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ABSTRACT. Let (G, α) and (H, β) be locally compact groupoids with Haar
systems. We define a topological correspondence from (G, α) to (H, β) to
be a G-H-bispace X on which H acts properly, and X carries a continuous
family of measures which is H-invariant and each measure in the family is
(G, α)-quasi invariant. We show that a topological correspondence produces
a C∗-correspondence from C∗(G, α) to C∗(H, β). We give many examples of
topological correspondences.
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INTRODUCTION

A C∗-algebraic correspondence K from a C∗-algebra A to B is an A-B-bimodule
which is a Hilbert B-module and A acts on K via the adjointable operators in a
non-degenerate fashion. Let A = C∗(G, α) and B = C∗(H, β) where the ordered
pairs (G, α) and (H, β) consist of a locally compact groupoid and a Haar sys-
tem for it. Given a G-H-bispace X carrying an H-invariant family of measures
such that each measure in the family is (G, α)-quasi-invariant, we show that if the
H-action is proper, then Cc(X) can be completed into a C∗-correspondence from
C∗(G, α) to C∗(H, β). This work is an extension of some part of my thesis [5],
where we worked with Hausdorff topologies with certain countability assump-
tions. In the present work, we get rid of the Hausdorffness and the countability
hypotheses.

Morita equivalence of C∗-algebras is defined by the existence of an imprim-
itivity bimodule, a special kind of C∗-correspondence. In the well-known result
[9] that a Morita equivalence between two locally compact groupoids with Haar
systems induces a Morita equivalence between the groupoid C∗-algebras, the im-
primitivity bimodule is constructed directly from a bispace that gives the Morita
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equivalence of the two groupoids. The Hausdorff case of Morita equivalence
between locally compact groupoids is discussed in [9], and a more general and
non-Hausdorff situation is studied in Definition 5.3 of [13]. Which extra structure
or conditions are needed for a bispace to give only a C∗-correspondence instead
of a Morita equivalence?

In general, we need a family of measures on the bispace as an extra structure
to get started. In the Morita equivalence case, a family of measures on the bispace
appears automatically (see Example 3.9). The family of measures which we need
must be invariant for the right action and each measure of the family must be
quasi-invariant for the left action. We also need that the right action be proper.

We use the ∗-category of a locally compact groupoids introduced in [6], [13],
to prove that certain actions and a bilinear form are well-defined (equations (2.3)
and (2.4)). The process of constructing a C∗-correspondence from a topologi-
cal correspondence is divided into two main parts: the first part is to construct
the Hilbert module and the second one is to define the representation of the left
groupoid C∗-algebra on this Hilbert module. The first part follows from a result
of Renault, see Corollaire 5.2 of [13]. Though the statement of Corollaire 5.2 in
[13] demands that the action of H is free as well as proper, the remark follow-
ing the proof of the theorem and just above ([13], Définition 5.3) clarifies that the
freeness of the action can be dropped. In the second part, our motivation and
techniques are derived from the theory of quasi-invariant measures for locally
compact groups ([4], Section 2.6).

As a C∗-correspondence from a C∗-algebra A to B induces a representation
of B to that of A, a topological correspondence from a locally compact groupoid
with a Haar system (G, α) to (H, β) induces a representation of H to that of G.
Renault proves this in [14].

A locally compact, Hausdorff space is a locally compact groupoid with a
Haar system, and so is a locally compact group. A well-known fact about group-
oid equivalence is that two spaces are equivalent if and only if they are homeo-
morphic and two groups are equivalent if and only if they are isomorphic. But,
since any continuous map between spaces gives a topological correspondence
and so does a group homomorphism, see Examples 3.1 and 3.4, respectively, a
topological correspondence is far more general than an equivalence.

We give many examples of topological correspondences, most of which are
the analogues of the standard examples of C∗-correspondences.

In Example 3.1, we show that a continuous map f : X → Y between
spaces gives a topological correspondence from Y to X. Example 3.4 shows that
a continuous group homomorphism φ : G → H gives a topological correspon-
dences from G to H. Theorem 2.10 gives that the topological correspondences,
the one from Y to X and the one from G to H, produce C∗-correspondences
from C0(Y) to C0(X), and from C∗(G) to C∗(H), respectively. It is easy to see
that the C∗-correspondence from C0(Y) to C0(X) is exactly the one give by the
∗-homomorphism f ∗ : C0(Y) → M(C0(X)) as in the theory of commutative
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C∗-algebras. However, it is not equally easy to see that the C∗-correspondence
given by the group homomorphism φ agrees with the one which is induced by
the ∗-homomorphism φ∗ : C∗(G)→ C∗(H).

Example 3.5 shows that if the group homomorphism in Example 3.4 is a
proper map, then we get a topological correspondence from H to G.

Let E0 and E1 be locally compact, Hausdorff and second countable spaces,
and let s, r : E1 → E0 be continuous maps. Let λ = {λe}e∈E0 be a continuous
family of measures along s. By applying the definition of a topological corre-
spondence, it is straightforward to check that s, r and λ give a topological corre-
spondence from E0 to itself. Muhly and Tomforde ([10], Definition 3.1) call this
correspondence a topological quiver. They construct a C∗-correspondence associ-
ated to a topological quiver in [10] and the construction in Section 3.1 of [10] is
exactly the construction of a C∗-correspondence from a topological correspon-
dence. Muhly and Tomforde define the C∗-algebra associated to a topological
quiver ([10], Definition 3.17) which includes a vast class of C∗-algebras: graph
C∗-algebras, C∗-algebras of topological graphs, C∗-algebras of branched cover-
ings, C∗-algebras associated with topological relations are all associated to a topo-
logical quiver ([10], Section 3.3).

Topological quivers justify our use of families of measures in the definition
of a topological correspondence. At a first glance, the families of measures and
their quasi-invariance for the left action might look artificial. However, as dis-
cussed on page 229, the quasi-invariance of measures is natural to ask for.

We show that the notion of correspondences introduced by Macho Stadler
and O’uchi [8], the generalised morphisms introduced by Buneci and Stachura
[3] are topological correspondences. See Examples 3.7 and 3.11, respectively.

In [16], Tu defines locally proper generalised morphism for locally com-
pact groupoids with Hausdorff space of units, see Definition 7.3 of [16]. Exam-
ple 3.7 which shows that a correspondence in the sense of Macho Stadler and
O’uchi is a topological correspondence also shows that a locally proper gener-
alised morphism is a topological correspondence. However, Tu proves that a
locally proper generalised morphism induces a C∗-correspondence between the
reduced C∗-algebras of the groupoids ([16], Theorem 7.8). Whereas, our result
involves the full C∗-algebras of the groupoids. We know that the result of Tu
holds for topological correspondences when the bispace involved in the topolog-
ical correspondence is Hausdorff and second countable, and the right action is
amenable ([5], Proposition 2.3.4).

Following is the sectionwise description of the contents.
In Section 1, we mention our conventions, notation, and rewrite some stan-

dard definitions and results.
A notion of cohomology for Borel groupoids is introduced in [17] by West-

man. In Chapter 1, page 14 of [12], Renault discusses a continuous version of
the same cohomology. We need a groupoid equivariant continuous version of
this cohomology. For this purpose we define the action of a groupoid on another
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groupoid and then define the equivariant cohomology for Borel and continuous
groupoids.

Section 2 contains the main construction. Immediately after the definition
of topological correspondence (Definition 2.1) we discuss the role of the adjoining
function.

Let (X, λ) be a topological correspondence from (G, α) to (H, β). Then
we write the formulae of the actions of Cc(G) and Cc(H) on Cc(X). These ac-
tions make Cc(X) into a Cc(G)-Cc(H)-bimodule. We also define the formula
of a Cc(H)-valued bilinear map on Cc(X). We complete this setup to get a C∗-
correspondence. The process, as mentioned earlier, is divided into two parts:
constructing a Hilbert C∗(H, β)-module H(X) and defining a representation of
C∗(G, α) on this Hilbert module.

We advise the reader to jump to Section 3 after the discussion that follows
Definition 2.1 to have a look at some examples.

Section 3 contains examples of topological correspondences.

1. PRELIMINARIES

1.1. GROUPOIDS. The reader should be familiar with the theory of locally com-
pact groupoids ([1], [11], [12], [13], and [16]).

A groupoid G is a small category in which every arrow is invertible. Except
a few instances, we denote the space of arrows of groupoid G by the letter G
itself, rather than the more precise symbol G(1). We denote the space of units of
G by G(0). The source and range maps are denoted by sG and rG, respectively.
The inverse of an element γ ∈ G is denoted by γ−1. There are instances when we
need to write γ 7→ γ−1 as a function G → G and then we denote the function by
invG.

A pair (γ, γ′) ∈ G× G is called composable if sG(γ) = rG(γ
′). Sometimes

we abuse the language by saying “γ, γ′ ∈ G are composable” by which we mean
that the pair (γ, γ′) is composable. For A, B ⊆ G(0) define

GA = {γ ∈ G : rG(γ) ∈ A} = r−1
G (A),

GA = {γ ∈ G : sG(γ) ∈ A} = s−1
G (A) and

GA
B = GA ∩ GB = {γ ∈ G : rG(γ) ∈ A and sG(γ) ∈ B}.

When A = {u} and B = {v} are singletons, we write Gu, Gv and Gu
v instead of

G{u}, G{v} and G{u}{v} , respectively. For u ∈ G(0), Gu
u is a group. It is called the

isotropy group at u.
A topological groupoid and measurable groupoid have their standard mean-

ings [1].
We call a subset A ⊆ X of a topological space X quasi-compact if every open

cover of A has a finite subcover. And A is called compact if it is quasi-compact
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and Hausdorff. The space X is called locally compact if every point x ∈ X has
a compact neighbourhood. All the spaces considered in this article are locally
compact. For a locally compact space X by Cc(X)0 we denote the set of functions
f on X such that f ∈ Cc(V) where V ⊆ X is open Hausdorff, and f is extended
outside V by 0 (see Section 4 of [16]). By Cc(X) we denote the linear span of
functions in Cc(X)0. The functions in Cc(X) need not be continuous on X but
they are Borel. Furthermore, if µ is a positive σ-finite Radon measure on X, then
Cc(X) ⊆ L2(X, µ) is dense.

As in [13], we call a topological groupoid G locally compact if G is a locally
compact topological space and G(0) ⊆ G is Hausdorff. In this case, r−1

G (u) ⊆ G
(and equivalently, s−1

G (u) ⊆ G) are Hausdorff for all u ∈ G(0).
If X and Y are topological spaces, X ≈ Y means X and Y are homeomorphic.

If G and H are group(oids)s, then G ' H means G and H are isomorphic via a
group(oid) homomorphism. All the measures we work with are positive, Radon
and σ-finite.

For groupoid actions we do not assume that the momentum maps are open
or surjective. However, it is well-known that for a locally compact groupoid with
a Haar system the source map (equivalently the range map) is automatically
open. We need that each measure in a family of measures along a continuous
open map f : X → Y is non-zero, but it needs not have full support.

1.2. PROPER ACTIONS AND FAMILIES OF MEASURES. Since we shall not come
across any case where there are more than one different left (or right) action of a
groupoid G on a space X, we denote the momentum map by rX (respectively, sX).
When we write “X is a left (or right) G-space”, where G is a groupoid, without
specifying the momentum map, the above convention will be tacitly assumed
and then, in such instances, the momentum map is rX (respectively, sX).

Let G be a groupoid and A ⊆ G(0). For a left G-space X and a right G-space
Y we define XA, Xu, YA and Yu similar to GA, Gu, GA and Gu above.

Let X, Y and Z be spaces, and let f : X → Z and g : Y → Z be maps.
We denote the fibre product of X and Y over Z by X × f ,Z,g Y. When there is no
confusion about the maps f and g, we simply write X×Z Y instead of X× f ,Z,g Y.

Let G be a groupoid and X a left G-space. By G n X we denote the transfor-
mation groupoid. Its space of arrows is G×sG ,G(0),rX

X, which we prefer denoting
by G×G(0) X. Recall that a Haar system on G induces a Haar system on G n X.

Let G be a locally compact groupoid with open range map and X a locally
compact G-space. Then the quotient map X → X/G is open. If the action of
G is proper, then X/G is locally compact. If X is Hausdorff (or Hausdorff and
second countable) the X/G is also Hausdorff (Hausdorff and second countable,
respectively).

Let X be a left G-space. For subsets K ⊆ G and A ⊆ X with sG(K)∩ rX(A) 6=
∅, define KA = {γx : γ ∈ K, x ∈ A and (γ, x) ∈ G×G(0) X}. If sG(K) ∩ rX(A) =
∅, then we define AK = ∅. By an abuse of notation, for x ∈ X we write Kx
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instead of K{x}. The meaning of γA for γ ∈ G is similar. For a right action, we
define AK, xK and Aγ similarly.

Let G and H be groupoids and X a space on which G acts from the left and
H from the right. If for all γ ∈ G , x ∈ X and η ∈ H with sG(γ) = rX(x) and
sX(x) = rH(η) we have sX(γx) = sX(x), rX(xη) = rX(x), and (γx)η = γ(xη);
then we call X a G-H-bispace.

DEFINITION 1.1. Let H be a locally compact groupoid, and let X and Y be
locally compact proper right H-spaces. Let π : X → Y be an H-equivariant
continuous map. An H-invariant continuous family of measures along π is a family
of Radon measures λ = {λy}y∈Y such that:

(i) each λy is defined on π−1(y);
(ii) (invariance) for all composable pairs (y, η) ∈ Y ×H(0) H, the condition

λyη = λyη holds;
(iii) (continuity condition) for f ∈ Cc(X) the function Λ( f )(y) :=

∫
π−1(y)

f dλy

on Y is continuous.

We clarify that in the above definition the measure λyη is given by∫
f dλyη =

∫
f (xη)dλy(x)quadfor f ∈ Cc(X).

If for each y ∈ Y, supp(λy) = π−1(y), we say the family of measures λ
has full support. If there is a continuous function f on X with Λ( f ) = 1 on π(X),
we say that λ is proper. Lemma 1.1.2 in [1] says that, in the continuous case, λ is
proper if and only if λy 6= 0 for all y ∈ Y. Thus if λ is continuous and has full
support, then λ is proper. In the rest of the article we assume that every family of
measures we work with is proper.

Let Pt be the trivial point group(oid). If X and Y are spaces and π : X →
Y is a continuous map, then π is a Pt-equivariant map between Pt-spaces. A
continuous Pt-invariant family of measures along π is simply called a continuous
family of measures along π.

We denote families of measures by small Greek letters. For a given family of
measures, the corresponding integration function that appears in the continuity
condition in Definition 1.1 will be denoted by the Greek upper case letter used to
denote the family of measures. For α, β and µ it will be A, B and M, respectively.

DEFINITION 1.2. (i) Let H be a groupoid and X a left H-space. An H-inv-
ariant continuous family of measures along the momentum map rX is called a
left H-invariant continuous family of measures on X. A right H-invariant continuous
family of measures on X is defined analogously.

(ii) For a groupoid H, a Haar system on H is a left H-invariant continuous
family of measures with full support on H for the left multiplication action of H on
itself.
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LEMMA 1.3. Let H be a groupoid, let π : X → Y be a continuous H-map between
the H-spaces X and Y and let λ be a continuous family of measures along π. If λy has
full support for all y ∈ π(X), then π is an open map onto its image.

Consider the map π : X → π(X) and then the proof is similar to the one of
Proposition 2.2.1 in [11].

COROLLARY 1.4. If (H, β) is a groupoid with a Haar system, then the range and
source maps are open.

Proof. Lemma 1.3 implies that the range map rH is open. Since sH = rH ◦
invH and invH is a homeomorphism, sH is open.

We need the following two lemmas from [13].

LEMMA 1.5 ([13], Lemme 1.1). Let X and Y be spaces, let π : X → Y be an open
surjection and let λ be a family of measures with full support along π. For every open
U ⊆ X and for a non-negative function g ∈ Cc(π(U)), there is a non-negative function
f ∈ Cc(U) with Λ( f ) = g.

LEMMA 1.6 ([13], Lemme 1.2). Let X, Y and Z be spaces, let π and τ be open
surjections from X and Y to Z, respectively. Let π2 denote the projection from the fibre
product X×Z Y onto the second factor Y. Assume that for each z ∈ Z, there is a measure
λz on π−1(z). For each y ∈ Y define the measure λ2y = λτ(y) × δy, where δy is the
point-mass at y. Then λ is continuous if and only if λ2 is continuous.

Let H be a locally compact groupoid, and let X and Y be locally compact
right H-spaces. For x ∈ X the equivalence class of x in X/H is denoted by [x].
The map π induces a map from X/H to Y/H, which we denote by [π]. Let
π : X → Y be an H-equivariant map and λ an H-invariant continuous family
of measures along π. Then λ induces a continuous family of measures [λ] along
[π] : X/H → Y/H. The proof is similar to the proof of Proposition 1.3.27 in [5].
For f ∈ Cc(X/H) and [y] ∈ Y/H the measure [λ][y] is defined as

(1.1)
∫

X/H

f d[λ][y] :=
∫
X

f ([x])dλy(x).

EXAMPLE 1.7. Let X be a proper right H-space. Let β be a Haar system
on H. Then Lemma 1.6 says that β1 = {δx × βsX(x)}x∈X is a continuous family
of measures along the projection map π1 : X ×H(0) H → X. Take the quotient
by the action of H to get a continuous family of measures [π1] along the map
[π1] : (X ×H(0) H)/H → X/H. Identifying (X ×H(0) H)/H = X gives that [π1]
is the quotient map, and a small computation gives that for f ∈ Cc(X) and for
[x] ∈ X/H, ∫

X

f d[β1]
[x] =

∫
HsX (x)

f (xη)dβsX(x)(η).

In the rest of the article we write βX instead of [β1].
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1.3. COHOMOLOGY FOR GROUPOIDS. In this section, the groupoids and maps
are assumed to be Borel. The whole discussion goes through when the Borel
properties are replaced by the continuous properties.

DEFINITION 1.8. A left action of a groupoid G on another groupoid H is given by
maps rH,G : H → G(0) and a : G×sG ,G(0),rH,G

H → H which satisfy the following
conditions:

(i) if η, η′ ∈ H are composable, γ ∈ G with sG(γ) = rH,G(η) = rH,G(η
′), then

a(γ, η), a(γ, η′) ∈ H are composable and

a(γ, η)a(γ, η′) = a(γ, ηη′);

(ii) if u ∈ G(0), then a(u, η) = η for all η ∈ r−1
H,G(u) ⊆ H;

(iii) if γ, γ′ ∈ G are composable, then (γ, a(γ′, η)) ∈ G×sG ,G(0),rH,G
H and

a(γγ′, η) = a(γ, a(γ′, η)).

To simplify the notation, we write γ · η or simply γη for a(γ, η), and G×G(0)

H for G×sG ,G(0),rH,G
H. Then (i) and (ii) above read γ · (ηη′) = (γ · η)(γ · η′) and

(γγ′) · η = γ · (γ′ · η), respectively. We call the map rH,G the momentum map
for the action and a the action map. When the momentum and action maps are
continuous (or Borel) the action is called continuous (or Borel, respectively).

It is not hard to see that Definition 1.8 gives an action of G on H via invert-
ible functors. When G is a group, our definition matches Definition 1.7 in Chap-
ter 1 of [12], which is the action of a group on a groupoid by invertible functors.
A proof of this fact is below.

LEMMA 1.9. When G is a group, an action of G on H as in Definition 1.8 above
is the same as the action in Definition 1.7, Chapter 1 of [12], that is, there is a homomor-
phism φ : G → Aut(H) which gives the action. Here Aut(H) is the set of all invertible
functors from H to itself.

Proof. Definition 1.8 implies Definition 1.7, Chapter 1 of [12]: for γ ∈ G
define φ(γ)(η) = γ · η. We first prove that each φ(γ) is a functor from H to itself.

Note that an element u in a groupoid is a unit if and only if u is com-
posable with itself and u2 = u. If u ∈ G(0), then φ(γ)(u) = φ(γ)(uu) =

φ(γ)(u)φ(γ)(u) = (φ(γ)(u))2. Hence for each unit u ∈ H(0), φ(γ)(u) ∈ H is
a unit. Condition (i) of Definition 1.8 gives that for each γ ∈ G, φ(γ)(ηη′) =
φ(γ)(η)φ(γ)(η′). This proves that φ(γ) is functor for each γ ∈ G.

Now we show that each of the φ(γ) is invertible. Condition (iii) of Defini-
tion 1.8 gives that γ 7→ φ(γ) is a homomorphism. Use (iii) of Definition 1.8 to see
that φ(γ) is invertible:

φ(γ)φ(γ−1)(η) = φ(γγ−1)(η) = φ(rG(γ))(η) = η = IdH(η).

Similarly, φ(γ−1)φ(γ) = IdH . Thus φ(γ)−1 = φ(γ−1). Hence φ(γ) ∈
Aut(H).
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Definition 1.7, Chapter 1 of [12] implies Definition 1.8. The proof of this part
is routine checking of the conditions in Definition 1.8.

A continuous (and Borel) version of Lemma 1.9 can be proved along same
lines merely by adding continuity (or Borelness) of the action map and the mo-
mentum map and the continuity (Borelness) of the group homomorphism φ.

EXAMPLE 1.10. Let G be a groupoid and H a space. Then an action of G
on H is the same as an action of the groupoid G on the space H. In this case,
condition (i) in Definition 1.8 is irrelevant and then the Definition 1.8 matches the
usual definition of an action of a groupoid on a space.

EXAMPLE 1.11. Let G and H be groupoids and let X be a G-H-bispace. De-
fine an action of G on the transformation groupoid X o H by γ(x, η) := (γx, η).
The momentum map for this action is (x, η) 7→ rX(x) ∈ G(0). Let (xη, η′), (x, η) ∈
X×H(0) H be composable elements then (γxη, η′)(γx, η) are composable and

γ · (x, η) · γ (xη, η′) = (γx, η)(γxη, η′) = (γx, ηη′) = γ(x, ηη′).

This verifies (i) of Definition 1.8. The other conditions are easy to check. Thus H
acts on the groupoid G n X in our sense. This is an important example for us.

Let H be a Borel groupoid and assume that H acts on a Borel groupoid G.
Let G(0) and G(1) have the usual meaning. For n = 2, 3, . . . define

G(n) = {(γ0, . . . , γn−1) ∈ G× G× · · · × G︸ ︷︷ ︸
n-times

: sG(γi) = rG(γi+1) for 0 6 i < n− 2}.

DEFINITION 1.12. Let G, H be Borel groupoids, let A be an abelian Borel
group and let H act on G. The A-valued H-invariant Borel cochain complex
(BC•H(G; A), d•) is defined as follows:

(i) The abelian groups BCn
H are:

(a) BC0
H(G; A) := { f : G(0) → A : f is an H-invariant Borel map},

(b) for n > 0 BCn
H(G; A) := { f : G(n) → A : f is an H-invariant Borel

map and f (γ0, . . . , γn−1) = 0 if γi ∈ G(0) for some 0 6 i 6 n− 1};
(ii) the coboundary map d is:

(a) d0 : BC0
H(G; A)→ BC1

H(G; A) is d0( f )(γ) = f (sG(γ))− f (rG(γ)),
(b) for n > 0, dn : BCn

H(G; A)→ BCn+1
H (G; A) is

dn( f )((γ0, . . . , γn))

= f (γ1, . . . , γn) +
n

∑
i=1

(−1)i f (γ0, . . . , γi−1γi, . . . , γn) + (−1)n+1 f (γ0, . . . , γn−1).

The n-th cohomology group of this complex is the n-th H-invariant Borel
cohomology of G for n > 0, and it is denoted by Hn

Bor,H(G; A). By adding the
action of H to all the maps and spaces, one can make sense of the machinery and
the results in Sections 1 and 2 of [17].
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REMARK 1.13. Any H-invariant Borel function f on G(0) is a 0-cochain. A
cochain f ∈ BC0

H(G; A) is a cocycle if and only if d0( f ) = 0 which is true if and
only if f is constant on the orbits of G(0). A cochain k ∈ BC1

H(G; A) is a cocycle
if and only if k(γ0)− k(γ0γ1) + k(γ1) = 0 for all composable γ0 and γ1, which is
equivalent to saying that k is an H-invariant Borel groupoid homomorphism.

We drop the suffixes B and Bor and write merely C0
H(G; A) and Hn

H(G; A).

REMARK 1.14. Let b, b′ ∈ C0
H(G; A) with d0(b) = d0(b′). Then c = b− b′ is

a 0-cocycle since
d0(c) = d0(b)− d0(b′) = 0.

Remark 1.13 now gives that c is constant on the orbits of G(0). Thus c is a function
on G(0)/G.

1.4. QUASI-INVARIANT MEASURES. Let (G, α) be a locally compact groupoid with
a Haar system. Using α we get a right invariant family of measures α−1 along the
source map. For f ∈ Cc(G) set

∫
f (γ)dα−1

u (γ) =
∫

f (γ−1)dαu(γ). Let X be a
left G-space and let µ be a measure on X. We define a measure µ ◦ α−1 on the
space G×G(0) X by∫

G×
G(0) X

f d(µ ◦ α−1) =
∫
X

∫
GrX (x)

f (γ−1, x)dαrX(x)(γ)dµ(x)

for f ∈ Cc(G×G(0) X). Similarly we define the measure µ ◦ α.

DEFINITION 1.15. Let (G, α) be a groupoid with a Haar system and X a
G-space. A measure µ on X is called (G, α)-quasi-invariant if µ ◦ α and (µ ◦ α) ◦
invGnX are equivalent.

In the above definition, invGnX is the inverse function on the transformation
groupoid G n X. Thus for f ∈ Cc(G×G(0) X)

(µ ◦ α) ◦ invGnX( f ) =
∫
X

∫
GrX (x)

f (γ, γ−1x)dαrX(x)(γ)dµ(x).

When the groupoid (G, α) with a Haar system in the discussion is fixed and there
is no possibility of confusion, we write “µ is a G-quasi-invariant measure”.

REMARK 1.16. As in [1] or [3], it can be shown that the Radon–Nikodym
derivative d(µ ◦ α)/d(µ ◦ α−1) is a µ ◦ α-almost everywhere a groupoid homo-
morphism from the transformation groupoid G n X to R∗+.

REMARK 1.17. A (G, α)-quasi-invariant measure µ is G-invariant if and only
if the Radon–Nikodym derivative d(µ ◦ α)/d(µ ◦ α−1) = 1 µ ◦ α-almost every-
where on G×G(0) X.

A measured groupoid is a triple (G, α, µ) where (G, α) is a locally compact
groupoid with a Haar system and µ is a (G, α)-quasi-invariant measure on G(0).
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DEFINITION 1.18. The modular function of a measured groupoid (G, α, µ) is
the Radon–Nikodym derivative d(µ ◦ α)/d(µ ◦ α−1).

The reason to use the article “the” for the modular function is that if ∆ and
∆′ are two modular, then ∆ = ∆′ µ ◦ α-almost everywhere.

1.5. C∗-CORRESPONDENCES. We shall use the theory of Hilbert modules and as-
sume that the reader is familiar with the basics of the theory (for example, [7]).

DEFINITION 1.19. Let A and B be C∗ algebras. A C∗-correspondence from
A to B is a Hilbert B-module H with a non-degenerate ∗-representation A →
BB(H).

HereBB(H) denotes the C∗-algebra of adjointable operators onH. A Hilbert
B-moduleH is full if the linear span of the image ofH×H under the inner prod-
uct map is dense in B. We call a C∗-correspondenceH from A to B proper if A acts
on H by compact operators, that is, the action of A is given by a non-degenerate
∗-representation A→ KB(H).

DEFINITION 1.20. An imprimitivity bimodule from A to B is an A-B-bimodule
H such that:

(i)H is a full left Hilbert A-module with an inner product ∗〈·, ·〉;
(ii)H is a full right Hilbert B-module with an inner product 〈·, ·〉∗;

(iii) (H, ∗〈·, ·〉) is a correspondence from B to A;
(iv) (H, 〈·, ·〉∗) is a correspondence from A to B;
(v) for a, b, c ∈ H, a〈b, c〉∗ = ∗〈a, b〉c.

Our notion of C∗-correspondence (Definition 1.19) is wider, in the sense that
many authors demand that the Hilbert module involved in a C∗-correspondence
is full, or for some authors a C∗-correspondence is what we call a proper corre-
spondence.

In [15], Rieffel shows that an A-B-imprimitivity bimodule induces an iso-
morphism between the representation categories of B and A. In general, if H is
a C∗-correspondence from A to B, then H induces a functor from Rep(B), the
representation category of B, to Rep(A).

2. TOPOLOGICAL CORRESPONDENCES

2.1. TOPOLOGICAL CORRESPONDENCE AND CONSTRUCTION OF THE HILBERT

MODULE.

DEFINITION 2.1. A topological correspondence from a locally compact group-
oid G with a Haar system α to a locally compact groupoid H equipped with a
Haar system β is a pair (X, λ) where:

(i) X is a locally compact G-H-bispace;
(ii) the action of H is proper;
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(iii) λ = {λu}u∈H(0) is an H-invariant proper continuous family of measures
along the momentum map sX : X → H(0);

(iv) ∆ is a continuous function ∆ : G×G(0) X → R+ such that for each u ∈ H(0)

and F ∈ Cc(G×G(0) X),

∫
Xu

∫
GrX (x)

F(γ−1, x)dαrX(x)(γ)dλu(x)=
∫

Xu

∫
GrX (x)

F(γ, γ−1x)∆(γ, γ−1x)dαrX(x)(γ)dλu(x).

If ∆′ is another function that satisfies condition (iv) in Definition 2.1, then
∆ = ∆′ λu ◦ α-almost everywhere for each u ∈ H(0). As both ∆ and ∆′ are con-
tinuous, we get ∆ = ∆′. We call the function ∆ the adjoining function of the corre-
spondence (X, λ).

REMARK 2.2. Note that we do not need that the momentum maps sX and
rX are open surjections. We also do not demand that the family of measures λ has
full support, hence the Hilbert module in the resulting C∗-correspondence need
not be full. The resulting C∗-correspondence need not be proper, as well.

REMARK 2.3. Referring to Definition 1.15, we can see that condition (iv)
in Definition 2.1 says that the measure α × λu on G ×G(0) Xu is (G, α)-quasi-
invariant for each u ∈ H(0) where the measure α× λu is defined as follows: for
f ∈ Cc(G×G(0) Xu),

∫
G×

G(0) Xu

f d(α× λu) =
∫

Xu

∫
GrX (x)

f (γ−1, x)dαrX(x)(γ)dλu(x).

In short, “A topological correspondence from (G, α) to (H, β) is a pair (X, λ)
where X is a G-H-bispace with a proper H-action, and λ is an H-invariant family of mea-
sures on X along the right momentum map sX such that each measure in λ is G-quasi-
invariant.”

REMARK 2.4. As in [1] or [3], it can be shown that ∆ restricted to G×G(0) Xu

is α × λu-almost everywhere a groupoid homomorphism for all u ∈ H(0). So
the function ∆ in (iv) of Definition 2.1 is a continuous 1-cocycle on the groupoid
G n X. We shall use this fact in many computations.

REMARK 2.5. Example 1.11 gives a right action of H on GnX. In [3], Buneci
and Stachura use an adjoining function exactly like us. The topological corre-
spondence Buneci and Stachura define is a special case of our construction (Ex-
ample 3.11). They show that the adjoining function in their case is H-invariant
(see Lemma 11 of [3]). In the similar fashion, we may prove that ∆ is H-invariant
under the right action of H, that is,

∆(γ, xη) = ∆(γ, x)
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for all composable triples (γ, x, η) ∈ G ×sG ,G(0),rX
X ×sX ,H(0),rH

H. Thus, in fact,
∆ : G n X/H → R∗+. Now Remark 2.4 can be made finer by saying that ∆ is an
H-invariant continuous 1-cocycle on the groupoid G n X.

2.2. USE OF THE FAMILY OF MEASURES AND THE ADJOINING FUNCTION. In the
following discussion, we explain the role of the adjoining function. Let (X, λ)
be a topological correspondence from (G, α) to (H, β) with ∆ as the adjoining
function. We make Cc(X) into a Cc(H)-module using the same formula as in [9]
or [8]. To make Cc(X) into a C∗(H, β)-pre-Hilbert module, we need to define a
Cc(H)-valued inner product on Cc(X). The formula for this inner product cannot
be copied directly from either [9] or [8]. This formula has to be modified, and it
uses the family of measures λ.

Talking about the left action, for φ ∈ Cc(G) and f ∈ Cc(X), [9] and [8] define
φ · f ∈ Cc(X) by

(2.1) (φ · f )(x) =
∫
G

φ(γ) f (γ−1x)dαrX(x)(γ).

For our definition of topological correspondence, the action of Cc(G) on the
pre-Hilbert C∗(H, β)-module Cc(X) defined by formula (2.1) is not necessarily an
action by adjointable operators. For φ and f as above we define the left action by

(2.2) (φ · f )(x) :=
∫
G

φ(γ) f (γ−1x)∆1/2(γ, γ−1x) dαrX(x)(γ).

We shall see that the adjoining function gives a nice scaling factor for the action of
Cc(G) ⊆ C∗(G, α) and makes this action a ∗-homomorphism. This is the reason
we call ∆ the adjoining function.

Two examples of topological correspondences are: an equivalence between
groupoids (see [9] or Definition 3.10) and the correspondence of Macho Stadler
and O’uchi (see [8] or Example 3.7). For equivalences and Macho Stadler–O’uchi
correspondences the adjoining function is the constant function 1, and then for-
mulae (2.1) and (2.2) match. To understand the role of ∆ the reader may have a
look at Lemma 2.9.

To support the necessity of the adjoining function, consider a toy example:
let G be a locally compact group and let it act on a locally compact (possibly Haus-
dorff) space X carrying a measure λ. The left multiplication action of Cc(G) on
Cc(X) ⊆ L2(X, λ) defined by equation (2.1) is not necessarily bounded. To make
this action bounded, it is sufficient that λ is G-quasi-invariant, which brings the
adjoining function into the picture. Then the left action of Cc(G) given by equa-
tion (2.2) becomes a ∗-representation. This motivated us to introduce condition
(iv) in Definition 2.1. Buneci and Stachura [3] also use the adjoining function.

For the left multiplication action of G on G/K, where K is a closed subgroup
of G, the space G/K always carries a G-quasi-invariant measure λ. Hence there
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is a representation of G on L2(G/K, λ). Quasi-invariant measures and the corre-
sponding adjoining functions are studied very well in the group case, for example,
see Section 2.6 of [4].

At this point, readers may peep into Section 3 to see some examples of ad-
joining functions.

We start with the main construction now. For φ ∈ Cc(G), f ∈ Cc(X) and
ψ ∈ Cc(H) define functions φ · f and f · ψ on X as follows:

(2.3)


(φ · f )(x) :=

∫
GrX (x)

φ(γ) f (γ−1x)∆1/2(γ, γ−1x) dαrX(x)(γ),

( f · ψ)(x) :=
∫

HsX (x)

f (xη)ψ(η−1) dβsX(x)(η).

For f , g ∈ Cc(X) define the function 〈 f , g〉 on H by

〈 f , g〉(η) :=
∫

XrH (η)

f (x)g(xη) dλrH(η)(x).(2.4)

Most of the times we write φ f and f ψ instead of φ · f and f · ψ.

LEMMA 2.6. Among the functions φ f , f ψ and 〈 f , g〉 defined above, the first two
are in Cc(X) and the last one is in Cc(H).

Proof. The proof follows from Lemme 3.1 of [13] and the ∗-category Cc(H)
used in [13] or [6]. Detailed computations can be found in Section 3.3.1 of [5] in
which Tables 3.1 and 3.2 list the equivalence of the operations in Definitions 2.3
and 2.4 and those in the ∗-category Cc(H).

We prove that 〈 f , g〉 ∈ Cc(H) and the remaining claims can be proved
similarly. Let Cc(H) denote the ∗-category for H. Then (H, β) and (X, λ) are
objects in Cc(H). We identify X with (X ×H(0) H)/H and then think of f , g ∈
Cc((X×H(0) H)/H) as arrows from (X, λ) to (H, β). Then 〈 f , g〉 = f ∗ ∗λ g, where
the latter is in Cc((H ×rH ,H(0),rH

H)/H). Now identify Cc((H ×rH ,H(0),rH
H)/H)

with Cc(H) to conclude the proof.

Both Cc(G) and Cc(H) are ∗-algebras. Denote the convolution product on
them by ∗.

LEMMA 2.7. Let φ, φ′ ∈ Cc(G), ψ, ψ′ ∈ Cc(H) and f , g, g′ ∈ Cc(X). Then

(φ ∗ φ′) f = φ(φ′ f ),(2.5)

f (ψ ∗ ψ′) = ( f ψ)ψ′,(2.6)

(φ f )ψ = φ( f ψ),(2.7)

〈 f , g + g′〉 = 〈 f , g〉+ 〈 f , g′〉,(2.8)

〈 f , g〉∗ = 〈g , f 〉,(2.9)
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〈 f , g〉 ∗ ψ = 〈 f , gψ〉,(2.10)

〈φ f , g〉 = 〈 f , φ∗g〉.(2.11)

Proof. Checking most of the equalities above are straightforward computa-
tions involving obvious change of variables, using the invariances of the families
of measures, Fubini’s theorem and some properties of the adjoining function. We
write two detailed computations and hints for computing the others. Let γ ∈ G,
x ∈ X and η ∈ H.

Equation (2.5):

((φ ∗ φ′) f )(x)

=
∫

GrX (x)

(φ ∗ φ′)(γ) f (γ−1x)∆(γ, γ−1x)1/2 dαrX(x)(γ)

=
∫

GrX (x)

∫
GrG(γ)

φ(ζ)φ′(ζ−1γ) f (γ−1x)∆(γ, γ−1x)1/2 dαrG(γ)(ζ)dαrX(x)(γ).

First apply Fubini’s theorem and then change the variable γ 7→ ζγ and use the
invariance of α to see that the last term equals∫

GrG(γ)

∫
GrX (x)

φ(ζ)φ′(γ) f (γ−1ζ−1x)∆(ζγ, γ−1ζ−1x)1/2 dαrX(x)(γ)dαrG(γ)(ζ).

We observe that (ζγ, γ−1ζ−1x) = (ζ, ζ−1x)(γ, γ−1ζ−1x) in the transforma-
tion groupoid G n X. This relation, Remark 2.4 and the associativity of the left
action together allow us to write the previous term as∫
GrG(γ)

∫
GrX (x)

φ(ζ)φ′(γ) f (γ−1ζ−1x)∆(ζ, ζ−1x)1/2∆(γ, γ−1ζ−1x)1/2dαrX(x)(γ)dαrG(γ)(ζ)

=
∫

GrG(γ)

φ(ζ)
( ∫
GrX (x)

φ′(γ) f (γ−1ζ−1x)∆(γ, γ−1ζ−1x)1/2dαrX(x)(γ)
)

∆(ζ, ζ−1x)1/2dαrG(γ)(ζ)

=
∫

GrG(γ)

φ(ζ) (φ′ f )(ζ−1x)∆(ζ, ζ−1x)1/2 dαrG(γ)(ζ) = (φ(φ′ f ))(x).

Equation (2.6): this computation is similar to the above computation for
equation (2.5) except that there is no adjoining function here.

Equation (2.7): this uses Fubini’s theorem and the H-invariance of ∆.
Equation (2.8): this is a direct computation.
Equation (2.9): this involves a change of variable and the right invariance of

the family of measures λ.
Equation (2.10): this uses a change of variable, the left invariance of β and

Fubini’s theorem.
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Equation (2.11):

〈φ f , g〉(η)=
∫
X

(φ f )(x)g(xη)dλrH(η)(x)(2.12)

=
∫
X

∫
G

φ(γ) f (γ−1x)g(xη)∆1/2(γ, γ−1x)dαrX(x)(γ)dλrH(η)(x)

=
∫
X

∫
G

f (γ−1x)φ(γ)g(xη)∆1/2(γ, γ−1x)dαrX(x)(γ)dλrH(η)(x).

Make a change of variables (γ, γ−1x) 7→ (γ−1, x). Then we use the fact that
∆ is an almost everywhere groupoid homomorphism (see Remark 2.4). Due to
Remark 2.5, we know that ∆ is H-invariant. Taking into account these facts we
see that

〈φ f , g〉(η) =
∫
X

∫
G

f (x) φ(γ−1)g(γ−1xη) ∆1/2(γ, γ−1xη) dαr(x)(γ) dλrH(η)(x)

=
∫
X

∫
G

f (x)(φ∗g)(xη) dλrH(η)(x) = 〈 f , φ∗g〉(η).

It can be checked that the left and the right actions and the map 〈·, ·〉 are
continuous in the inductive limit topology.

Equations (2.5), (2.6) and (2.7) show that Cc(X) is a Cc(G)-Cc(H)-bimodule.
Equations (2.8), (2.9) and (2.10) show that the map 〈·, ·〉 : Cc(X)×Cc(X)→ Cc(H)
is a Cc(H)-conjugate bilinear map. And equation (2.11) says that Cc(G) acts on
Cc(X) by Cc(H)-adjointable operators.

Recall from page 4 of [7] that a pre-C∗-algebra satisfies all the conditions
to be a C∗-algebra except that it need not be complete. Let (H, β) be a locally
compact groupoid with a Haar system. Then, very often, especially in the theo-
rem that follows, we consider the ∗-algebra Cc(H) (equipped with an appropriate
norm) a pre-C∗-algebra that completes to the C∗-algebra C∗(H, β). Now we are
ready to state the following well-known result of Renault from [13].

THEOREM 2.8 (cf. Corollaire 5.2 of [13]). Let (H, β) be a locally compact group-
oid with a Haar system and let (X, λ) be a proper right H-space with an H-invariant
continuous family of measures. Then the inner product Cc(H)-module Cc(X), which is
defined by formulae (2.3) and (2.4), can be completed into a Hilbert C∗(H, β)-module
H(X).

Theorem 2.8 is a particular case of Corollaire 5.2 in [13] which is stated for a
C∗-algebraic twisted groupoid dynamical system. In contrast to Corollaire 5.2 of
[13], Theorem 2.8 involves merely a groupoid. Note that in Corollaire 5.2 of [13]
the space X is a free and proper H-space; however, it is remarked there that the
corollaire holds for a proper H-space. The key idea of the proof is to show that the
representations of the ∗-algebra Cc(H) extend to that of a ∗-category constructed
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from the measured proper H-spaces. This ∗-category is discussed in [6], and The-
orem 2.2 of [6] extends the representations of Cc(H) to that of the ∗-category. The
∗-category in [6] is a special case of the one constructed in Section 3, pages 74
and 75 of [13]. The latter is used to prove Corollaire 5.2 of [13]. Again, both the
∗-categories differ by freeness of the H-action which can be, as mentioned earlier,
overlooked.

In [13], Renault uses Corollaire 5.2 of [13] to prove that an equivalence be-
tween two C∗-algebraic twisted groupoid dynamical system produces an equiva-
lence bimodule between the C∗-algebras of the dynamical systems. As mentioned
in the Indroduction, this result is the motivation of the present work. A result sim-
ilar to Theorem 2.8 concerning the reduced C∗-algebras is proved in Theorem 1.4
of [8] with a different proof.

2.3. THE LEFT ACTION AND CONSTRUCTION OF THE C∗-CORRESPONDENCE. We
now turn our attention to the left action. We wish to extend the action of Cc(G) on
Cc(X) to an action of C∗(G) on H(X). For a groupoid equivalence the adjoining
function vanishes (see Example 3.9 and the discussion about the adjoining func-
tion in Example 3.7), that is, it becomes the constant function 1, and the formulae
for the left actions in equation (2.3) and page 11 of [9] match. Our proof runs
along the same lines as in [9].

LEMMA 2.9. The action of Cc(G) on Cc(X) defined by equation (2.3) extends to a
non-degenerate ∗-homomorphism from C∗(G, α) to BC∗(H)(H(X)).

Proof. Equation 2.11 in Lemma 2.7 shows that Cc(G) acts on Cc(X) by ad-
jointable operators. We need to prove that this representation is non-degenerate.
For this purpose we show that there is a continuous family of measures with full
support α̃ = {α̃x}x∈X along the projection map π2 : GnX → X. Then Lemma 1.5
gives that Ã : Cc(G ×G(0) X) → Cc(X) is a surjection. Since, due to the theorem
of Stone–Weierstaß the set {g ⊗ h : g ∈ Cc(G), h ∈ Cc(X)} ⊆ Cc(G ×G(0) X) is
dense, the claim of the current lemma will be proved.

Let f ∈ Cc(G ×G(0) X) be given. For x ∈ X define the measure α̃x on
π−1

2 (x) = GrX(x) × {x} by∫
π−1

2 (x)

f dα̃x =
∫

GrX (x)

f (η−1, x)∆1/2(η−1, x)dαrX(x)(γ).

Since αrX(x) has full support and ∆ is non-zero, α̃
sG×

G(0) X has full support. Using
an argument similar to Lemma 1.6 we may infer that α̃ := {α̃x}x∈X is continuous.

Finally, we check that the action is bounded. Once we prove this, then the
action extends to C∗(G, α). Let ε be a state on C∗(H, β). Then ε(〈·, ·〉) makes
H(X) into a Hilbert space, say H(X)ε. Let Vε ⊆ H(X)ε be the dense subspace
space generated by {ζ f : ζ ∈ Cc(G), f ∈ Cc(X)}. Define a representation L of
Cc(G) on Vε by L(ζ) f = ζ f .
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(i) The representation L is a non-degenerate representation of Cc(G) on Vε.
Non-degenerate means that the set {ζ f : ζ ∈ Cc(G), f ∈ Cc(X)} is dense in Vε.

(ii) The continuity of the operations in Lemma 2.7 in the inductive limit topol-
ogy implies that L is continuous: for f , g ∈ Cc(X), L f ,g(ζ) = 〈 f , L(ζ)g〉 is a con-
tinuous functional on Cc(G) when Cc(G) is given by the inductive limit topology.

(iii) L preserves the involution, that is, 〈ζ f , g〉 = 〈 f , ζ∗g〉. This is proved in
equation (2.11) in Lemma 2.7.

Proposition 4.2 of [13] says that L is a representation of G on Vε. Hence L is
bounded with respect to the norm on C∗(G). Thus

ε(〈ζ f , ζ f 〉 = ε(〈L(ζ) f , L(ζ) f 〉 6 ||ζ||C∗(G) ε(〈 f , f 〉)

for all f ∈ Cc(X) and ζ ∈ Cc(G). The state ε was arbitrary. Hence for all f ∈
Cc(X) and ζ ∈ Cc(G) we get

〈 ζ f , ζ f 〉 6 ||ζ||C∗(G) 〈 f , f 〉.

This shows that the action of Cc(G) on Cc(X) is bounded in the topology in-
duced by the norm of the inner product 〈·, ·〉. Hence the action can be extended
to C∗(G).

Now we are ready to state the main theorem.

THEOREM 2.10. Let (G, α) and (H, β) be locally compact groupoids with Haar
systems. Then a topological correspondence (X, λ) from (G, α) to (H, β) produces a
C∗-correspondenceH(X) from C∗(G, α) to C∗(H, β).

The proof follows by putting Theorem 2.8 and Lemma 2.9 together.

3. EXAMPLES

EXAMPLE 3.1. Let X and Y be locally compact, Hausdorff spaces, and let
f : X → Y be a continuous function. We view X and Y as groupoids with
Haar systems consisting of Dirac measures on X and Y, δX = {δx}x∈X and
δY = {δy}y∈Y, respectively. We write X′ for the space X. We use this notation
to avoid confusing the space and the groupoid structures.

The function f is the momentum map for the trivial left action of Y on X′,
that is, for ( f (x), x) ∈ Y ×IdY ,Y, f X′, f (x) · x = x. In fact, this is the only possible
action of Y on X′. In a similar way, X acts on itself trivially via the momentum
map IdX . The family of Dirac measures δX mentioned above is an X-invariant
family of measures on X′. Both the actions are proper. If h ∈ Cc(Y ×IdY ,Y, f X′),
then∫
X′

∫
Y

h(y, x)d(δY)
f (a)(y)d(δX)

a(x)=h( f (a), a)=
∫
X′

∫
Y

h(y−1, yx)d(δY)
f (a)(y)d(δX)

a(x).
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Therefore δX is Y-invariant. Thus (X′, δX) is a topological correspondence
from Y to X with the constant function 1 as the adjoining function. The action
of Cc(X) on Cc(X′) as well as the Cc(X)-valued inner product on Cc(X′) are the
pointwise multiplication of two functions. For h ∈ Cc(Y), k ∈ Cc(X′), (h · k)(x) =
h( f (x))k(x).

The C∗-correspondence H(X′) : C0(Y) → C0(X) is the C∗-correspondence
associated with the ∗-homomorphism f ∗ : C0(Y)→M(C0(X)) produced by the
Gelfand transform.

EXAMPLE 3.2. Let X, Y, X′ and f be as in Example 3.1. Let λ = {λy}y∈Y
be a continuous family of measures along f . It follows from the discussion in
Example 3.1 that X is a proper X-Y-bispace. For h ∈ Cc(X×IdX ,X,IdX X′),

∫
X′

∫
X

h(x−1, xz)d(δX)
x(z)dλy(x)=

∫
X′

∫
X

h(x, z)d(δX)
x(z)dλy(x)=

∫
X′

h( f (x), x)dλy(x).

The first equality above is due to the triviality of the action and the second one
follows from the definition of the measures δX × λy as in Remark 2.3. Thus λ is
X-invariant and the modular function is the constant function 1. Hence (X′, λ) is
a correspondence from X to Y.

EXAMPLE 3.3. Let X and Y be as in Example 3.1. Let f , b : X → Y be con-
tinuous maps and let λ be a continuous family of measures along f . Make X a
Y-Y-bispace using actions similar to those in Example 3.1. For f : X → Y use the
family of measures λ and the formulae in Example 3.2 to define a right action of
Cc(Y) on Cc(X). It is straightforward to check that (X, λ) is a topological corre-
spondence from Y to itself. When the spaces are second countable, the quintuple
(Y, X, s, r, λ) is called a topological quiver [10].

In general, assume that X, Y and Z are locally compact Hausdorff spaces,
f : X → Y and b : X → Z are maps. Let λ be a continuous family of measures
along f . Then (X, λ) is a topological correspondence from Z to Y.

EXAMPLE 3.4. Let G and H be locally compact groups, φ : H → G a con-
tinuous group homomorphism, and α and β the Haar measures on G and H,
respectively. The right multiplication action is a proper action of G on itself. The
measure α−1 is invariant under this action. Using φ define an action of H on G as
ηγ = φ(η)γ for (η, γ) ∈ H × G. We claim that α−1 is H-quasi-invariant for this
H-action. Let δG and δH be the modular functions of G and H, respectively. The
modular functions allow to switch between the left and right invariant Haar mea-
sures α and α−1, and β and β−1. The relations are α−1 = δ−1

G α and β−1 = δ−1
H β. If

Rγ : G → G is the right multiplication operator, then

∫
G

Rγ f dα = δG(γ)
−1
∫
G

f dα
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for f ∈ Cc(G). A similar equality holds for g ∈ Cc(H). Let f ∈ Cc(H × G),∫
G

∫
H

f (η, φ(η)−1γ)
δH(η)

δG(φ(η))
dβ(η)dα−1(γ)

=
∫
G

∫
H

f (η−1, φ(η)γ)
1

δG(φ(η))
dβ(η)dα−1(γ) (by sending η to η−1 in H)

=
∫
G

∫
H

f (η−1, γ) dβ(η)dα−1(γ) (by removing φ(η)−1 in G).

If one compares the first term of the above computation with the equation
in (iv) of Definition 2.1, and uses the fact that the adjoining function is a groupoid
homomorphism, then it can be seen that ∆(η, η−1γ) = δH(η)/(δG ◦ φ(η)). Hence
∆(η−1, γ) = ∆(η, η−1γ)−1 = (δG ◦ φ(η))/δH(η). Thus a group homomorphism
φ : H → G gives a topological correspondence (G, α−1) from (H, β) to (G, α) and
(δG ◦ φ)/δH is the adjoining function.

EXAMPLE 3.5. Let G, H, α, β, δH and φ be as in Example 3.4. Additionally,
assume that φ : H → G is a proper function. For the time being, assume that the
right action of H on G given by γη := γφ(η) for (γ, η) ∈ G× H is proper, which
is a fact and we prove it towards the end of this example. With this action of H
and the left multiplication action of G on itself, G is a proper G-H-bispace. α−1

is an H-invariant measure. The adjoining function of this action is the constant
function 1. To see this, let f ∈ Cc(G× G), then∫∫

f (γ−1, η)dα(γ)dα−1(η)

=
∫∫

f (γ, η) δG(γ)
−1 dα(γ)dα−1(η) (because α−1 = δ−1α)

=
∫∫

f (γ, γ−1η)dα(γ)dα−1(η) (because Lγα−1 = δ(γ)α−1).

Now we prove that the right action of H on G is proper, that is, the map Ψ :
G× H → G× G sending (γ, η) 7→ (γ, γφ(η)) is proper. The maps

IdG × φ : G× H→G× G, and m : (η, η′) 7→ (η, ηη′) from G× G→G× G

are proper, and Ψ = m ◦ (IdG × φ). Hence Ψ is proper.

EXAMPLE 3.6. Let G be a locally compact group and α the Haar measure on
G. Let X be a locally compact proper left G-space. Let λ be a strongly G-quasi-
invariant measure on X, that is, there is a continuous function ∆ : G × X → R+

such that d(gλ)(x) = ∆(g, x)dλ(x) for every g in G. In this setting, (X, λ) is a
correspondence from (G, α) to (Pt, δPt), with ∆ as the adjoining function. The C∗-
algebra for Pt is C, the Hilbert moduleH(X) is the Hilbert space L2(X, λ) and the
action of C∗(G) on this Hilbert module is the representation of C∗(G) obtained
from the representation of G on Cc(X).
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An example of this situation is: when X is a homogeneous space for G, X
carries a G-strongly quasi-invariant measure. For details, see Section 2.6 of [4].

EXAMPLE 3.7 (Macho Stadler and O’uchi’s correspondences). In [8], Macho
Stadler and O’uchi present a notion of groupoid correspondences. We change the
direction of correspondence in their definition to fit our construction and repro-
duce the definition here.

DEFINITION 3.8. A Macho Stadler–O’uchi correspondence from a locally com-
pact, Hausdorff groupoid with Haar system (G, α) to a groupoid with Haar sys-
tem (H, β) is a G-H-bispace X such that:

(i) the action of H is proper and the momentum map for the right action sX is
open;

(ii) the action of G is proper;
(iii) the actions of G and H commute;
(iv) the right momentum map induces a bijection from G\X to H(0).

Macho Stadler and O’uchi do not assume that the left momentum map is
open. We do the same. Condition (iv) above is equivalent to saying that G\X and
H(0) are homeomorphic.

Macho Stadler and O’uchi do not require a family of measures on the G-H-
bispace X. We show that a correspondence of Macho Stadler and O’uchi carries a
canonical H-invariant continuous family of measures λ which is given by∫

Xu

f dλu :=
∫
G

f (γ−1x)dαrX(x)(γ) for f ∈ Cc(X),

where u = sX(x). Note that this family of measures is the family of measures α−1
X

along the quotient map X → G\X as in Example 1.7. Condition (iv) in the above
definition identifies G\X ≈ H(0) to give the desired result.

Since λ is invariant for the G-actions, we get ∆ = 1. Thus (X, λ) is a topolog-
ical correspondence from (G, α) to (H, β) in our sense.

Macho Stadler and O’uchi prove that such a correspondence from (G, α)
to (H, β) induces a C∗-correspondence from the reduced C∗-algebra C∗r (G, α) to
C∗r (H, β).

EXAMPLE 3.9 (Equivalence of groupoids).

DEFINITION 3.10 (Equivalence of groupoids, a slight modification of Defini-
tion 2.1 [9]). Let G and H be locally compact groupoids. A locally compact space
X is a G-H-equivalence if

(i) X is a left free and proper G-space;
(ii) X is a right free and proper H-space;

(iii) the momentum maps rX and sX are open;
(iv) the actions of G and H commute, that is, X is a G-H-bispace;
(v) the left momentum map rX : X→G(0) induces a bijection of X/H onto G(0);
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(vi) the right momentum map sX : X→H(0) induces a bijection of G\X onto H(0).
Equivalences of Hausdorff groupoids ([9]) are a special case of the corre-

spondences of Macho Stadler–O’uchi. Hence equivalences of groupoids are topo-
logical correspondences as well. Similarly, one can check that an equivalence of
locally compact groupoids defined in [13] is also a topological correspondence.
Furthermore, an equivalence of groupoids is an invertible correspondence.

EXAMPLE 3.11 (Generalised morphisms of Buneci and Stachura). Buneci
and Stachura define generalised morphisms in [3]. We modify this definition to
fit our conventions and repeat it here.

DEFINITION 3.12. A generalised morphism from (G, α) to (H, β) is a left
action Θ of G on the space H with rGH as the momentum map, the action com-
mutes with the right multiplication action of H on itself and there is a continuous
positive function ∆Θ on G×sG ,H(0),rGH

H such that∫∫
f (γ, γ−1η)∆Θ(γ, γ−1η)dαrGH(η)(γ)dβ−1

u (η)=
∫∫

f (γ−1, η)dαrGH(η)(γ)dβ−1
u (η)

for all f ∈ Cc(G×sG ,H(0),rGH
H) and u ∈ H(0).

If Θ is a generalised morphism from (G, α) to (H, β) then (H, β−1) is a topo-
logical correspondence from (G, α) to (H, β), where β−1 is the family of measures∫

f d(β−1)u =
∫

f (η−1)dβu(η)

for f ∈ Cc(H) and u ∈ H(0). It is obvious from the definition itself that ∆Θ is the
adjoining function for this correspondence.

In [3], Buneci and Stachura prove that a generalised morphism induces a
∗-homomorphism from C∗(G, α) to M(C∗(H, β)). This is a C∗-correspondence
from C∗(G, α) to C∗(H, β) with the underlying Hilbert module C∗(H, β).

EXAMPLE 3.13. Let X be a locally compact right G-space for a locally com-
pact group G and let λ be the Haar measure on G. Let H and K be subgroups of
G. Assume that K is closed and let α and β be the Haar measures on H and K, re-
spectively. Then X o H and X oK are subgroupoids of X oG. Denote these three
transformation groupoids by H, K and G, respectively. Then G is an H-K-bispace
for the left and the right multiplication actions, respectively. We bestow H and
K with the Haar systems {αy}y∈X and {βz}z∈X , respectively, where αy = α and
βz = β for each y, z ∈ X. If λ−1

x = λ−1 for all x ∈ X, then the family of measures
{λ−1

x }x∈X on G is K-invariant. We show that this family is H-quasi-invariant with
the adjoining function δG/δH .

For ((x, γ), (y, κ)) ∈ GoK we have y = xγ and the map (x, γ, y, κ) 7→
(x, γ, κ) gives an isomorphism between the groupoids GoK and X o (G × K).
Using this identification, it can be checked that the right action of K on G is
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proper, which is implied by the fact that K ⊂ G is closed. Another quicker way
to see this is to observe that K ⊆ G is a closed subgroupoid.

Let f ∈ Cc(HnG), u ∈ K(0) = G(0) ≈ X. Let b = (uγ−1, γ) ∈ s−1
G (u) ⊆ G.

If a = (uγ−1, η) ∈ H, then a−1 = (uγ−1, η)−1 = (uγ−1η, η−1) is composable
with b and a−1b = (uγ−1, η)−1(uγ−1, γ) = (uγ−1η, η−1γ). Now a computation
similar to that in Example 3.4 shows that∫
G

∫
H

f (a, a−1b)
δH(η)

δG(η)
dαrG(b)(a)dλ−1

u (b)

=
∫
G

∫
H

f ((uγ−1, η), (uγ−1η, η−1γ))
δH(η)

δG(η)
dαrG(uγ−1,γ)(uγ−1, η)dλ−1

u (uγ−1, γ)

=
∫
G

∫
H

f ((uγ−1, η), (uγ−1η, η−1γ))
δH(η)

δG(η)
dα(η)dλ−1(γ)

=
∫
G

∫
H

f ((uγ−1, η−1), (uγ−1η−1, ηγ))
1

δG(η)
dα(η)dλ−1(γ) (by changing η 7→η−1).

Now we change γ 7→ η−1γ. Then we use the relation dλ−1(η−1γ) = dλ−1(γ)/
δG(η) to see that the previous term equals∫
G

∫
H

f ((uγ−1η, η−1), (uγ−1, γ))dα(η)dλ−1(γ)

=
∫
G

∫
H

f ((uγ−1, η)−1, (uγ−1, γ))dα(uγ−1)dαrG(uγ−1,γ)(uγ−1, η)dλ−1
u (uγ−1, γ)

=
∫
G

∫
H

f (a−1, b)
δH(η)

δG(η)
dαrG(b)(a)dλ−1

u (b).

Thus {λ−1
x }x∈X is an H-quasi-invariant family of measures on G with δG/δH as

the adjoining function.

Let f ′ : X → Y be a proper map between locally compact spaces. Let B ⊆ Y,
A ⊆ f ′−1(B) and f : A → B be the map obtained by restricting the domain
and the codomain of f ′. Assume that A ⊆ X is closed. Then we claim that f is
proper. Let K ⊆ B be compact, then K is compact in Y also. Thus it is enough
to consider the case when B = Y, in which case f is the restriction of f ′ to the
closed subspace A. Since the inclusion map iA : A ↪→ X is closed, Chapter I,
Section 10.1, Proposition 2 of [2] shows that iA is proper. Hence f = f ′ ◦ iA is
proper.

EXAMPLE 3.14 (The induction correspondence). Let (G, α) be a locally com-
pact groupoid with a Haar system, H a closed subgroupoid. Let β be a Haar
system for H. Note that GH(0) is a G-H-bispace where the left and right actions
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are multiplication from the left and right, respectively. Both actions are free. We
claim that the actions of G and H are proper.

Let ι : G(0) → G be the inclusion map which is continuous. Then H(0) =

ι−1(H) ⊆ G(0) is closed.
Let Ψ : GH(0) ×H(0) H → GH(0) × GH(0) be the map Ψ(x, η) = (x, xη). Note

that Ψ is obtained from the proper map (x, η) 7→ (x, xη), G ×sG ,G(0),rG
G → G ×

G, by restricting the domain and codomain. If we prove that GH(0) ×H(0) H ⊆
G×sG ,G(0),rG

G is closed, then, from the discussion preceding this example, it will
follow that Ψ is proper.

Since H(0) ⊆ G(0) is closed,

(sG × rG)
−1(H(0)) = G×sG ,H(0),rG

G ⊆ G×sG ,G(0),rG
G

is closed where sG × rG : G ×sG ,G(0),rG
G → G(0) is the map (γ, η) 7→ sG(γ) =

rG(η). Now the projection on the second factor π2 : G ×sG ,H(0),rG
G → G is a

continuous, due to which GH(0) ×H(0) H = π−1
2 (H) ⊆ G ×sG ,H(0),rG

G is closed.
Thus GH(0) ×H(0) H ⊆ G×sG ,H(0),rG

G is closed and G×sG ,H(0),rG
G ⊆ G×sG ,G(0),rG

G is closed which implies that GH(0) ×H(0) H ⊆ G×sG ,G(0),rG
G is closed.

To see that the left action is proper, first note that GH(0) = s−1
G (H(0)) ⊆ G is

closed. Thus π−1
2 (GH(0)) = G×sG ,G(0),rG

H(0)
GH(0) ⊆ G×sG ,G(0),rG

G is closed. And

then arguing same as the right action shows that the left action is also proper.
Now it is not hard to see that G\GH(0) ≈ H(0). By Example 3.7, X produces

a topological correspondence from (G, α) to (H, β).
Though both actions are free and proper, this correspondence need not be a

groupoid equivalence as it might fail to satisfy condition (v) of Definition 3.10.
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