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ABSTRACT. We introduce the fundamental group F(.A) of a unital C*-algebra
A with finite dimensional trace space. The elements of the fundamental group
are restricted by K-theoretical obstruction and positivity. Moreover we shall
show there are uncountably many mutually non-isomorphic simple C*-alge-
bras such that F(A) = {I,,}. Our study extends the results on the fundamental
group due to Nawata and Watatani.
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INTRODUCTION

We recall some facts of fundamental groups of operator algebras.

The fundamental group F(M) of a II;-factor M with a normalized trace T
is defined by Murray and von Neumann in [13]. In the paper, the fact that if
M is hyperfinite, then F(M) = R7 is shown, where R} is the set of positive
invertible real numbers. It was proved that F(L(F)) of the group factor of the
free group e contains the positive rationals by Voiculescu in [25] and it was
shown that F(L(Fe)) = R by Radulescu in [20]. The fact that F(L(G)) is a
countable group if G is an ICC group with property (T) is shown by Connes [4].
That either countable subgroup of R} or any uncountable group belonging to a
certain “large” class can be realized as the fundamental group of some factor of
type II; is shown by Popa and Vaes in [18] and in [19].

Nawata and Watatani [16]], [17] introduced the fundamental group of simple
C*-algebras with unique trace. Their study is essentially based on the computa-
tion of Picard groups by Kodaka [8], [9], [10]. Nawata defined the fundamental
group of non-unital C*-algebras [14] and, by using fundamental group, calcu-
lated the Picard group of some projectionless C*-algebras with strict comparison
in [15]. In this paper, we define the of C*-algebras with finite dimensional trace
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space. This fundamental group is a “numerical invariant”. Let A be a unital C*-
algebra with finite dimensional bounded trace space. We define the fundamental
group F(A) of A and the determinant fundamental group Fye(A) by using self-
similarity and the extremal points of the tracial state space of .A. Then F(A) and
Fet(A) are multiplicative subgroups of GL,(R) and R respectively. We shall
show that elements of the fundamental group are restricted by K-theoretical ob-
struction and positivity. We will have that A = DU(c) for some diagonal matrix
D and for some permutation unitary U(c) for any A in F(.A). If the unital C*-
algebras A and B with finite dimensional bounded trace space are Morita equiv-
alent, then F(A) = (DU(¢))~'F(B)(DU(r)) for some diagonal matrix D and for
some permutation unitary U(c). Moreover, we will compute F(.A) of several C*-
algebras A. We shall show that given any group G in GL, (R) which is isomorphic
to Z and whose elements have the form DU (), there exists a simple AF-algebra
A such that F(A) = G. Furthermore, we shall show that for any n € N there ex-
ist uncountably many mutually non-isomorphic simple (non)nuclear unital C*-
algebras A with n-dimensional trace space such that F(A) = {I,}, where I, is
the unit in M, (C).

We review some of the elementary facts on the trace space. Let A be a unital
C*-algebra. A tracial state ¢ on A is a state on A which satisfies ¢(ab) = ¢(ba)
for any a,b in A. We denote by T(.A) the set of tracial states on A and denote by
lincT(A) the C-linear span of T(.A). Then lingcT(.A) is the set of tracial bounded
linear functionals. If T(.A) # {0}, then T(.A) is a nonempty compact set of A* in
the weak*-topology so the set of extremal points of T(.A), denoted by 0.T(A), is
nonempty. By 3.1.18 of [24], T(.A) is a Choquet simplex. If 0.T(.A) is a finite set,
then it is a canonical basis of lincT(.A). In other words, say deT(A) = {¢;}I;,
then {¢;} ; is a canonical basis of lincT(.A). The canonical basis is determined
up to permutations.

1. HILBERT C*-MODULES, IMPRIMITIVITY BIMODULES AND PICARD GROUPS

We recall some of the standard facts on Hilbert C*-modules and imprimi-
tivity bimodules. (See [11], [12], [21]].) Let A be a unital C*-algebra and let £ be
a right Hilbert A-module with a right inner product (-, -) 4. We denote by £(&)
the set of adjointable operators on £. Then L(£) is a unital C*-algebra with a
unit I. Let &, 77 be elements of £. We define a rank-one operator 6, on & by
0z, (0) = G (1,0) 4- Then bz, € L(E). We denote by K(&) the closed linear span
of {0¢, : &, € £} in L(E). Then K(&) is a closed ideal of L(E). If I € K(&), then

K(E) = L(E). We say thata subset {;} ; of £ is a finite basis if 1 = i Gi(Cim) 4
i—1

1=
for any 77 in £. (See [7], [26]].) If £ has a finite basis {;}} ;, then I € (&) and
K(&) = L(€). Put p = ({Gi,{j) 4)ij- Then & is isomorphic to p.A" as a right
Hilbert A-module and pM,(A)p = L(E).
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Let B be a unital C*-algebra. The dual module of an A-B-imprimitivity bi-
module &, denoted by £*, is defined to be the set {* : § € £} with the opera-
tions & +* = (& +1)*, A& = (18)",b&*a = (a"&b*)*, (&*,n*) = (&) and
(&, 1" )4 = A(C,1). Then £* is a B-A-imprimitivity bimodule. The C*-algebras
A and B are called Morita equivalent if there exists an A-B-imprimitivity bimod-
ule. For A-B-imprimitivity bimodules &£ and &, &1 and &; are called isomor-
phic if there exists a linear bijective map & from &; onto & with the properties
P(agb) = ab(©)b, 4(P(E), P(n)) = 4(& 1) and (B(&), P(n))s = (& 1)s forany
ain A, for any b in B and for any &, 7 in &1, where 4(-,-) and (-, ) are left and
right inner products respectively. We denote by 4Ep the set of all isomorphism
classes of the A-B imprimitivity bimodule.

We recall some notations on Picard groups of C*-algebras introduced by
Brown, Green and Rieffel in [3]. The set 4E 4 forms a group under the prod-
uct by internal tensor product ®. The group, denoted by Pic(A), is called the
Picard group of A. The identity element of the group Pic(.A) is [A], where A is
regarded as an A-A-imprimitivity bimodule which has obvious left and right ac-
tions and the inner products 4(a,b) = ab* and (a,b) 4 = a*b. Then [£*] is the
inverse element of [£] in the Picard group of A. Let a be an automorphism on
A. We denote by &, the A-A-imprimitivity bimodule which is the set A with
obvious left actions, obvious left .A-valued inner product and with the following
right actions and right A-valued inner product: ¢ -a = ¢a(a) for any { € A,
anda € A, (¢,n7)4 = a~1(&*y) for any &, 5 € A. For a, B € Aut(A), & is iso-
morphic to & if and only if there exists a unitary u € A such that & = ad uo p.
Moreover, £, ® & is isomorphic to £,.5. We denote by p 4 the injective homo-
morphism from Out(.A) to Pic(A) such that p4(«) = [Ex]. We suppose that A
is unital. We say that a projection p is a full projection in My(.A) if the linear
span of {a*pb : a,b € AF} is dense in A. We say that a projection p is self-
similar in My (\A) if there exists an isomorphism from A onto pM;(A)p. Let £
be an A-A-imprimitivity bimodule. Since £ is full as a left Hilbert .A-module,

n
there exist some elements (,, #, in € such that H Y A {Cntn) — IAH < 1. Then
i=1
n n
Y a{alun, ) = a( Y Al ) ) = 14 for some a in A. For simplicity of no-
i=1 i=1

n
tation, we write {, instead of al,. Then we can assume that Y 4 ({y, #n) =
i=1

14 for some {y, 17, Putb = i A{Cn +1n,Cn +14n), then b > 14. Therefore
i=1

n

ZlA (O V2(Zn 4 10), b2 (G +10)) = 1a. Put & = b V2(g; + y;). Then

1=

‘glA (Ci,Ci) = 1gand = ;1 & <§,~,11>A for any # in £. Therefore {Ci};‘:l is a

finite basis of £. Put p = (((fl_, i) a)ij € Mn(A). Then p is a full projection and
€ is isomorphic to p A" as A-A-imprimitivity bimodule with an isomorphism
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of A to pM,(A)p as C*-algebra. Conversely, we suppose that p is a full pro-
jection in My (A) with an isomorphism « : A — pMi(A)p . Then pA" is an
A-A-imprimitivity bimodule with the operations a - ¢ = a(a)¢, ¢ - a = Ca.

2. DEFINITION OF THE FUNDAMENTAL GROUP

We define the fundamental group for unital C*-algebras with finite dimen-
sional bounded trace space. The definition given in the Section 3 of [16] uses a
self-similarity of C*-algebra. In the same way, we define a fundamental group.

DEFINITION 2.1. Let A be a unital C*-algebra. A self-similar triple for A,
abbreviated s.s.t., is a tuple (k, p, @), where k is a natural number, where p is a
projection in My (.A), and where @ is an isomorphism from .4 onto pM;(A)p.

We denote by Try the unnormalized trace on My (C). Let A be a unital C*-
algebra, let ¢ € lingT(A) and let (k, p, @) be a self-similar triple of A. Then
(Try ® @) o @ is in lingT(A). Therefore we can define a bounded linear map
T(k,p,@) onlincT(A) by T(k,p,(b) (¢) = (Tt ® @) 0 D.

We denote by L(lincT(.A)) the set of bounded linear maps from lincT(.A)
into lingcT(A).

DEFINITION 2.2. Let A be a unital C*-algebra. We define the subset F*(.A)
of L(incT(A)) as follows:

FY(A) := {T(kp,0) € LAngT(A)) : (k, p, @) : s.s.t}
We denote by GL(lincT(.A)) the set of invertible elements in L(lincT(A)).
It forms a group. We will show F'(.A) is a subgroup of GL(lincT(A)) by using a
Picard group. The following construction generalizes that of the Proposition 2.1
of [16].
PROPOSITION 2.3. Let A be a unital C*- algebm We define the map R 4 : Pic(A)

— L(incT(A)) by (Ra((E)(@)0) = T g((Eats)), where (&)L i a fnt
basis of € as a right Hilbert A-module. Then R A([E]) does not depend on the choice
of basis and R 4 is well-defined. Moreover R 4 is a multiplicative map and R 4([A]) =
idjin.7(4)-

Proof. Let ¢ be a trace on A, a be an element of A, £ be an A-A-imprimitivity
bimodule and let {¢;}%_, and {17]-}5»:1 be finite bases of £. Then

k

k,1
Y. e((Gi,adi)a Zlgv(<é‘u2m mpagia) ) = L (& m)abn,ai)a)

i=1 ij=1
k! !

Z ((nj,agi) a(8i 1j) A Z (nj,anj) 4

: ]:
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Therefore R 4([€]) is independent on the choice of basis.

Let & and & be A-A-imprimitivity bimodules with bases {&}¥ ; and
{g]}; 1- We suppose that there exists an isomorphism @ of £; onto &. Then
{®(&;)}_, is also a basis of &. Then

k 1
Zq) gl/agl Z(P Q(P (:z)> ) - Z¢(<§i/agi>A)'
i=1 j=1
Therefore R 4 is well-defined.
We shall show that R 4 is multiplicative. Let & and &, be A-A-imprimitivity
bimodules with bases {¢;}¥_; and {17]}1 . Then {& ® ’7]'}?,']'[:1 is a basis of & ®
&> and

k1 k1
(Ra(lE© ED(@)0) = 1 9l @308 @) = 3 9l (&) ) 0)
ij= ij=
On the other hand
k
(Ra([&1])R a([&2]) Z Ra([&]) (@) (& ai) 4 Zq) 1j, (Ci, a8i) AMj) A)-

ij=1
Therefore R 4 is multiplicative. &
We denote by {e;}X_, the canonical basis of .A*.
PROPOSITION 2.4. Let A be a unital C*-algebra. Then F*(A) = R 4(Pic(A)).

Proof. Let € be an A-A-imprimitivity bimodule and let {&;}¥_, be a basis
of £ Put p = ((g;,€j))ij. Then & is isomorphic to p.A* as an A-A- 1mpr1m1t1v1ty
bimodule and there exists an *-isomorphism & : A — pMj(A)p. Then

k
(Ra([ED)(@))(a) = Z)GD((@M(L Z(P pei, a(a)pe;))

—2906 = (Trx @ @) o (a) (a).

Therefore F'(A) D R4 (Pic(A)). Conversely, we suppose that p is a projection
with an *-isomorphism « : A — pM;(A)p and that the linear span of {a*pb :
a,b e Ak} is dense in A. Then, p.Ak is an A-A-imprimitivity bimodule with a
basis {pe;}*_,. Then

(Tre ® @) o Zq) e oe( Z(P pei,a(a)pe;)) = (R4([pA"]) () (a).

Therefore F*(A) C R 4(Pic(.A)). Hence Ftr(/l) = Ry (Pic(A)).

PROPOSITION 2.5. Let A be a unital C*-algebra. Then F*(A) is a subgroup of
GL(ncT(A)).
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Proof. By Proposition].3} R 4(Pic(.A)) is a subgroup of GL(linc T(A)). Then,
by Proposition[2.4] F'*(A) is also. 1

If 9. T(A) is a finite set, then F (.A) has a matrix representation. We suppose
that A is unital. Then lincT(A) has a canonical basis d.T(.A). We define the
(determinant) fundamental group F(A) (F4et(A)) using this basis.

DEFINITION 2.6. Let A be a unital C*-algebra with finite dimensional
bounded trace space. We define the fundamental group F(A) as the matrix rep-
resentation of F(.A) with respect to an indexed set of 9. T(.A). In other words,
say 0eT(A) = {¢;}!" ;. We define the representation S 4 : L(lincT(A)) — M,(C)

n n
by SA(T)(e;) = ¥ ajjej, where Tg; = }_ a;;p;, where ¢; is a canonical basis of C".
j=1 j=1
Then F(A) = S4(F*(A)). The fundamental group is defined up to permuta-
tions of the indices. Moreover, we define the determinant fundamental group
F4et(A) by |det|(F(A)) where |det|(X) = {|det(A)| : A € X} for some subset X
of M, (C).

REMARK 2.7. This fundamental group measures the enlargement ratio of
the self-similarity of a C*-algebra by its trace space. Suppose #(d.T(A)) = 2 and

say 0eT(A) = {1, ¢2}. Let (k, p, @) be a s.s.t. By Proposition .6|or Remark 3.7
T p0)P1 = A1 and Ty oy92 = Aag, oF T p oy 91 = A2 and Ty, g2 =
A1 for some Aq, Ay. Moreover, by substituting 1 4 in the both sides, A1 = Try ®
¢1(p) and Ay = Trx ® ¢2(p). Then ¢1(p) and @ (p) indicate the enlargement ratio
of @ with respect to @1 and ¢;.

By using the self-similarity, we shall show the following proposition.

PROPOSITION 2.8. Let A and B be C*-algebras with finite dimensional bounded
trace space. We suppose §(0eT(A)) = n and that §(9.T(B)) = m. Say {¢;}I; =
0eT(A) and {1[7}}”21 = 0.T(B).

Then {1 @Y1, ..., Pn@P1, P21, ..., Pn@Pm } =0e T (A Qmin B). Moreover

F(A @min B) D F(A) @ F(B) and  Fget(A @min B) O |det|(F(A) ® F(B)),

Abl,l v Abl,m
where AQ B = : : for A € My(C) and (b;;) = B € My(C).
Aby1 - Abmm

Proof. Let A ® B be an element of F(A) ® F(B). Then there exist self-similar
triples (kl,po, (Dl) and (kz, qo, (Dz) such that ®; : A = ]90]\/1k1 (A)PQ, Dy, : B =
qoMy, (B)qo, and that A and B are representation matrices of Tixy,po,@;) and
T(kz,LIO,@z)' Put k = max{kl,kz},Ap = diag(po,Ok,kO) and q/\: diag(qo,Ok,kl).
Then p € Mi(A), g € Mg(B), &1 : A = pMy(A)p and &, : B = qgM(B)g
with isomorphisms induced by @; and by &, respectively. Then &; @ &, : (p ®
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7) (M (A @min B))(p ® q) = A @min B. Therefore (k,p @ q,d; @ @,) is a self-
similar triple of A ®mpin B and T(k,p®q,<131®<5z) Pi @Y = T(x, po,01)Pi @ T(ky 00,0,) ¥j-
Hence A® B € F(A®min B). 1

EXAMPLE 2.9. Put A = My~ and B = C & C. Then
_ fon. ({1 0] |0 1
F(A) = {2" :n € Z), F(B>_HO 1H1 0”
2" 0 0o 2"
F(A®min8):{|:0 zm],[zm 0}.71,17162},

E(A) 2 F(B) :{[2; 291} , [2% 20} :neZ},
Fyet(A Smin B) = {27 i1 € Z} and |det|(F(A) @ F(B)) = {4" : n € 7).

Therefore F(A Qmin B) 2 F(A) ® F(B) and Fiet(A ®min B) 2 |det|(F(A) ®
F(B)).

We defined the fundamental group and the determinant fundamental group.
Our definitions agree with 3.2 of [16]. This fundamental group is a “numerical
invariant”. In the case of a simple C*-algebra with unique trace, the group is a
complete numerical invariant. In other words, if F(.A) and F(B) are different as a
set, then .4 and B are not isomorphic (not Morita equivalent). Put A = My~ and
B = Ms~. Then F(A) = {2" : n € Z} and F(B) = {3" : n € Z}. These groups
F(A) and F(B) are isomorphic as a group because both of them are isomorphic
to Z. However, F(.A) and F(B) are not the same as a set, and .4 and B are not
isomorphic. In the case of the C*-algebras with finite dimensional trace space, a
similar fact will be shown (Proposition[2.11]and Lemma [2.13).

Let A and B be unital C*-algebras with finite dimensional trace space. The
definition of the fundamental group F(.A) depends on the permutation of d.T(.A)
if #(0eT(A)) > 1. Moreover the fundamental groups F(.A) and F(B) of two C*-
algebras A, B which are Morita equivalent might be different in our definition
(see Example[3.16). In this section, we introduce the concept of being isomorphic
and being weightedly isomorphic on the fundamental groups F(.A). We define
the canonical unitary representation U from a symmetric group S, into M, (C)
by U(c);; = 1if j = o(i) and U(c);; = 0if j # o (i).

DEFINITION 2.10. Let.4 and B be unital C*-algebras satisfying (0. T(A)) =
#(9eT(B)) = n. We say that F(.A) is isomorphic to F(B) if there exists a permuta-
tion ¢ in S, such that F(B) = (U(c)) 'F(A)(U(c)). We say that F(A) is weight-
edly isomorphic to F(B) if there exists an invertible positive diagonal matrix D in
M,;(C) and a permutation ¢ in S, such that F(B) = (DU(¢))~'F(A)(DU(0)).

We first consider fundamental groups of C*-algebras which are isomorphic.
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PROPOSITION 2.11. If two C*-algebras, which have finite dimensional bounded
trace spaces, are isomorphic, then their fundamental groups are the same up to permuta-
tion of basis.

Proof. Let A and B be unital C *-algebras which have bounded trace spaces.
We suppose {(0.T(A)) = n. Say {¢;}/; = deT(A). If A and B are isomorphic,
there exists an isomorphism « : B — .A Then {@;oa}! | =0.T(B). 1

We shall show that if two unital C*-algebras .A and B are Morita equivalent,
then their fundamental groups F(A) and F(B) are weightedly isomorphic and
Fyet(A) = Fet(B). Let A and B be unital C*-algebras which have bounded trace
spaces. If A and B are Morita equivalent, then there exists an A-B-imprimitivity
bimodule F. We define the linear map R 45 : 4Eg — L(lincT(B),lincT(A)) by

k
(Ras([F))(9))(a) = }_ ¢((Zi, agi)5),

i=1
where {¢;}X_, is a basis of F as a right Hilbert B-module.

LEMMA 2.12. Let A, B and C be unital C*-algebras which have bounded trace
spaces. We suppose A, B and C are Morita equivalent. Let £ be an imprimitivity A-B-
bimodule and let F be an imprimitivity B-C bimodule.

Then Rap([€])Rpe ([F]) = Ruac([€ @ FI). In particular, R 45([F])Rpa([F7])
= idjineT(a), RBA(FDRAB([F]) = idiineT(s) and §(0eT(A)) = §(0T(B)).

Proof. The independence of the choice of the basis of F and the well-defined-
ness of R 45([F]) can be showed similarly with the proof of the definition of
R4([€]) in Proposition 2.3} Moreover, R 45([€])Rpe([F]) = Rac([€ ® F]) can
be showed similarly with the proof of the multiplicativity of R 4([£]) in Proposi-
tion2.3 1

In particular, R 44 ([€])=R 4([€]) where € is a A-A-imprimitivity bimodule.

PROPOSITION 2.13. Let A and B be unital C*-algebras with finite dimensional
bounded trace space. If A and B are Morita equivalent, then F(.A) is weightedly isomor-
phic to F(B) and Fgei(A) = Faer(B).

Proof. Let F be an A-B-imprimitivity bimodule. Then F induces an isomor-
phism ¥ of Pic(A) to Pic(B) such that ¥([€]) = [F* ® € ® F| for [£] € Pic(A).
By Lemma[2.12) for [£] € Pic(A)

Re([F* @ €@ F]) = Rps([F* © £ @ F]) = Rpa([F D Raa([E)Ras([F])
= RpA([FDRA([EDRas([F])-
Put #(0eT(A)) = #(9.T(B)) = n. We shall consider the representation of the
previous formula into M, (C) with respect to the basis d.T(.A) of lincT(A) and

the basis 0. T(B) of lincT(B). Then the representation matrices of R 4([£]) and
Rp([¥(€)]) are SA(R4([€])) and Sp(Ra([¥(E)])) respectively. By the definition



FUNDAMENTAL GROUP OF C*-ALGEBRAS WITH FINITE DIMENSIONAL TRACE SPACE 157

of Ryp(F) and Rp4(F*), they preserve positiveness of traces, so the entries of
the matrices which are represented by them are positive. Moreover each of them
is the inverse element of the other by Lemma Therefore the representation
matrix of R 4p(F) satisfies the hypothesis of Lemma Hence there exist a
positive invertible diagonal matrix D and ¢ in S, such that Sp(Rg([¥(€)])) =

(DU(e)) 'S a(R4(F))(DU(0)).
Furthermore, since det(P~'AP) = det(A) for P € GL,(C) and for any
A € My(C), Fger(A) = Faer(B). 1

3. FORMS OF FUNDAMENTAL GROUPS AND SOME EXAMPLES

We shall show that F(.A) is restricted by K-theoretical obstruction and pos-
itivity. This computation is motivated by Proposition 3.7 of [16]. We denote by
¢* the map from Ky(.A) into R induced by a bounded trace ¢ on A. We de-
note by H(A) the set of isomorphic classes [x] of right Hilbert .A-modules x
with finite basis {&:}5_|. We define a pairing (-,-) : H(A) x lincT(A) — C by
(Ix], @) = Z ¢((Gi,Gi) 4)- Asin Propositionﬁ it will be shown that this pairing

is well- deflned and does not depend on the chosen basis.

PROPOSITION 3.1. Let A be a unital C*-algebra with finite dimensional bounded
trace space. Then

(x® €l @) = (Xl Ra((€D)(9))

for any right Hilbert A-modules x with finite basis, for any A- A-imprimitivity bimodule
& and for any ¢ € lincT(A).

Proof. Let {&;}5_ 1 be a finite basis of x and let {77]};:1 be a finite basis of £.

Then ([x ® €], ¢) = 1]2_ ¢((nj, (Gi Gidanj) a) = ([x], Ra([€])(@)). W

The following computations are based on the pairing.

LEMMA 3.2. Let A be a unital C*-algebra with finite dimensional bounded trace
space. We define the map R 4 : H(A) — lingT(A)* by R4([x]) () = jé e((Ei,C)),
where {&;}%_, is a finite basis ofAé’ as a right Hilbert A-module. If [E] is an element of
Pic(A), then Ra([x ®4 €]) = ([X])RA([g])-

Proof. Asin Prop0s1t10nn Ra( ) does not depend on the choice of basis,

R 4 is well-defined, and R 4 ([x ® 4 5]) RA([x])R4([€]) for all A-A-imprimitivity
bimodule £. 1
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We denote by Py(A) the set of projections in My(A) and put Po(A) =
U Pe(A).
k=1

LEMMA 3.3. Let A be a unital C*-algebra and let ¢ be a positive tracial linear
functional on A. Then

{¢"([plo) : p € Poo(A)} = {9 @ Tri(p) : p € Mk(A), k € N}
= {Ra(lx)(9) : [x] € H(A)}.
Proof. Let x be a right Hilbert A-module with finite basis {¢;}¥_,. Put p =
({8i,&j).4)ij- Then p is a projection in My(A). Then ¢(p) = ﬁA([X])(GD) On the

other hand, let p be a projection in My (.A). Then p.AX is a right Hilbert .A-module
with finite basis {pe;}*_;. Therefore R4([p.A])(¢) = ¢(p).

LEMMA 3.4. Let A be a unital C*- algebm with finite dimensional bounded trace
space. We suppose #(0eT(A)) = n. Say {¢;}1_; = 9. T(A). Put E = {(¢}(8i))i=1,..n
1 gi € Ko(A)}. Then we can consider E as an additive subgroup of Mj ,(C). Then
EB = E forall B in F(A). In particular, E is a module over F(.A).

Proof. Let B be an element in F(A). Put Ey = {(R4([x:])(¢:))i=1..n : [xi] €
H(A)}. Consider the representation of the equation in Lemma (3.2 with a basis
8 T(.A) EyB C Ey. Since B is invertible, EgB = Ej. By Lemmaand by the fact

(A)={lplo—[9lo:p € Px(A)}, Ep—Ey = E.Hence EB=E. 1

We denote by M,,(R™) the set of matrices with nonnegative entries.

LEMMA 3.5. Let A be an invertible element of M,,(C). If A and A~! are elements
of My, (R"), then there exist a permutation o in S, and a positive invertible diagonal
matrix D, such that A = DU(0).

Proof. This proof is based on the calculation of matrix elements. It is suf-
ficient to show that there exists only one positive element in each row and in
each column. Let A = {a;j}, B = {b;;} be an element of M,(R") such that
AB = BA = I,. We regard i as fixed and we suppose 4;; = 0 for all j. Then
detA = 0, which contradicts the invertibility of A. Therefore there exists jp such
that a; j, > 0. We shall show that if j # jo, then a;; = 0. Since AB = I,, if j # io,

n
Y ajkbrj = 0. By the positivity of the matrix elements of A and B, if j # iy, then
k=1

b]-O j = 0. Otherwise, we suppose bjoio = 0, then all the elements of the j; row are

0, which contradicts the invertibility of B. Therefore bj;, > 0. Since BA = I, if

j # jo, then Z bjkaxj = 0. Because bjj;) > 0, if j # jo, then a;; = 0. Hence there

Joo
exists only one positive element in each column. By transposing the matrices on
both sides of AB = BA = I, the rest of the proof runs as before. 1

By the above lemmas, the form of the elements in F(.A) is restricted.
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PROPOSITION 3.6. Let A be a unital C*-algebra with finite dimensional bounded
trace space. We suppose §(0eT(A)) = n. Say {@;}! | = 9.T(A). For any B in F(A),
there exist a positive invertible diagonal matrix D in M,(R") and o € S, such that
B = DU(7) and Dg; (Ko(A)) = ¢}, (Ko(A)).

Proof. We first prove that for any element B in F(.A) there exista o in S, and
a positive invertible diagonal matrix D such that B = DU(c). Let ¢ be a positive
tracial linear functional on A, let £ be an A-A-imprimitivity bimodule, and let
{€i}7_, be a basis of £. Because ¢ is positive, R 4([£])(¢) is positive. Therefore
considering the representation of R 4([€]) and R 4([£*]) with the basis 9.T(.A),
we see that all entries of the matrices are positive. By Lemma the first step is
proved and we can put B = DU(0).

We next prove Dj;i¢f(Ko(A)) = Poi) (Ko(A)). Put E; = ¢7(Ko(A)). By
Lemma 3.4 and by B = DU(c), we can obtain D;E; C E,(;). Considering the
invertibility of B in F(A), DLHEU(Z-) C E;. Hence D;iE; = Ey;). i

REMARK 3.7. Let A be a unital C*-algebra. We say that a positive tracial
linear functional ¢ on A is an extreme ray if for any fixed positive tracial linear
functional ¢ on A , if < ¢, then there exists a positive real number A such
that A¢p = ¢. If a positive tracial linear functional ¢ is an extreme ray, then
there exists a positive real number A and an extremal point ¢ of T(A) such that
¢ = A¢. Let B be a unital C*-algebra. We suppose that d.T(A) and 9.T(B)
are finite sets and that §(0eT(A)) = £(deT(B)). Let T be an invertible element
of L(lincT(A),lincT(B)). If T and T~ are positive, then T¢ is an extreme ray
for any extreme ray ¢. We can also prove the part of the previous proposition
by this fact. Let A be a unital C*-algebra with finite dimensional bounded trace
space. We suppose §(0.T(A)) = n. Say {¢;}I'; = 0.T(A). By the fact of the
extreme ray, there exist a permutation ¢ and a positive real number A; such that
Tik,p,0) (i) = Ai@o(i)-

COROLLARY 3.8. Let A be a unital C*-algebra with finite dimensional bounded
trace space. If A is separable, then F(A) and Fae(A) are countable groups.

Proof. We suppose f(0eT(A)) = n. Say {@;}l; = 0eT(A). Then
{(97(8i))i=1,.n = & € Ko(A)} is a countable additive subgroup of R". Let
B € F(A). There exists an invertible positive diagonal matrix D in M, (R") and
o € S, such that B = DU(0). Since 1 € ¢} (Ko(A)) for any i, D;; € Py (Ko(A))
for any k, I. Therefore F(.A) and Fget(.A) are countable. &

So, Proposition [3.6|enables us to calculate F(.A) easily. We shall show some
examples.
COROLLARY 3.9. Let A be a unital C*-algebra with a unique normalized bounded

trace T, let B = é A; where Aj = A. IfF(A) = (" (Ko(A)) \ {0}) N (7" (Ko (A)) \
i=1
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{0)"'NRY, then
F(B) = {DU(0) : ¢ € Sy, D is a diagonal matrix in M, (R™) such that D;; € F(A)}.
Proof. Let T7; be the normalized trace of A;. We define a(c) : B — B by
a(0)(a1,a2,-..,an) = (Ag-1(1),85-1(2), - - -, Ag-1(y)) Where 0 € Sy
Considering [£, ()] in Pic(B), F(B) includes permutations of M, (R). More-
over {D : diagonal matrix in M,(R") : D;; € F(A)} is a subset(subgroup) of
F(B). Hence (RHS)C F(B). But, by Proposition (3.6, F(B) C(RHS). 1

COROLLARY 3.10. Let A be unital C*-algebras with finite dimensional bounded
trace space. We suppose §(0eT(A)) = n. Say {¢;}I'; = 0eT(.A). If there exist iy and
i1 such that dg} (Ko(A)) # ¢ (Ko(A)) for any d € RY, then B;;, = By, = 0 for all
element B in F(A).

Proof. We suppose Bj;; # 0. Then Bj ¢} (Ko(A)) = ¢} (Ko(A)). This
contradicts our assumption. 1

ioiy irip

EXAMPLE 3.11. Put A = Mo & Moo & Mz, then

F(A)z{

EXAMPLE 3.12. Let { pu },_; be an increasing enumeration of all prime
numbers and let A, = My (ap2) C)@® MHZ:1(4Pi)(C)' We define *-homomor-
phisms ¢, : Ay — A1 by ¥ ((a, b)) =(diag(a,a,...,a,b,b),diag(b,b,...,b,a,a)).
Let A be the inductive limit of the sequence

o P

2 0 0 02k 0
020 0f,[28 0 0]|:kI,meZy and Fyei(A)={2"3":n,mecZ}.
0 03" [0 0o 3"

Ao Ay A
(n)

Then A is simple. Let T and Tzn) be the normalized traces on A, such
that

(n) 1 (n) 1
T, = =TI @0 and T, =00 ———Trmm 2y.
LT ) T : [T () Tt

Put gogn), (pgn) as follows:

() _ (1 31Tk P (), (1 31Tk Pk (n)
oM ==+ "+ (= — T and
' <2 ([T (P} — 1))7T2) ' (2 (ITe= (P — 1))7T2> ?
1.2 n 2
m _ (1 3114 Pk (n) 1 31 1k=1 Pk (n)
@y =z (Nl e T, .
? (2 (Hi’zl(r)i—l))ﬂZ) ! (2 (Hﬁzl(iﬂ%—l))#) ?
Then (pfn) is a tracial state on A, and satisfies q)gn) = (pl’,’“ o ¥y. Therefore there

exists a tracial state ¢; on A such that ¢;| 4, = gogn). Since ¢1 and ¢, are linearly
independent, then £(0e(T(\A))) = 2. Moreover, { ¢1, 92 } = de(T(A)).
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We compute the fundamental group of .4 and we shall show

F(A):{ﬁ;z 2OH20 20"} (neZ)} and Fyu(A) = {4":ncZ}.

LEMMA 3.13. Let A be the inductive limit of the above sequence. Let @1, @3 as
above. Then both ¢} (Ko(A)) and ¢3(Ko(.A)) are the same additive group E. If there
exists a positive real number A such that AE = E, then A =2"(n € Z).

Proof. Then both 97 (Ko(A)) and @5 (Ko(A)) are the same additive group
E generated by n € N). Since 1 € E, there exist

22n+1 Hn :l: 4 (TT_ ( —1))nZ (
rational numbers 41, 2, q3,q4 such that /\ =q1+ %, (1 + %)(qg + %) = 1. Since
7t is a transcendental number, g = g4 = 0. Then A is a rational number. Put A =
27 %, where a is an integer and [, m are non-zero positive odd numbers satisfying
ged(l,m) = 1. We will show | = m = 1. Indeed, suppose I # 1. Then there exist
a prime number p,,, and an integer I; such that | = py,l;. Since gcd(l,m) =1,

1 3 —
2T [0 > + PO, (P—D)m 5 & AE. This contradicts the fact AE = E. Suppose
m # 1. Slmllarly, we can denote m = pu,mi, where p,, is a prime number and

mj is an integer. Then L 3 ) ¢ E. We next show

(22”1+1H +4”1(H (=172
A = 2"(m € Z), then AE E. It 1s suff1c1ent to show the case m > 0. Let

_ 1
&= Sm 72 + T (H£:1(p%71))n2 be a generator of E. For an integer 1y more

than 2 5 + 1,

a=2".

22110 m—2n Hk n+1 pk N 3(22710 m—2n Hk il (pk )))
22no+1 H”o= Pk 4o (Hk 1 (Pk ))”2
Therefore AE D E. Obviously, AE C E,so AE =E. 1

PROPOSITION 3.14. Let A be the inductive limit of the sequence in Example
Then F(A) = { [ 2], (23] (n€Z)} and Fyop(A) = {4":n € L}.

Proof. We first show [?1] € F(A). Let a, be an automorphism from A,
onto A, such that a,((a,b)) = (b,a). Since ¢, oy, = a1 0Py, for any n € N,
there exists an automorphism « : A — A such that «| 4, = ;. Therefore ¢, =
@1 0a and @1 = @y o a. On the other hand,

2" 0 0o 2"
F(A) C { [0 24 , {27” 0} (n,m GZ)}

by Definition [3.6{ and Lemma We next show that if [20] € F(A), then
a=>b. Let& be an A-A- 1mpr1rn1t1v1ty bimodule such that R A([E ])q)l = a¢q and

RA([E])@2 = bgy. Then Z ¢1((i,¢i) o) = a and Z #2((Gi,Ci) o) = b, where

{¢i}_, is a basis of &. Put a projection p = ((Cl,§]> ) on My (A). Then Tr, ®
¢1(p) = a and Tr, ® ¢a(p) = b. Since M,(A) = 11m M, (A;), there exist a
1—00
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projection pg in M, (\A;) such that Tr, ® @1]4,(po) = a and Tr, @ @2]4,(po) = b

Put pg = p(l) S P%, where ptl) and p% are projections of M, [T, 42 (C). Then
1 3H;<+11 Pi 1
RGN K3 Trrp (a2 (P1)
2+ (I3 (7 — 1))n2) TTi_y (4p2) Thaa(4r)
1 3H;<H1 Pi 1
+Trn® - T . . Tr i ) (p2) and
(2 (ITi= 1(Pk - 1))7'[2) [Ty (4p%) [Ti—1 (4p7)
1 3H;<Hl ri 1
b=t 3 = Trri a0 (P1)
<2 (ITk=1 (Pk - 1))7T2) [Tieq (4;9%) ITiz1 (4P)
1 3H;<Hl Pi 1
e T ()

Let g1, g2 be rational numbers. Since 4, b are rational numbers, if

1 31Tk P% 1 31T, p%

( (M (P = 1)) ) ' (2 (Hﬁzl(pi—l))nz)qz 4 an
L STl p 1 B[ A -

O v Tl U CRl s a1 r) Lol

then a = b. Therefore a = b. Finally, we show [39] € F(A). Let B, =

MHZ:1 (2p2) D MH?:l 2p2)" We define *-homomorphisms ¢, : A, — A,4+1 by

¢n((a,b)) = (diag(a,a,...,a,b),diag(b,b,...,b,a)).

Let B be the inductive limit of the sequence

Then A is isomorphic to My~ ® B. Therefore A is isomorphic to Mp(.A). i

EXAMPLE 3.15. Let p > 2 be a prime number. Put By, = My e C) @
M i 1(C). We define *-homomorphisms ¢, : B, — B,+1 by ¢,((a,b)) =
(d1ag( ,a,b,...,b),diag(b,...,b,a,...,a)), where the multiplicities of a are
pt—=2"" 1 and 2"~ respectively and the one of b are 2"~! and p" — 2"~! respec-
tively. Let B be the inductive limit of the sequence

Put A = My~ ® B. Then A is simple and dimlincT(A) = 2. Since % is an

)") is a transcendental number. As in the same proof

algebraic number, [T (1 — (%
n=1

of the previous example, F(A) = { [%n pon} , {PO" ’Z” (neZ) } and Fgei(A) =
{pP":neZ}.
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EXAMPLE 3.16. Let {n;}!" , be an indexed finite subset of N such that 1 < n
m
and n; < njyq for any i. Put B = @ M;,(C). We denote by ¢; the normalized
i=1
trace on M,,(;(C). We show

. p.. ()
(3.1) F(B) = {Du(a) D= oy 7 sN}.

Put A = C™. The C*-algebras A and B are Morita equivalent and 69 My, (C),

denoted by F, is an A-B-imprimitivity bimodule. Then the representat1on matrix
P of R45(F) is a diagonal matrix and P; = n(i). By Proposition [2.13} F(B) =
RpA(F*){U(c) : ¢ € Sy}R45(F). Especially, if A = C2and B = M,(C) @

M3(C), then
ww={[ 3.0 )

- el 3- (0 16 )

and Fyet(A) = Faet(B) = {1}.

EXAMPLE 3.17. Let 0 be an irrational number. The irrational rotation alge-
bra Ay has a unique normalized trace @y. The irrational rotation algebras Ay, A;
are Morita equivalent if and only if n = %+5, [21] € GLy(Z) where GL,(Z) is
the set of integer-valued 2 x 2 matrices A which satisfy detA = 1 or —1. If X
is an A;-Ap-imprimitivity bimodule with A;-valued left inner product 4, ()
and with Ay-valued right inner product (-, -) 4,, we have the following equation:
P0((C,C) 4y) = |0 +d[gy(4,(C,E)). These facts can be found in [22] and [23]. Put

B=Ag®Ayand C = Ay @ Ay. Since Ag © X is a B-C-imprimitivity bimodule,
10

F(B) = [(1) ‘Ce(jrd‘} F(C) [0 \c9]+d|:| and Fye(B) = Fget(C). From Corollary and
Corollary 3.18 of [16], we can calculate F(B). In particular let § =+/5and 7 = 7
then

F(B)= {(\ﬁ—i-z)n 0 } 0 ﬁ(\/g—kZ)"

0 (V5+2)"]" | /B(/5+2)" 0
and Fy(B) = {(y/5+2)" : n € Z}. Let 0 be a non-quadratic number and 7 =

0 _1
<1, then F(B) {1000 [ 7] amd ) = 1)

n,me’

Put G; = {
of R.

# :meZ, ke N}. Then G; is an additive dense subgroup
i=1Pi
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LEMMA 3.18. Let I, m be different natural numbers. If Gy = AG for any positive
real number A, then A = 1. Moreover, there is no positive real number A such that
G; = AGy.

Proof. We suppose G; = AG;. Since G is a subset of QT, A is a positive
rational number. Put A = % where p and g are mutually prime. Suppose p # 1.

Then there exists a prime factor py of p. While plz € qGy, piz & pG;. Therefore
0 0

pG; # qG;. This contradicts G; = AG;. Then p = 1. Similarly, § = 1. Therefore

A = 1. We suppose | > m and G; = AGy,. Then A is a positive rational number.

Obviously A # 1. Put A = g where p and g are natural numbers. Let r be a prime

number which is neither a prime factor of p nor that of 4. Then 711 € qG; and

:77 & pGy. Therefore pG; # qG;. This contradicts G; = AG;. Hence there is no
positive real number A such that G; = AG;. 1

Using Lemma the following examples can be shown.

n
EXAMPLE 3.19. Let n be a natural number. Put G = [] G; and GT =
=1

{(81,82,---,8n) : g > 0} U0, where 0 is the additive unit of R". Then (G,G")

is unperforated and has the Riesz interpolation property. We denote by Aynit the

unital simple AF-algebra the triples of which are isomorphicto (G,G% (1,1,...,1)).
Then F(Aunit) = {In} and Fgei(Aunit) = {1}, where I, is a unit of M,,(C).

n
EXAMPLE 3.20. Let n be a natural number. Put G = [] G; and GT =
I=1

{(g1,82,---,8n) : & > 0} U0, where 0 is the additive unit of R". Then (G,G") is
unperforated and has the Riesz interpolation property. We denote by Ag, the uni-
tal simple AF-algebra the triples of which are isomorphic to (G,G*, (1,1,...,1)).
Then F(Asg,) = U(Sy).

EXAMPLE 3.21. Let 6 be a non-quadratic number. Put Gy = (G; + 0Gy) ®
(G1+60G1) and G = {(g,h):¢>0,h>0}U0. Then (Gp, G5 ) is unperfo-
rated and has the Riesz interpolation property. Moreover, (1,1) and (1,0) are
order units of (Gy, G, ) . We denote by A(1,1) and by A(q g) the unital simple AF-

algebras the triples of which are isomorphic to (Gg, G, , (1,1)) and (Gg, G, , (1,6))
respectively. Then A(; ;) and Ay g are Morita equivalent. Moreover,

([ L} o= (B2 G o
Faet(A(11)) = Faet(A1e) = {1}.

EXAMPLE 3.22. Let 0 be a quadratic number. Put Gy = (G; +0G; + 7G1) @
(G1+60Gy + Gy) and Gy = {(g,h) : g > 0, > 0} U0. Then (Gg, G, ) is unper-
forated and has the Riesz interpolation property. Moreover, (1,1) and (1,6) are
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order units of (Gy, Gy ). We denote by B(11) and by By o the unital simple AF-

algebras the triples of which are isomorphic to (Gg, G , (1,1)) and (Gg, G, (1,6))
respectively. Then B 1) and By 4) are Morita equivalent. Moreover,

o= (5 1 3 {5 )
Faet(A1,1)) = Faet(A(1,9)) = {1}

Hence the next theorem follows.

THEOREM 3.23. Let G be a subgroup of GLy(R) whose elements are represented
as DU (o), where D is a positive diagonal matrix and o € Sy,. If G is isomorphic to Zp
as a group, then there exists a simple AF-algebra A such that F(A) = G.

EXAMPLE 3.24. Let n be a natural number. Let 64, ...,6, be non-quadratic
numbers which satisfy 0; # %;2; forany a,b,c,d in Z and for any i, j. Put

n

G0y, 00} = @(Z—l— 6;7Z) and Gfel,.‘.,en} ={(g1,---,8n): g >0} U{0}.
i=

Then (G PRy G{+61 e }) is unperforated and has the Riesz interpolation
property. Moreover, (1,...,1) is an order unit of (Gyg, .0, }, G;’GI by }).

We denote by A, .} the unital simple AF-algebra the trip,le of which is
isomorphic to (Gyg,,. 6, }/ Gzr@l,-.-ﬂn 1 (L., 1)). Then F(Agg, g,y) = {In}-

By using Example we shall show the following theorem.

THEOREM 3.25. For any natural number n, there exist uncountably many mutu-
ally non-isomorphic simple (non)nuclear unital C*-algebras A with n-dimensional trace
space such that F(A) = {I,,}.

Proof. We show the case n = 2. If Ay, 4, is isomorphic to Ay 0,04} then
there exist my,my € 7Z such that {60],05} = {61 +my,0,+my}. Since there
exist uncountably many sets { 61,6, } each pair of which do not have that rela-
tion, there exist uncountably many mutually non-isomorphic simple unital AF-
algebras. In the case of nonnuclear, all one have to do is to consider Ay, o, ®
Ci(F2). n

PROPOSITION 3.26. Let G be a countable subgroup of R’ and let n be a natural
number. Then there exist uncountably many mutually non-isomorphic separable simple
nonnuclear unital C*-algebras A with n-dimensional trace space such that Faor(A) D G.

Proof. Let r ¢ G be a real number of RY. We denote G, the subgroup of
R% generated by r and G. Then there exist a separable non-nuclear unital C*-
algebra B, with unique trace such that F(B,) = {¢'/" : ¢ € G, }. Then B, ® As,
is a separable non-nuclear unital C*-algebra with n-dimensional trace space such
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that Fge (B, ® Ag,) 2 Gr 2 G. Since r is arbitrarily chosen and Fye(Br ® As,)
is countable, there exist uncountably many mutually non-isomorphic separable
simple nonnuclear unital C*-algebras. 1

COROLLARY 3.27. For any natural number n, there exist uncountably many
mutually non-isomorphic separable simple nonnuclear unital C*-algebras A with n-
dimensional trace space whose fundamental groups F(A) are all different.

4. EXACT SEQUENCE OF PICARD GROUPS AND FUNDAMENTAL GROUPS

In this section, we shall show the diagram with respect to fundamental
groups F(A) and Picard groups of C*-algebra .A. This construction generalizes
the Proposition 3.26 of [16]. We denote by Int(.A) the set of inner automorphisms
of A. We say that an automorphism « is trace invariant if ¢ oa = ¢ for any ¢ in

T(A).

DEFINITION 4.1. Let A be a unital C*-algebra. We denote by Autr4)(A)
the set of automorphisms which are trace invariant. Then Int(.4) is a normal sub-
group of Autr 4)(A). We denote by Outr 4)(A) the quotient group Autr4)(A)/
Int(A).

Because Auty(4)(A) is normal subgroup of Aut(A), Outr(4(A) is a nor-
mal subgroup of Out(A). We denote by p 4] the restriction of p 4 to Auty(4)(A).
We say that T(.A) separates equivalence classes of projections if for any fixed nat-
ural number # and for any projections p,q€ My (A), if Tr,®¢(p) =Tr,®¢(q) for
all ¢ in T(A), then p and g are Murray-von Neumann equivalent.

THEOREM 4.2. Let A be a unital C*-algebra with n dimensional bounded trace
space. If T(A) separates equivalence classes of projections, then we have the following
commutative diagram whose horizontal lines are exact:

1 —— Outrp(A) —20 Pic(a) 2284, Fay  ——1

idT PAT iFT
iout pASAR 4
1 —— Outr(4)(A) —— Out(A) —— U(Sy)NF(A) —— 1

In this diagram, iou and ip are the inclusion maps from Outr 4 (A) into Out(A) and
from U(S,) N F(A) into F(A) respectively.

Proof. 1t is sufficient to show horizontal lines are exact. We show the first
line is exact. The map p 4 is one-to-one and Imp 4 C Ker(S4R 4) by the Chapter
2 and SR, is onto by definition. We shall show that Ker(S4R4) C Imp 4. Let
(€] be in Ker(S 4R 4), let {&;}X_, be the basis of £, let p = ({¢;, &) a)ij in Mi(A),
and let @ be the isomorphism from A to pMj(A)p. Because S gR 4([€]) = idr( ),



FUNDAMENTAL GROUP OF C*-ALGEBRAS WITH FINITE DIMENSIONAL TRACE SPACE 167

k
Y ¢i((Gi,adi)a) = ¢j(a) for all g; in deT(A) and for all a in A. Substituting
i=1

a = 14 into the previous formula, we can obtain the formula Try ® ¢(p) = Try ®
¢(14 ®eq1) = 1. By assumption, there exists a partial isometry w such that p =
w*w and 1 ® e;; = ww* in My (A). Then there exists an automorphism a of A
such that w®(a)w* = a(a) ® e1. Hence [€] = [&,]. Since [€] is in Ker(S 4R 4),
is an element of Outy(4)(A). We next show that p 45 4R 4 is onto. Since S 4R 4 is
onto, for all U(c) € U(S,) N F(A) there exists an imprimitivity bimodule £ such

that SyR4([€]) = U(c). Let {;}'_, be a basis of £. Then ‘é ¢i((Gi,adi) 4) =

®o(j)(a). As in the same proof in Theorem there exists an automorphism «
such that [€] = [E].

By using the above diagram, we have the following corollary.

COROLLARY 4.3. Let A be a unital C*-algebra with finite dimensional bounded
trace space. Put §(0¢(T(A))) = n. Under the same assumption as in Theorem |4.2} if
F(A) C U(Sy), then Out(.A) is isomorphic to Pic(.A).

We will show the relation between the scaling group and the fundamental
group.

DEFINITION 4.4. Let A be a unital C*-algebra with finite dimensional
bounded trace space and let {@;}! ; be a basis of lincT(A). A dual system of
{@i}!; in Ais a subset {u; };_; of A satisfying ¢;(u;) = &;;, where J;; is Kro-
necker’s delta.

LEMMA 4.5. Let A be a unital C*-algebra with n dimensional bounded trace space.
There exists a dual system { u; };_; for any basis linc T (A).

Proof. We define a linear map ®: A— C" by @(a) = (¢1(a), ¢2(a),..., ¢n(a)).
It is sufficient to show dimIm(®) = n. Obviously, dimIm(®) < n. We will
show dimIm(®) = dim(A/Ker(®)) > n. The linear map ¢ : lincT(A) —
(A/Ker(®))* given by i(¢)([a]) = ¢(a) is well-defined, where [4] is an equiv-
alent class of 2 in A. Suppose i((¢1) = ((¢2). Then ¢1(a) = ¢,(a) for any a in A.
Therefore ¢ is injective. Hence dim(.A/Ker(®)) > n. 1

REMARK 4.6. Let Abe a simple C*-algebra and let T be a non-zero bounded
trace on A. Since T is a trace, | = {a € A: t(a*a) =0} is a closed two-sided
ideal. Therefore I = {0} because A is simple. We suppose #(dT(A)) > 2. Then
no elements of a dual system of 9.T(.A) is positive because T(a) > 0 for any T in
T(.A) and for any positive element a in A.

Using this dual basis, we can see

F(A) = { ((Try ® i) o @(uj));j : (k,p, @) :s.5.p. } .

We denote by Tr the canonical trace on K.
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Let A be a unital C*-algebra with finite dimensional trace space and with
no unbounded trace. We suppose #(de(T(A)) = n. Say {@;}}; = 9(T(A)).
Let { u; } be a dual basis of {¢;} ;. If » € Aut(A®K), then (t®Tr)oa

is a densely defined, lower semicontinuous trace for any T € T(A). Since A
has no unbounded trace, we can write (T ® Tr) o a as a linear combination of
{p;®@Tr},. Put

S(A)={((gi@Tr)oa(uj@er)): a € Aut(A®K) }.

Even if A ® K is isomorphic to B® K, S(A) might notbe S(B) because S(.A)
depends on 9¢(T(A)) (see Example [4.8). We shall show that this set is equal to
F(A). We denote by M(B) the multiplier algebra of the C*-algebra B.

PROPOSITION 4.7. Let A be a unital C*-algebra with finite dimensional trace
space and with no unbounded trace. Then S(A) = F(A).

Proof. Let p be a self-similar full projection and let @ be an isomorphism
from A — pM,(A)p. Then®?®idg : AQK — pM,(A)p@K = (pRI)M,(A) ®
K(p ® I) is an isomorphism. Since p is full, there exists a partial isometry v €
M(M,(A) ® K) such that v*v = p ® I and that vv* = 1 by Lemma 2.5 on [2].
Put B, (x) = vxv* for x € M(M,(A) @ K) and &« = (¢, ® id4) 0 By 0 (P ® idg),
where ¢, is an isomorphism from M,,(C) ® K onto K and id 4 is an identity map
on A. Then « is an automorphism on A ® Kand (1 ® Tr) oa(a) = T ® Tr, o P(a)
for any a in A. Therefore S(.A) D F(.A). Conversely, let « be an automorphism
on A® K. Put p = a(1 ® e17). Then there exists a projection g in M, (A) such
that p and g are Murray—von Neumann equivalent. We define an isomorphism
¥ :p(A@K)p — q(Mn(A))g by ¥(a) = vav*, where v is a partial isometry sat-
isfying v*v = p and vv* = g. Since ¥ o « is the isomorphism of the map from .4
onto g(M,(A))g, if @ is the induced map by this, (T ® Tr) oca(a) = T Tr, o P(a)
for any a in A. Because 1 ® ey is full, g is a full projection of M;,(.A). Therefore
S(A) C F(A). Hence S(A) = F(A). 1

EXAMPLE 4.8. Put A = M;,(C) ¢ M3((C) and B = C& C. Then S(A) =

03
FA) = { 1321, 23] } and s(8) = F(8) = { [39], (23] } by Bxamplefsis
Although A and B are Morita equlvalent, F ( ) # F(B).
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