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ABSTRACT. It is an open question whether the Figà-Talamanca–Herz alge-
bra Ap(G) determines the group G. We consider Figà-Talamanca–Herz al-
gebras equipped with their p-operator space structure and we prove that two
locally compact groups G and H are isomorphic if and only if there exists
an algebra isomorphism Φ : Ap(G) → Ap(H) with p-completely bounded
norm ‖Φ‖pcb < (2p−2 + 1/2)1/p if 1 < p 6 2 or ‖Φ‖pcb < (21−p + 1)1/p if
2 6 p < ∞. In our second theorem, we prove an “almost norm one” version
of Host’s idempotents theorem for uniformly smooth or uniformly convex Ba-
nach spaces. As applications, we obtain several gap results: for instance for
norms of idempotent p-completely bounded multipliers and amenability con-
stant of Figà-Talamanca–Herz algebras.
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1. INTRODUCTION

For 1 6 p 6 ∞ and an abelian group G, the space Ap(G) has been de-
fined by A. Figà-Talamanca in [17]. Subsequently C.S. Herz [19] extended this
definition to general locally compact groups and proved that Ap(G) is a Banach
algebra, now usually called Figà-Talamanca–Herz algebras (see definition in Sec-
tion 2). In the case p = 2, A2(G) coincides with Eymard’s Fourier algebra [14].
It is a classical result of M.E. Walter [41] that two locally compact groups G and
H are isomorphic if and only if A2(G) and A2(H) are isometrically isomorphic
as Banach algebras. Actually, contractivity of the algebra isomorphism is suffi-
cient to identify the underlying groups, see Corollary 5.4 of [35]. For p = 1 or
∞, Ap(G) does not determine the group, however for 1 < p 6= 2 < ∞, it is
still an open question whether the Banach algebra Ap(G) up to isometric algebra
isomorphism determines the group. In the early seventies, N. Lohoué answered
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positively for abelian groups [32]. Recently M.G. Cowling revisited this question
and gave also a positive answer for connected Lie groups [7] and more gener-
ally the reader is referred to that paper for a nice summary of the known results
related to this question.

We consider Figà-Talamanca–Herz algebras equipped with their p-operator
space structure and p-completely bounded morphisms, see Section 2 for prelimi-
naries on these notions. This category has been initiated by G. Pisier in Chapter 8
of [36] and axiomatized by C. Le Merdy in [29]. Then M. Daws applied this the-
ory to define two p-operator space structures on Figà-Talamanca–Herz algebras
[9], here we consider the so-called dual p-operator space structure. The first idea
in our paper is to recast in this subcategory the open question mentioned above:
one can hope that the Figà-Talamanca–Herz algebra Ap(G) up to p-completely
isometric algebra isomorphism determines the group. In this paper, we even
prove a more accurate result.

THEOREM A. Let G and H be two locally compact groups. Let Φ : Ap(G) →
Ap(H) be a surjective algebra isomorphism. If one of the following conditions hold:

(i) for 1 < p 6 2, if ‖idM2 ⊗Φ‖ < (2p−2 + 1/2)1/p,
(ii) for 2 6 p < ∞, if ‖idM2 ⊗Φ‖ < (21−p + 1)1/p,

then there are t ∈ G and a topological isomorphism φ : H → G such that

Φ(u)(h) = u(tφ(h)),

for any u ∈ Ap(G), h ∈ H.
Consequently, Φ is actually p-completely isometric (i.e. for every n > 1, idMn ⊗Φ

is isometric).

The proof of Walter’s result (mentioned in the first paragraph) is by duality
and uses Kadison’s description of surjective isometries between von Neumann al-
gebras [28] (as A2(G)∗ = VN (G), the group von Neumann algebra of G). In the
case 1 < p 6= 2 < ∞, the difficulty is that no description of surjective isometries
or even p-complete isometries between the dual spaces of Figà-Talamanca–Herz
algebras is known (hence, a priori, our hypothesis on the p-completely bounded
norm of the algebra isomorphism does not seem helpful). To overcome this dif-
ficulty, we use a new trick for 2× 2 matrices with coefficients in the algebra of
bounded operators on an Lp-space. Consequently, we do not require a full “p-
complete hypothesis”, we just need tensorization by 2× 2 matrices. Moreover
one should note that our Theorem A reveals a gap phenomenon: an algebra iso-
morphism between Figà-Talamanca–Herz algebras is either p-completely isomet-
ric or has p-completely bounded norm greater than (2p−2 + 1/2)1/p if 1 < p 6 2
or (21−p + 1)1/p if 2 6 p < ∞.

Since a gap phenomenon appears in this structural result, intuitively, one
can expect gap phenomena to occur on other aspects of Figà-Talamanca–Herz al-
gebras. The second idea of this paper is to prove an “almost norm one” version of
Host’s idempotents theorem in order to exhibit such phenomena. We show gap
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results (see Corollaries 4.4, 4.5, 4.6 and 4.10 in Section 4) for: bounds of approx-
imate identities of ideals, p-completely bounded norms of homomorphisms (for
amenable groups), p-completely bounded norms of idempotents multipliers and
amenability constants of Figà-Talamanca–Herz algebras. These four gap results
are direct repercussions of our second theorem (in the next statement, E∗ denotes
the dual space of E and ‖α‖∞ = sup

g∈G
‖α(g)‖E∗ , idem for β).

THEOREM B. Let G be a locally compact group and S ⊂ G non-empty. Assume
that there exist a uniformly smooth Banach space E and mappings α : G → E∗, β :
G → E such that the indicator function of S satisfies for any g, h ∈ G, χS(gh−1) =
〈α(g), β(h)〉. Then, there exists υE > 1 such that if ‖α‖∞‖β‖∞ < υE, then S is a coset.

It is well-known that a Banach space is uniformly smooth if and only if
its dual space is uniformly convex. Moreover, uniform convexity or uniform
smoothness implies reflexivity (see e.g. [26] or [30]). Therefore, the assumption
of uniform smoothness could be replaced by uniform convexity in the statement
of Theorem B. In the proof, we will see that the constant υE > 1 depends only
on the modulus of uniform smoothness of E (or equivalently, by duality, on the
modulus of uniform convexity of E∗). Our Theorem B is related to Host’s the-
orem on idempotents of Fourier–Stieltjes algebras. For a locally compact group
G, Host’s theorem [21] states that an indicator function on G is the coefficient
of a unitary representation on a Hilbert space if and only if the support of this
function belongs to the coset ring of G (i.e. the ring of subsets of G generated by
cosets of open subgroups of G), for abelian groups, this characterization is due
to P.J. Cohen [6]. In particular, there is this following special case: the support
of an idempotent of a Fourier–Stieltjes algebra is exactly one coset if and only if
this idempotent has norm one (see Theorem 2.1 [23]). With this special case in
mind, our Theorem B must thus be understood as an “almost norm one” version
of Host’s theorem for uniformly smooth (or equivalently for uniformly convex)
Banach spaces. The use of these geometrical properties of Banach spaces has been
inspired from M.G. Cowling and G. Fendler paper [8].

2. PRELIMINARIES

2.1. ON p-OPERATOR SPACES AND p-COMPLETELY BOUNDED MAPS. Let us first
recall the category of p-operator spaces, for details the reader is referred to Chap-
ter 8 of [36] and [29]. For Banach spaces E and F, we denote B(E, F) the space
of all bounded operators from E into F equipped with the operator norm and we
denote B(E) = B(E, E). For 1 < p < ∞, a concrete p-operator space is a subspace
X ⊂ B(E) where E is a subspace of quotient of an Lp-space. Hence Mn(X ), the
vector space of all n × n matrices with coefficients in X , can be normed by the
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inclusion
Mn(X ) ⊂Mn(B(E)) = B(`n

p(E)),

where `n
p(E) is the `p-direct sum of n copies of E. Conversely, suppose that a

Banach space X is equipped with a sequence of norms ‖ · ‖n defined on Mn(X )
satisfying the following two conditions:

(i) for any m, n > 1, for any x ∈Mm(X ), y ∈Mn(X ),∥∥∥∥[ x 0
0 y

]∥∥∥∥
m+n

= max{‖x‖m, ‖y‖n};

(ii) for any n > 1, for any x ∈Mn(X ), a ∈Mm,n, b ∈Mn,m

‖axb‖m 6 ‖a‖B(`n
p ,`m

p )
‖x‖n‖b‖B(`m

p ,`n
p)

;

then there exist E a subspace of quotient of an Lp-space and a linear map J : X →
B(E) such that for every n > 1, the map idMn ⊗ J : Mn(X ) → B(`n

p(E)) is iso-
metric. This abstract characterization of p-operator spaces is due to C. Le Merdy
[29] (this is the p-analog of Ruan’s classical characterization of operator spaces,
corresponding to the case p=2, see e.g. [4], [13], [34], or [37]) and the sequence of
norms ‖ · ‖n on Mn(X ) satisfying conditions (i) and (ii) above is called a p-ope-
rator space structure onX . Now letX ⊂B(E), Y⊂B(F) be two p-operator spaces
and T :X →Y be a linear map, then T is said to be p-completely bounded if

sup
n
‖idMn ⊗ T‖B(`n

p(E),(`n
p(F)) < ∞

and in this case this supremum is called the p-completely bounded norm (or p-
cb norm in short) of T and is denoted ‖T‖pcb. Also T is said to be p-completely
isometric if idMn ⊗ T is isometric for every n > 1. We denote CBp(X ,Y) the
vector space of all p-completely bounded maps from X into Y . Let us review du-
ality for p-operator spaces: if X is a p-operator space, then its dual space X ∗ can
be equipped with a p-operator space structure via the identification Mn(X ∗) =
CBp(X ,Mn), for every n > 1. Let T : X → Y be a linear map between p-operator
spaces, then we always have for every n > 1,

‖idMn ⊗ T∗‖B(Mn(Y∗),Mn(X ∗)) 6 ‖idMn ⊗ T‖B(Mn(X ),Mn(Y)).

The reverse inequality is also always true in the case p = 2, but for p 6= 2, the
reverse inequality does not hold in general (see Lemma 4.5 [9] for details), this is
one important difference with operator space theory.

2.2. ON FIGÀ-TALAMANCA–HERZ ALGEBRAS. Let us review Figà-Talamanca–
Herz algebras (for details the reader is referred to [11], [15], [17], or [19]) and their
dual p-operator space structure. Let G be a locally compact group and 1< p<∞,
we denote λp : G→B(Lp(G)) the left regular representation on Lp(G) defined by

(λp(t) f )(s) = f (t−1s), for any s, t ∈ G, f ∈ Lp(G).
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Denote p′ the conjugate index of p, we recall that Ap(G) is the set of all complex-
valued functions defined on G admitting a representation of the form

u(t) = ∑
n
〈λp(t) fn, gn〉, for t ∈ G,

where fn ∈ Lp(G), gn ∈ Lp′(G) satisfy ∑
n
‖ fn‖p‖gn‖p′ < ∞ and the norm of u is

defined by

‖u‖Ap(G) = inf
{

∑
n
‖ fn‖p‖gn‖p′

}
,

where the infimum runs over all its representatives. Then C.S. Herz showed that
Ap(G) equipped with this norm and the pointwise operations is a commutative
Banach algebra. Denote the p-pseudomeasures PMp(G), the w∗-closed subalge-
bra of B(Lp(G)) generated by λp(G), then Ap(G)∗ = PMp(G) isometrically, via
the pairing: for L ∈ PMp(G) and u ∈ Ap(G) as above,

〈L, u〉 = ∑
n
〈L( fn), gn〉.

Since Ap(G)∗ = PMp(G) ⊂ B(Lp(G)), the algebra Ap(G)∗ admits a canonical
p-operator space structure. Hence, its dual space Ap(G)∗∗ can be equipped with
the p-operator space structure described in the previous paragraph. From the
canonical inclusion Ap(G) ⊂ Ap(G)∗∗, the Figà-Talamanca–Herz algebra Ap(G)
inherits this p-operator space structure, which is called the dual p-operator space
structure ofAp(G) in Sections 7 and 5.1 of [9]. By Proposition 5.6 of [9],Ap(G)∗ =
PMp(G) p-completely isometrically. Therefore, with these p-operator space
structures considered on Figà-Talamanca–Herz algebras and on the p-pseudo-
measures, we have that for any linear map T : Ap(G) → Ap(H), the map
T∗ : PMp(H)→ PMp(G) satisfies for every n > 1,

‖idMn ⊗ T∗‖ 6 ‖idMn ⊗ T‖.

We will only need this inequality for n = 2 in the proof of Theorem A.

3. DESCRIPTION OF p-COMPLETELY ISOMETRIC ISOMORPHISMS OF
FIGÀ-TALAMANCA–HERZ ALGEBRAS

Let us recall more precisely Walter’s result mentioned in the first paragraph
of the first section: let Φ : A2(G) → A2(H) be an isometric surjective algebra
isomorphism between Fourier algebras, then there are t ∈ G and a topological
isomorphism or anti-isomorphism φ : H → G such that

Φ(u)(h) = u(tφ(h)),

for any u ∈ A2(G), h ∈ H.
Our purpose in this section is to prove an analogous result for Figà-Tala-

manca–Herz algebra in the category of p-operator spaces.
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For u ∈ Ap(G), t ∈ G, the left translation of u by t is denoted t · u, i.e.
t · u(s) = u(t−1s), s ∈ G.

LEMMA 3.1. Let t ∈ G, then the left translation mapping u ∈ Ap(G) 7→ t · u ∈
Ap(G) is p-completely isometric.

Proof. Let [uij]i,j6n ∈Mn(Ap(G)), recall that

Mn(Ap(G)) ⊂Mn(Ap(G)∗∗) = CBp(Ap(G)∗,Mn),

therefore

‖[t · uij]i,j6n‖Mn(Ap(G))= sup
m∈N
‖idMm ⊗ [t · uij]‖B(Mm(Ap(G)∗),Mmn)

= sup
m∈N
{‖[〈t · uij, xkl〉]i,j,k,l‖Mmn , ‖[xkl ]k,l6m‖Mm(Ap(G)∗) 6 1}

= sup
m∈N
{‖[〈uij, λp(t−1)xkl〉]i,j,k,l‖Mmn , ‖[xkl ]‖Mm(Ap(G)∗)61}

= sup
m∈N
{‖[〈uij, xkl〉]i,j,k,l‖Mmn , ‖[xkl ]‖Mm(Ap(G)∗)61}

= sup
m∈N
‖idMm ⊗ [uij]‖B(Mm(Ap(G)∗),Mmn)

=‖[uij]i,j6n‖Mn(Ap(G)).

The fourth equality is coming from the fact that the mapping L ∈ Ap(G)∗ 7→
λp(t−1)L ∈ Ap(G)∗ is a surjective p-complete isometry.

In the next lemmata, B(Lp) denotes the algebra of all bounded operators on
an Lp-space equipped with the operator norm, whose unit is denoted by 1. We
compute the norm of a 2× 2 matrix with coefficients in B(Lp) using the isometric
identifications

M2(B(Lp)) = B(`2
p(Lp)) = B(Lp ⊕p Lp).

For 1 < p < ∞, we denote p′ the conjugate index of p; let us recall the Clarkson’s
inequalities (see [5] or [3]): let f , g ∈ Lp,

(i) For 1 < p 6 2: ‖ f + g‖p′
p + ‖ f − g‖p′

p 6 2(‖ f ‖p
p + ‖g‖

p
p)

p′−1.
(ii) For 2 6 p < ∞: ‖ f + g‖p

p + ‖ f − g‖p
p 6 2p−1(‖ f ‖p

p + ‖g‖
p
p).

Moreover, each of these inequalities is an equality if and only if f and g have
disjoint supports.

LEMMA 3.2. Let 1 < p < ∞ and U, V ∈ B(Lp) be two surjective isometries,
then ∥∥∥∥[ U UV

−1 V

]∥∥∥∥
M2(B(Lp))

=

∥∥∥∥[ 1 1
−1 1

]∥∥∥∥
M2(B(Lp))

= 2max(1/p,1/p′).

Proof. The first equality (right above) follows from the computation[
U−1 0

0 1

] [
U UV
−1 V

] [
1 0
0 V−1

]
=

[
1 1
−1 1

]
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in the Banach algebra M2(B(Lp)) and the obvious fact that∥∥∥∥[ U−1 0
0 1

]∥∥∥∥
M2(B(Lp))

=

∥∥∥∥[ 1 0
0 V−1

]∥∥∥∥
M2(B(Lp))

= 1.

Now let us denote

T =

[
1 1
−1 1

]
as an element of B(Lp ⊕p Lp). In the case 2 6 p < ∞, the inequality∥∥∥∥[ 1 1

−1 1

]∥∥∥∥
M2(B(Lp))

6 21/p′

follows from the second Clarkson’s inequality recalled above and the equality is
achieved by choosing a column vector with coefficients (in Lp) having disjoint
supports. The case 1 < p 6 2 is obtained by duality,

T∗ =
[

1 −1
1 1

]
: Lp′ ⊕p′ Lp′ −→ Lp′ ⊕p′ Lp′

and from the previous case, we get that ‖T∗‖ = 21/p, which gives the result.

The next lemma is the key result to recover the group structure from an
algebra isomorphism between Figà-Talamanca–Herz algebras.

LEMMA 3.3. Let 1 < p < ∞ and U, V ∈ B(Lp) be two surjective isometries,
X ∈ B(Lp) and c > 1.

(i) For 1 < p 6 2: if ∥∥∥∥[ U X
−1 V

]∥∥∥∥
M2(B(Lp))

6 c21/p,

then ‖X−UV‖B(Lp) 6 (4cp − 2p)1/p.
(ii) For 2 6 p < ∞: if ∥∥∥∥[ U X

−1 V

]∥∥∥∥
M2(B(Lp))

6 c21/p′ ,

then ‖X−UV‖B(Lp) 6 2(cp − 1)1/p.

Proof. Note first that[
U−1 0

0 1

] [
U X
−1 V

] [
1 0
0 V−1

]
=

[
1 U−1XV−1

−1 1

]
,

hence without loss of generality, we may assume that U = V = 1. For the case
2 6 p < ∞, let f ∈ Lp, then we can evaluate∥∥∥∥[ 1 X

−1 1

] [
− f

f

]∥∥∥∥
Lp⊕p Lp

6 c21/p′
∥∥∥∥[ − f

f

]∥∥∥∥
Lp⊕p Lp

.
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Raising to the power p, we get ‖X( f ) − f ‖p
p + ‖2 f ‖p

p 6 cp21+p/p′‖ f ‖p
p, which

gives the result for 2 6 p < ∞. The case 1 < p 6 2 is obtained by the same
evaluation.

The next result is probably well-known, we give a quick proof.

LEMMA 3.4. Let G be a locally compact group, and 1 < p < ∞; denote λp its left
regular representation on Lp(G). Let gj ∈ G be distinct and cj ∈ C for 1 6 j 6 n. Then∥∥∥ n

∑
j=1

cjλp(gj)
∥∥∥
B(Lp(G))

>
( n

∑
j=1
|cj|p

)1/p
.

Proof. Let U ⊂ G be a neighborhood of identity of finite measure such that
gjU, j = 1, . . . , n, are pairwise disjoint. Denote χU the characteristic function of
U. Then λgj(χU) = χgjU and

∥∥∥∑ cjλgj

∥∥∥p

B(Lp)
>

1
‖χU‖

p
p

∥∥∥∑ cjλgj(χU)
∥∥∥p

p
>

1
‖χU‖

p
p

∥∥∥∑ cjχgjU

∥∥∥p

p

>
1

‖χU‖
p
p

∑ |cj|p‖χgjU‖
p
p > ∑ |cj|p

which gives the result.

In particular, if g and g′ are distinct elements of G, then we have ‖λp(g)−
λp(g′)‖B(Lp(G)) > 21/p and this gap is exactly the reason why we do not need to
assume contractivity of the map idM2 ⊗ Φ and we can relax the norm condition
in the next theorem.

We are now ready to prove the main result of this section.

THEOREM A. Let G and H be two locally compact groups. Let Φ : Ap(G) →
Ap(H) be a surjective algebra isomorphism. If one of the following conditions hold:

(i) for 1 < p 6 2, if ‖idM2 ⊗Φ‖ < (2p−2 + 1/2)1/p,
(ii) for 2 6 p < ∞, if ‖idM2 ⊗Φ‖ < (21−p + 1)1/p,

then there are t ∈ G and a topological isomorphism φ : H → G such that

Φ(u)(h) = u(tφ(h)),

for any u ∈ Ap(G), h ∈ H.
Consequently, Φ is actually p-completely isometric (i.e. for every n > 1, idMn ⊗Φ

is isometric).

Proof. In this proof, we identify the elements of a group with their images
via the left regular representation inside the p-pseudomeasures (the dual space
of the associated Figà-Talamanca–Herz algebra), in other words, we consider

G ' λp(G) ⊂ PMp(G) ⊂ B(Lp(G)).
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It is well-known that, under this identification, the group coincides with the spec-
trum of the Figà-Talamanca–Herz algebra (the set of all non-zero multiplicative
linear functionals defined on it), see [20]. Therefore, as Φ is a surjective alge-
bra isomorphism, Φ∗ sends the spectrum of Ap(H) onto the spectrum of Ap(G),
thus the restriction of Φ∗ on H induces a homeomorphism between H and G (not
necessarily a group morphism). Let us denote t = Φ∗(eH) ∈ G and define a
surjective algebra isomorphism Ψ : Ap(G)→ Ap(H) by

Ψ(u) = Φ(t · u), u ∈ Ap(G),

where t · u denotes the left translation, i.e. (t · u)(s) = u(t−1s), for s ∈ G. Then
Ψ∗ : PMp(H)→PMp(G) is a surjective linear isomorphism such that Ψ∗(1)=1,

〈Ψ∗(eH), u〉 = 〈eH , Ψ(u)〉 = 〈eH , Φ(t · u)〉 = 〈t, t · u〉 = 〈eG, u〉.

The left translation is completely isometric on Ap(G) by Lemma 3.1, hence

‖idM2 ⊗Ψ∗‖ = ‖idM2 ⊗Φ∗‖ 6 ‖idM2 ⊗Φ‖
(see the end of Section 2 for this last inequality). Since Ψ is a surjective alge-
bra isomorphism, the restriction of Ψ∗ to the spectrum of Ap(H) also induces a
homeomorphism from H onto G, denoted φ : H → G in the rest of this proof. Let
us prove that φ is a group morphism. Let h1, h2 ∈ H ⊂ PMp(H). We recall that
M2(PMp(H)) ⊂M2(B(Lp(H))) isometrically, idem for G. Therefore,∥∥∥∥[ φ(h1) φ(h1h2)

−1 φ(h2)

]∥∥∥∥
M2(B(Lp(G)))

=

∥∥∥∥[ Ψ∗(h1) Ψ∗(h1h2)
Ψ∗(−1) Ψ∗(h2)

]∥∥∥∥
M2(B(Lp(G)))

6 ‖idM2 ⊗Ψ∗‖
∥∥∥∥[ h1 h1h2
−1 h2

]∥∥∥∥
M2(B(Lp(H)))

.

From now on, we suppose 26 p<∞ and ‖idM2⊗Φ‖< (21−p+1)1/p (the proof of
the case 1< p62 being similar with the corresponding bound). By Lemma 3.2∥∥∥∥[ h1 h1h2

−1 h2

]∥∥∥∥
M2(B(Lp(H)))

= 21/p′ ,

hence we can apply Lemma 3.3 to obtain the following strict inequality

‖φ(h1h2)− φ(h1)φ(h2)‖B(Lp(G)) 6 2(‖idM2 ⊗Ψ∗‖p − 1)1/p

6 2(‖idM2 ⊗Φ‖p − 1)1/p < 21/p.

This strict inequality implies that φ(h1h2) = φ(h1)φ(h2) by Lemma 3.4. Fi-
nally φ is a group isomorphism and Φ has the announced form.

Obviously, the mapping u ∈ Ap(G) 7→ u ◦ φ ∈ Ap(H) is p-completely
isometric, hence Φ is p-completely isometric by Lemma 3.1.

REMARK 3.5. In Walter’s result (mentioned at the beginning of this section),
the map φ is a group isomorphism or anti-isomorphism, but in our theorem, the
map φ is necessarily a group isomorphism. The fact that tensorization by 2× 2
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matrices rules out the anti-isomorphic case appears for instance in [27], where a 2-
isometries between noncommutative Lp implies the existence of ∗-isomorphism
between the underlying von Neumann algebras (whereas one just obtains a Jor-
dan isomorphism in the isometric case).

For Fourier algebras (corresponding to the case p = 2), we obtain the fol-
lowing corollary.

COROLLARY 3.6. Let G and H be locally compact groups. Let Φ : A2(G) →
A2(H) be a surjective algebra isomorphism. If ‖idM2 ⊗ Φ‖ <

√
3/2, then there are

t ∈ G and a topological isomorphism φ : H → G such that

Φ(u)(h) = u(tφ(h)),

for any u ∈ A2(G), h ∈ H.
Consequently, Φ is actually completely isometric.

REMARK 3.7. The two main ingredients of the proof of Theorem A are:
identifying the spectrum of the Banach algebra with the underlying group and
the fact that under this identification elements of the groups (inside the dual
space of the algebra) form a uniformly discrete set (here two distinct elements
are at distance 21/p).

4. OTHER GAP RESULTS FOR FIGÀ-TALAMANCA–HERZ ALGEBRAS

4.1. PROOF OF THEOREM B. We recall here two basic notions of geometry of Ba-
nach spaces; for more details the reader is referred to [12], [16] or [30]. As usual,
for a Banach space X, we denote its unit sphere SX = {x ∈ X : ‖x‖ = 1}. The
modulus of uniform smoothness is defined for τ > 0 by

ρX(τ) = sup
{‖x + z‖

2
+
‖x− z‖

2
− 1 : x ∈ SX , z ∈ X, ‖z‖ 6 τ

}
and X is said to be uniformly smooth if lim

τ→0
ρX(τ)/τ = 0. Recall that a Banach

space X is uniformly convex if its modulus of uniform convexity

δX(ε) = inf
{

1−
∥∥∥ x + y

2

∥∥∥, x, y ∈ SX , ‖x− y‖ > ε
}

is strictly positive for any ε ∈ (0, 2). It is well-known that X is uniformly smooth
if and only if X∗ is uniformly convex and in this case, we have the duality formula

ρX(τ) = sup
{τε

2
− δX∗(ε) : 0 6 ε 6 2

}
.

Moreover, if X is uniformly convex or uniformly smooth, then X is reflexive,
hence in Theorem B, uniform smoothness and uniform convexity play symmetric
roles. Recall that if a Banach space E is uniformly smooth (actually smoothness
is sufficient) then for every x ∈ E, there exists (and we will denote) the unique
x∗ ∈ SE∗ satisfying 〈x∗, x〉 = ‖x‖. Note that for any scalar λ > 0, (λx)∗ = x∗.
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LEMMA 4.1. Let E be uniformly smooth Banach space and x ∈ E. If ϕ ∈ SE∗

satisfies (1− 2δE∗(ε))‖x‖ < 〈ϕ, x〉, then ‖ϕ− x∗‖ < ε.

Proof. Since 〈ϕ + x∗, x〉 > 2(1 − δE∗(ε))‖x‖, we get that 1 −
∥∥∥ ϕ + x∗

2

∥∥∥ <

δE∗(ε), therefore ‖ϕ− x∗‖ < ε.

For the next statement, we recall the notation ‖α‖∞ = sup
g∈G
‖α(g)‖E∗ , idem

for β.

THEOREM B. Let G be a locally compact group and S ⊂ G non-empty. Assume
that there exist a uniformly smooth Banach space E and mappings α : G → E∗, β :
G → E such that the indicator function of S satisfies for any g, h ∈ G, χS(gh−1) =
〈α(g), β(h)〉. Then, there exists υE > 1 such that if ‖α‖∞‖β‖∞ < υE, then S is a coset.

Proof. Let M = ‖α‖∞‖β‖∞. Note that 1 6 M, since S is non-empty. Suppose
that M < (1− 2δE∗(ε))

−1 for some ε ∈ (0, 2) (we will determine a suitable ε later).
Then we have the following fact: for any s ∈ S,

‖‖α(s)‖−1α(s)− β(e)∗‖ < ε.

The reason is that

(1−2δE∗(ε))‖‖α(s)‖β(e)‖6 (1−2δE∗(ε))M<χS(s)< 〈‖α(s)‖−1α(s), ‖α(s)‖β(e)〉,

hence we can apply the previous lemma to obtain that ‖α(s)‖−1α(s) is close to
(‖α(s)‖β(e))∗, which is actually equal to β(e)∗.

Recall that S is a coset if and only if for any r, s, t ∈ S, the product rs−1t ∈ S.
Now fix r, s, t ∈ S,

χS(rs−1t)

= 〈‖α(r)‖−1α(r), ‖α(r)‖β(t−1s)〉= 〈‖α(r)‖−1α(r)−β(e)∗, ‖α(r)‖β(t−1s)〉

+〈β(e)∗−‖α(s)‖−1α(s), ‖α(r)‖β(t−1s)〉+〈‖α(s)‖−1α(s), ‖α(r)‖β(t−1s)〉

= 〈‖α(r)‖−1α(r)− β(e)∗, ‖α(r)‖β(t−1s)〉

+ 〈β(e)∗ − ‖α(s)‖−1α(s), ‖α(r)‖β(t−1s)〉+ ‖α(s)‖−1‖α(r)‖χS(t).

By the fact mentioned at the beginning of the proof, the norm of each of the first
two terms in the sum is smaller or equal to εM. For i = r, s, t, we have 1 =
χS(i) 6 ‖α(i)‖‖β(e)‖ 6 M, hence for the norm of the last term, we have M−1 6
‖α(s)‖−1‖α(r)‖ 6 M. From all this together, we get

|χS(rs−1t)− ‖α(s)‖−1‖α(r)‖| < 2εM,

and consequently χS(rs−1t) 6= 0 if the condition 2εM < M−1 is satisfied. But
M < (1 − 2δE∗(ε))

−1 and the modulus of uniform convexity of E∗ is a non-
decreasing positive function on (0, 2) which vanishes at zero, hence there exists
ε∗ ∈ (0, 2) such that 1 < (1− 2δE∗(ε∗))

−1 < 1/
√

2ε∗. Therefore, the preceding
condition can be satisfied and one can take υE = (1− 2δE∗(ε∗))

−1.
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REMARK 4.2. For any complex Banach space X, δX(ε) 6 ε2/4 (see [33]),
hence one can always take ε∗ > 2/5 in the proof of the previous theorem. For
applications below, we will just use the bound (1− 2δE∗(2/5))−1 (which is thus
not optimal).

4.2. APPLICATIONS OF THEOREM B. For π : G → B(E) an isometric represen-
tation on a Banach space E, two spaces of coefficients associated to π, denoted
Aπ and Bπ , are studied in [8] (the second one can be thought as a space of multi-
pliers of the first one). The next corollary is a straightforward application of our
Theorem B and Theorem 2 [8] (we keep their notation).

COROLLARY 4.3. Let G be a locally compact group, let C be one of the class derived
from Lp or U and π an isometric representation of G on E a Banach space in C. There
exists υ > 1 such that for S ⊂ G, if χS ∈ Bπ and ‖χS‖Bπ

< υ, then S is a coset.

Before giving gap results for Figà-Talamanca–Herz algebras, for 1 < p < ∞,
we give estimation of δp the modulus of uniform convexity of Lp-spaces. By
Clarkson’s inequalities (recalled at the beginning of Section 3), we have

δp(ε) > 1−
(

1− εr

2r

)1/r
, r = max

{
p,

p
p− 1

}
.

Actually, this is an equality in the case 2 6 p < ∞ and the case 1 < p < 2 can be
computed more precisely (see [18]).

For the next two corollaries, set

ιp =
1

2(1− 5−r)1/r − 1
, r = max

{
p,

p
p− 1

}
.

Note that 1 < ιp 6 (1− 2δp(2/5))−1.
The next corollary can be compared with Theorem 2.2 of [39] which de-

scribes ideals with approximate identity bounded by 1. Here, we prove the fol-
lowing self-improvement phenomenon.

For F a closed subset of G, we denote Ip(F) = {u ∈ Ap(G) : u|F = 0}.

COROLLARY 4.4. Let G be a locally compact group, 1 < p < ∞ and I be an ideal
of Ap(G). The following are equivalent:

(i) I has an approximate identity bounded by 1,
(ii) I has an approximate identity bounded by ιp,

(iii) there are H an open amenable subgroup of G and s ∈ G such that I = Ip(G\sH).

Proof. Following the notation of (i) implies (ii) in Theorem 2.2 of [39], the
indicator function χG\F can be written

χG\F(t) = 〈π(t)ξ, η〉,

where π is an isometric representation of Gd (i.e. G equipped with the discrete
topology) on an Lp′ -space, ξ ∈ Lp′ , η ∈ Lp and ‖ξ‖p′‖η‖p 6 ιp. We can apply
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Theorem B to obtain that G\F is a coset and the end of the proof follows Theo-
rem 2.2 of [39].

The description of completely bounded homomorphisms of Fourier alge-
bras of amenable groups in Theorem 3.7 of [23] has been adapted in [22], to
Figà-Talamanca–Herz algebra. But it deals only with p-completely contractive
homomorphisms (and not all p-completely bounded ones as in the Fourier alge-
bra case); here we can improve the bound. As in the previous corollary, the proof
is a modification of Theorem 12 of [22] using our Theorem B; we leave it to the
reader.

In the next statement, the map φ : Y → G is affine means that for any
x, y, z ∈ Y, φ(xy−1z) = φ(x)φ(y)−1φ(z).

COROLLARY 4.5. Let G and H be two locally compact amenable groups. Let Φ :
Ap(G) → Ap(H) be a nonzero algebra homomorphism. If ‖Φ‖pcb < ιp, then there
exist an open coset Y ⊂ H and a proper affine map φ : Y → G such that

Φ(u) =

{
u ◦ φ on Y,
0 off Y,

for any u ∈ Ap(G).
Consequently Φ is actually p-completely contractive, i.e. ‖Φ‖pcb 6 1.

Now let us show a gap result for multipliers of Figà-Talamanca–Herz alge-
bras. A function ϕ : G → C is a multiplier of Ap(G) if mϕ : u ∈ Ap(G) 7→ ϕu ∈
Ap(G) is well-defined. Considering the p-operator space structure on Ap(G) (re-
called in Section 2), we denote MpcbAp(G) the vector space of all multipliers of
Ap(G) which are p-completely bounded, it is equipped with norm defined by
‖ϕ‖pcb = ‖mϕ‖pcb. By Theorem 8.3 of [9], a p-completely bounded multiplier ϕ

of Ap(G) is exactly of the form described in Theorem B with continuous maps
α, β and E a subspace of a quotient of an Lp-space; moreover ‖ϕ‖pcb 6 C if and
only if ‖α‖∞‖β‖∞ 6 C.

By Chapter 11, Proposition 4 of [2], we have this general fact: if X is a sub-
space of a quotient of Y, then δX(ε) > δY(ε/2), for any ε ∈ (0, 2). Hence now, for
1 < p < ∞, denote

µp =
1

2(1− 10−r)1/r − 1
, r = max

{
p,

p
p− 1

}
.

As above, 1 < µp 6 (1− 2δp(1/5))−1.

COROLLARY 4.6. Let 1 < p < ∞ and a locally compact group G. For any
nonzero idempotent multiplier χ ∈ MpcbAp(G), either ‖χ‖pcb = 1 or ‖χ‖pcb > µp.

Proof. As χ is idempotent, ‖χ‖pcb > 1. Suppose that ‖χ‖pcb < µp, by The-
orem B, we obtain that the support of χ is a coset of G, i.e. it is of the form
sH for some fixed s ∈ G and some subgroup H of G. Considering the cosets
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space G/H as a discrete space, we can use the associated quasi-left regular rep-
resentation λp,H : G → B(`p(G/H)) defined on the canonical basis vectors by
λp(g)(δtH) = δgtH . Then one can check that χ(t) = 〈λp(t)(δH), δsH〉, therefore
‖χ‖pcb 6 1 by the description of p-completely bounded multipliers in the previ-
ous paragraph.

REMARK 4.7. If G is discrete, then the multipliers can be represented on an
Lp-space, instead of a subspace of a quotient of an Lp-space (see Theorems 5.11
and 8.2 in [36]), hence in this case, we can conclude that either ‖χ‖pcb = 1 or
‖χ‖pcb > ιp.

REMARK 4.8. This last corollary can be compared with [31] and Theorem 3.3
in [40]; it is proved that an idempotent completely bounded multiplier of a Fourier
algebra has completely bounded norm 1 or greater than 2/

√
3.

REMARK 4.9. Note that this gap phenomenon also occurs for idempotent
Schur multipliers on Schatten class, see [1].

To finish this section, let us state a gap result concerning the amenability
constant of Figà-Talamanca–Herz algebras. Recall that a Banach algebra A is
amenable if it admits an approximate diagonal. An approximate diagonal for A
is a bounded net (mα) in the projective tensor product A⊗̂A satisfying both con-
ditions: for any a ∈ A, amα −mαa → 0 and π(mα)a → a (here π : A⊗̂A −→ A
denotes the multiplication map), see B.E. Johnson’s paper [24] for details. Note
that, by this last condition, necessarily sup

α
‖mα‖ > 1. Let C > 1; a Banach algebra

A is said to be C-amenable if it admits an approximate diagonal (mα) satisfying
sup

α
‖mα‖ 6 C. The study of amenabilty constant of Fourier algebras started in

[25], and then continued in [38].
The proof of the next corollary is a modification of the proof of Theorem 2.9

in [39], where a certain indicator function is represented on a Banach space ob-
tained as the ultrapower of a space of the form `p(Lp(G, Lp′(G))). As taking
ultrapower preserves the modulus of uniform convexity, the constant γp below
can be computed with the modulus of uniform convexity of `p(Lp(G, Lp′(G)))
using [10] or [3].

COROLLARY 4.10. Let 1 < p < ∞. There is γp > 1 such that for any locally
compact group G, the following are equivalent:

(i) G is abelian;
(ii) for every p ∈ (1, ∞), Ap(G) is 1-amenable;

(iii) there is p ∈ (1, ∞) such that Ap(G) is 1-amenable;
(iv) there is p ∈ (1, ∞) such that Ap(G) is γp-amenable.
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