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1. INTRODUCTION

A fundamental result in group theory is Young’s inequality which was first
studied by Young [20] in 1912. Let G be a locally compact group with a modular
function δ0. Suppose 1

r + 1 = 1
p + 1

q , p, q, r ∈ [1, ∞] and norms and convolu-
tion are defined with relative to a left Haar measure. Then Klein and Russo [11]
formulate Young’s inequality as

‖ f ∗ gδ
1/p′
0 ‖r 6 ‖ f ‖p‖g‖q,

where f ∈ Lp(G), g ∈ Lq(G) and 1
p + 1

p′ = 1. Now one could ask the following
two natural questions:

(1) Is the coefficient 1 of ‖ f ‖p‖g‖q the best constant for Young’s inequality?
(2) Do extremal functions for Young’s inequality exists? If so what are they?

For the first question, it is not true in general and Beckner [1] proved a sharp
Young’s inequality for convolution on Rn:

‖ f ∗ g‖r 6 (Ap Aq Ar′)
n‖ f ‖p‖g‖q,

where f ∈ Lp(Rn), g ∈ Lq(Rn), p, q, r ∈ [1, ∞], 1
r + 1 = 1

p + 1
q , 1

m + 1
m′ = 1,

Am = (m1/mm′(1/m′))1/2. In 1977, Fournier [8] proved that the coefficient 1 is the
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best constant for Young’s inequality for a unimodular locally compact group if
and only if it contains a compact open subgroup.

For the second question, Fournier [8] proved for unimodular locally com-
pact groups that if the best constant for Young’s inequality is 1, then f and g are a
left translation and a right translation of a subcharacter respectively. Beckner [1]
showed for Rn in which case the best constant is not 1, that the extremal functions
are Gaussian. Klein and Russo [11] showed that the sharp Young’s inequality for
Heisenberg groups does not admit any extremal functions.

There are several ways to generalize locally compact groups. One of them
is Kac algebra which was elaborated independently by Enock and Schwartz [7],
and by Kac and Vainermann in the 1970s. In 2000, Kustermans and Vaes [13]
introduced the locally compact quantum group which is a generalization of Kac
algebra. Note that the subfactor [10] also can be viewed as a generalization of
Kac algebra. It was shown by Enock and Nest [6] that there is a one to one cor-
respondence between Kac algebras and irreducible depth-2 subfactors. For the
finite-index case, C. Jiang, Z. Liu and J. Wu [9] proved Young’s inequality for
subfactors.

In this paper, our goal is to generalize Young’s inequality for locally compact
quantum groups. We show that

MAIN 1.1 (Theorem 3.4). Let G be a locally compact quantum group. For 1 6
p, q, r 6 2 with 1

r + 1 = 1
p + 1

q , let p′ be such that 1
p + 1

p′ = 1. Suppose x ∈ Lp(G)

and y ∈ Lq(G). Then

‖x ∗ ρ−i/p′(y)‖r 6 ‖x‖p‖y‖q.

We refer to Section 2 for the notations.
When the scaling automorphism group τ of G is nontrivial, Young’s in-

equality is not true for 1 6 p, q, r 6 ∞ in general. If the scaling automorphism
group is trivial, we have the following theorem.

MAIN 1.2 (Theorem 3.13). Let G be a locally compact quantum group whose
scaling automorphism group is trivial. Suppose 1 6 p, q, r 6 ∞, 1

p + 1
q = 1

r . If ϕ = ψ,
then for x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ y‖r 6 ‖x‖p‖y‖q.

If ϕ is tracial, then for x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ yδ−1/p′‖r 6 ‖x‖p‖y‖q.

Note that the noncommutative Lp-space given here is taken with respect
to the left Haar weight. So is the convolution. One could define the convolu-
tion with respect to the right Haar weight when the noncommutative Lp-space is
taken with respect to the right Haar weight.
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We also give the definition of shifts of group-like projections and show that
they are extremal element for the Hausdorff–Young inequality given in [4]. Simi-
lar results for Young’s inequality is also obtained. But we are not sure that all the
extremal elements for the Hausdorff–Young inequality are shifts of group-like
projections.

The rest of the paper is organized as follows. In Section 2 we give a brief
introduction to locally compact quantum groups and noncommutative Lp-spaces.
In Section 3 we prove Young’s inequality for locally compact quantum groups.
In Section 4 we investigate the properties of shifts of group-like projections and
show that they are extremal functions for Hausdorff–Young inequality.

2. PRELIMINARIES

In this section we will recall the definition of locally compact quantum
groups and noncommutative Lp-spaces. LetM be a von Neumann algebra with
a normal, semi-finite, faithful weight ϕ. Recall that

Nϕ = {x ∈ M : ϕ(x∗x) < ∞}, Mϕ = N∗ϕNϕ,

where Mϕ is a ∗-subalgebra ofM. Denote by Hϕ the Hilbert space obtained by
completing Nϕ. The map Λϕ : Nϕ 7→ Hϕ is the inclusion map. Denote by πϕ

the ∗-isomorphism ofM on Hϕ given by πϕ(a)Λϕ(b) = Λϕ(ab) for any a ∈ M,
b ∈ Nϕ. The triplet (πϕ,Hϕ, Λϕ) is the semi-cyclic representation of M. We
denote by ∇ϕ the modular operator for ϕ, σ

ϕ
t the modular automorphism group

for ϕ, t ∈ R, Jϕ the conjugate unitary onHϕ.
A locally compact quantum group G = (M, ∆, ϕ, ψ) consists of

(1) a von Neumann algebraM,
(2) a normal, unital, ∗-homomorphism ∆ : M → M⊗M such that (∆⊗ ι) ◦

∆ = (ι⊗∆) ◦∆,
(3) a normal, semi-finite, faithful weight ϕ such that (ι ⊗ ϕ)∆(x) = ϕ(x)1,

∀x ∈M+
ϕ ; a normal, semi-finite, faithful weight ψ such that (ψ⊗ ι)∆(x) = ψ(x)1,

∀x ∈M+
ψ ,

where ⊗ denotes the von Neumann algebra tensor product and ι denotes the
identity map. The normal, unital, ∗-homomorphism ∆ is a comultiplication of
M, ϕ is the left Haar weight, and ψ is the right Haar weight.

We assume thatM acts onHϕ. There exists a unique unitary operator W ∈
B(Hϕ ⊗Hϕ) which is known as the multiplicative unitary defined by

W∗(Λϕ(a)⊗Λϕ(b)) = (Λϕ ⊗Λϕ)(∆(b)(a⊗ 1)), a, b ∈ Nϕ.

Moreover for any x ∈ M, ∆(x) = W∗(1⊗ x)W.
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For the locally compact quantum group G = (M, ∆, ϕ, ψ) above, there exist
the unitary antipode R, the scaling automorphism group τt, t ∈ R and the an-
tipode S onM. There exists a modular element δ such that ψ = ϕδ = ϕR. For
these properties, we refer to [13] for more details.

For G = (M, ∆, ϕ, ψ), there always exists a dual locally compact quantum
group Ĝ = (M̂, ∆̂, ϕ̂, ψ̂). The corresponding von Neumann algebra acting onHϕ

is given by

M̂ = {(ω⊗ ι)(W) : ω ∈ B(Hϕ)∗}−σ-strong∗ .

The element (ω ⊗ ι)(W) is denoted by λ(ω) in general which is also known as
the Fourier transform of the restriction ω|M of ω on B(H). The comultiplication
∆̂ is given by

∆̂(x) = Ŵ∗(1⊗ x)Ŵ, Ŵ = ΣW∗Σ,

where Σ is the flip on Hϕ ⊗Hϕ. The dual left Haar weight ϕ̂ is defined to be the
unique normal, semi-finite, faithful weight on M̂with GNS triple (Hϕ, ι, Λ̂) such
that λ(I) is a core for Λ̂ and Λ̂(λ(ω)) = ξ(ω), ω ∈ I , where

I = {ω ∈ M∗ : Λϕ(x) 7→ ω(x∗), x ∈ Nϕ is bounded},

and ξ(ω) is given by ω(x∗) = 〈ξ(ω), Λϕ(x)〉. The dual right Haar weight ψ̂ =

ϕ̂R̂, where R̂ is the dual unitary antipode. For more details on dual quantum
groups, we refer to [13] again.

A locally compact quantum group G is a Kac algebra if its scaling automor-
phism group τ is trivial and σϕ = σψ. A locally compact quantum group is of
compact type if ϕ = ψ is a state.

Now we would like to recall some notations on noncommutative Lp spaces.
Let M be a von Neumann algebra with a normal semifinite faithful weight ϕ.
Denote by

Tϕ = {x ∈ M : x is analytic with respect to σ and σz(x) ∈ N∗ϕ ∩Nϕ, ∀z ∈ C}.

Let

Lϕ = {x ∈ M : ∃ϕ(x) ∈ M∗ such that ∀a, b ∈ Tϕ :

ϕ(x)(a∗b) = 〈xJϕ∇−1/2
ϕ Λϕ(a), Jϕ∇1/2

ϕ Λϕ(b)〉}.

Denote by xϕ the functional given by xϕ(y) = ϕ(yx) and ϕx the functional given
by (ϕx)(y) = ϕ(xy). If there exists a bounded functional ϕ(x) ∈ M∗ such that
ϕ(x)(y) = (xϕ)(y) for any y in the domain D(xϕ), then we denote ϕ(x) by xϕ

again for simplicity i.e. ϕ(x) = xϕ for x in Lϕ. We reserve ϕx for ϕ(x1/2 · x1/2)
when x is a positive self-adjoint element affiliated withM. For any functional φ,
we denote by φ the functional given by ω(x) = ω(x∗) for any x inM.

Let Rϕ = {x∗ : x ∈ Lϕ}. Then for any x ∈ Rϕ, ϕx ∈ M∗ under the
convention above. In [3], Caspers showed that T 2

ϕ ⊆ Lϕ.
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For any x ∈ Lϕ, the norm is defined by

‖x‖Lϕ
= max{‖x‖, ‖xϕ‖}.

Then for p ∈ (1, ∞), Lp(G) is the complex interpolation space (M,M∗)[1/p] and
L1(G) =M∗, L∞(G) =M.

We quote the Theorem 4.1.2 in [2] for future use in the paper.

PROPOSITION 2.1. Let θ ∈ [0, 1]. Let T be a morphism between compatible cou-
ples (E0, E1) and (F0, F1). Then it restricts to a bounded linear map T : (E0, E1)[θ] →
(F0, F1)[θ]. The norm is bounded by ‖T‖ 6 ‖T : E0 → F0‖1−θ‖T : E1 → F1‖θ .

In [3], Caspers proved that Hϕ ∩M = Nϕ andM∗ ∩Hϕ = I . Moveover
(Hϕ,M∗)[2/p−1] = Lp(G) for p ∈ (1, 2] and (M,Hϕ)[2/q] = Lq(G) for q ∈ [2, ∞).
For more details on this, we refer to [3].

Hence for p ∈ [1, 2] and ω ∈ I , the Lp-Fourier transform

Fp : Lp(G)→ Lq(Ĝ),
1
p
+

1
q
= 1,

is given by Fp(ξp(ω)) = Λ̂q(λ(ω)), where ξp : I → Lp(G) is the inclusion map
for 1 6 p 6 2, Λ̂q : Nϕ̂ → Lq(Ĝ) is the inclusion map for q > 2.

The Hausdorff–Young inequality says that ‖Fp‖ 6 1.
Let φ be a normal, semi-finite faithful weight on M′ acting on Hϕ. For

p ∈ [1, ∞), the Hilsum’s Lp-space Lp(φ) is the space of closed densely defined
operators x on the GNS-space Hϕ of ϕ such that if x = u|x| is the polar decom-
position, then |x|p is the spatial derivative of a positive linear functional ω ∈ M∗
and u ∈ M. For more details on noncommutative Lp-spaces, we refer to [19]. Let
d = dϕ

dφ be the spatial derivative relative to ϕ. In [3], they prove that there is an
isometric isomorphism Φp : Lp(φ)→ Lp(G) such that

Φp : [abd1/p] 7→ lp(ab), a, b ∈ Tϕ,

where lp : Lϕ → Lp(G) is the inclusion map, and [x] is the closure of a preclosed
operator x.

LEMMA 2.2. Let G = (M, ∆, ϕ, ψ) be a locally compact quantum group. If α is
an automorphism ofM, then for any x in Lϕ,

‖x‖p,ϕ = ‖α(x)‖p,ϕα−1 ,

where p-norm ‖ · ‖p,η is the norm of complex interpolation Lp-space relative to a normal
semi-finite weight η onM.

If α is an anti-automorphism ofM, then for any x in Lϕ, we have

‖x‖p,ϕ = ‖α(x∗)‖p,ϕα−1 .

The proof follows directly from Proposition 2.1.
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3. YOUNG’S INEQUALITY

Let G = (M, ∆, ϕ, ψ) be a locally compact quantum group. Suppose that
ω, θ ∈ M∗. Then the convolution ω ∗ θ ∈ M∗ of ω and θ is defined by

(ω ∗ θ)(x) = (ω⊗ θ)∆(x)

for any x inM. We then see that

(3.1) ‖ω ∗ θ‖ 6 ‖ω‖‖θ‖.

If we identifyM∗ with L1(G), then the inequality (3.1) is

(3.2) ‖x ∗ y‖1 6 ‖x‖1‖y‖1, x, y ∈ L1(G).

In [13], Kusterman and Vaes prove that for any ω ∈ M∗ and θ ∈ I ,

ξ(ω ∗ θ) = λ(ω)ξ(θ).

Note that λ(ω) = (ω⊗ ι)(W), we have

(3.3) ‖ξ(ω ∗ θ)‖ 6 ‖ω‖‖ξ(θ)‖.

If we identifyHϕ with L2(G), then the inequality (3.3) is

(3.4) ‖x ∗ y‖2 6 ‖x‖1‖y‖2, x ∈ L1(G), y ∈ L1(G) ∩ L2(G).

Note that L1(G) ∩ L2(G) = I is dense in L2(G). Hence the convolution x ∗ y
of x ∈ L1(G) and y ∈ L2(G) is well-defined by continuity and moreover the
inequality (3.4) is true for x ∈ L1(G) and y ∈ L2(G).

Now by applying the interpolation theorem, we have

PROPOSITION 3.1. For any x ∈ L1(G) and y ∈ Lp(G), 1 6 p 6 2, we have

‖x ∗ y‖p 6 ‖x‖1‖y‖p.

Recall that ρt is the norm continuous one-parameter representation of R on
M∗ such that ρt(ω) = ω(δ−itτ−t(x)) for ω ∈ M∗, x ∈ M and t ∈ R. By
Remark 8.12 of [13] the set Iρ = {ω∈I : ω is analytic with respect to ρ} is dense
in I ⊂ M∗. By Lemma 1.1 of [12] we see that ξ(Iρ) is dense in ξ(I) ⊂ Hϕ.
Therefore ξp(Iρ) is dense in Lp(G) for 1 6 p 6 2.

In Proposition 8.11 of [13] it was showed that for ω ∈ I and θ ∈ D(ρi/2),
ω ∗ θ ∈ I and

ξ(ω ∗ θ) = U∗λ(ρi/2(θ))
∗Uξ(ω),

where U : Hϕ → Hϕ is an anti-unitary such that UΓ(x) = Λϕ(R(x∗)) for any
x ∈ Nψ, where (Hϕ, π, Γ) is the GNS-construction for ψ = ϕδ constructed from
(Hϕ, π, Λϕ) via δ (see Notation 7.13 in [13]).

Inspired by the equation above, we are able to show the following proposi-
tion.
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PROPOSITION 3.2. Suppose 1 6 p, q 6 2 and 1
p + 1

q = 3
2 . Let p′, q′ be such that

1
p + 1

p′ = 1, 1
q +

1
q′ = 1, Suppose that ω, θ ∈ I and θ is analytic with respect to ρ. Then

we have ξ(ω ∗ ρ−i/p′(θ)) ∈ L2(G) and

‖ξ(ω ∗ ρ−i/p′(θ))‖2 6 ‖ξp(ω)‖p‖ξq(θ)‖q.

Proof. Note that ω ∗ ρ−i/p′(θ) ∈ M∗. Since ρ−i/p′(θ) ∈ I (see Remark 8.12
in [13] and Result 8.6 in [13]), we have ω ∗ ρ−i/p′(θ) ∈ I . Hence

ξ(ω ∗ ρ−i/p′(θ)) = Λ̂(λ(ω ∗ ρ−i/p′(θ))).

Note that λ(ω ∗ ρ−i/p′(θ)) ∈ Nϕ̂. By Theorem 23 in [18], we have

‖Λ̂(λ(ω ∗ ρ−i/p′(θ)))‖ = ‖λ(ω ∗ ρ−i/p′(θ))d̂
1/2‖2,L2(φ̂),

where φ̂ is a normal semi-finite faithful weight on M̂′ and L2(φ̂) is the Hilsum
space.

By the fact that λ(ω) ∈ Nϕ̂ and the property of λ, we have

‖λ(ω ∗ ρ−i/p′(θ))d̂
1/2‖2,L2(φ̂) = ‖λ(ω)λ(ρ−i/p′(θ))d̂

1/p′ d̂ 1/q′‖2,L2(φ̂).

By Theorem 2.4 in [4] and Proposition 8.9 in [13], λ(ρ−i/p′(θ)) is analytic with
respect to σ̂ϕ̂ and

‖λ(ω ∗ ρ−i/p′(θ))d̂
1/2‖2,L2(φ̂) = ‖λ(ω)d̂ 1/p′λ(θ)d̂ 1/q′‖2,L2(φ̂)

6 ‖λ(ω)d̂ 1/p′‖p′ ,Lp′ (φ̂)‖λ(θ)d̂
1/q′‖q′ ,Lq′ (φ̂).

Now applying Hausdorff–Young inequality for locally compact quantum groups
in [4], we have

‖ξ(ω ∗ ρ−i/p′(θ))‖ 6 ‖λ(ω)d̂ 1/p′‖p′ ,Lp′ (φ̂)‖λ(θ)d̂
1/q′‖q′ ,Lq′ (φ̂)

6 ‖ξp(ω)‖p‖ξq(θ)‖q.

Since ξp(I) is dense in Lp(G) for any 1 6 p 6 2, we then have

PROPOSITION 3.3. Suppose 1 6 p, q 6 2 and 1
p + 1

q = 3
2 . Let p′ be such

that 1
p + 1

p′ = 1, x ∈ Lp(G), y ∈ Lq(G). We define x ∗ ρ−i/p′(y) to be the limit

of ξ(ωn ∗ ρ−i/p′(θm)) in L2(G), where (ωn)n ⊂ I is a bounded net in I such that
(ξp(ωn))n converges to x in Lp(G) and (θm)m ⊂ I is a bounded net such that θm is
analytic with respect to ρ and (ξq(θm))m converges to y in Lq(G). Then x ∗ ρ−i/p′(y) ∈
L2(G) and

‖x ∗ ρ−i/p′(y)‖2 6 ‖x‖p‖y‖q.

Proof. By the proposition above, we have

‖ξ(ωn ∗ ρ−i/p′(θm))‖ 6 ‖ξp(ωn)‖p‖ξq(θm)‖q.
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By the assumption, we see that {ξp(ωn)}n and {ξq(θm)}m are Cauchy nets, and
hence {ξ(ωn ∗ ρ−i/p′(θm))}n,m is a Cauchy net. By taking the limits, we obtain
that

‖x ∗ ρ−i/p′(y)‖2 6 ‖x‖p‖y‖q.

Now by Stein’s interpolation theorem [17], we have

THEOREM 3.4. Let G be a locally compact quantum group. For 1 6 p, q, r 6 2
with 1

r + 1 = 1
p +

1
q , let p′ be such that 1

p +
1
p′ = 1. Suppose x ∈ Lp(G) and y ∈ Lq(G).

Then
‖x ∗ ρ−i/p′(y)‖r 6 ‖x‖p‖y‖q.

REMARK 3.5. In Theorem 3.4, x ∗ ρ−i/p′(y) is similarly defined to be the
limit of ξr(ωn ∗ ρ−i/p′(θm)) in L2(G), where (ωn)n ⊂ I is a bounded net in I
such that (ξp(ωn))n converges to x in Lp(G) and (θm)m ⊂ I is a bounded net
such that θm is analytic with respect to ρ and (ξq(θm))m converges to y in Lq(G).

COROLLARY 3.6. Let G be a compact quantum group. Then for 1 6 p, q, r, p′ 6 2
with 1

r + 1 = 1
p + 1

q , 1
p + 1

p′ = 1, x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ τi/p′(y)‖r 6 ‖x‖p‖y‖q.

Proof. Suppose that x, y ∈ Lϕ =M. It suffices to compute ρ−i/p′(yϕ). We
assume that y ∈ D(τi/p′) and z ∈ D(τ−i/p′). Then by Proposition 6.8 in [13],

(ρ−i/p′(yϕ))(z) = (yϕ)(τ−i/p′(z)) = ϕτ−i/p′(zτi/p′(y)) = ϕ(zτi/p′(y)).

Since D(τ−i/p′) is σ-strongly* dense inM, we have ρ−i/p′(yϕ) = τi/p′(y)ϕ.

PROPOSITION 3.7. For 1 6 p, q, r 6 2, x ∈ Lp(G) and y ∈ Lq(G), we have

Φ̂−1
r′ Fr(x ∗ ρ−i/p′(y)) = Φ̂−1

p′ Fp(x)Φ̂−1
q′ Fq(y).

Proof. By continuity of Lp-Fourier transform, we only have to check

Φ̂−1
r′ Fr(ξr(ω ∗ ρ−i/p′(θ))) = Φ̂−1

p′ Fp(ξp(ω))Φ̂−1
q′ Fq(ξq(θ))

for ω, θ ∈ I and θ analytic with respect to ρ. Since ω ∗ ρ−i/p′(θ) ∈ I , by Theo-
rem 3.1 in [4], we have

Φ̂−1
r′ Fr(ξr(ω ∗ ρ−i/p′(θ))) = λ(ω)λ(ρ−i/p′(θ))d̂

1/r′ = λ(ω)d̂ 1/p′λ(θ)d̂ 1/q′

= Φ̂−1
p′ Fp(ξp(ω))Φ̂−1

q′ Fq(ξq(θ)),

where the products are strong products.

In general, we do not have Young’s inequality for 1 6 p, q, r 6 ∞. For
example, let G = SUµ(2), we will show that ‖x ∗ y‖∞ 6 ‖x‖1‖y‖∞ is not true
for all x ∈ L1(G) and y ∈ L∞(G). Firstly we need the following proposition for
convolutions.
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PROPOSITION 3.8. Let G be a compact quantum group. Then the convolution
x ∗ y of x ∈ D(S) and y ∈ M is given by

x ∗ y = ((xϕ)S−1 ⊗ ι)∆(y).

The convolution x ∗ y of x ∈ M and y ∈ D(S−1) is given by

x ∗ y = ((ι⊗ (yϕ)S)∆(x)).

Proof. Since G is compact, Lϕ = M. If x ∈ D(S), z ∈ D(S−1) since
‖(xϕ)S−1(z)‖ = ‖ϕS−1(S(x)z)‖ 6 ‖S(x)‖‖z‖, we see that (xϕ)S−1 extends to
a bounded linear functional on M, denoted by (xϕ)S−1 again. Then for any
z ∈ M,

((xϕ) ∗ (yϕ))∆(z) = (xϕ)((ι⊗ ϕ)(∆(z)(1⊗ y))) = (xϕ)S−1((ι⊗ ϕ)(1⊗ z)∆(y))

= ϕ(z(((xϕ)S−1 ⊗ ι)∆(y))).

If y ∈ D(S−1), z ∈ D(S), we then have

‖(yϕ)S(z)‖ = ‖ϕS(zS−1(y))‖ 6 ‖S−1(y)‖‖z‖,

and (yϕ)S extends to a bounded linear functional onM, denoted by (yϕ)S again.
Then for any z ∈ M,

((xϕ) ∗ (yϕ))∆(z) = (yϕ)((ϕ⊗ ι)(∆(z)(x⊗ 1))) = (yϕ)S((ϕ⊗ ι)(z⊗ 1)∆(x))

= ϕ(z((ι⊗ (yϕ)S)∆(x))).

Now we consider SUµ(2). For µ ∈ [−1, 1]\{0}, SUµ(2) is the universal
unital C∗-algebra generated by a, c subject to the conditions:

a∗a + c∗c = 1, aa∗ + µ2c∗c = 1, c∗c = cc∗, ac = µca, ac∗ = µc∗a.

Moreover ‖an‖ = 1 for any n ∈ N and (1− µ2)1/2 6 ‖c‖ 6 1.
The comultiplication ∆ on SUµ(2) is given by

∆(a) = a⊗ a− µc∗ ⊗ c, ∆(c) = c⊗ a + a∗ ⊗ c.

The antipode S on SUµ(2) is given by

S(a) = a∗, S(a∗) = a, S(c∗) = −µ−1c∗.

Let

akmn :=

{
akc∗mcn k > 0,
a∗−kc∗mcn k < 0.

The Haar state ϕ of SUµ(2) is given by

ϕ(akmn) = δk,0δm,n
1− µ2

1− µ2m+2 , µ 6= ±1.

Suppose x= c∗2n and y= c2n for n∈N. Then ∆(y)=(c⊗ a + a∗ ⊗ c)2n and

c∗2n ∗ c2n = ((c∗2n ϕ)S−1 ⊗ ι)∆(c2n) = (−µ−1)2n ϕ(c2nc∗2n)a2n,



118 ZHENGWEI LIU, SIMENG WANG AND JINSONG WU

and so ‖c∗2n ∗ c2n‖ = µ−2n ϕ(c∗2n ∗ c2n). On the other hand, ‖c∗2n‖1 = ϕ(c∗ncn)
and (1− µ2)1/2 6 ‖c‖ 6 1. Hence

‖c∗2n ∗ c2n‖
‖c∗2n‖1‖‖c2n‖

>
µ−2n(1− µ2)(1− µ2n+2)

(1− µ2)(1− µ4n+2)
=

µ−2n(1− µ2n+2)

(1− µ4n+2)
>µ−2n(1− µ2n+2).

Hence when µ 6= ±1,

sup
0 6=x∈L1(G),0 6=y∈L∞(G)

‖x ∗ y‖
‖x‖1‖y‖

= ∞.

When a locally compact quantum group G has trivial scaling automorphism
group, we have Young’s inequality for 1 6 p, q, r 6 ∞ if ϕ = ψ or ϕ is tracial.

PROPOSITION 3.9. Let G = (M, ∆, ϕ, ψ) be a locally compact quantum group
whose scaling automorphism group is trivial. Then the convolution x ∗ y of x ∈ Lϕ and
y ∈ Lϕ is given by

x ∗ y = ((xϕ)R⊗ ι)∆(y) ∈ Lϕ.

Proof. Note that τt is trivial and S = R. By Proposition 1.22 in [13], for any
z ∈ Rϕ,

((xϕ) ∗ (yϕ))∆(z) = (xϕ)((ι⊗ ϕ)(∆(z)(1⊗ y))) = (xϕ)R((ι⊗ ϕ)(1⊗ z)∆(y))

= ((xϕ)R⊗ (ϕz))∆(y) = ϕ(z(((xϕ)R⊗ ι)∆(y))).

Note thatRϕ is σ-strongly* dense inM and ‖x ∗ y‖ 6 ‖xϕ‖‖y‖ < ∞. We have x ∗
y = ((xϕ)R⊗ ι)∆(y) ∈ M. Since y ∈ Lϕ ⊂ Nϕ, we have ((xϕ)R⊗ ι)∆(y) ∈ Nϕ

by Result 2.3 in [13]. Therefore x ∗ y = ((xϕ)R⊗ ι)∆(y) ∈ Lϕ by Proposition 2.14
in [3].

COROLLARY 3.10. Let G be a locally compact quantum group whose scaling au-
tomorphism group is trivial. Then for x ∈ L1(G), y ∈ Lp(G), 1 6 p 6 ∞,

‖x ∗ y‖p 6 ‖x‖1‖y‖p.

Proof. From Proposition 3.9, we have ‖x ∗ y‖ 6 ‖x‖1‖y‖. Recall ‖x ∗ y‖1 6
‖x‖1‖y‖1 for x, y ∈ L1(G). Then by complex interpolation theorem we have

‖x ∗ y‖p 6 ‖x‖1‖y‖p,

for all x ∈ L1(G) and y ∈ Lp(G).

Recall that δ∗t (ω)(x) = ω(δitx) for any x ∈ M. By interchanging the role of
x, y in Proposition 3.9, we have

PROPOSITION 3.11. Let G be a locally compact quantum group whose scaling
automorphism group is trivial. Suppose ω ∈ M∗ is analytic with respect to δ∗. Then
the convolution x ∗ω of x ∈ Lϕ and ω is given by

x ∗ω = (ι⊗ δ∗−i(ω)R)∆(x) ∈ M.
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If y ∈ Lϕ and yϕ is analytic with respect to δ∗, then

x ∗ y = (ι⊗ δ∗−i(yϕ)R)∆(x) ∈ M.

Proof. For any z, x ∈ T 2
ϕ , ((xϕ) ∗ω)(z) = ϕ(((ι⊗ω)∆(z))x).

We define en = n√
π

∫
exp(−n2t2)δitdt. Then en is analytic with respect to σϕ

which implies Nϕen ⊆ Nϕ.
As in the proof of Proposition 8.11 in [13], we have

δ−1/2(ι⊗ω)∆(enz) = (ι⊗ δ∗−i/2(ω))∆(δ−1/2enz) ∈ N∗ψ.

Hence

ϕ(((ι⊗ω)∆(enz))xem) = ψ(δ−1/2((ι⊗ω)∆(enz))xemδ−1/2)

= ψ((ι⊗ δ∗−i/2(ω))∆(δ−1/2enz)xemδ−1/2)

= δ∗−i/2(ω)((ψ⊗ ι)(∆(δ−1/2enz)(xemδ−1/2 ⊗ 1)))

= δ∗−i/2(ω)R((ψ⊗ ι)((δ−1/2enz⊗ 1)∆(xemδ−1/2)))

= δ∗−i/2(ω)R((ϕ⊗ ι)((enz⊗ 1)∆(xemδ−1/2)(δ1/2 ⊗ 1))).

Now applying ∆(δ) = δ⊗ δ, we obtain

ϕ(((ι⊗ω)∆(enz))xem) = δ∗−i/2(ω)R((ϕ⊗ ι)((enz⊗ 1)∆(xem))δ
−1/2)

= δ∗−i/2(ω)(δ1/2R((ϕ⊗ ι)((enz⊗ 1)∆(xem)))

= δ∗−i(ω)(R((ϕ⊗ ι)((enz⊗ 1)∆(xem))))

= ϕ(enz(ι⊗ δ∗−i(ω)R)∆(xem)).

Hence x ∗ ω = (ι⊗ δ∗−i(ω)R)∆(x) for x ∈ T 2
ϕ . Since T 2

ϕ is σ-strongly* dense in
Lϕ, we have x ∗ω = (ι⊗ δ∗−i(ω)R)∆(x) for all x ∈ Lϕ.

PROPOSITION 3.12. Let G be a locally compact quantum group whose scaling
automorphism group is trivial. Suppose 1 6 p, q 6 ∞, 1

p + 1
q = 1. If ϕ = ψ, then for

x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ y‖∞ 6 ‖x‖p‖y‖q.

If ϕ is tracial, then for x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ yδ−1/q‖∞ 6 ‖x‖p‖y‖q.

Proof. Suppose that ϕ = ψ. Note that for any x, y ∈ Lϕ,

‖x ∗ y‖∞ = sup
‖z∗‖1=1,z∈Rϕ

ϕ(z(x ∗ y)).

Now we will calculate ϕ(z(x ∗ y)). By the condition ϕ = ψ, we see that ϕz =
(R(z)ϕ)R and then

ϕ(z(x ∗ y)) = (xϕ⊗ yϕ)∆(z) = (xϕ)((ι⊗ ϕ)(∆(z)(1⊗ y)))
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= (xϕR)((ι⊗ ϕ)(1⊗ z)∆(y)) = (xϕR⊗ ϕz)∆(y)

= (xϕR⊗ R(z)ϕR)∆(y)=(R(z)ϕ⊗ xϕ)∆(R(y))= ϕ(R(y)(R(z) ∗ x)).

Moreover we assume that x, y, z ∈ T 2
ϕ . Let φ be a normal semi-finite faithful

weight onM′. By Corollary 3.10 and Lemma 2.2, we have

|ϕ(z(x ∗ y))| = |ϕ(R(y)(R(z) ∗ x))| =
∣∣∣ ∫ (R(z) ∗ x)dR(y)dφ

∣∣∣
6 ‖R(z) ∗ x‖p‖R(y∗)‖q 6 ‖R(z)‖1‖x‖p‖y‖q = ‖z∗‖1‖x‖p‖y‖q.

Therefore ‖x ∗ y‖∞ 6 ‖x‖p‖y‖q.
Suppose that ϕ is tracial. Let en = n√

π

∫
exp(−n2t2)δitdt. Then we have

|ϕ(emz(x ∗ yenδ−1/q))| = |(xϕR⊗ ϕemz)(∆(yenδ−1/q))|

= |(xϕR⊗ R(z)emδϕR)(∆(yenδ−1/q))|

= |(R(z)emδϕ⊗ xϕ)∆(δ1/qenR(y))|

= |ϕ(δ1/qenR(y)(R(z)emδ ∗ x))|

6 ‖δ1/qenR(y)‖q‖R(z)emδ ∗ x‖p 6 ‖yen‖q‖z∗em‖1‖x‖p.

The last inequality follows from Corollary 3.10. Hence

‖x ∗ yδ−1/q‖∞ 6 ‖x‖p‖y‖q.

THEOREM 3.13. Let G be a locally compact quantum group whose scaling auto-
morphism group is trivial. Suppose 1 6 p, q, r 6 ∞, 1

p + 1
q = 1

r . If ϕ = ψ, then for
x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ y‖r 6 ‖x‖p‖y‖q.

If ϕ is tracial, then for x ∈ Lp(G) and y ∈ Lq(G), we have

‖x ∗ yδ−1/p′‖r 6 ‖x‖p‖y‖q.

The proof comes directly from the interpolation theorem.

4. SHIFTS OF GROUP-LIKE PROJECTIONS

Suppose that G = (M, ∆, ϕ, ψ) is a locally compact quantum group. A
projection h in L∞(G) is a group-like projection if ∆(h)(1⊗ h) = h⊗ h and h 6= 0.

A projection h in L∞(G) ∩ L1(G) is a biprojection if F1(hϕ) is a multiple of
a projection in L∞(Ĝ).

REMARK 4.1. In [5], [16], the group-like projection is defined for ∗-algebraic
quantum groups. In subfactor theory, the biprojection is defined for planar alge-
bras etc.
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PROPOSITION 4.2. Suppose G is a locally compact quantum group and h ∈ Nϕ

is a group-like projection. Then
(i) S(h) = h, R(h) = h, and τt(h) = h for all t ∈ R. Moreover the scaling constant

ν = 1.
(ii) ∆(h)(h⊗ 1) = h⊗ h.

(iii) h = σ
ϕ
t (h) = σ

ψ
t (h) for all t ∈ R.

(iv) hϕ = hψ.

Proof. (i) Note that ϕ(h) = ϕ(h∗h) < ∞, we have h ∈ Nϕ ∩N∗ϕ and R(h) ∈
N∗ψ ∩Nψ. Applying ι⊗ ϕ to ∆(h)(1⊗ h) = h⊗ h, we obtain (ι⊗ ϕ)(∆(h)(1⊗ h)) =
ϕ(h)h. Then h is in D(S) and

ϕ(h)S(h) = S((ι⊗ ϕ)(∆(h)(1⊗ h))) = (ι⊗ ϕ)((1⊗ h)∆(h))

= (ι⊗ ϕ)(∆(h)(1⊗ h)) = ϕ(h)h,

i.e. S(h) = h.
By Proposition 5.5 in [13], we have that

(ψ⊗ ι)(∆(R(h))(R(h)⊗ 1))G ⊆ G(ψ⊗ ι)(∆(R(h))(R(h)⊗ 1)).

Applying the equation χ(R⊗ R)∆ = ∆R, we see that

(ψ⊗ι)(∆(R(h))(R(h)⊗1))=(R⊗ψR)((1⊗h)∆(h))=(ϕ⊗R)(h⊗h)= ϕ(h)R(h).

Hence R(h)G ⊆ GR(h) and R(h)G∗ ⊆ G∗R(h). Since G = IN1/2, we obtain
that R(h)N ⊆ NR(h) and R(h)Nit = NitR(h). Since τt(x) = N−itxNit, we see
that Rτt(h) = R(h) and τt(h) = h. Hence h is analytic with respect to τ and
τ±i/2(h) = h. Finally R(h) = h.

There is another way to show R(h) = h and τt(h) = h. By S(h) = h, we
have τ−i(h) = h. Let hn = n√

π

∫
exp(−n2t2)τt(h)dt. Then τ−i(hn) = hn. This

implies that τt(hn) = hn and τt(h) = h. Hence h is analytic with respect to τ and
τ±i/2(h) = h. Then we can obtain R(h) = h.

By Proposition 6.8 in [13], we have ϕ(h) = ϕ(τt(h)) = ν−t ϕ(h) and ν−t = 1
for any t ∈ R. This implies that ν = 1.

(ii) We have

∆(h)(h⊗ 1) = ∆(R(h))(R(h)⊗ 1) = ((R⊗ R)χ∆(h))(R(h)⊗ 1)

= χ((R⊗ R)(∆(h))(1⊗ R(h))) = χ(R⊗ R)((1⊗ h)∆(h))

= χ(R⊗ R)(h⊗ h) = R(h)⊗ R(h) = h⊗ h.

(iii) By the relation ∆τt = (σ
ϕ
t ⊗ σ

ψ
−t)∆ in Proposition 6.8 in [13], we have for

any n ∈ N,

∆(h) = ∆(τt(h)) =
n√
π

∫
exp(−n2t2)∆(τt(h))dt

=
n√
π

∫
exp(−n2t2)(σ

ϕ
t ⊗ σ

ψ
−t)∆(h)dt,
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i.e. ∆(h) is analytic with respect to σϕ⊗ (σψ)
−1. Moreover (σϕ

i ⊗σ
ψ
−i)∆(h) = ∆(h).

Let hn = n√
π

∫
exp(−n2t2)σ

ψ
t (h)dt. Then hn is analytic with respect to σψ.

Since R(h) = h and Rσ
ψ
t = σ

ϕ
−tR, we have R(hn) = n√

π

∫
exp(−n2t2)σ

ϕ
−t(h)dt,

i.e. R(hn) is analytic with respect to σϕ.
By Kaplansky density theorem, there is a net { f ϕ

k }k of self-adjoint elements
in the unit ball of Nϕ ∩N∗ϕ such that f ϕ

k → 1 in the σ-strong* topology. We then
define the net of elements {eϕ

k } by

eϕ
k =

1√
π

∫
exp(−t2)σ

ϕ
t ( f ϕ

k )dt.

It is known that σ
ϕ
z (e

ϕ
k ) → 1 in the σ-strong* topology for z ∈ C and ‖σϕ

z (e
ϕ
k )‖ 6

exp((=z)2), where =z is the imaginary part of z.
Now

(ι⊗ ψ)((1⊗ eψ
k )∆(h)(1⊗ hn))

= (ι⊗ ψ)
n√
π

∫
exp(−n2t2)(1⊗ eψ

k )∆(h)(1⊗ σ
ψ
t (h))dt

=
n√
π

∫
exp(−n2t2)(σ

ϕ
−t ⊗ ψ)(1⊗ σ

ψ
−t(e

ψ
k ))(σ

ϕ
t ⊗ σ

ψ
−t)(∆(h))(1⊗ h)dt

=
n√
π

∫
exp(−n2t2)(σ

ϕ
−t ⊗ ψ)(1⊗ σ

ψ
−t(e

ψ
k ))(∆(τt(h))(1⊗ h))dt

=
n√
π

∫
exp(−n2t2)(σ

ϕ
−t(h)⊗ ψ(σ

ψ
−t(e

ψ
k )h))dt.

Since eψ
k → 1 in σ-strong* topology, we have

(ι⊗ hnψ)(∆(h)) = (ι⊗ ψhn)(∆(h)).

Repeating the above calculation with hn and eψ
k switched, we obtain that

(ι⊗ hnψ)(∆(h)) = R(hn)ψ(h).

Then for any a ∈ Tϕ, we obtain

(ϕ⊗ ψ)((a⊗ hneψ
k )(σ

ϕ
i ⊗ σ

ψ
−i)(∆(h)(e

ϕ
m ⊗ eψ

k )))

= (ϕ⊗ ψ)((σ
ϕ
−i(a)⊗ σ

ψ
i (hneψ

k ))∆(h)(e
ϕ
m ⊗ eψ

k ))

= (eϕ
m ϕσ

ϕ
−i(a)⊗ ψ)((1⊗ σ

ψ
i (e

ψ
k ))∆(h)(1⊗ eψ

k hn))

= ((eϕ
m ϕσ

ϕ
−i(a))⊗ (eψ

k hnψσ
ψ
i (e

ψ
k )))(∆(h)).

Let eϕ
m → 1 and eψ

k → 1 in σ-strong* topology. We have

(ϕ⊗ ψhn)((a⊗ 1)∆(h)) = (ϕ⊗ ψhn)((a⊗ 1)(σϕ
i ⊗ σ

ψ
−i)∆(h))

= (ϕ⊗ hnψ)((σ
ϕ
−i(a)⊗ 1)∆(h)) = ϕ(σ

ϕ
−i(a)R(hn))ψ(h)
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and on the other hand,

(ϕ⊗ ψhn)((a⊗ 1)∆(h)) = ϕ(aR(hn))ψ(h).

Now we see that ϕ(aσ
ϕ
i (R(hn))) = ϕ(aR(hn)) for any a ∈ Tϕ, and hence we

obtain that σ
ϕ
i (R(hn)) = R(hn). Furthermore σ

ϕ
t (R(hn)) = R(hn) and σ

ϕ
t (h) = h

for t ∈ R. Applying Rσ
ψ
t = σ

ϕ
−tR, we have σ

ψ
t (h) = h for t ∈ R.

(iv) Since R(h) = h, h ∈ Nψ ∩Nϕ. For any a in N∗ψ ∩N∗ϕ, we have

ψ(ah)ϕ(h) = (ψ⊗ hϕ)∆(ah) = (ψ⊗ ϕ)(∆(a)∆(h)(1⊗ h))

= (ψ⊗ ϕ)(∆(a)∆(h)(h⊗ 1))

= (hψ⊗ ϕ)∆(ah) = ψ(h)ϕ(ah) = ϕ(h)ϕ(ah),

i.e. ψ(ah) = ϕ(ah). By Proposition 1.14 in [15] and Proposition 6.8 in [13], Nϕ ∩
Nψ is a core for Λϕ and hence hψ = hϕ.

REMARK 4.3. Proposition 4.2 indicates that a locally compact quantum
group G whose scaling constant ν 6= 1 has no group-like projection in L1(G) ∩
L∞(G). A compact quantum group always has a group-like projection in L1(G)∩
L∞(G) as the identity is such a projection.

PROPOSITION 4.4. Suppose G is a locally compact quantum group and h is a
group-like projection in Lϕ, then ϕ(h)−1F1(h) is a group-like projection. Moreover,
ϕ(h)ϕ̂(R(F1(h))) = 1, whereR(F1(h)) is the range projection of F1(h).

Proof. Since there is a group-like projection h, by Proposition 4.2, we see
that ν = 1. For any b in D(S−1), by Proposition 6.8 in [13] and Proposition 4.2,
we have that

|ϕ(S−1(b)h)| = |ϕ(S−1(hb))| = |ϕ(R(hb))| = |hϕR(b)| 6 ‖hϕ‖‖b‖

which implies that hϕS−1 extends a bounded linear functional hϕR onM.
For any a inRϕ, we have

(hϕ ∗ hϕ)(a) = (hϕ⊗ hϕ)∆(a) = hϕS−1((ι⊗ ϕ)((1⊗ a)∆(h)))

= (hϕS−1 ⊗ ϕa)∆(h) = ϕa((hϕR⊗ ι)∆(h))

= ϕaR((ι⊗ hϕ)∆(h)) = ϕaR(ϕ(h)h) = ϕ(ah)ϕ(h),

i.e. h ∗ h = ϕ(h)h. By taking the Fourier transform F1, we obtain λ(hϕ)2 =
ϕ(h)λ(hϕ). For any b in D(S), we have that

|hϕ(S(b))| = |ϕ(S(hb))| = |hϕR(b)| 6 ‖hϕ‖‖b‖.

This implies that hϕS extends to a bounded linear functional on M. Hence
(hϕ)∗ ∈ M∗. By Proposition 2.4 in [14] and Proposition 4.2, we have that

(λ(hϕ))∗ = λ((hϕ)∗) = λ(hϕS) = λ(hϕR) = λ(hψ) = λ(hϕ).

Therefore ϕ(h)−1λ(hϕ) is a projection in L∞(Ĝ).
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Now by a routine computation, we obtain

ϕ(h)ϕ̂(R(F1(h))) = ϕ̂(F1(h)) = ϕ(h)−1 ϕ̂(λ(hϕ)∗λ(hϕ)) = ϕ(h)−1 ϕ(h∗h) = 1.

To see ϕ(h)−1F1(h) is a group-like projection, we have to check

∆̂(λ(hϕ))(1⊗ λ(hϕ)) = λ(hϕ)⊗ λ(hϕ).

Applying Λ̂⊗ Λ̂, we se that

(Λ̂⊗Λ̂)(∆̂(λ(hϕ))(λ(hϕ)⊗1))=Ŵ∗(Λ̂(λ(hϕ))⊗Λ̂(λ(hϕ)))=ΣWΣ(Λ(h)⊗Λ(h))

=ΣW((Λ⊗Λ)(h⊗h))=ΣW(Λ⊗Λ)(∆(h)(1⊗h))

=Σ((Λ⊗Λ)(h⊗h))=(Λ⊗Λ)(h⊗h)

=Λ̂(λ(hϕ))⊗Λ̂(λ(hϕ)).

Hence ∆̂(λ(hϕ))(λ(hϕ) ⊗ 1) = λ(hϕ) ⊗ λ(hϕ). By the equation R̂(λ(ω)) =
λ(ωR) in Proposition 8.17 of [13] and hϕR = hϕ, we have that

∆̂(λ(hϕ))(1⊗ λ(hϕ)) = λ(hϕ)⊗ λ(hϕ).

Hence ϕ(h)−1F1(h) is a group-like projection in L∞(Ĝ).

REMARK 4.5. In Proposition 4.4, we see that R(F1(h)) = ϕ(h)−1F1(h) is
a group-like projection in Lϕ̂. Now we can apply the Fourier transform F̂1 to
obtain that ϕ(h)−1h = F̂1(R(F1(h))).

COROLLARY 4.6. Let G be a locally compact quantum group. Suppose that h is a
group-like projection in Lϕ. Then δith = hδit = h for all t ∈ R.

Proof. If h is a group-like projection in Lϕ, then λ(hϕ) is a group-like pro-

jection again. By Proposition 4.2, we have that σ̂
ϕ̂
t (λ(hϕ)) = λ(hϕ). Hence

ρt(hϕ) = hϕ for any t ∈ R. Now for any b in N∗ϕ, we have

ϕ(bh) = (hϕ)(b) = ρt(hϕ)(b) = ϕ(δ−itτ−t(b)h) = ϕ(δ−itbh) = ϕ(bhδ−it).

This implies that h = hδ−it for all t ∈ R.

PROPOSITION 4.7. Suppose G a locally compact quantum group. Suppose that ϕ
is tracial or ϕ = ψ. Then a projection h ∈ Lϕ is a group-like projection if and only if h is
a biprojection.

Proof. Proposition 4.4 showed that if h ∈ Lϕ is a group-like projection, then
h is a biprojection. Now we will prove the reverse.

Suppose h is a biprojection. Then F1(h) is a multiple of a projection. Sup-
pose F1(h) = λ(hϕ) = µh0 for some projection h0 in L∞(Ĝ) and µ ∈ C\{0}.
Then λ(hϕ)2 = µλ(hϕ) and λ(hϕ)∗ = µ

µ λ(hϕ).
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By Proposition 2.4 in [14], we have that (hϕ)∗ is bounded i.e. hϕS extends to
a bounded linear functional onM. By (hϕ)∗ = µ

µ hϕ, we see that hϕS−1 extends

to a bounded linear functional µ
µ (hϕ) onM. Hence hϕS−1 = µ

µ (hϕ) = µ
µ ϕh.

For any a inRϕ, we have

(hϕ ∗ hϕ)(a)=hϕ((ι⊗ hϕ)∆(a)) = hϕ((ι⊗ ϕ)(∆(a)(1⊗ h)))

=hϕS−1((ι⊗ϕ)(1⊗a)∆(h))=
µ

µ
(ϕh⊗ϕa)∆(h)=

µ

µ
ϕ(a(ϕh⊗ι)(∆(h)))

i.e. µh = (ϕh⊗ ι)(∆(h)). Applying ϕ to the equation, we have

µϕ(h) = (ϕh⊗ ϕ)(∆(h)) = ϕ(h)2.

Hence µ = ϕ(h).
Note that

ϕ(h)h = (ϕh⊗ ι)(∆(h)) = (hϕ⊗ ι)(∆(h)) = (hϕ⊗ ι)(∆(h)(1⊗ h))

= (ϕh⊗ ι)((1⊗ h)∆(h)) = (hϕ⊗ ι)((1⊗ h)∆(h)(1⊗ h))

= (ϕh⊗ ι)((1⊗ h)∆(h)(1⊗ h)), and

((1⊗ h)∆(h)− h⊗ h)(∆(h)(1⊗ h)− h⊗ h)

=(1⊗ h)∆(h)(1⊗ h)−(1⊗ h)∆(h)(h⊗ h)−(h⊗ h)∆(h)(1⊗ h)+h⊗ h.

If ϕ is tracial, we have

(ϕ⊗ ϕ)((1⊗ h)∆(h)− h⊗ h)(∆(h)(1⊗ h)− (h⊗ h))

= (ϕ⊗ ϕ)((1⊗ h)∆(h)(1⊗ h))− (ϕ⊗ ϕ)((1⊗ h)∆(h)(h⊗ h))

− (ϕ⊗ ϕ)((h⊗ h)∆(h)(1⊗ h)) + (ϕ⊗ ϕ)(h⊗ h)

= ϕ(h)2 − ϕ(h)2 − ϕ(h)2 + ϕ(h)2 = 0

i.e. (1⊗ h)∆(h) = h⊗ h. This indicates that h is a group-like projection.
If ϕ = ψ, we have

ϕ(h)ψ(h) = (ϕ⊗ ψ)(h⊗ h)∆(h)(1⊗ h) = (ϕ⊗ ψ)(1⊗ h)∆(h)(h⊗ h).

By the right invariance of ψ, we have

(ψ⊗ hϕh)∆(h) = (ψ⊗ ϕ)(1⊗ h)∆(h)(1⊗ h) = ψ(h)ϕ(h).

Since ϕ = ψ and

(ϕ⊗ ϕ)((1⊗ h)∆(h)−h⊗ h)(∆(h)(1⊗ h)−h⊗ h)= ϕ(h)2− ϕ(h)2−ϕ(h)2+ϕ(h)2,

we see that (1⊗ h)∆(h) = h⊗ h and h is a group-like projection.

QUESTION 4.8. Is there a biprojection h in a locally compact quantum group
which is not a group-like projection?

PROPOSITION 4.9. Let G be a locally compact quantum group with a group-like
projection in L1(G) ∩ L∞(G). Then Young’s inequality in Theorem 3.4 and Hausdorff–
Young inequality in [4] are sharp.
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Proof. Suppose h is a group-like projection in Lϕ. Since h is analytic with
respect to σϕ and λ(hϕ) is analytic with respect to σ̂ϕ̂, we have that hd1/p ⊆ d1/ph
for 1 6 p 6 2 and λ(hϕ)d̂ 1/q = d̂ 1/qλ(hϕ) for 2 6 q 6 ∞ from Theorem 2.4 in
[4]. Now

‖h‖p = ‖[hd1/p]‖p,Lp(φ) = ϕ(h)1/p and

‖λ(hϕ)‖q = ‖[λ(hϕ)d̂ 1/q]‖q,Lq(φ) = ϕ(h)(q−1)/q.

If 1
p + 1

q = 1, we have ‖Fp(h)‖q = ‖h‖p for any 1 6 p 6 2.

Since λ(hϕ)
ϕ(h) is a group-like projection, we see that σ̂t(λ(hϕ)) = λ(hϕ) and

σ̂t(λ(hϕ)) = λ(ρt(hϕ)). Hence ρt(hϕ) = hϕ for t ∈ R and ‖hϕ ∗ ρ−p′(hϕ)‖r =

‖ϕ(h)hϕ‖r = ϕ(h)1+1/r for 1 6 r 6 2. If 1 + 1
r = 1

p + 1
q , we have ‖hϕ ∗

ρ−p′(hϕ)‖r = ‖hϕ‖p‖hϕ‖q.

DEFINITION 4.10. Let G be a locally compact quantum group. A projection
x in L∞(G) is a right shift of a group-like projection h if ψ(x) = ψ(h),

∆(x)(h⊗ 1) = h⊗ x, ∆(h)(x⊗ 1) = x⊗ R(x).

A projection x in L∞(G) is a left shift of a group-like projection h if ϕ(x) = ϕ(h)
and

∆(x)(1⊗ h) = x⊗ h, ∆(h)(1⊗ x) = R(x)⊗ x.

REMARK 4.11. If x is a right shift of a group-like projection h, then R(x) is a
left shift of h.

REMARK 4.12. Let G be a locally compact group and H a subgroup of G.
Suppose 1xH is the characteristic function on a left coset xH of H. Then 1xH is a
left shift of 1H .

PROPOSITION 4.13. Let G be a locally compact quantum group. Suppose x ∈ Lψ

is a right shift of a group-like projection h ∈ Lψ and y ∈ Lϕ is a left shift of h. Then

τt(x) = x, σ
ψ
t (x) = x, xδit = µit

x x,

for some µx > 0 and all t ∈ R and

τt(y) = y, σ
ϕ
t (y) = y, yδit = µit

y y,

for some µy > 0 and all t ∈ R.

Proof. Suppose x ∈ Lψ is a right shift of h. Then

ψ(h)x = (ψ⊗ ι)(∆(x)(h⊗ 1)), ψ(x)R(x) = (ψ⊗ ι)(∆(h)(x⊗ 1)).

Now we see that x is in D(S), and

ψ(h)S(x) = (ψ⊗ ι)((x⊗ 1)∆(h)) = ψ(x)R(x).

Hence τt(x) = x for all t ∈ R.
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By the relation ∆τt = (σ
ϕ
t ⊗ σ

ψ
−t)∆ in Proposition 6.8 of [13], we have

ψ(h)σψ
−t(x) = (ψσ

ϕ
t ⊗ σ

ψ
−t)(∆(x)(h⊗ 1)) = (ψ⊗ ι)(∆(τt(x))(σϕ

t (h)⊗ 1))

= (ψ⊗ ι)(∆(x)(h⊗ 1)) = ψ(h)x.

By the relation ∆(δ) = δ⊗ δ in Proposition 7.12 of [13] and Corollary 4.6, we
have

δitx⊗ δitR(x) = (δit ⊗ δit)∆(h)(x⊗ 1) = ∆(δith)(x⊗ 1) = x⊗ R(x).

Therefore for any ω ∈ L1(G), we have ω(δitR(x))δitx = ω(R(x))x. Hence there
exists µx > 0 such that δitx = µit

x x.
Following the argument above, we have similar properties for a left shift of

a group-like projection.

COROLLARY 4.14. Let G be a locally compact quantum group. Suppose x ∈
Lϕ is a left shift of a group-like projection h ∈ Lϕ. Then σ̂

ϕ̂
t (F1(x)) = µ−it

x F1(x),
τ̂t(F1(x)) = F1(x) and δ̂ itF1(x) = F1(x) for all t ∈ R.

Proof. By Proposition 4.13, we have

σ̂
ϕ̂
t (F1(x)) = σ̂

ϕ̂
t (λ(xϕ)) = λ(ρt(xϕ)) = µ−it

x λ(xϕ) and

τ̂t(F1(x)) = λ((xϕ)τ−t) = λ(xϕ).

By the fact that σt(x) = x, we see that δ̂ itF1(x) = F1(x) for all t ∈ R.

REMARK 4.15. Suppose G is a locally compact quantum group such that the
scaling automorphism group τt is trivial and ϕ = ψ is a tracial weight. Then the
assumption ∆(x)(h⊗ 1) = h⊗ x is equivalent to the assumption ∆(h)(x ⊗ 1) =
x⊗ R(x).

DEFINITION 4.16. Let G be a locally compact quantum group. A nonzero
element x inLϕ is a bi-partial isometry if x andF1(x) are multiples of partial isome-
tries.

PROPOSITION 4.17. Let G = (M, ∆, ϕ, ψ) be a locally compact quantum group.
Suppose h ∈ Lϕ is a group-like projection and x ∈ Lϕ is a left shift of h. Then x is a
bi-partial isometry. Moreover F1(x)∗F1(x) = ϕ(h)F1(h) and ‖F1(x)‖∞ = ϕ(h).

Proof. Since x is a left shift of h, we have τt(x) = x, σ
ϕ
t (x) = x, δitx = µit

x x
for some µx > 0 and all t ∈ R. Hence λ(xϕ) = F1(x) satisfyes σ̂

ϕ̂
t (λ(xϕ)) =

λ(ρt(xϕ)) = µ−it
x λ(xϕ).

Note that (1⊗ ϕ)(∆(h)(1⊗ x)) = ϕ(x)R(x), we then see that x ∗ h = ϕ(h)x
and F1(x)F1(h) = ϕ(h)F1(x).

We shall show that x is a bi-partial isometry. For any b in D(S) such that
S(b) ∈ Nϕ,

(xϕ)∗(b) = xϕ(S(b)) = ϕ(S(b)∗x) = ϕ(xS(b))
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= ϕS(bS−1(x)) = ϕR(bR(x)) = (R(x)ψ)(b).

Hence (xϕ)∗ = R(x)ψ. Note that

λ(xϕ)∗λ(xϕ) = λ(R(x)ψ)λ(xϕ) = λ(R(x)ψ ∗ xϕ).

For any b inRϕ, we then have

(R(x)ψ ∗ xϕ)(b) = (R(x)ψ⊗ xϕ)∆(b) = (R(x)ψ)((ι⊗ ϕ)(∆(b)(1⊗ x)))

= (R(x)ψS−1)((ι⊗ ϕ)((1⊗ b)∆(x))).

For any a in D(S−1) ∩Nϕ such that S−1(a) ∈ N∗ψ, we have

(R(x)ψS−1)(a) = ψ(S−1(a)R(x)) = ψS−1(S(R(x))a) = ϕ(xa),

i.e. R(x)ψS−1 = ϕx = xϕ. Now we see that R(x)ψ ∗ xϕ = (xϕ⊗ ι)(∆(x))ϕ. We
will show that (xϕ⊗ ι)(∆(x)) = ϕ(h)h. Since σ

ϕ
t (x) = x and x is a projection, we

see that (xϕ⊗ ι)(∆(x)) > 0. By the relation ∆(x)(1⊗ h) = x⊗ h, we have that

h(xϕ⊗ ι)(∆(x)) = (xϕ⊗ ι)(∆(x))h = ϕ(x)h = ϕ(h)h.

Therefore (xϕ⊗ ι)(∆(x)) > ϕ(h)h. On the other hand, we have

ϕ((xϕ⊗ ι)(∆(x))) = ϕ(x)2 = ϕ(h)2.

Hence (xϕ ⊗ ι)(∆(x)) = ϕ(h)h and λ(xϕ)∗λ(xϕ) = ϕ(h)λ(hϕ). Moreover,
‖F1(x)‖∞ = ϕ(h).

DEFINITION 4.18. Suppose G is a locally compact quantum group. An el-
ement x in L1(G) ∩ L2(G) is said to be p-extremal if ‖Fp(x)‖q = Ap(G)‖x‖p,
where p ∈ [1, 2], 1

p + 1
q , and Ap(G) is the best constant for the inequality. A pair

(x, y) is said to be (p, q)-extremal if ‖x ∗ ρ−i/p′(y)‖r = Bp,q(G)‖x‖p‖y‖q, where
x, y ∈ L1(G)∩ L2(G), p, q ∈ [1, 2], 1

r + 1 = 1
p + 1

q , and Bp,q(G) is the best constant
for the inequality.

REMARK 4.19. SupposeG is a locally compact quantum group with a group-
like projection in Lϕ. Then, by Proposition 4.9, every group-like projection h in
Lϕ is p-extremal and every pair (h, h) is (p, q)-extremal.

COROLLARY 4.20. Suppose G is a locally compact quantum group and x is a left
shift of a group-like projection h. Then x is p-extremal. If ϕ = ψ, then (R(x), x) is
(p, q)-extremal.

Proof. Note that σ
ϕ
t (x) = x and ϕ(x) = ϕ(h), we have

‖x‖p = ‖xd1/p‖p,Lp(φ) = ϕ(h)1/p = ‖h‖p.

By Proposition 4.17, we have ‖λ(xϕ)‖q = ‖λ(hϕ)‖q. Hence x is p-extremal.
Note that R(x)ψ ∗ xϕ = ϕ(h)hϕ, we can see that ‖R(x) ∗ x‖r = ϕ(h)1/r+1,

‖R(x)‖p = ϕ(h)1/p, ‖x‖q = ϕ(h)1/q.
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DEFINITION 4.21. Suppose G is a locally compact quantum group and h is a
group-like projection in Lϕ, h̃ is the range projection of F1(h). A nonzero element
x in Lϕ is said to be a bi-shift of a biprojection h if there exist a left shift xh of h and a
left shift xh̃ of h̃ and an element y ∈ Lϕ such that τt(y) = σ

ϕ
t (y) = y for all t ∈ R

and

x = (xhy) ∗ F̂1(xh̃).

THEOREM 4.22. Suppose G is a locally compact quantum group and x ∈ Lϕ is
a bishift of a group-like projection h as above. Then σ

ϕ
t (x) = x, δitx = µit

xh
x for all

t ∈ R, some µxh > 0, x is bi-partial isometry and ‖F1(x)‖∞ = ‖x‖1. Moreover, x is
p-extremal for 1 6 p 6 2.

Proof. By Proposition 4.13, we have τt(xh) = xh and hence

x = (((xhy)ϕ)R⊗ ι)∆(F̂1(xh̃)).

By Corollary 4.14, we see the following, for some µxh̃
> 0 and all t ∈ R:

τt(F̂1(xh̃)) = F̂1(xh̃), σ
ϕ
t (F̂1(xh̃)) = µ−it

xh̃
F̂1(xh̃).

From the relation ∆σ
ϕ
t = (τt ⊗ σ

ϕ
t )∆, we have

σ
ϕ
t (x) = ((xhy)ϕR⊗ σ

ϕ
t )∆(F̂1(xh̃)) = ((xhy)ϕRτt ⊗ σ

ϕ
t )∆(F̂1(xh̃))

= µ−it
xh̃

((xhy)ϕR⊗ ι)∆(F̂1(xh̃)) = µ−it
xh̃

x,

i.e. σ
ϕ
t (x) = µ−it

xh̃
x and σ

ϕ
t (x∗x) = x∗x.

From the relation δit⊗δit =∆(δit), we see that, for some µxh >0 and all t∈R,

δitx = ((xhy)ϕR⊗ δit)∆(F̂1(xh̃)) = (((xhy)ϕ)Rδ−it ⊗ ι)∆(δitF̂1(xh̃)) = µit
xh

x.

Let q = R(y∗xh) be the range projection of y∗xh. Since σ
ϕ
t (y) = y and

σ
ϕ
t (xh) = xh, we have ϕ(q) = ϕ(R(xhy)) 6 ϕ(xh) < ∞. By Lemma 9.5 in [13],

we have that

1
ϕ(q)

(ι⊗ωΛϕ(xhy),Λϕ(q))∆(R(F̂1(xh̃)))(ι⊗ωΛϕ(xhy),Λϕ(q))∆(R(F̂1(xh̃)))
∗

6 ι⊗ωΛϕ(xhy),Λϕ(xhy)∆(R(F̂1(xh̃))R(F̂1(xh̃))
∗).

On the other hand,

1
ϕ(q)

(ι⊗ωΛϕ(xhy),Λϕ(q))∆(R(F̂1(xh̃)))(ι⊗ωΛϕ(xhy),Λϕ(xh)
)∆(R(F̂1(xh̃)))

∗

=
1

ϕ(q)
((xhy)ϕR⊗R)∆(F̂1(xh̃))(((xhy)ϕR⊗R)∆(F̂1(xh̃)))

∗=
1

ϕ(q)
R(x)R(x)∗
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and by Proposition 4.17 and Remark 4.5, we can obtain

ι⊗ωΛϕ(xhy),Λϕ(xhy)∆(R(F̂1(xh̃))R(F̂1(xh̃))
∗)

= ϕ̂(h̃)(ι⊗ (xhy)(ϕ)(y∗xh))∆(R(F̂1(h̃)))

=
1

ϕ(h)2 (ι⊗ (xhy)(ϕ)(y∗xh))∆(h) =
1

ϕ(h)2 R(xh)ϕ(y∗xhy).

Therefore

x∗x 6
ϕ(q)ϕ(y∗xhy)

ϕ(h)2 xh,

i.e.R(x∗) 6 xh.
Note that F1(x)∗ = xh̃F1(xhy)∗. ThenR(F1(x)∗) 6 xh̃.
Since σ

ϕ
t (x∗x) = x∗x, we obtain σ

ϕ
t (R(x∗)) = R(x∗). By Proposition 4.4,

we see

‖F1(x)‖∞ 6 ‖x‖1 = ‖xR(x∗)d‖1,L1(φ) 6 ‖R(x∗)d1/2‖2,L2(φ)‖xd1/2‖2,L2(φ)

= ϕ(R(x∗))1/2‖F1(x)‖2 = ϕ(R(x∗))1/2‖F1(x)R(F1(x)∗)d̂ 1/2‖2,L2(φ̂)

6 ϕ(xh)
1/2‖F1(x∗)‖∞ ϕ̂(R(F1(x)∗))1/2

6 ϕ(h)1/2 ϕ̂(h̃)1/2‖F1(x)‖∞ = ‖F1(x)‖∞.

Hence the inequalities above must be equalities and we have that x is a bi-partial
isometry and ‖F1(x)‖∞ = ‖x‖1. Now we have that x is p-extremal for Hausdorff–
Young inequality.
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