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ABSTRACT. We consider self-adjoint Dirac operators D = D0 + V(x), where
D0 is the free three-dimensional Dirac operator and V(x) is a smooth com-
pactly supported Hermitian matrix. We define resonances of D as poles of
the meromorphic continuation of its cut-off resolvent. An upper bound on
the number of resonances in disks, an estimate on the scattering determinant
and the Lifshits–Krein trace formula then leads to a global Poisson wave trace
formula for resonances of D.
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1. INTRODUCTION AND MAIN RESULT

For suitable perturbations L of the Laplacian−∆, on L2(Rn) with n odd, the
first Poisson wave trace formula (in the sense of distributions) of the form

(1.1) 2 Tr (cos t
√

L− cos t
√
−∆) = ∑ eitλj ,

where the sum extends over all resonances λj of L, appeared in Lax and Phillips
[11]. They proved the formula for obstacle scattering, but only for t > 4R where
the obstacle is located within a ball of radius R. Bardos, Guillot and Ralston [3]
investigated the precise distribution of scattering poles associated with perturba-
tions of the wave equation in odd dimensions and one of their main ingredients
is an extension of the trace formula (1.1), still based on Lax–Phillips theory [11],
but again only valid for comparatively large values of t, namely t > 2R. Later
the Poisson formula (1.1) was proved for all t 6= 0 by Melrose [14] in the case of
compactly supported potentials and then further generalized by Sjöstrand and
Zworski [23] to more general L.

The main application of the Poisson trace formula has been to obtain lower
bounds for the number of resonances in certain regions and to prove the existence
of infinitely many resonances, see e.g. [16], [22] and [23].
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Zworski [26] obtained a new proof of the trace formula that avoids the use
of Lax–Phillips theory and instead is based on an estimate of the scattering deter-
minant in C. This proof allowed Zworski to show the trace formula also in the
even-dimensional case, see [27], and his proof also motivated the present work.

Proceeding to the relativistic setting, the only trace formula for Dirac opera-
tors involving resonances that we know of is that of Khochman [7], where a local
trace formula for resonances in the spirit of Sjöstrand [20] is established.

In the present work we consider Dirac operators D = D0 + V(x) where D0
is the free Dirac operator in three dimensions (see below) and V is a smooth com-
pactly supported matrix potential. We define resonances as poles of the mero-
morphic continuation of the cut-off resolvent. Then, following the strategy of
Zworski [27] (see also [26]) we establish an upper bound for the resonance count-
ing function, estimate the scattering determinant and apply the Lifshits–Krein
trace formula to obtain, in the distributional sense, the following Poisson wave
trace formula for the perturbed Dirac operator.

THEOREM 1.1. Let R denote the set of resonances of D away from ±1 and let mj
be the multiplicity of a resonance λj (see Section 2.2 for precise definitions). Then, in the
sense of distributions on R \ {0},

2 Tr (cos(tD)− cos(tD0))

= ∑
λj∈R∩C+

mj(e
−i|t|λj+ei|t|λj)− ∑

λj∈R∩C−
mj(e

−i|t|λj + ei|t|λj)+ ∑
λj∈spec d(D)

2mj cos(tλj).(1.2)

Above C± = {λ ∈ C : ±Im λ > 0}. Existence of resonances of the semiclas-
sical Dirac operator perturbed by smooth, bounded and real-valued scalar po-
tentials V decaying like 〈x〉−δ at infinity for some δ > 0 was recently established
by Kungsman and Melgaard [10]. By studying analytic singularities of a certain
distribution related to V and by combining two trace formulas, we proved that
the perturbed Dirac operators possesses resonances near sup V + 1 and inf V− 1.
We also provided a lower bound for the number of resonances near these points
expressed in terms of the semiclassical parameter.

Henceforth we denote various positive constants for which the exact nu-
merical values are of no importance by C. These constants may change from line
to line without this being indicated.

2. PRELIMINARIES

2.1. THE DIRAC OPERATOR. To discuss perturbed Dirac operators we begin by
considering the free, or unperturbed, Dirac operator. The free Dirac operator,
describing the motion of a relativistic electron or positron without external forces,



POISSON WAVE TRACE FORMULA FOR PERTURBED DIRAC OPERATORS 135

is the unique self-adjoint extension of the symmetric operator

D0 = −i
3

∑
j=1

αj∂j + β = −iα · ∇+ β, ∂j :=
∂

∂xj
, α = (α1, α2, α3),

defined on C∞
0 (R3;C4) in the Hilbert space L2(R3;C4). Here the αj are symmetric

4× 4 matrices satisfying the anti-commutation relations

αjαk + αkαj = 2δjk I4, j, k = 1, 2, 3,

αjβ + βαj = 0, j = 1, 2, 3,

and β2 = I4; the 4× 4 identity matrix. The extension, which we also denote by
D0, acts on the Hilbert space L2(R3;C4) equipped with the inner product

〈u, v〉L2(R3;C4) =
4

∑
j=1

∫
R3

uj(x)vj(x)dx where u = (uj)16j64, v = (vj)16j64

and it has domain H1(R3;C4), the Sobolev space of order one. When there is no
risk of confusion we sometimes just write L2 and H1, respectively . It is well-
known (see, e.g., Thaller [24]) that the spectrum of D0 is purely absolutely contin-
uous, viz.

spec (D0) = specac(D0) = (−∞,−1] ∪ [1, ∞).

On the resolvent set C \ spec (D0) we denote the free resolvent (D0 − λ)−1 by
R0(λ). As usual the Fourier transform is defined by

(Fu)(ξ) = û(ξ) = (2π)−3/2
∫
R3

e−ix·ξ u(x)dx.

The symbol of the free Dirac operator D0 is given by

d0(ξ) = FD0F
∗ =

3

∑
j=1

αjξ j + β

and it has two doubly degenerate eigenvalues ±
√

ξ2 + 1 =: ±〈ξ〉. Here √ is the
holomorphic square-root on C\ [0, ∞). The corresponding orthogonal projections
onto the eigenspaces are given by

Π±(ξ) =
1
2
(I4 ± 〈ξ〉−1d0(ξ)).(2.1)

We are going to consider perturbations of D0 by smooth compactly supported
Hermitian 4× 4 matrix potentials V ∈ C∞

0 (R3)⊗M4(C); M4(C) being the set of
4 × 4 matrices over C, equipped with the operator norm, designated by
‖ · ‖4×4. The resulting self-adjoint operator D = D0 + V (defined via Kato–
Rellich’s theorem) has domain H1(R3;C4) and, according to Weyl’s theorem,
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specess(D) = (−∞,−1] ∪ [1, ∞) but, in addition, D can have finitely many eigen-
values of finite multiplicity in (−1, 1) (see, e.g., Theorem 4.23 of [24]). It is well-
known that under our assumptions on V there are no eigenvalues λ with |λ| > 1
embedded in the continuous spectrum (see, e.g., [1]).

When A : L2(R3;C4) → L2(R3;C4) is a compact operator the eigenvalues
of (A∗A)1/2, indexed in non-increasing order, are called the singular values of
A and are denoted by sj(A). The following inequalities are well-known (see e.g.
[19]):

sj(AB) 6 ‖B‖sj(A), A ∈ B∞, B ∈ B,(2.2)

sj+k−1(A + B) 6 sj(A) + sk(B), A, B ∈ B∞,(2.3)

sj+k−1(AB) 6 sj(A)sk(B), A, B ∈ B∞,(2.4)

where B and B∞ denote the spaces of bounded and compact operators on the
space L2(R3;C3), respectively. As a consequence of Weyl’s inequality we also
have

|det(I − A)| 6
∞

∏
j=1

(1 + sj(A)) for A ∈ B1,(2.5)

where B1 is the set of trace class operators.

2.2. RESONANCES. By virtue of (B.3) the free cut-off resolvent χR0(λ)χ, χ ∈
C∞

0 (R3), is an integral operator with kernel given by

χ(x)R0(λ, x, y)χ(y)=χ(x)
(

i
α · (x−y)
|x−y|2 + κ(λ)

α · (x−y)
|x− y| +β+λ

)eiκ(λ)(x−y)

4π|x−y| χ(y),

for κ(λ) :=
√

λ2 − 1, on the branch with Im
√

λ2 − 1 > 0. Thus χR0(λ)χ :
L2(R3;C4)→ L2(R3;C4) has a holomorphic extension from

{Re λ 6 1, Im λ < 0} ∪ {Re λ > −1, Im λ > 0}

across (−∞,−1] ∪ [1, ∞) to the sheet with Im
√

λ2 − 1 < 0.
We next consider the full resolvent RV(λ) := (D− λ)−1 for χ ∈ C∞

0 (R3)

such that χV = V. If we take | Im λ| so large that ‖VR0(λ)χ‖ 6 C| Im λ|−1 6
1/2 we may write

RV(λ) = R0(λ)(I + VR0(λ))
−1.

Notice that for such λ we have

(I −VR0(λ)(1− χ))(I + VR0(λ)) = I + VR0(λ)χ,

since (1− χ)V = 0 and, consequently,

RV(λ) = R0(λ)(I + VR0(λ)χ)
−1(I −VR0(λ)(1− χ)).(2.6)

Since VR0(λ)χ : L2(R3;C4) → H1(supp V;C4), we infer that VR0(λ)χ is com-
pact on L2(R3;C4) by the Rellich–Kondrachov theorem and, moreover, it de-
pends holomorphically on λ since R0(λ) does. Thus (I + VR0(λ)χ)

−1 has a
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meromorphic extension by the analytic Fredholm theorem. Furthermore, from
(2.6) we get for χ0 ∈ C∞

0 (R3) with χ0V = V and χ0χ = χ0 that

χ0RV(λ)χ0 = χ0R0(λ)χ0(I + VR0(λ)χ)
−1(2.7)

since initially (I + VR0(λ)χ)
−1χ0 = χ0(I + VR0(λ)χ)

−1 holds for | Im λ| � 1
in the physical sheet by considering (I + VR0(λ)χ)

−1 as a Neumann series and
remains true because both sides have meromorphic extensions. This provides
the meromorphic extension of χ0RV(λ)χ0 for which the poles are those of (I +
VR0(λ)χ)

−1. These poles will be referred to as resonances of D and the set of all
resonances of D will be denoted byR.

DEFINITION 2.1. Assume λj ∈ R and let γλj be the circle λj + ε jei[0,2π]

where ε j is chosen sufficiently small so that γλj encircles no other resonances but
λj. The multiplicity of λj is then given by

mj = rank
∫
γj

RV(λ)dλ.(2.8)

The proof of the following upper bound, which goes back to Melrose [15] in
the Schrödinger case, for the number of resonances in disks follows the strategy in
Zworski [25] (see also Proposition 6.2 in Kungsman–Melgaard [9] and references
therein).

PROPOSITION 2.2. The following upper bound holds true:

N(r) := #{λ ∈ R : |λ| 6 r} 6 Cr3,(2.9)

where the number of resonances are counted according to their multiplicities.

Proof. Recall, by (2.6), that the resonances of D can be characterized as poles
of (I + VR0(λ)χ)

−1. Since

I − (VR0(λ)χ)
4 = (I + VR0(λ)χ)(I −VR0(λ)χ + · · · − (VR0(λ)χ)

3)

and because (see below) (VR0(λ)χ)
4 ∈ B1, the resonances will appear among the

zeros of
f (λ) = det(I − (VR0(λ)χ)

4).

We first estimate | f (λ)| by using the Weyl inequality (2.5):

| f (λ)| 6
∞

∏
j=1

(1 + sj((VR0(λ)χ)
4)).(2.10)

In view of Ky–Fan’s inequality (2.4) and the inequality

sj(VR0(λ)χ) 6 ‖V‖∞sj(χR0(λ)χ)

it suffices to estimate the singular values of χR0(λ)χ. This can be done by com-
paring them to the singular values of the resolvent of a free Dirac operator on a
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sufficiently large flat torus T = (R/RZ)3 with supp (χ) ⊂ B(0, R):

sj(χR0(λ)χ) 6 sj((DT,0 − i)−1)‖χR0(λ)χ‖L2→H1 .

It is well-known (see e.g. [9]) that sj((DT,0 − i)−1) 6 Cj−1/3. Moreover, on the
branch of the square root where Im (κ(λ)) > 0 we obtain from (B.1) and (B.4) that
‖χR0(λ)χ‖L2→H1 6 C〈λ〉.

To estimate the singular values of the extended resolvent we use

χ(R0(λ)− R̃0(λ))χ = 2πiEχ(λ)
∗Eχ(λ),

(see (A.5) and (B.5)), where we temporarily denote the extended resolvent by
R̃0(λ). Therefore, it suffices to estimate

sj(Eχ(λ)
∗Eχ(λ)) 6 ‖Eχ(λ)‖L2→L2(S2)sj(Eχ(λ)).

To this end, denote by ∆ω the Laplace–Beltrami operator on S2. Then

sj(Eχ(λ)) 6 sj((I −∆ω)
−k)‖(I −∆ω)

kEχ(λ)‖L2(R3)→L2(S2),

where

sj((I −∆ω)
−k) 6 Ck j−k and ‖(I −∆ω)

kEχ(λ)‖L2(R3)→L2(S2) 6 (2k)!eC|λ|

are well-known (see, e.g., p. 72 of [21] for details). Hence, for k = [j1/2/(2C)] + 1,

sj(Eχ(λ)) 6 j−kCk(2k)!eC|λ| 6 C1eC1|λ|−j1/2/C1 ,

by Stirling’s formula. Since ‖Eχ(λ)‖L2→L2(S2) 6 CeC|λ| we now get

sj((VR0(λ)χ)
4) 6 C2 exp (C2|λ| − j−1/2/C2) + C2 j−4/3,

so that, especially,

sj((VR0(λ)χ)
4) 6

{
C3 exp (C3|λ|) for j 6 C3|λ|2,
C3 j−4/3 for j > C3|λ|2.

It follows from (2.5) that

| f (λ)|6 ∏
j6C3|λ|2

(1+C3 exp(C3|λ|))
(

exp
(
∑j>C3|λ|2

C3 j−4/3))6exp(C4|λ|3).(2.11)

The result now follows by an application of Jensen’s formula (see, e.g., p. 63 of
[21]).
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3. PROOF OF THE POISSON TRACE FORMULA

Let s(λ) be the determinant of the scattering matrix, as introduced in Ap-
pendix A. Meromorphic extension of the identity S(λ)−1 = S(λ)∗ for any λ ∈
spec (D0) implies S(λ)−1 = S(λ)∗ and, therefore, the scattering determinant sat-
isfies

1
s(λ)

= s(λ).

It follows that if zj ∈ R then s(zj) = 0 and vice versa. From the Weierstrass
factorization theorem it follows that

s(λ) = eg(λ) PR(λ)
PR(λ)

,(3.1)

where PR is the canonical product

PR(λ) = ∏
zj∈R

E3

( λ

zj

)mj
, Ep(z) = (1− z) exp

(
z +

z2

2
+ · · ·+ zp

p

)
(3.2)

and g an entire function. We choose the genus to be p = 3 so the infinite product
converges (see e.g. [5]). Moreover, it follows from Paper IV, Lemma C.1 of [8]
together with Proposition 2.2 that

|PR(λ)| 6 CeC|λ|4 .(3.3)

LEMMA 3.1. For any constant C > 0 there exists a constant C0 such that the
inequality

∞

∏
j=1

(1 + CeC|λ|N−
√

j/C) 6 C0eC0|λ|3N

holds for all λ ∈ R.

Proof. Clearly

∞

∑
j=1

log(1 + CeC|λ|N−
√

j/C) 6

∞∫
0

log(1 + CeC|λ|N−
√

x/C)dx =: L,

and an upper bound of the product is given by eL. Integrating by parts and
denoting ϕ0(λ) = 2(log C + C|λ|N) we get

L = C2
∞∫

0

x2 CeC|λ|N

ex + CeC|λ|N dx 6 C2
ϕ0(λ)∫
0

x2 dx + C2
∞∫

ϕ0(λ)

x2

ex/2 + 1
dx 6 C1+C1|λ|3N

and the result follows.

Next we estimate the determinant of the scattering matrix. The proof of
the following lemma is in the spirit of Zworski’s work [26], [27] on Schrödinger
operators; see also p. 9 of [17].
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LEMMA 3.2. For any ε, δ > 0 we have

|s(λ)| 6 Ce|λ|
9+3ε

for λ 6∈
⋃

zj∈R
D(zj, 〈zj〉−3−δ).

Proof. Introduce (see also (A.4))

A(λ) := 2πiEχ(λ)V(I + χ(D0 − λ)−1V)−1Eχ(λ)
∗,

with

(Eχ(λ) f )(ω) = (2π)−3/2(λ2(λ2 − 1))1/4Π±(κ(λ)ω)
∫
R3

e−iκ(λ)ω·xχ(x) f (x)dx.

Next we estimate

|s(λ)| 6
∞

∏
j=1

(1 + sj(A(λ))),(3.4)

where

sj(A(λ)) 6 C‖V(I + χ(D0 − λ)−1V)−1‖‖Eχ(λ)‖sj(Eχ(λ)).(3.5)

From Theorem 5.1 of [6] we have

‖V(I + χ(D0 − λ)−1V)−1‖ 6 det(I + |χ(D0 − λ)−1V|4)
|det(I + (χ(D0 − λ)−1V)4)| .(3.6)

For the numerator it follows from (2.11) that we have the upper bound

det(I + |χ(D0 − λ)−1V|4) 6 CeC|λ|3 .(3.7)

Then Cartan’s minimum modulus principle for entire functions (see, e.g., Chap-
ter I of [12]) gives, for any ε, δ > 0,

|det(I + (χ(D0 − λ)−1V)4)| > Ce−C|λ|3+ε
for λ 6∈

⋃
zj∈R

D(zj, 〈zj〉−3−δ).(3.8)

From (3.6), (3.7) and (3.8) it then follows that

‖V(I + χ(D0 − λ)−1V)−1‖ 6 CeC|λ|3+ε
for λ 6∈

⋃
zj∈R

D(zj, 〈zj〉−3−δ).

Combined with (3.4) and (3.5) this results in the upper bound

|s(λ)| 6 ∏(1 + CeC|λ|3+ε
j−k) 6 ∏(1 + CeC|λ|3+ε−

√
j/C) 6 CeC|λ|9+3ε

,

where we have taken k = [j1/2] + 1 and the last step uses Lemma 3.1.

We are now ready to show one of the main ingredients of the proof of The-
orem 1.1.

LEMMA 3.3. The entire function g in (3.1) is a polynomial of degree 6 9.
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Proof. Applying the maximum principle to the holomorphic function f
given by f (λ) = s(λ)PR(λ) = eg(λ)PR(λ), we get from Lemma 3.2 and (3.3)
that

| f (λ)| = |eg(λ)||PR(λ)| 6 CeC|λ|9+3ε
.

Away fromR we have (see Chapter XI, Section 3, Lemma 3.1 of [5])

dN

dλN

( f ′(λ)
f (λ)

)
= −N! ∑(zj − λ)−N+1, for N > 9.

From
f ′(λ)
f (λ)

= g′(λ)−
P′R(λ)

PR(λ)
we therefore obtain

−N! ∑(zj − λ)−N+1 = g(N+1)(λ)− dN

dλN

(P′R(λ)

PR(λ)

)
.

A direct calculation of the second term on the right hand side gives g(N+1)(λ) = 0
for N > 9.

The proof of Lemma 3.3 is inspired by Zworski [26], [27] (Schrödinger oper-
ator case). With these preparations we are now ready to prove our main result.

Proof of Theorem 1.1. Let u(t) = 2 Tr (cos(tD)− cos(tD0)) and ϕ ∈ C∞
0 (R \

{0}). Then we can write ϕ = ϕ− + ϕ+ where ϕ± are the restrictions of ϕ to R±.
We obtain

〈u, ϕ〉D ′ ,D = ∑
±

Tr (ϕ̂±(D) + ϕ̂±(−D)− ϕ̂±(D0)− ϕ̂±(−D0))

= ∑
±

Tr ( f±(D)− f±(D0)),

where we have defined f±(λ) = ϕ̂±(λ) + ϕ̂±(−λ). Using (A.6) we obtain

〈u, ϕ〉D ′ ,D = − 1
2πi ∑

±

( ∫
R

ϕ̂±(±λ)∂λ(log s(λ))dλ + ∑
λj∈spec d(D)

f±(λj)
)

(3.9)

with all four sign combinations in the integral. Now define h±(λ) = F [ϕ±/t9](λ)
so that ∂9

λ(h±)(λ) = ϕ̂±(λ), integrate by parts and use the factorization (3.1) to
obtain

− 1
2πi

∫
R

ϕ̂+(λ)∂λ(log s(λ))dλ=− 1
2πi

∫
R

h+(λ)∂10
λ (log s(λ))dλ

=− 1
2πi ∑

λj∈R
mj

∫
R

h+(λ)
( 9!
(λ−λj)10

− 9!
(λ−λj)10

)
dλ

= ∑
λj∈R∩C+

mj ϕ̂+(λj)− ∑
λj∈R∩C−

mj ϕ̂+(λj),
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where we have used the fact that |h+(λ)| = O(〈λ〉−∞) for Im λ 6 0 to deform
the integral over R into the lower half-plane. We treat the remaining terms in
(3.9) similarly to obtain

〈u, ϕ〉D ′ ,D

= ∑
λj∈R∩C+

mj ϕ̂+(λj)− ∑
λj∈R∩C−

mj ϕ̂+(λj)− ∑
λj∈R∩C−

mj ϕ̂+(−λj)+ ∑
λj∈R∩C+

mj ϕ̂+(−λj)

− ∑
λj∈R∩C−

mj ϕ̂−(λj) + ∑
λj∈R∩C+

mj ϕ̂−(λj) + ∑
λj∈R∩C+

mj ϕ̂−(−λj)

− ∑
λj∈R∩C−

mj ϕ̂−(−λj) + ∑
λj∈spec d(D)

( f−(λj) + f+(λj))

=
〈

ϕ, ∑
λj∈R∩C+

mj(e
−i|t|λj+ei|t|λj)− ∑

λj∈R∩C−
(e−i|t|λj+ei|t|λj)+ ∑

λj∈spec d(D)
2mj cos(tλj)

〉
which proves (1.1).

We believe that it is possible to avoid the assumption ±1 6∈ R in The-
orem 1.1 but it requires a substantial analysis of the threshold behaviour of D
which is outside the scope of the present paper. We intend to address this matter
in a future work.

Appendix A. SCATTERING THEORY

It is well-known (see e.g. [24]) that under the assumption that V ∈ C∞
0 (R3)

the wave operators
W± = s-lim

t→±∞
eitDe−itD0

exist, are asymptotically complete and fulfill the intertwining relation DW± =
W±D0. The scattering operator S = W∗+W− for the pair (D,D0) is unitary on
L2(R3) and commutes with D0 and consequently it can be represented as multi-
plication by the so called scattering matrix S(λ).

To obtain such stationary representations of S(λ) we need to discuss spec-
tral representations of the Dirac operator. To this end we introduce E0(λ) :
L2(R3;C4)→ L2(S2;C4) by

(E0(λ) f )(ω) = (2π)−3/2(λ2(λ2 − 1))1/4Π±(κ(λ)ω)
∫
R3

e−iκ(λ)ω·x f (x)dx,(A.1)

for ±λ > 1, with Π± as in (2.1) and κ(λ) =
√

λ2 − 1. The adjoint operator
E0(λ)

∗ : L2(S2;C4)→ L2(R3;C4) is then given by

(E0(λ)
∗ f )(x) = (2π)−3/2(λ2(λ2 − 1))1/4

∫
S2

eiκ(λ)ω·xΠ±(κ(λ)ω) f (ω)dω.
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Then

[E0(λ)D0 f ](ω) = (λ2(λ2 − 1))1/4Π±(κ(λ)ω)F(D0 f )(κ(λ)ω)

= (λ2(λ2 − 1))1/4Π±(κ(λ)ω)d0(κ(λ)ω)F( f )(κ(λ)ω)

= λ[E0(λ) f ](ω),

which is to say that E0(λ)D0E0(λ)
−1 = λ where the right-hand side denotes

multiplication by λ.
A representation of the scattering matrix is shown in [2] but they use a dif-

ferent spectral representation that we now briefly discuss. We begin by introduc-
ing the so called Foldy–Wouthuysen (F-W) transform which diagonalizes D0 as
in [4] (see also [2] and [24]). In the ξ-representation it is given by the unitary 4× 4
matrix defined by Ĝ(ξ) = exp(β(α · ξ)θ(|ξ|)) where θ(t) = (2t)−1 arctan t for
t > 0. A direct calculation gives

Ĝ(ξ)d0(ξ)Ĝ(ξ)−1 = (ξ2 + 1)1/2β.(A.2)

We then define the F-W transform as the unitary operator G on L2(R3;C4) defined
by G = F−1Ĝ(ξ)F and it transforms D0 into

D̃0 := GD0G−1 = (−∆+ 1)1/2β.

We now define the restrictions of the so called free trace operator (see [2]) T±0 (λ) :
L2(R3;C4)→ L2(S2;C4) by

(T±0 (λ) f )(ω) = (2π)−3/2(λ2(λ2 − 1))1/4
∫
R3

e−iκ(λ)ω·xP±G f (x)dx

where P±=2−1(I4±β) and take the free trace operator to be T0(λ)=T±0 (λ) depen-
ding on whether ±λ>1. Similarly to above it is easy to see that T0(λ)

−1D0T0(λ)
is also multiplication by λ.

In [2] it is shown that the scattering matrix has the stationary representation

S̃(λ) = I − 2πiT0(λ)(V −VRV(λ + i0)V)T0(λ) for |λ| > 1.(A.3)

We can relate this representation to the one given by E(λ) in (A.1) by noting that
by (A.2)

[Ĝ(κ(λ)ω)E0(λ) f ](x)

=(λ2(λ2−1))1/4Ĝ(κ(λ)ω)
1
2
(I4+λ−1d0(κ(λ)ω))F( f )(κ(λ)ω)

=(λ2(λ2 − 1))1/4P±Ĝ(κ(λ)ω)F( f )(κ(λ)ω)

=(λ2(λ2 − 1))1/4P±(FG f )(κ(λ)ω)= [T0 f ](ω).

This together with (A.3) results in the representation

S(λ) := Ĝ(κ(λ)ω)−1S̃(λ)Ĝ(κ(λ)ω) = I − 2πiE0(λ)(V −VRV(λ + i0)V)E0(λ)
∗
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for |λ| > 1. The scattering matrix is unitary for |λ| > 1 with

S(λ)−1 = I + 2πiE0(λ)(V −VRV(λ− i0)V)E0(λ)
∗.

By taking χ ∈ C∞
0 (B(0, R0)) with χV = V we use the identity

V(I − RV(λ)V) = V(I + χ(D0 − λ)−1V)−1

to rewrite the extended scattering matrix as

S(λ) = I − A(λ) := I − 2πiEχ(λ)V(I + χ(D0 − λ)−1V)−1Eχ(λ)
∗.(A.4)

where

(Eχ(λ) f )(ω)

= (2π)−3/2(λ2(λ2 − 1))1/4Π±(κ(λ)ω)
∫
R3

e−iκ(λ)ω·xχ(x) f (x)dx.(A.5)

From (2.7) we see that the resonances will appear as poles of the extended S(λ).
It also follows that resonances appear as poles of the scattering determinant

s(λ) = det(S(λ)) = det(I + A(λ)).

A.0.1. THE LIFSHITS–KREIN TRACE FORMULA. The so called spectral shift func-
tion ξ ∈ D ′(R) is a generalization of the eigenvalue counting function that makes
sense also on the absolutely continuous spectrum (−∞,−1] ∪ [1, ∞) where it is
smooth. It is well-known that the Lifshits–Krein trace formula [13]

tr ( f (D)− f (D0)) =
∫
R

f (λ)ξ ′(λ)dλ,

holds for any f ∈ S(R). Also, by the Birman–Krein formula we have

s(λ) = e−2πiξ(λ)

for almost every λ ∈ (−∞,−1] ∪ [1, ∞). Therefore we can choose a branch of the
logarithm such that

ξ(λ) = − 1
2πi

log s(λ), for a.e. ± λ > 1,

and obtain

tr ( f (D)− f (D0)) = −
1

2πi

∫
R

f (λ)∂λ(log s(λ))dλ + ∑
λj∈spec d(D)

mj f (λj),(A.6)

under the assumption that ±1 6∈ R.
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Appendix B. RESOLVENT OF FREE DIRAC OPERATOR

From the identity D2
0 = −∆+ 1 it follows that

R0(λ) = (D0 + λ)R00(
√

λ2 − 1),(B.1)

where R00(z) = (−∆− z2)−1. It is well-known that R00(z) is a convolution oper-
ator (see e.g. [16] and [21]) and that its kernel is given by (4π)−1|x|−1eiz|x| where
Im z > 0. Consequently, for λ ∈ C \ spec (D0), we have

[(D0 − λ)−1u](x) = (α · ∇+ β + λ)
1

4π

∫
R3

ei
√

λ2−1|x−y|

|x− y| u(y)dy,(B.2)

for u ∈ L2(R3;C4) on the branch where Im (
√

λ2 − 1) > 0. It is not difficult to
show that the resolvent kernel of D0 on C∞

0 (R3;C4) is given by

R0(λ, x) =
(

i
α · x
|x|2 +

√
λ2 − 1

α · x
|x| + β + λ

)ei
√

λ2−1x

4π|x| .(B.3)

It is also well-known (see e.g. [21]) that for χ ∈ C∞
0 (R3) the cut-off resol-

vent χR00(z)χ can be extended holomorphically to all of C and that it admits the
following upper bounds:

‖χR00(z)χ‖L2→H j 6 C(|z|j−1eC(Im z)−), for j = 0, 1, 2(B.4)

where the constant C depends only on the support of χ.
If temporarily we denote the extended resolvent by R̃00(z) it can be related

to the standard resolvent by

χR00(z)χ− χR̃00(−z)χ = Tχ(z), Im z > 0,

where T(z) is the convolution operator with kernel

T(x, y, z) = χ(x)
i
2

z
(2π)2

∫
S2

eizω·(x−y) dωχ(y).

It follows that if χR̃0(λ)χ denotes the resolvent extended to Im κ(λ) < 0 we have

[(χR0(λ)χ− χR̃0(λ)χ) f ](x)

= χ(x)[(D0 + λ)(R00(κ(λ))− R̃00(−κ(λ)))(χ f )](x)

=
i
2

κ(λ)

(2π)2 χ(x)(D0 + λ)
∫
S2

eiκ(λ)ω·x
∫
R3

e−iκ(λ)ω·yχ(y) f (y)dy
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=
i
2

κ(λ)

(2π)2 χ(x)
∫
S2

(d0(κ(λ)ω) + λ)eiκ(λ)ω·x
∫
R3

e−iκ(λ)ω·yχ(y) f (y)dy

=
iλκ(λ)

(2π)2 χ(x)
∫
S2

1
2
(I4 ± λ−1d0(κ(λ)ω))eiκ(λ)ω·x

∫
R3

e−iκ(λ)ω·yχ(y) f (y)dy

= [2πiEχ(λ)
∗Eχ(λ) f ](x).(B.5)
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