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ABSTRACT. Let N be a nest on a Hilbert space H and AlgN the correspond-
ing nest algebra. We obtain a characterization of the compact and weakly com-
pact multiplication operators defined on nest algebras. This characterization
leads to a description of the closed ideal generated by the compact elements of
AlgN . We also show that there is no non-zero weakly compact multiplication
operator on AlgN/AlgN ∩K(H).
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INTRODUCTION

Let A be a Banach algebra. A multiplication operator Ma,b : A → A corre-
sponding to a, b ∈ A is given by Ma,b(x) = axb. Properties of compact multi-
plication operators have been investigated since 1964 when Vala published his
work “On compact sets of compact operators” [17]. Let X be a normed space and
B(X ) the space of all bounded linear maps from X into X . Vala proved that a
non-zero multiplication operator Ma,b : B(X ) → B(X ) is compact if and only if
the operators a ∈ B(X ) and b ∈ B(X ) are both compact.

This concept was further investigated by Ylinen in [19] who proved a sim-
ilar result for abstract C∗-algebras. An element a of a Banach algebra A is called
compact if the multiplication operator Ma,a : A → A is compact. Ylinen shows
that there exists an isometric ∗-representation π of a C∗-algebra A on a Hilbert
space H such that the operator π(a) is compact if and only if a is a compact ele-
ment of A. Ylinen showed in [20] that this is equivalent with the weak compact-
ness of the map λa : A → A, λa(x) = ax (or equivalently of the map ρa : A → A,
ρa(x) = xa).

In the sequel, these results were generalized to various directions. Let H be a
Hilbert space. Akemann and Wright showed in [1] that a multiplication operator



172 G. ANDREOLAS AND M. ANOUSSIS

Ma,b : B(H) → B(H) is weakly compact if and only if either a or b is a compact

operator. A map Φ : A → A is called elementary if Φ =
m
∑

i=1
Mai ,bi

for some

ai, bi ∈ A, i = 1, . . . , m. Fong and Sourour showed that an elementary operator
Φ : B(H)→ B(H) is compact if and only if there exist compact operators ci, di ∈
B(H), i = 1, . . . , m such that Φ =

m
∑

i=1
Mci ,di

[8]. This result was expanded by

Mathieu on prime C∗-algebras [11] and later on general C∗-algebras by Timoney
[16]. In [11] Mathieu characterizes the weakly compact elementary operators on
prime C∗-algebras as well.

From the description of the compact elementary operators by Fong and
Sourour, the following conjecture arose: If Φ is a compact elementary operator on
the Calkin algebra on a separable Hilbert space, then Φ = 0. This conjecture was con-
firmed in [4] by Apostol and Fialkow and by Magajna in [10]. In [11] Mathieu
proves that if Φ is weakly compact, then Φ = 0 as well.

The weak compactness of multiplication operators has been studied in a
Banach space setting by Saskmann–Tylli and Johnson–Schechtman in [15] and [9]
respectively. In [15] the authors give some sufficient conditions for weak com-
pactness of Ma,b : B(E) → B(E), where E is a Banach space. They also provide
necessary and sufficient conditions for weak compactness of Ma,b in case of some
concrete Banach spaces. In [9] the authors give a classification of weakly compact
multiplication operators on B(Lp(0, 1)), 1 < p < ∞, which in particular answers
a question raised in [15].

The present work is a study of the compactness properties of multiplica-
tion operators defined on nest algebras. Note that the compactness of the inner
derivations defined on nest algebras, that is a special class of elementary opera-
tors, have been studied by Peligrad in [13]. He characterized the weakly compact
derivations of a nest algebra and obtained necessary and sufficient conditions
so that a nest algebra admits compact derivations. If N is a nest, we denote by
AlgN the corresponding nest algebra. In the first section of the paper, we prove
a necessary and sufficient condition for the compactness of multiplication opera-
tors defined from AlgN into AlgN . We close the section, showing by example
that there exist compact multiplication operators on AlgN that can not be writ-
ten as multiplication operators with compact symbols. In the second section, we
determine the closed ideal generated by the compact elements of a nest algebra.
In the third section of the paper, we characterize the weakly compact multiplica-
tion operators defined on nest algebras. In the last section, we show that there are
no non-zero weakly compact multiplication operators on AlgN/AlgN ∩K(H)
exactly as in the case of Calkin algebra (i.e. when N = {0, H}) [4], [10], [11].

Let us introduce some notation and definitions that will be used throughout
the paper. If H is a Hilbert space, then B(H) is the space of all bounded linear
operators and K(H) the space of all compact operators from H into H. Let E be
a Banach space and r a positive number. Then, by Er we denote the closed ball
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of centre 0 and radius r. Let e, f be elements of a Hilbert space H. We denote by
e⊗ f the rank one operator on H defined by (e⊗ f )(h) = 〈h, e〉 f .

Nest algebras form a class of non-selfadjoint operator algebras that gener-
alize the block upper triangular matrices to an infinite dimensional Hilbert space
context. They were introduced by Ringrose in [14] and since then, they have been
studied by many authors. The monograph of Davidson [5] is recommended as a
reference. A nest N is a totally ordered family of closed subspaces of a Hilbert
space H containing {0} and H, which is closed under intersection and closed
span. If H is a Hilbert space andN a nest on H, then the nest algebra AlgN is the
algebra of all operators T such that T(N) ⊆ N for all N ∈ N . If (Nλ)λ∈Λ is a fam-
ily of subspaces of a Hilbert space, we denote by

∨{Nλ : λ ∈ Λ} their closed lin-
ear span and by

∧{Nλ : λ ∈ Λ} their intersection. IfN is a nest and N ∈ N , then
N− =

∨{N′ ∈ N : N′ < N}. Similarly we define N+ =
∧{N′ ∈ N : N′ > N}.

The subspaces N ∩ N⊥− are called the atoms of N . For any N ∈ N , we denote
by PN the orthonormal projection corresponding to N. We endow N with the
order topology and {PN : N ∈ N} with the strong operator topology and denote
these spaces by (N ,<) and (PN , SOT) respectively. The natural map taking N
to PN is an order preserving homeomorphism of the compact Hausdorff space
(N ,<) onto (PN , SOT), ([5], Theorem 2.13). We shall identify the subspaces of
a nest with the corresponding orthogonal projections. In this paper we do not
distinguish between these subspaces and projections. We shall frequently use the
fact that a rank one operator e⊗ f belongs to a nest algebra, AlgN , if and only
if there exists an element N of N such that e ∈ N⊥− and f ∈ N, ([5], Lemmas 2.8
and 3.7). Note that the nest algebras are WOT-closed subalgebras of B(H) ([5],
Proposition 2.2). Throughout the paper we denote byN a nest acting on a Hilbert
space H and by K(N ) the ideal of compact operators of AlgN .

1. COMPACT MULTIPLICATION OPERATORS

Let H be a Hilbert space and a, b elements of B(H). Vala proved in [17] that
if a, b ∈ B(H) − {0}, then the map φ : B(H) → B(H), x 7→ axb is compact if
and only if the operators a and b are both compact. However, such a result does
not hold for nest algebras. Let N be a nest containing a projection P such that
dim(P) = dim(P⊥) = ∞ and a ∈ AlgN be a non-compact operator such that
a = PaP⊥. Then, the multiplication operator

Ma,a : AlgN → AlgN ,

x 7→ axa

coincides with the multiplication operator M0,0, since

Ma,a(x) = axa = PaP⊥xPaP⊥ = 0,

for P⊥xP = 0.
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Let a, b ∈ AlgN . We introduce the following projections:

Ra =
∨
{P ∈ N : aP = 0} and Qb =

∧
{P ∈ N : P⊥b = 0}.

PROPOSITION 1.1. Let a, b ∈ AlgN . Then, Ma,b = 0 if and only if Qb 6 Ra.

Proof. We observe that if Qb 6 Ra, then for all x ∈ AlgN ,

Ma,b(x) = axb = aR⊥a xQbb = aR⊥a QbxQbb = 0,

since a = aR⊥a , b = Qbb and R⊥a Qb = 0.
Now, suppose that Ra < Qb. We distinguish two cases.
Case 1. There exists a projection P ∈ N such that Ra < P < Qb. Then, there

exist two norm one vectors e ∈ P⊥− and f ∈ P such that a( f ) 6= 0 and b∗(e) 6= 0.
It follows that, Ma,b(e⊗ f ) = a(e⊗ f )b = b∗(e)⊗ a( f ) 6= 0.

Case 2. There is not any projection of the nest between Ra and Qb, i.e. Ra+ =
Qb. Then, there exist two norm one vectors e ∈ (Ra+)⊥− = R⊥a and f ∈ Ra+ = Qb
such that a( f ) 6= 0 and b∗(e) 6= 0. It follows that Ma,b(e ⊗ f ) = a(e ⊗ f )b =
b∗(e)⊗ a( f ) 6= 0.

The next theorem gives a necessary and sufficient condition for a non-zero
multiplication operator Ma,b : AlgN → AlgN , Ma,b(x) = axb to be compact.

THEOREM 1.2. Let a, b ∈ AlgN such that Ma,b 6= 0. The multiplication operator
Ma,b : AlgN → AlgN is compact if and only if the operators P+aP+ and P⊥− bP⊥− are
both compact for all P ∈ N , Ra < P < Qb in the case that Ra+ 6= Qb or the operators
QbaQb and R⊥a bR⊥a are both compact in the case that Ra+ = Qb.

Proof. Suppose that Ma,b is a non-zero compact multiplication operator.
From Proposition 1.1, it follows that Ra < Qb. Let Ra+ 6= Qb. Then, for all P ∈ N
such that Ra < P < Qb, we see that aP 6= 0. Let (en)n∈N ⊆ P⊥− be a bounded
sequence and f ∈ P such that a( f ) 6= 0. The sequence (Ma,b(en ⊗ f ))n∈N =
(b∗(en) ⊗ a( f ))n∈N has a convergent subsequence and therefore the sequence
(b∗(en))n∈N has a convergent subsequence as well. Thus, the operator b∗P⊥− is
compact and equivalently the operator P⊥− bP⊥− is compact. Notice that (P+)⊥−b 6=
0 since (P+)− 6 P < Qb. Let ( fn)n∈N ⊆ P+ be a bounded sequence and e ∈
(P+)⊥− such that b∗(e) 6= 0. The sequence (Ma,b(e⊗ fn))n∈N = (b∗(e)⊗ a( fn))n∈N
has a convergent subsequence and therefore the sequence (a( fn))n∈N has a con-
vergent subsequence as well. Thus, the operator aP+ = P+aP+ is compact. Now,
consider the case in which Ra+ = Qb. We see that aQb 6= 0. Let (en)n∈N ⊆
Q⊥b− = R⊥a be a bounded sequence and f ∈ Qb such that a( f ) 6= 0. The sequence
(Ma,b(en⊗ f ))n∈N = (b∗(en)⊗ a( f ))n∈N has a convergent subsequence and there-
fore the sequence (b∗(en))n∈N has a convergent subsequence as well. Thus, the
operator b∗R⊥a is compact and equivalently the operator R⊥a bR⊥a is compact. No-
tice that R⊥a b 6= 0. Let ( fn)n∈N ⊆ Qb be a bounded sequence and e ∈ Q⊥b− = R⊥a
such that b∗(e) 6= 0. The sequence (Ma,b(e⊗ fn))n∈N = (b∗(e)⊗ a( fn))n∈N has a
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convergent subsequence and therefore the sequence (a( fn))n∈N has a convergent
subsequence as well. Thus, the operator aQb = QbaQb is compact.

Now, we prove the opposite direction. First, we suppose that Ra+ 6= Qb and
for all P ∈ N with Ra < P < Qb, the operators P+aP+ and P⊥− bP⊥− are compact.
The multiplication operator Ma,b can be written as follows:

Ma,b(x) = axb = aP+xb + aP⊥+ xb = aP+xb + aP⊥+ xP⊥− b + aP⊥+ xP−b

= aP+xb + aP⊥+ xP⊥− b + aP⊥+ P−xP−b = P+aP+xb + aP⊥+ xP⊥− bP⊥−
= MP+aP+ ,b(x) + MaP⊥+ ,P⊥− bP⊥−

(x),

since aP⊥+ P−xP−b = 0. We only show that the multiplication operator MP+aP+ ,b
is compact since the proof of the compactness of MaP⊥+ ,P⊥− bP⊥−

is similar. We dis-
tinguish two cases.

Case 1. We suppose that Ra+ 6= Ra. Let S = Ra+ > Ra. Then, Ra < S < Qb.
Observing that S− = Ra it follows that P+aP+ = P+aP+S⊥−. For all x ∈ AlgN it
follows that

MP+aP+ ,b(x) = P+aP+xb = P+aP+S⊥−xb = P+aP+xS⊥−bS⊥− = MP+aP+ ,S⊥−bS⊥−
(x).

Thus, the multiplication operator MP+aP+ ,b = MP+aP+ ,S⊥−bS⊥−
is compact since the

operators P+aP+ and S⊥−bS⊥− are both compact ([17], Theorem 3).
Case 2. Now, we suppose that Ra+ = Ra. Then, there exists a net (Si)i∈I ⊆

N which is SOT-convergent to the projection Ra and for all i ∈ I the inequality
Ra < Si is satisfied ([5], Theorem 2.13). The compactness of the operator P+aP+
implies that the net (P+aP+Si)i∈I converges to zero ([5], Proposition 1.18). It fol-
lows that for some ε > 0, we can choose a projection S ∈ N , with Ra < S < Qb
so that ‖P+aP+S−‖ < ε/‖b‖. We write the multiplication operator MP+aP+ ,b as
follows:

MP+aP+ ,b = MP+aP+S⊥− ,b + MP+aP+S− ,b.

Given that ‖MP+aP+S− ,b‖ < ε, it suffices to show that the multiplication operator
MP+aP+S⊥− ,b is compact. For all x ∈ AlgN , we deduce that:

MP+aP+S⊥− ,b(x) = P+aP+S⊥−xb = P+aP+S⊥−xS⊥−bS⊥− = MP+aP+S⊥− ,S⊥−bS⊥−
(x).

Therefore, the multiplication operator MP+aP+S⊥− ,S⊥−bS⊥−
is compact since the oper-

ators P+aP+ and S⊥−bS⊥− are both compact.
Finally, we consider the case where Ra+ = Qb and the operators QbaQb and

R⊥a bR⊥a are both compact. Seeing that a = aR⊥a and b = Qbb, the multiplication
operator Ma,b can be written in the following form:

Ma,b(x) = axb = aR⊥a xQbb = QbaQbR⊥a xQbR⊥a bR⊥a = MQbaQbR⊥a ,QbR⊥a bR⊥a
(x),

and therefore Ma,b = MQbaQbR⊥a ,QbR⊥a bR⊥a
is a compact multiplication operator as

the operators QbaQb and R⊥a bR⊥a are both compact.
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REMARK 1.3. Consider the nestN = {{0}, H} and let a, b ∈ AlgN = B(H)
with a, b 6= 0. From Theorem 1.2 it follows that the multiplication operator Ma,b :
B(H) → B(H) is compact if and only if the operators a and b are both compact.
In that case the result coincides with Vala’s theorem.

COROLLARY 1.4. Let a, b ∈ AlgN such that Ma,b 6= 0. Then, the multiplication
operator Ma,b : AlgN → AlgN is compact if and only if the multiplication operator
Ma,b|K(N ) : K(N )→ K(N ) is compact.

Proof. The forward direction is immediate. For the opposite direction we
observe that the proof is the same as the proof of the forward direction of The-
orem 1.2. Therefore, we deduce that the compactness of Ma,b|K(N ) is equivalent
with the assertions of Theorem 1.2.

COROLLARY 1.5. Let (Pn)n∈N be a sequence of finite rank projections that in-
crease to the identity and N the nest {Pn}∞

n=1 ∪ {{0}, H}. Let a, b ∈ AlgN such that
Ma,b : AlgN → AlgN is a non-zero multiplication operator. Then, b is a compact
operator if and only if Ma,b is a compact multiplication operator. The set of compact
elements of AlgN is the ideal K(N ).

LetA be a C∗-algebra and Φ an elementary operator onA. Timoney proved
in Theorem 3.1 of [16] that Φ is compact if and only if Φ can be expressed as

Φ(x) =
m
∑

i=1
aixbi for ai and bi compact elements of A (1 6 i 6 m). The question

that arises is whether a compact multiplication operator defined on a nest algebra
can always be written as an elementary operator with compact symbols i.e., if
Ma,b : AlgN → AlgN is a compact multiplication operator, then are there an l ∈
N and compact operators ci, di ∈ B(H), i ∈ {1, . . . , l}, (where H is the underlying

Hilbert space of the nest) such that Ma,b =
l

∑
i=1

Mci ,di
? Another question is whether

a compact multiplication operator Ma,b : AlgN → AlgN can be written as an

elementary operator
l

∑
i=1

Mci ,di
such that the operators ci, di ∈ AlgN i ∈ {1, . . . , l}

are compact elements of the nest algebra. The following example shows that both
questions have a negative answer.

EXAMPLE 1.6. Let H be a Hilbert space, {ei}i∈N an orthonormal sequence
of H, N = {[{ei : i ∈ N, i 6 n}] : n ∈ N} ∪ {{0}, H} and b = ∑

n∈N
(1/n)en ⊗ en

a compact operator of AlgN . Then, the multiplication operator MI,b is compact
(Corollary 1.5). We suppose that there exist compact operators ci, di ∈ B(H),

i = 1, . . . , l such that MI,b =
l

∑
i=1

Mci ,di
and we shall arrive at a contradiction. We

consider the following family of rank one operators,

{xr,s}r∈N, s∈N∪{0}, s<r = {er ⊗ er−s}r∈N, s∈N∪{0}, s<r ⊆ AlgN .
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Then, MI,b(xr,s) =
l

∑
i=1

Mci ,di
(xr,s) i.e.,

∑
n∈N

1
n

en ⊗ xr,s(en) =
l

∑
i=1

cixr,sdi

or

(1.1)
1
r

er ⊗ er−s =
l

∑
i=1

d∗i (er)⊗ ci(er−s).

The relation (1.1) implies that〈
er−s,

1
r

er ⊗ er−s(er)
〉
=

l

∑
i=1
〈er−s, d∗i (er)⊗ ci(er−s)(er)〉

or

(1.2)
1
r
=

l

∑
i=1
〈er, d∗i (er)〉〈er−s, ci(er−s)〉.

For all r ∈ N and i ∈ {1, . . . , l}, we set Dr,i = 〈er, d∗i (er)〉 and Cr,i = 〈er, ci(er)〉.
We denote the vectors (Dr,1, . . . , Dr,l) ∈ Cl and (Cr,1, . . . , Cr,l) ∈ Cl by Dr and Cr
respectively for all r ∈ N. Now, we can write equation (1.2) in the form

(1.3)
1
r
=

l

∑
i=1

Dr,iCr−s,i.

This implies

(1.4) 0 =
l

∑
i=1

Dr,i(Cr−s,i − C1,i).

The sequence (Vn)n∈N = (span{C2 − C1, . . . , Cn − C1})n∈N of subspaces of Cl is
increasing and therefore there exists an n0 ∈ N such that Vn0 = Vn for all n > n0.
Therefore, the following holds for all n ∈ N.

(1.5) 0 =
l

∑
i=1

Dn0,i(Cn,i − C1,i).

Since the operators ci, i = 1, . . . , l are compact, the sequence (Cn)n∈N converges
to 0. Taking limits in equation (1.5) as n → ∞ we obtain 0 = −1/n0 which is a
contradiction.

2. THE IDEAL GENERATED BY THE COMPACT ELEMENTS

The set of compact elements of a nest algebra does not form an ideal in
general. Let N be a continuous nest and P, Q ∈ N − {0, I}. Then, from Propo-
sition 1.1 we can easily see that there exist non-compact operators but compact
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elements a, b of AlgN such that a = PaP⊥, b = QbQ⊥, while Ma+b,a+b is non-
compact.

The next proposition characterizes the nests for which the compact elements
form an ideal.

PROPOSITION 2.1. The set of compact elements of AlgN is an ideal if and only
if for all P, S ∈ N − {0, I}, with P < S, the dimension of S − P is finite. In that
case, the set of compact elements of AlgN is the ideal K(N ) + QAlgNQ⊥, for some
Q ∈ N − {0, I}.

Proof. Suppose that there exist P, S ∈ N − {0, I}, with P < S, and dim(S−
P) = ∞. Let a, b be compact elements of AlgN such that Ra < Qa 6 P < S 6
Rb < Sb and the operator S+aS+ is not compact. We observe that Ra+b = Ra
and Qa+b = Qb. The operator S+bS+ is compact while the operator S+aS+ is not
compact. It follows that the operator S+(a + b)S+ is not compact and therefore
the element a + b is non-compact since Ra+b < S < Qa+b (Theorem 1.2). Thus,
the set of compact elements of AlgN is not an ideal.

Now, suppose that for all P, S ∈ N , with P < S, the dimension of S − P
is finite. Let a be a compact element of AlgN . Then, then exists a projection
R ∈ N − {0, I} such that the operators RaR and R⊥aR⊥ are compact from Theo-
rem 1.2. Let Q ∈ N − {0, I}, with Q > R. Then, the operator QaQ = aR + a(Q−
R) is compact since dim(Q − R) < ∞ and the operator aR = RaR is compact.
Similarly, we observe that the operator Q⊥aQ⊥ is compact since Q > R and the
operator R⊥a = R⊥aR⊥ is compact. If Q < R, it is immediate that the opera-
tor QaQ is compact. The operator Q⊥aQ⊥ = R⊥a + (Q⊥ − R⊥)a is compact as
well, since dim(R⊥ −Q⊥) = dim(Q− R) < ∞. It follows that the set of compact
elements of AlgN is the ideal K(N ) + QAlgNQ⊥, for some Q ∈ N − {0, I}.

As we have seen, the set of compact elements of AlgN does not form
an ideal. However, the norm closed ideal generated by the compact elements
of AlgN has a nice description. Let A be the set of atoms of N . The map
∆N : AlgN → AlgN , x 7→ ∑

Aα∈A
AαxAα is a projection to the atomic part of

the diagonal of AlgN . The Jacobson radical of AlgN is denoted by Rad(N ).

THEOREM 2.2. The ideal Jc, generated by the compact elements of the nest algebra
AlgN , is equal to K(N ) + Rad(N ).

Proof. From Theorem 11.6 of [5] it follows that the set K(N ) + Rad(N ) is a
closed ideal.

Let a be a compact element of AlgN . From Proposition 1.1 and Theorem 1.2
it follows that a is the sum of a compact operator and an operator of the form
PaP⊥ for some P ∈ N . Therefore, the operator a belongs to the set K(N ) +
Rad(N ).

Now, we prove thatK(N ) +Rad(N ) ⊆ Jc. It suffices to show that Rad(N )
⊆ Jc, since the compact operators of AlgN are compact elements of the nest
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algebra. Let a be an element of Rad(N ) and ε a strictly positive number. Then,
there is a finite subnest F = {0 = P1 < P2 < · · · < Pn = I} of N such that
‖∆F (a)‖ < ε ([5], Theorem 6.7). We thus have:

∆F (a) +
n

∑
i=2

PiP⊥i−1aP⊥i = a.

It follows that a can be written as a sum of the compact elements of AlgN ,
PiP⊥i−1aP⊥i , and an operator ∆F (a) of norm less than ε. Therefore, a ∈ Jc.

COROLLARY 2.3. If N is a continuous nest, then Jc = Rad(N ).

Proof. It is immediate from the fact that a compact operator c ∈ AlgN be-
longs to the radical if and only if ∆N (c) = 0 ([5], Corollary 6.9).

3. WEAKLY COMPACT MULTIPLICATION OPERATORS

Akemann and Wright give a characterization of certain weakly compact
maps on B(H) in Proposition 2.1 of [1]. We adjust that result to the case of nest
algebras.

PROPOSITION 3.1. Let ϕ : AlgN → AlgN be a bounded linear map which is
w*-continuous and maps K(N ) into K(N ). Then, ϕ = (ϕ|K(N ))

∗∗ and ϕ is weakly
compact if and only if ϕ(AlgN ) ⊆ K(N ).

Proof. The steps of the proof are very similar to those of Proposition 2.1 in
[1]. Note that the dual space of K(N ) is L1(H)/A0, where H is the the under-
lying Hilbert space of N , L1(H) the space of the trace class operators on H and
A0 = {T ∈ L1(H) : P⊥− TP = 0, ∀P ∈ N}. The second dual of K(N ) is AlgN
([5], Theorem 16.6). Note that (ϕ|K(N ))

∗∗ : AlgN → AlgN is w*-continuous
as a dual operator and it agrees with the w*-continuous map ϕ on the w*-dense
set K(N ) ⊆ AlgN , ([5], Corollary 3.13). Therefore ϕ = (ϕ|K(N ))

∗∗ since ϕ and

(ϕ|K(N ))
∗∗ are w*-continuous and K(N )

w∗
= AlgN .

Now assume that ϕ is weakly compact. Then, (ϕ|K(N ))
∗∗ = ϕ is weakly

compact, whence ϕ|K(N ) is weakly compact ([7], Theorem 8, p. 485). This implies
that ϕ(AlgN ) ⊆ K(N ), ([7], Theorem 2, p. 482).

Conversely, assume that ϕ(AlgN ) ⊆ K(N ). The nest algebra AlgN is
w*-closed ([5], Proposition 2.2) and therefore the closed unit ball (AlgN )1 is w*-
compact. By the w*-continuity of ϕ the set ϕ((AlgN )1) is w*-compact. Therefore,
the set ϕ((AlgN )1) ⊆ K(N ) is weakly compact since the relative w*-topology
of K(N ) coincides with the weak topology on K(N ).

COROLLARY 3.2. Let a, b ∈ AlgN . Then, the multiplication operator Ma,b :
AlgN → AlgN , x 7→ axb is weakly compact if and only if Ma,b(AlgN ) ⊆ K(N ).
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LEMMA 3.3. Let a, b ∈ AlgN and (en)N, ( fn)n∈N orthonormal sequences in H
such that en ⊗ fn ∈ AlgN for all n ∈ N. If there exists an ε > 0 such that ‖a( fn)‖ > ε
and ‖b∗(en)‖ > ε for all n ∈ N, then there exists a strictly increasing sequence (kn)n∈N

such that the operator a
(

∑
n∈N

ekn ⊗ fkn

)
b = ∑

n∈N
b∗(ekn)⊗ a( fkn) ∈ AlgN is not com-

pact and for any subsequence (knm)m∈N the operator ∑
n∈N

b∗(eknm
)⊗ a( fknm

) ∈ AlgN

is non-compact as well.

Proof. First, we construct the sequence (kn)n∈N ⊆ N by induction. We set
k1 = 1. Suppose we have determined ki for all i ∈ {2, . . . , n− 1} for some n ∈ N.
Then, we choose kn ∈ N such that

|〈a( fkm), a( fkn)〉| = |〈a
∗a( fkm), fkn〉| <

ε2

3 · 2n and(3.1)

|〈b∗(ekm), b∗(ekn)〉| = |〈bb∗(ekm), ekn〉| <
ε2

3 · 2n(3.2)

for all m ∈ N, with m < n.
We suppose that the operator ∑

n∈N
b∗(ekn) ⊗ a( fkn) is compact. Then, the

operator a∗
(

∑
n∈N

b∗(ekn)⊗ a( fkn)
)

b∗ is compact as well and therefore, there exists

a m0 ∈ N such that,

(3.3)

ε4

2
>
∣∣∣〈a∗

(
∑

n∈N
b∗(ekn)⊗ a( fkn)

)
b∗(ekm0

), fkm0

〉∣∣∣
=
∣∣∣〈( ∑

n∈N
b∗(ekn)⊗ a( fkn)

)
b∗(ekm0

), a( fkm0
)
〉∣∣∣

=
∣∣∣ ∑

n∈N

〈
b∗(ekm0

), b∗(ekn)
〉
〈a( fkn), a( fkm0

)
〉∣∣∣.

For all n ∈ N, we set

λn = 〈b∗(ekm0
), b∗(ekn)〉µn = 〈a( fkn), a( fkm0

)〉.

Note that λm0 = 〈b∗(ekm0
), b∗(ekm0

)〉 = ‖b∗(ekm0
)‖2 > ε2 and similarly µm0 > ε2.

From the inequalities (3.1) and (3.2) it follows that

|λn||µn| <
( ε2

3 · 2m0

)2

for all n < m0 and

|λn||µn| <
( ε2

3 · 2n

)2

for all n > m0. Thus, the inequality (3.3) implies that

ε4

2
>
∣∣∣ ∑

n∈N
λnµn

∣∣∣ > λm0 µm0 −
∣∣∣ ∑

n 6=m0

λnµn

∣∣∣ > ε4 − ∑
n 6=m0

|λnµn|
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= ε4 − ∑
n<m0

|λnµn| − ∑
n>m0

|λnµn| > ε4 − (m0 − 1)
( ε2

3 · 2m0

)2
− ∑

n>m0

( ε2

3 · 2n

)2

> ε4 − ε4

9 ∑
n∈N

1
2n > ε4 − ε4

9
=

8ε4

9
,

which is a contradiction and therefore the operator a
(

∑
n∈N

ekn ⊗ fkn

)
b ∈ AlgN

is not compact. It is obvious that we can follow the above steps of the proof
for all subsequences (knm)m∈N of (kn)n∈N. Therefore, the operator ∑

n∈N
b∗(eknm

)⊗

a( fknm
) ∈ AlgN is non-compact as well.

The following lemma provides us with a sufficient condition for the weak
compactness of a multiplication operator.

LEMMA 3.4. Let a, b ∈ AlgN . If there exists a projection P ∈ N such that the
operators PaP and P⊥bP⊥ are both compact, then the multiplication operator Ma,b :
AlgN → AlgN , x 7→ axb is weakly compact.

Proof. Suppose that there exists a projection P ∈ N such that the operators
PaP and P⊥bP⊥ are both compact. Let x ∈ AlgN . Then,

Ma,b(x) = axb = (PaP + PaP⊥ + P⊥aP⊥)x(PbP + PbP⊥ + P⊥bP⊥)

= PaPxb + (PaP⊥ + P⊥aP⊥)xP⊥bP⊥

= MPaP,b(x) + M(PaP⊥+P⊥aP⊥),P⊥bP⊥(x).

It follows that the multiplication operators MPaP,b and M(PaP⊥+P⊥aP⊥),P⊥bP⊥ are
weakly compact since the operators PaP and P⊥bP⊥ are both compact (Corol-
lary 3.2).

The next lemma gives a necessary condition for the weak compactness of a
multiplication operator.

LEMMA 3.5. Let a, b ∈ AlgN . If the multiplication operator Ma,b : AlgN →
AlgN , x 7→ axb is weakly compact, then for all P ∈ N , either the operator PaP is
compact or the operator P⊥bP⊥ is compact.

Proof. Let P ∈ N . It follows that the multiplication operator

Ma,b : PAlgN P⊥ → PAlgN P⊥

is weakly compact or equivalently the multiplication operator

MPaP,P⊥bP⊥ : B(H)→ B(H)

is weakly compact. Therefore, either the operator PaP is compact or the operator
P⊥bP⊥ is compact ([1], Proposition 2.3).
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Now, we proceed to the main theorem of this section. To do so, we introduce
the following projections:

Ua =
∨
{P ∈ N : PaP is a compact operator} and

Lb =
∧
{P ∈ N : P⊥bP⊥ is a compact operator},

where a, b ∈ AlgN .

THEOREM 3.6. Let a, b ∈ AlgN . The multiplication operator Ma,b : AlgN →
AlgN , x 7→ axb is weakly compact if and only if one of the following conditions is
satisfied:

(i) Ua > Lb.
(ii) Ua = Lb = S and the operators SaS and S⊥bS⊥ are both compact.

(iii) Ua = Lb = S, the operator SaS is compact, the operator S⊥bS⊥ is non-compact
and for any ε > 0, there exists a projection P ∈ N , P > S such that ‖a(P− S)‖ < ε.

(iv) Ua = Lb = S, the operator S⊥bS⊥ is compact, the operator SaS is non-compact
and for any ε > 0, there exists a projection P ∈ N , P < S such that ‖(S− P)b‖ < ε.

Proof. Suppose that Ua > Lb. If there exists a projection P ∈ N such that
Ua > P > Lb, then the operators PaP and P⊥bP⊥ are both compact. If UaL⊥b is
an atom, then the operators UaaUa and L⊥b bL⊥b are both compact and therefore
the operator U⊥a bU⊥a is compact as well since Ua = Lb+. Thus, the multiplication
operator Ma,b is weakly compact (Lemma 3.4).

If condition (ii) holds, the weak compactness of Ma,b follows from Lem-
ma 3.4 as well.

We suppose that condition (iii) is satisfied. Let ε > 0 and P ∈ N , P > S
such that ‖a(P− S)‖ < ε. Then

a = aS + a(P− S) + aP⊥ and b = Sb + (S⊥ − P⊥)b + P⊥b.

Let x ∈ (AlgN )1. Then

Ma,b(x) = axb = (aS + a(P− S) + aP⊥)xb

= aSxb + a(P− S)xb + aP⊥x(Sb + (S⊥ − P⊥)b + P⊥b)

= aSxb + a(P− S)xb + aP⊥xP⊥b.

The operator Ma,b(x) is compact since the operators aS and P⊥b are both compact
and ‖a(P− S)xb‖ < ε. The multiplication operator Ma,b is weakly compact as the
set of weakly compact operators is norm closed ([18], II.C Section 6).

Condition (iv) is symmetric to condition (iii) and the proof is similar.
Now, suppose that the multiplication operator Ma,b is weakly compact.

Then, if Ua < Lb we distinguish two cases.
Case 1. Suppose that there exists a projection P ∈ N such that Ua < P <

Lb. In that case, the operators PaP and P⊥bP⊥ are both non-compact which is a
contradiction by Lemma 3.5.
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Case 2. Suppose that Ua+ = Lb. Then, the operators aLb and L⊥b−b are
both non-compact. Let ε > 0 and (en)n∈N ⊆ Lb, ( fn)n∈N ⊆ L⊥b− be orthonormal
sequences such that ‖a(en)‖ > ε and ‖b∗( fn)‖ > ε for all n ∈ N ([6], Propo-
sition 5.2.1). Then, there are subsequences (ekn)n∈N and ( fkn)n∈N such that the

operator a
(

∑
n∈N

ekn ⊗ fkn

)
b ∈ Ma,b((AlgN )1) is not compact (Lemma 3.3). From

Corollary 3.2 we conclude that the multiplication operator Ma,b is not weakly
compact, that is a contradiction.

Now, we examine the only two possible cases, Ua > Lb and Ua = Lb = S.
The first one is condition (i) of this theorem, so we study the second case. In
that case, either the operator SaS is compact or the operator S⊥bS⊥ is compact
(Lemma 3.5). We suppose that the operator SaS is compact. If the operator S⊥bS⊥

is compact as well, the condition (ii) is satisfied. We shall see that if the operator
S⊥bS⊥ is not compact, then condition (iii) holds.

Suppose that the operator SaS is compact, the operator S⊥bS⊥ is not com-
pact and there exists an ε1 > 0 such that for all P ∈ N , with P > S, the inequal-
ity ‖a(P − S)‖ > ε1 holds. We observe that S+ = S (if S+ > S, the operator
S⊥+bS⊥+ would be compact and then S = Qb = S+). The operator P⊥bP⊥ is
compact, for all P ∈ N , with P > S. It follows that ‖(P− S)b‖ > ε2 or equiva-
lently ‖b∗(P − S)‖ > ε2 for some ε2 > 0, since the operator S⊥bS⊥ is not com-
pact. Let (Pn)n∈N be a decreasing sequence with Pn > S for all n ∈ N such that
SOT- lim

n→∞
Pn = S ([5], Theorem 2.13). We set ε = min{ε1, ε2}. Then, for all n ∈ N,

‖a(Pn − S)‖ > ε and ‖b∗(Pn − S)‖ > ε. We choose a norm one vector e1 ∈ P1 − S
such that ‖b∗(P1 − S)e1‖ > 2ε/3. The SOT-convergence of the sequence (Pn)n∈N
implies that lim

n→∞
‖b∗(Pn − S)(e1)‖ 6 ‖b∗‖ lim

n→∞
‖(Pn − S)(e1)‖ = 0 and therefore,

there exists a k2 ∈ N, k2 > 1 such that ‖b∗(Pk2 − S)(e1)‖ < ε/3. Then,

2ε

3
6 ‖b∗(P1 − S)(e1)‖ = ‖b∗(P1 − Pk2)(e1) + b∗(Pk2 − S)(e1)‖

6 ‖b∗(P1 − Pk2)(e1)‖+ ‖b∗(Pk2 − S)(e1)‖ 6 ‖b∗(P1 − Pk2)(e1)‖+
ε

3
.

It follows that
‖b∗(P1 − Pk2)(e1)‖ >

ε

3
.

We set k1 = 1 and we may suppose that e1 ∈ Pk1 − Pk2 .
Now, we choose a norm one vector f1 ∈ Pk2 − S such that ‖a(Pk2 − S) f1‖ >

2ε/3. Repeating the arguments of the previous paragraph, we find a k3 ∈ N,
k3 > k2, such that

‖a(Pk2 − Pk3) f1‖ >
ε

3
,

while considering that f1 ∈ Pk2 − Pk3 . Using these arguments, one can construct
by induction a subsequence (Pkn)n∈N and two orthonormal sequences (en)n∈N
and ( fn)n∈N with the following properties:

(i) en ∈ P2n−1 − P2n and fn ∈ P2n − P2n+1, for all n ∈ N.
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(ii) ‖b∗(en)‖= ‖b∗(P2n−1−P2n)(en)‖> ε/3 and ‖a( fn)‖= ‖a(P2n−P2n+1)( fn)‖
> ε/3, for all n ∈ N.

Lemma 3.3 shows that there exist subsequences (ekn)n∈N and ( fkn)n∈N such

that the operator a
(

∑
n∈N

ekn ⊗ fkn

)
b ∈ Ma,b((AlgN )1) is not compact and Propo-

sition 3.1 leads us to a contradiction. Therefore, condition (iii) is satisfied.
The proof in the last case (i.e. S = Ua = Lb, S⊥bS⊥ is compact and SaS is not

compact) is similar to the proof of the previous case, and we omit the details.

REMARK 3.7. Observe that if we suppose that the multiplication operator
Ma,b is not weakly compact, then the conditions of Lemma 3.3 are satisfied. We
shall use this fact in the proof of Theorem 4.1.

The next theorem provides another characterization of weakly compact mul-
tiplication operators.

THEOREM 3.8. Let a, b ∈ AlgN . The multiplication operator Ma,b : AlgN →
AlgN is weakly compact if and only if for all ε > 0 there exist two projections P1, P2 ∈
N , with P1 6 P2, such that the operators P1aP1 and P⊥2 bP⊥2 are both compact and
‖a(P2 − P1)‖ < ε or ‖(P2 − P1)b‖ < ε.

Proof. Let Ma,b be a weakly compact multiplication operator. Suppose that
Ua > Lb (condition (i) of Theorem 3.6). Then, either there exists a projection
P1 = P2 ∈ N such that Ua > P1 = P2 > Lb or the operators UaaUa and U⊥a bU⊥a
are both compact. In the second case we set P1 = P2 = Ua. In any case, the
inequality ‖a(P2 − P1)‖ < ε is satisfied for all ε > 0, while the operators P1aP1
and P⊥2 bP⊥2 are both compact. If Ua = Lb = S and the operators SaS and S⊥bS⊥

are both compact (condition (ii) of Theorem 3.6), then for P1 = P2 = S it follows
that ‖a(P2 − P1)‖ = 0. If condition (iii) of Theorem 3.6 holds, then for all P2 ∈ N
with P2 > S the operator P⊥2 bP⊥2 is compact. Then, for all ε > 0 and P1 = S,
there exists P2 > S such that ‖a(P2 − P1)‖ < ε. If condition (iv) of Theorem 3.6 is
satisfied the proof is similar.

For the opposite direction, let ε > 0 and x ∈ AlgN . Without loss of gen-
erality, we suppose that ‖a‖ 6 1 and ‖b‖ 6 1. Then, there exist two projections
P1, P2 ∈ N , with P1 < P2 that satisfy our hypothesis. It follows that:

Ma,b(x)= axb=(aP1+aP⊥1 )x(P⊥2 b+P2b)= aP1x(P⊥2 b+P2b)+aP⊥1 xP⊥2 b+aP⊥1 xP2b.

The operators aP1=P1aP1 and P⊥2 b=P⊥2 bP⊥2 are both compact and ‖aP⊥1 xP2b‖=
‖a(P2 − P1)x(P2 − P1)b‖ 6 ‖a(P2 − P1)‖‖x‖‖(P2 − P1)b‖ < ε‖x‖. Therefore, the
operator Ma,b is weakly compact since the space of weakly compact operators is
closed ([18], Theorem 6, p. 52).

COROLLARY 3.9. Let N = {Pn}n∈N ∪ {{0}, H} be a nest consisting of a se-
quence of finite rank projections that increase to the identity, and let a, b ∈ AlgN . The
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multiplication operator Ma,b : AlgN → AlgN , x 7→ axb is weakly compact if and
only if either the operator a is compact or the operator b is compact.

Proof. Suppose that neither a nor b is a compact operator. Then, Ua = Lb =
I, where I is the identity operator. The operator I⊥bI⊥ = 0 is compact, the op-
erator IaI = a is non-compact and there exists an ε > 0 such that the inequality
‖(I − P)b‖ > ε is satisfied for all P ∈ N , P < I. The last inequality follows from
the non-compactness of the operator b. Thus, the multiplication operator Ma,b is
not weakly compact (Theorem 3.6, case (iv)).

The opposite direction is immediate from Proposition 2.3 of [1].

If S is a nonempty subset of the unit ball of a normed spaceA, then the con-
tractive perturbations of S are defined as cp(S) = {x ∈ A : ‖x± s‖ 6 1 ∀s ∈ S}.
We shall write cp(a) instead of cp({a}) for a ∈ A. One may define contrac-
tive perturbations of higher order by using the recursive formula cpn+1(S) =
cp(cpn(S)), n ∈ N. The second contractive perturbations, cp2(a), were intro-
duced in [2] to characterize the compact elements of a C∗-algebra. LetN be a nest
as in Corollary 3.9. The second author and Katsoulis proved in Theorem 2.7 of [3]
that a ∈ (AlgN )1 is a compact operator if and only if the set of its second con-
tractive perturbations, cp2

AlgN (a), is compact. The next corollary of Theorem 3.6
complements that result.

COROLLARY 3.10. Let N be a nest as in Corollary 3.9 and a ∈ AlgN . The
following are equivalent:

(i) The set cp2(a) is compact.
(ii) The set cp2(a) is weakly compact.

(iii) The operator a is compact.

Proof. The implication (i)⇒(ii) is obvious.
Now, suppose that the set cp2(a) is weakly compact. From Proposition 1.2

of [2] we know that Ma,a(AlgN 1/2) ⊆ cp2
AlgN (a) and therefore Ma,a : AlgN →

AlgN is a weakly compact multiplication operator. Therefore, Corollary 3.9 im-
plies that a is a compact operator.

Let a be a compact operator. Then, the set cp2(a) is compact ([3], Theo-
rem 2.7).

REMARK 3.11. Let N be a nest as in Corollary 3.9 and a, b ∈ AlgN . From
Corollary 1.5 and Corollary 3.9 it follows that the multiplication operator Ma,b :
AlgN → AlgN is weakly compact while being non-compact if and only if the
operator a is compact and the operator b is non-compact.

REMARK 3.12. Let a, b ∈ AlgN + K(H). The algebra AlgN + K(H) is
called the quasitriangular algebra of N . The multiplication operator

MQT
a,b : AlgN +K(H)→ AlgN +K(H)
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is compact (weakly compact) if and only if the operators a and b are both compact
(either a or b is compact).

Proof. If the operators a and b are both compact (either a or b is compact),
the result follows from Proposition 2.3 of [1]. If the multiplication operator MQT

a,b

is compact (weakly compact), the restriction MQT
a,b |K(H) is compact (weakly com-

pact) and therefore, the second dual (MQT
a,b |K(H))

∗∗ = Ma,b defined on B(H) is
compact (weakly compact ([7], Theorem 8, p. 485)). Therefore, the operators a
and b are both compact (either a or b is compact) ([1], Proposition 2.3). Note that
these arguments apply to any operator algebra containing the compact opera-
tors.

4. MULTIPLICATION OPERATORS ON AlgN/K(N )

In this section, we show that there is no non-zero weakly compact multipli-
cation operator on AlgN .

THEOREM 4.1. Let a, b ∈ AlgN and π : AlgN → AlgN/K(N ) be the quo-
tient map. The multiplication operator Mπ(a),π(b) : AlgN/K(N ) → AlgN/K(N )
is weakly compact if and only if Mπ(a),π(b) = 0.

Proof. We suppose that Mπ(a),π(b) 6= 0, or equivalently Ma,b(AlgN ) *
K(N ). This is also equivalent to the fact that the multiplication operator Ma,b :
AlgN → AlgN is not weakly compact (Corollary 3.2). We can see that Re-
mark 3.7 and Proposition 5.2.1 of [6] ensure the existence of some orthonormal
sequences (en)n∈N and ( fn)n∈N that satisfy the conditions of Lemma 3.3 for the
operators a and b, i.e. en ⊗ fn ∈ AlgN , ‖a( fn)‖ > ε and ‖b∗(en)‖ > ε, for all
n ∈ N and some ε > 0. The subsequences of (en)n∈N and ( fn)n∈N that Lemma 3.3
provides are denoted again by the same symbols.

Let (An)n∈N be a partition of N such that An be an infinite set for all n ∈ N.
We show that the following map is an isomorphic embedding:

u : `∞ → Mπ(a),π(b)(AlgN/K(N )),

(xn)n∈N 7→ Mπ(a),π(b)

(
π
(

∑
n∈N

xn ∑
i∈An

ei ⊗ fi

))
.

First of all we see that u is bounded (we assume that ‖a‖ 6 1 and ‖b‖ 6 1).
Indeed, for all (xn)n∈N ⊆ `∞,

‖u((xn)n∈N)‖AlgN/K(N ) = inf
K∈K(N )

∥∥∥a
(

∑
n∈N

xn ∑
i∈An

ei ⊗ fi

)
b + K

∥∥∥
6
∥∥∥a
(

∑
n∈N

xn ∑
i∈An

ei ⊗ fi

)
b
∥∥∥
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6 ‖a‖‖b‖
∥∥∥( ∑

n∈N
xn ∑

i∈An

ei ⊗ fi

)∥∥∥ 6 ‖(xn)n∈N‖∞.

Then, it suffices to prove that u is bounded below, i.e. there is a positive number
δ such that ‖u((xn)n∈N‖AlgN/K(N ) > δ‖(xn)n∈N‖∞, ((xn)n∈N ∈ `∞). Let (xn)n∈N
be a non-zero element of `∞ and n0 ∈ N such that |xn0 | > (3/4)‖(xn)n∈N‖∞.
Then,

(4.1)

‖u((xn)n∈N)‖ = inf
K∈K(N )

∥∥∥a
(

∑
n∈N

xn ∑
i∈An

ei ⊗ fi

)
b + K

∥∥∥
>
∥∥∥ ∑

n∈N
xn ∑

i∈An

b∗(ei)⊗ a( fi) + Kε

∥∥∥− ε4

9
‖(xn)n∈N‖

(for some Kε ∈ K(N ))

>
∣∣∣〈 ∑

n∈N
xn ∑

i∈An

b∗(ei)⊗ a( fi)(b∗(ei0)), a( fi0)
〉∣∣∣

− |〈Kε(b∗(ei0)), a( fi0)〉| −
ε4

9
‖(xn)n∈N‖

=
∣∣∣ ∑

n∈N
xn ∑

i∈An

〈b∗(ei0 , b∗(ei)〉〈a( fi), a( fi0)〉
∣∣∣

− |〈a∗Kεb∗(ei0), fi0〉| −
ε4

9
‖(xn)n∈N‖,

where i0 ∈ An0 ⊆ N satisfies |〈a∗Kεb∗(ei0), fi0〉| < (ε4/9)‖(xn)n∈N‖. Such an i0
exists since the operator Kε is compact and the set An0 ⊆ N is infinite. Before we
continue our calculations, we set

λi = 〈b∗(ei0), b∗(ei)〉µi = 〈a( fi), a( fi0)〉,

for all i ∈ N. Now, from the estimation of the formula (4.1) and the proof of
Lemma 3.3 we can write

‖u((xn)n∈N)‖ >
∣∣∣ ∑

n∈N
xn ∑

i∈An

λiµi

∣∣∣− 2ε4

9
‖(xn)n∈N‖

>
∣∣∣xn0 ∑

i∈An0

λiµi

∣∣∣− ∣∣∣ ∑
n 6=n0

xn ∑
i∈An

λiµi

∣∣∣− 2ε4

9
‖(xn)n∈N‖

>
3
4
‖(xn)n∈N‖

8ε4

9
−‖(xn)n∈N‖

ε4

9
− 2ε4

9
‖(xn)n∈N‖=

ε4

3
‖(xn)n∈N‖.

Thus, the map u is an isomorphism. Then, the closed unit ball of the space u(`∞)
is not weakly compact and therefore the multiplication operator Mπ(a),π(b) is not
weakly compact.

REMARK 4.2. Let a, b ∈ AlgN . Then the following are equivalent:
(i) The multiplication operator Mπ(a),π(b) : AlgN/K(N ) → AlgN/K(N ) is

compact.
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(ii) The multiplication operator Mπ(a),π(b) : AlgN/K(N ) → AlgN/K(N ) is
weakly compact.

(iii) Mπ(a),π(b) = 0.
(iv) Ma,b(AlgN ) ⊆ K(H).
(v) The multiplication operator Ma,b is weakly compact.
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