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ABSTRACT. From a continuous field of Fourier invariant projections of the
continuous field of rotation C∗-algebras, we obtain a characteristic equation
which fully determines the orthogonality of naturally arising projections from
the field. The continuous field turns out to be the support projection of a non-
commutative version of a 2-dimensional Theta function. Further, we compute
the K-theoretical topological invariants of the projection field. The noncom-
mutative Fourier transform is the canonical order 4 automorphism σ of the ro-
tation C∗-algebra Aθ defined by the relations σ(U) = V−1, σ(V) = U, where
U, V are the canonical unitary generators of Aθ satisfying VU = e2πiθUV.
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1. INTRODUCTION

There is a natural continuous section E of the continuous field of rotation
C∗-algebras {At}t∈(0,1) such that E(t) is a smooth Fourier invariant projection for
each t. The following concrete continuous section X of smooth positive operators

(1.1) X(t) = t ∑
m,n

e( t
2 mn)e−(π/2)t(m2+n2)Um

t Vn
t

has support projection E(t), where Ut, Vt are canonical unitaries of the rotation
C∗-algebra At satisfying the commutation relation VtUt = e(t)UtVt, where in this
paper we use the notation e(t) := e2πit. (Indices m, n run over the integers.) This
infinite series is a noncommutative analogue of a 2-dimensional Theta function
which is defined by quite similar rapidly decreasing exponential coefficients in-
volving quadratics of the integer parameters. (One might say that the projection
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field E is the support projection of a noncommutative Theta function.) Further,
their canonical traces are

τ(E(t)) = τ(X(t)) = t

for each t. In addition, the norm ‖E(s)−X(s)‖ has limit 0 as s→ 0+. As demon-
strated in [13], this result is a useful tool for quickly and efficiently computing the
topological invariants of the projection E by means of the limit

(1.2) ψt(E(t)) = lim
s→0+

ψs(X(s))

(being a constant function of t) where ψt is any one of the noncanonical (un-
bounded) trace maps that gives the topological K-theoretic invariants. A natural
feature of these noncanonical traces is that they are defined in a concrete way
across the continuous field, as can be seen from equations (1.13) and (1.15) be-
low. (Further, computation of the above limit makes use of some classical Theta
functions identities.) Indeed, in [13] we have carried out this computation for
the analogous field of projections associated to the Cubic/Hexic transform (the
canonical order 6 automorphism) of At.

DEFINITION 1.1. By the coordinate of a projection e in a C∗-algebra we un-
derstand a positive invertible element x in its corner algebra eAe.

Of course, such coordinate element is not unique, but for our practical pur-
poses coordinate elements have a rather concrete form similar to the infinite series
for X(t) above.

Another interesting feature of coordinates such as X(t) is that the com-
plement projection 1− E(t) has coordinate that is of the same form (see Corol-
lary 2.4).

We denote by t → Ut and t → Vt a pair of canonical generating sections of
unitaries of the continuous field of rotation C∗-algebras {At}t∈(0,1) satisfying the
unitary Heisenberg commutation relation

(1.3) VtUt = e(t)UtVt.

The (noncommutative) Fourier transform is the canonical order 4 automor-
phism σ = σt of the field of rotation algebras given by

(1.4) σ(Ut) = V−1
t , σ(Vt) = Ut.

(We omit the subscript and simply write σ for the Fourier transform on all rota-
tion C∗-algebras, the canonical unitaries being understood.) Its square is the flip
automorphism Ut → U−1

t , Vt → V−1
t (thoroughly studied in [2], [3], and [4]). The

order 2 automorphism γ given by

γ(Ut) = −Ut, γ(Vt) = −Vt

has the useful property that it commutes with the Fourier transform. (And it
is the only toral action automorphism that does so.) The symmetry γ will be
necessary to use in our orthogonality theorem below. A further feature of this
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symmetry is that it flips the sign of two of the five topological invariants for the
Fourier transform as we shall see.

The construction of the fields E(t) and X(t) comes straight from our ear-
lier paper [11] — though E(t) was first constructed by Boca [1] — in which a
Fourier invariant projection of trace q(qθ − p) is constructed (where θ is a given
real number and p

q is a rational approximation to it) that is the support projec-
tion of a certain positive element which comes down to X(t) when we specialize
the situation to p = 0, q = 1, θ = t. Indeed, in this latter case, X(t) has the
C∗-inner product form X(t) = 〈 f , f 〉D given near the end of Section 4 of [11],
and E(t) = 〈ξ, ξ〉D where ξ = f b where, as was shown in Section 6 of [11], the
inner product b−2 := 〈 f , f 〉

D⊥
is invertible. It is straightforward to check that

〈 f , f 〉D 〈ξb2, ξ〉D = 〈ξ, ξ〉D = E(t), showing that X(t) has E(t) as its support pro-
jection. Furthermore, as t → 0 the operator b−2 := 〈 f , f 〉

D⊥
converges to the

identity (as is clear from equation (5.7) of [11] (page 164) because the “β” therein
is just 1

t which goes to infinity). This shows that ‖E(t)−X(t)‖ → 0 as t → 0 (as
stated above).

For each integer n > 1 there is a canonical ∗-morphism ζn,t : An2t−k → At
given by

(1.5) ζn,t(Un2t−k) = Un
t , ζn,t(Vn2t−k) = Vn

t .

It “commutes” with the Fourier transform according to the equation

(1.6) σtζn,t = ζn,tσn2t−k.

Likewise, for the “negative label” case, one has the canonical ∗-morphism ζ ′n,t :
Ak−n2t → At given by

(1.7) ζ ′n,t(Uk−n2t) = Vn
t , ζ ′n,t(Vk−n2t) = Un

t .

It “anticommutes” with the Fourier transform

(1.8) σtζ
′
n,t = ζ ′n,tσ

−1
k−n2t.

These morphisms enable one to obtain various projections in a given rota-
tion algebra At by suitably “evaluating” continuous sections such as the section
of projections E(t) — namely, by forming the projections

ζn,t(E(n2t− k)), ζ ′n,t(E(k− n2t))

in At.
For the purpose of making the projections mentioned in the following two

theorems well-defined, we make the standing hypothesis that the integers a, b, c, d,
with a, c > 1, satisfy the condition

max
{ b

a2 ,
d− 1

c2

}
< min

{1 + b
a2 ,

d
c2

}
.

For simplicity, we shall let J denote the open interval whose endpoints are these
max-min values.
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THEOREM 1.2. Let a, c > 1 be integers, δ = gcd(a, c), and let b, d be integers
such that a2d− bc2 = δ2. Then for t ∈ J we have the following orthogonality relations
of projections in the rotation C∗-algebra At:

ζa,tE(a2t− b) · ζ ′c,tγE(d− c2t) = 0, when
a
δ

is odd,(1.9)

ζa,tγE(a2t− b) · ζ ′c,tE(d− c2t) = 0, when
c
δ

is odd.(1.10)

This theorem has a converse.

THEOREM 1.3. If either of the following orthogonality relations of projections
holds:

ζa,tE(a2t− b) · ζ ′c,tγE(d− c2t) = 0,(1.11)

ζa,tγE(a2t− b) · ζ ′c,tE(d− c2t) = 0,(1.12)

for some t ∈ J and some integers a, b, c, d, then

a2d− bc2 = δ2

where δ = gcd(a, c), and a
δ is odd is the first case, and c

δ is odd in the second case.

We call any of the projections appearing in Theorem 1.2 canonical projections
in view of how they arise canonically from the continuous field E(t).

REMARK 1.4. One can extend slightly the morphisms ζn,t to canonical
(Fourier compatible) morphisms ζa,b;t : A(a2+b2)t−k → At where the label (co-
efficient of t) is a sum of two squares a2 + b2, but we shall not need to do so here.
It is also possible to thereby extend the orthogonality results of Theorems 1.2 and
1.3 for canonical projections arising from such maps.

REMARK 1.5. Note that the conditions on the integers in the theorem imply
that the parameters a2t− b and d− c2t are in (0, 1), the domain of E . Further, it
is easy to check that their sum a2t− b + d− c2t 6 1. This can be seen by looking
at the cases a = c, a > c and a < c separately. For example, in the case a > c, it
follows from the inequality d

c2 6 1+b−d
a2−c2 (since t < d

c2 ). In the case a < c, it follows

from the inequality d−b−1
c2−a2 6 b

a2 . (The case a = c is trivial since then d = b + 1.)

REMARK 1.6. One would expect similar orthogonality theorems for the con-
tinuous field and coordinates obtained in our recent paper [13] for the Cubic and
Hexic transforms. Indeed the coordinate of the projection field in this case has a
form quite similar to that of equation (1.1).

We next obtain the topological invariants ψjk (to be given shortly) of the
field E(t) of projections.
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THEOREM 1.7. The (Fourier) topological invariants of the projection section
E(t) are the following, for any t ∈ (0, 1):

ψ10 = ψ11 =
1
2
(1− i), ψ20 = ψ21 =

1
2

, ψ22 = 1.

These topological invariants are computed in Section 3 below in the same
vein as we have done in [13]. Consequently, one can obtain the topological invari-
ants of the field γE(t) by working out the commutation between γ and ζ maps
(which is straightforward to do since γ commutes with the Fourier transform σ).

If α is an automorphism of an algebra A (usually a pre-C∗-algebra like A∞
θ ),

by an α-trace we understand a complex-valued linear map ψ defined on A sat-
isfying the condition ψ(xy) = ψ(α(y)x) for each x, y in A. (We say that ψ is
α-invariant when ψα = ψ.)

In [9] we found that there are two basic σ-trace linear maps ψ10, ψ11 : A∞
θ →

C given on the basis elements by

ψ10(UmVn) = e(− θ
4 (m + n)2) δm−n

2 ,(1.13)

ψ11(UmVn) = e(− θ
4 (m + n)2) δm−n−1

2 ,(1.14)

where the divisor δ-function δm
d is 1 when d|m and 0 otherwise, and e(t) := e2πit.

(Thus, any σ-trace linear map on A∞
θ is a linear combination of ψ10, ψ11.) In addi-

tion, there are three basic σ-invariant σ2-trace linear maps ψ2j, j = 0, 1, 2, given by

ψ20(UmVn) = e(− θ
2 mn) δm

2 δn
2 ,(1.15)

ψ21(UmVn) = e(− θ
2 mn) δm−1

2 δn−1
2 ,(1.16)

ψ22(UmVn) = e(− θ
2 mn) δm−n−1

2 .(1.17)

We shall sometimes write ψθ
jk to indicate its dependence on θ (as will be done

in Section 3). When restricted to the fixed point smooth ∗-subalgebra Aσ,∞
θ =

A∞
θ ∩ Aσ

θ , these functionals define unbounded traces. These unbounded traces
ψjk along with the canonical bounded trace τ form the Connes–Chern character
group homomorphism on the K0-group of the fixed point C∗-subalgebra (Fourier
orbifold) Aσ

θ :

(1.18) T : K0(Aσ
θ )→ C6, x → (τ(x); ψ10(x), ψ11(x), ψ20(x), ψ21(x), ψ22(x)).

This map is known to be injective. (In [10] this was shown for a dense Gδ set of
θ’s, but since by [6] or [7] one has K0(Aσ

θ )
∼= Z9 for all θ, this map is injective for

all irrational θ.)
As the maps ψjk induce group homomorphisms K0(Aσ

θ ) → C, we simply
write ψ1k(e) := ψ1k[e] for any projection e in Aθ .

We make free use of the divisor delta function δn
m defined to be 1 when m

divides n, and 0 otherwise. We have the summation formula
m−1

∑
k=0

e( nk
m ) = mδn

m.



196 SAM WALTERS

We shall also use the usual Kronecker delta δm,n = 1 when m = n, and δm,n = 0
when m 6= n. The classical Jacobi–Theta functions that will arise in our computa-
tions are

ϑ2(z, t) = ∑
n

eπit(n+(1/2))2
ei2z(n+(1/2)), ϑ3(z, t) = ∑

n
eπitn2

ei2zn,

ϑ4(z, t) = ∑
n
(−1)neπitn2

ei2zn,

for z, t ∈ C and Im(t) > 0, where all summations range over the integers Z.
(Following the classic treatment of [15].)

2. ORTHOGONALITY OF CANONICAL PROJECTIONS

We begin with a lemma introducing one of my favorite zeros.

LEMMA 2.1. One has

∑
p,q
(−1)p+q+pqe−(π/2)(p2+q2) = 0.

Proof. Let S denote this sum. Using the relation (−1)p+q+pq = 2δ
p
2 δ

q
2 − 1,

the sum S can be split up as follows

S = ∑
p,q
((2δ

p
2 δ

q
2 − 1)e−(π/2)(p2+q2) = 2

(
∑
p

δ
p
2 e−(π/2)p2

)2
−
(

∑
p

e−(π/2)p2
)2

= 2
(

∑
p

e−2πp2
)2
−
(

∑
p

e−(π/2)p2
)2

= 2ϑ3(0, 2i)2 − ϑ3(0, i
2 )

2 = 0

in view of the Theta function identity ϑ3(0, i
2 ) =

√
2ϑ3(0, 2i).

REMARK 2.2. The series in the lemma actually contains the following gen-
eralization for all real positive numbers z > 0:

∑
p,q
(−1)p+q+pqe−(π/2)(zp2+(1/z)q2) = 0.

This, in fact, holds for all complex numbers z with positive real part — as the
series defines an analytic function on the right half plane that vanishes on the
positive real axis.

We will also need the following lemma.

LEMMA 2.3. Let D > 1 be a real number and k an integer. Then

∑
m,n

(−1)k(m+n)e( 1
2 Dmn)e−(π/2)D(m2+n2) = 0

if and only if D = 1 and k is odd.
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Proof. One direction was already proved by Lemma 2.1. Conversely, let S
denote the sum in the lemma and assume S = 0. If k is even, then the sum can be
written

S = ∑
m,n

e( 1
2 Dmn)e−(π/2)D(m2+n2) = ∑

m
e−(π/2)Dm2

∑
n

e( 1
2 Dmn)e−(π/2)Dn2

= ∑
m

e−(π/2)Dm2
ϑ3(

π
2 Dm, i D

2 )

where each term here is positive since ϑ3(x, i D
2 ) > ϑ3(

π
2 , i D

2 ) > 0 for any real x;
thus, S > 0. Therefore, k has to be odd, in which case S can be written

S = ∑
m,n

(−1)m+ne( 1
2 Dmn)e−(π/2)D(m2+n2) = ∑

m
(−1)me−(π/2)Dm2

ϑ4(
π
2 Dm, 1

2 iD).

Breaking this down according to parity of m gives

S = ∑
m

e−2πDm2
ϑ4(πDm, 1

2 iD)−∑
m

e−2πD(m+(1/2))2
ϑ4(πD(m + 1

2 ),
1
2 iD)

> ∑
m

e−2πDm2
ϑ3(

π
2 , 1

2 iD)−∑
m

e−2πD(m+(1/2))2
ϑ3(0, 1

2 iD)

= ϑ3(0, 2iD)ϑ3(
π
2 , 1

2 iD)− ϑ2(0, 2iD)ϑ3(0, 1
2 iD)

since ϑ4(x, 1
2 iD) = ϑ3(x + π

2 , 1
2 iD) is always in the interval [ϑ3(

π
2 , i D

2 ), ϑ3(0, i D
2 )]

(see page 165 in [11]). Using the identity (see, for example, equation (4.4) of [9])
ϑ3(w, u) = ϑ3(2w, 4u) + ϑ2(2w, 4u) (and also ϑ2(π, u) = −ϑ2(0, u), ϑ3(π, u) =
ϑ3(0, u)), one gets

S > A(A− B)− B(A + B) = (A− (
√

2 + 1)B)(A + (
√

2− 1)B)

where A := ϑ3(0, 2iD) > 0, B := ϑ2(0, 2iD) > 0. Since the factor A + (
√

2− 1)B
is already positive, it is enough to check that the first factor

A− (
√

2 + 1)B = ϑ3(0, 2iD)− (
√

2 + 1)ϑ2(0, 2iD)

is positive for D > 1. This, however, was already established near the end of the
proof of Lemma 6.2 (page 168) in [11]. Therefore, S > 0 if D > 1.

We now prove Theorems 1.2 and 1.3.

Proof. Let A = a2t− b, C = d− c2t (both positive numbers by hypothesis).
Then

γrX(A) = A ∑
m,n

(−1)rm+rne( A
2 mn)e−(π/2)A(m2+n2)Um

A Vn
A and

ζa,tγ
rX(A) = A ∑

m,n
(−1)rm+rne( A

2 mn)e−(π/2)A(m2+n2)Uam
t Van

t .

Similarly,

ζ ′c,tγ
sX(C) = C ∑

k,`
(−1)sk+s`e(C

2 k`)e−(π/2)C(k2+`2)Vck
t Uc`

t .
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We have

τ0 := τ(ζa,tγ
rX(A) · ζ ′c,tγ

sX(C))

= AC ∑
m,n,k,`

(−1)rm+rn+sk+s`e( A
2 mn + C

2 k`)e−(π/2)A(m2+n2)−(π/2)C(k2+`2)

· τ(Uam
t Van

t Vck
t Uc`

t ).

The trace in the sum necessitates that an = −ck and am = −c`, which can be
written in terms of a = δa1, c = δc1 where δ = gcd(a, c) and gcd(a1, c1) = 1. This
gives

n = c1 p, m = c1q, k = −a1 p, ` = −a1q

where p, q ∈ Z. Therefore, we obtain

τ0 = AC ∑
p,q
(−1)rc1q+rc1 p−sa1 p−sa1qe( 1

2 (Ac2
1 + Ca2

1)pq)

· e−(π/2)Ac2
1(p2+q2)−(π/2)Ca2

1(p2+q2)

= AC ∑
p,q
(−1)(rc1−sa1)(p+q)e( 1

2 Dpq)e−(π/2)D(p2+q2)

where we have written D = Ac2
1 + Ca2

1 > 0. Observe that

D =
1
δ2 (Ac2 + Ca2) =

1
δ2 ((a2t− b)c2 + (d− c2t)a2) =

1
δ2 (a2d− bc2) = a2

1d− bc2
1

hence D > 1 is an integer.
If the underlying projections are orthogonal, so that τ0 = 0, then by Lem-

ma 2.3, D = 1 and rc1 − sa1 is an odd integer. Thus, a2d− bc2 = δ2 and a1 is odd
if equation (1.11) holds, and c1 is odd when the second equation (1.12) holds. (For
instance, in the first orthogonality equation in Theorem 1.3 we have r = 0, s = 1,
meaning that a1 is odd.) This proves Theorem 1.3.

On the other hand, under the hypothesis of Theorem 1.2, it follows that
D = 1. And if a

δ = a1 is odd one picks r = 0, s = 1, and if c
δ = c1 is odd one picks

r = 1, s = 0 so that rc1 − sa1 is odd in either of these two cases. Thus the above
sum becomes

τ0 = AC ∑
p,q
(−1)p+q+pqe−(π/2)(p2+q2) = 0

in view of Lemma 2.1. Since the canonical trace is faithful, the positive operators
ζa,tγ

rX(A) and ζ ′c,tγ
sX(C) are orthogonal, hence so are their (respective) support

projections ζa,tγ
rE(A) and ζ ′c,tγ

sE(C).

Theorem 1.2 gives us the projection equation

E(t) + ζ ′1,tγE(1− t) = 1

for 0 < t < 1 (by taking a = c = d = 1 and b = 0), since the projections
are orthogonal and their traces add up to 1. It also allows us to write down
coordinates of the complementary projection 1− E(t) as given by the following.
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COROLLARY 2.4. The coordinate operator of the projection 1− E(t) is

ζ ′1,tγX(1− t) = (1− t) ∑
m,n

(−1)m+ne(− (1−t)
2 mn)e−(π/2)(1−t)(m2+n2)Um

t Vn
t .

In particular, this shows that the orthogonal sum

X(t) + ζ ′1,tγX(1− t)

is a smooth positive invertible operator in A∞
t that is invariant under the Fourier

transform.

COROLLARY 2.5. One has the following projection equations, for b
a2 < t < 1+b

a2

and a, b any integers:

1− ζa,tE(a2t− b) = ζ ′a,tγE(1 + b− a2t),

1− ζa,tγE(a2t− b) = ζ ′a,tE(1 + b− a2t).

This corollary follows from the theorem by taking d = 1+ b, c = a (in which
case δ = a) and the fact that the orthogonal projections have traces summing to 1.

Another consequence is that some of these canonical projections do com-
mute. This arises from the simple possibility that their complements are orthog-
onal. If e, f are projections with orthogonal complements, then it is easy to see
that they commute and their product projection is given by e f = e + f − 1 =
e− (1− f ). The main theorem and the preceding corollary already tell us when
this situation can occur.

COROLLARY 2.6. For each t ∈ J, the canonical projections

ζa,tE(a2t− b), ζ ′c,tγE(d− c2t)

have orthogonal complements, hence they commute, when

c2(b + 1)− (d− 1)a2 = δ2

where δ = gcd(a, c).

Proof. Working out the complements of these two projections according to
Corollary 2.5, one checks that the characteristic equation for their complements is
satisfied by their parameters, so that the result follows from Theorem 1.2.

If e, f are projections such as in Corollary 2.6, the topological invariants of
their product can easily be computed from e f = e + f − 1. (In general, compu-
tation of topological invariants of general commuting products of projections is
not an easy task.)

3. TOPOLOGICAL INVARIANTS

We now prove Theorem 1.7 and show that the topological data for the con-
tinuous section of projections E(t) is ( 1−i

2 , 1−i
2 ; 1

2 , 1
2 , 1). We also show how the
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topological maps ψjk (the unbounded traces) transform under the canonical em-
beddings ζn,θ .

We shall use the following well-known inversion formulas for Theta func-
tions in the proof:

ϑ3(z, t) = (−it)−1/2 ez2/πit ϑ3(
z
t ,− 1

t ),(3.1)

ϑ2(z, t) = (−it)−1/2 ez2/πit ϑ4(
z
t ,− 1

t ).

(See, for example, equations (5.4) in [13].)

THEOREM 3.1. The topological numbers of the projection section E(t) are the fol-
lowing, for any t ∈ (0, 1):

ψ10 = ψ11 =
1
2
(1− i), ψ20 = ψ21 =

1
2

, ψ22 = 1.

Proof. We compute the topological numbers of E by the quicker method
employed in [13] in terms of the unbounded traces of its canonical coordinate
X(t) according to equation (1.2). We have

ψt
1j(X(t)) = t ∑

m,n
e( t

2 mn)e−(π/2)t(m2+n2)ψt
1j(U

n
t Vm

t )

= t ∑
m,n

e( t
2 mn)e−(π/2)t(m2+n2)e(− t

4 (m + n)2)δ
m−n−j
2

= t ∑
m,n

e−(π/2)tm2
e−(π/2)tn2

e(− t
4 m2)e(− t

4 n2)δ
m−n−j
2

= t ∑
m,n

e−πνtm2
e−πνtn2

δ
m−n−j
2

where ν = 1
2 (1 + i); now make the replacement n→ n− j

= t ∑
m,n

e−πνtm2
e−πνt(n−j)2

δm−n
2

and break the sum into two sums, one over m, n even and the second over m, n odd

= t ∑
m,n

e−4πνtm2
e−4πνt(n−(j/2))2

+ t ∑
m,n

e−4πνt(m+(1/2))2
e−4πνt(n+(1−j)/2)2

= tϑ3(0, i4νt)ϑ3−j(0, i4νt) + tϑ2(0, i4νt)ϑ2+j(0, i4νt).

Now use the inversion formulas for Theta functions (3.1) to get

ψt
1j(X(t)) = t(4νt)−1ϑ3(0, ν

2t )ϑ3+j(0, ν
2t ) + t(4νt)−1ϑ4(0, ν

2t )ϑ4−j(0, ν
2t ).

Here ϑ3(0, ν
2t ) → 1 and ϑ4(0, ν

2t ) → 1 as t → 0 (for j = 0, 1), so taking the limit as
t→ 0 one gets

ψt(E) = lim
t→0

ψt(X(t)) = 2
4ν

=
1
2
(1− i).
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For ψ2k for k = 0, 1 one has

ψt
2k(X(t)) = t ∑

m,n
e( t

2 mn)e−(π/2)t(m2+n2)ψt
2k(U

n
t Vm

t )

= t ∑
m,n

e( t
2 mn)e−(π/2)t(m2+n2)e(− t

2 mn)δm−k
2 δn−k

2

= t
(

∑
n

e−(π/2)tn2
δn−k

2

)2

now make the replacement n→ 2n + k

= t
(

∑
n

e−2πt(n+(k/2))2
)2

= tϑ3−k(0, 2it)2

and inversion gives

= t(2t)−1 ϑ3+k(0, i
2t )

2 =
1
2

ϑ3+k(0, i
2t )

2

which goes to 1
2 as t→ 0+. Therefore, ψ20 and ψ21 are both equal to 1

2 .
Finally, for ψ22:

ψt
22(X(t)) = t ∑

m,n
e( t

2 mn)e−(π/2)t(m2+n2)ψt
22(U

n
t Vm

t )

= t ∑
m,n

e−(π/2)t(m2+n2)δn−m−1
2

here m, n have to have opposite parity hence

= 2t ∑
n

e−2πtn2
∑
m

e−2πt(m+(1/2))2
= 2tϑ3(0, 2it)ϑ2(0, 2it)

= 2t(2t)−1 ϑ3(0, i
2t )ϑ4(0, i

2t )

which has limit 1 as t→ 0+.

As the Chern character of Connes is constant for a continuous field of pro-
jections, which in our case is simply the integer coefficient of t in its trace when t
is irrational, the Connes–Chern number of E(t) is 1.

Recall that with θn = n2θ − kn, we have the (smooth) unital ∗-embedding

ζn,θ : Aθn → Aθ , ζn,θ(Uθn) = Un
θ , ζn,θ(Vθn) = Vn

θ .

It intertwines with the Fourier transform: σζn,θ = ζn,θσ.

LEMMA 3.2. With θn = n2θ − k and k an integer, the unbounded traces on Aθn

and Aθ are related to the morphism ζn,θ : Aθn → Aθ by the transformation equations:

ψθ
10ζn,θ = ψθn

10 + i−kδn
2 ψθn

11,

ψθ
11ζn,θ = i−kδn−1

2 ψθn
11,
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ψθ
20ζn,θ = ψθn

20 + (−1)kδn
2 ψθn

21 + δn
2 ψθn

22,

ψθ
21ζn,θ = (−1)kδn−1

2 ψθn
21,

ψθ
22ζn,θ = δn−1

2 ψθn
22.

Proof. It is easy to check that ψθ
10ζn,θ is a σ-trace on Aθn (of course, we mean

on its smooth dense ∗-subalgebra A∞
θn

). But as ψθn
10, ψθn

11 are a basis for such, it must
be a linear combination of them:

ψθ
10ζn,θ = ψθn

10 + Cψθn
11,

for some complex number C. (The first coefficient of ψθn
10 is clearly 1 upon evalu-

ation of both sides at the identity.) One now simply evaluates both sides at, say,
Uθn to obtain C:

ψθ
10ζn,θ(Uθn) = Cψθn

11(Uθn) = Ce(− θn
4 )

so

C = e( θn
4 )ψθ

10ζn,θ(Uθn) = e( θn
4 )ψθ

10(U
n
θ ) = e( θn

4 )e(− θ
4 n2)δn

2

from which C = i−kn δn
2 . The relations for ψ11, ψ2j are similar — in fact they can

be checked more directly by evaluation at the generic unitaries Ua
θn

Vb
θn

.

In the following lemma we recall that the adjoint ψ∗ of a linear functional ψ

is given by ψ∗(x) = ψ(x∗).

LEMMA 3.3. The unbounded traces on Aθ′n and Aθ are related to the morphism
ζ ′n,θ : Aθ′n → Aθ , where θ′n = k − n2θ and k is an integer, by the transformation
equations:

ψθ
10ζ ′n,θ = (ψ

θ′n
10)
∗ + i−kδn

2 (ψ
θ′n
11)
∗,

ψθ
11ζ ′n,θ = i−kδn−1

2 (ψ
θ′n
11)
∗,

ψθ
20ζ ′n,θ = ψ

θ′n
20 + (−1)kδn

2 ψ
θ′n
21 + δn

2 ψ
θ′n
22,

ψθ
21ζ ′n,θ = (−1)kδn−1

2 ψ
θ′n
21,

ψθ
22ζ ′n,θ = δn−1

2 ψ
θ′n
22.

These are verified by evaluation of both sides on the generic unitaries Vb
θ′n

Ua
θ′n

(and note that the twisted traces ψ
θ′n
2j are self-adjoint).
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