see that, for some iy, >0and all t R,

6'x = ((0y)gR @ ) A(Fi(x3)) = ((xy) )RS © ) A Fi (x7)) = plf x.

Let g = R(y*x;) be the range projection of y*x;. Since ¢/ (y) = y and
ol (x) = x,, we have ¢(q) = ¢(R(xy)) < @(x;) < co. By Lemma 9.5 in [13],

we have that

~ ~

q)(lq)(l ® wA(p(th),/\(p(q))A(R(Fl (xz)»(l ® qua(xhy)rAzp(q))A(R<~Fl (xﬁ)))*
SI® w/\(p(xhy),/hp(xhy)A(R(ﬁl(xz))R(ﬁl(xg))*).

On the other hand,

~ ~

q)(lq)(l (9 CUAzp(xhy),/\,P(q))A(R(]:l(xﬁ))) (l X w/\go(xh]/)//\(p(xh))A<R(‘F1(xﬁ>))*

= q)(lq) (xny) pROR)A(F; (x7)) (xny) PROR)A(F ()" = ——R(x)R(x)*
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and by Proposition[4.17/and Remark 4.5, we can obtain
L® qu)(xhy),Aq,(xhy)A(R(ﬁl (xﬁ) )R(ﬁl (xﬁ))*)

= 5(0) (1 (49 (9) (v ) AR(F1 (7))

= i () 5 )AN) = Ry 5y)
Therefore
ie R(x*) < xp.

Note that F1(x)* = x;,F1(xy)*. Then R(F1(x)*) < x;,.
Since o} (x*x) = x*x, we obtain ¢/ (R(x*)) = R(x*). By Proposmon.
we see
11 () leo < Nl = (AR ()l 1) < IR 1204 28" 2 1, 124)
= p(R( NV F ()2 = p(RENVIFR(F (0T, 2
¢ ()21 F () oo @(R(F1 (x)7)1 /2
o) @) || F1(2) oo = [1F1(2)

Hence the inequalities above must be equalities and we have that x is a bi-partial
isometry and || F1(x) |l = ||x]|1. Now we have that x is p-extremal for Hausdorff-
Young inequality. 1

<
<
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