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ABSTRACT. We initiate the study of matrix convexity for operator spaces. We
define the notion of compact rectangular matrix convex set, and prove the
natural analogs of the Krein–Milman and the bipolar theorems in this context.
We deduce a canonical correspondence between compact rectangular matrix
convex sets and operator spaces. We also introduce the notion of boundary
representation for an operator space, and prove the natural analog of Arve-
son’s conjecture: every operator space is completely normed by its boundary
representations. This yields a canonical construction of the triple envelope of
an operator space.
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INTRODUCTION

It is hard to overstate the importance of the theory of convexity in analy-
sis. This is all the more true in the study of operator systems, which can be seen
as the noncommutative analog of compact convex sets. Indeed, given any op-
erator system S, the space of matrix-valued unital completely positive maps on
S is endowed with a natural notion of convex combinations with matrix coeffi-
cients (matrix convex combination), and a topology which is compact as long as
one restricts the target to a fixed matrix algebra. The compact matrix convex sets
that arise in this way have been initially studied by Effros and Wittstock in [19],
[48]. The program of developing the theory of compact matrix convex sets as
the noncommutative analog of compact convex sets has been proposed by Effros
in [19]. This program has been pursued in [21], [46], where matricial general-
izations of the classical Krein–Milman and bipolar theorems are proved. Com-
pact matrix convex sets and the corresponding notion of matrix extreme points
have been subsequently studied in a number of papers. This line of research
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has recently found outstanding applications. These include the matrix convexity
proof of Arveson’s conjecture on boundary representations due to Davidson and
Kennedy [16] building on previous work of Farenick [23], [24], and the work of
Helton, Klep, and McCullogh in free real algebraic geometry [30], [31].

The main goal of this paper is to provide the nonselfadjoint analog of the
results above in the setting of operator spaces. Precisely, we introduce the notion
of compact rectangular matrix convex set, which is the natural analog of the no-
tion of compact matrix convex set where convex combinations with rectangular
matrices are considered. We then prove generalizations of the Krein–Milman and
bipolar theorems in the setting of compact rectangular matrix convex sets. We
then deduce that compact rectangular matrix convex sets are in canonical func-
torial one-to-one correspondence with operator spaces. It follows from this that
any operator space is completely normed by the matrix-valued completely con-
tractive maps that are rectangular matrix extreme points.

We also introduce the notion of boundary representation for operator spaces.
The natural operator space analog of Arveson’s conjecture is then established:
any operator space is completely normed by its boundary representations. This
gives an explicit description of the triple envelope of an operator space in terms of
boundary representations. We also obtain in this setting an analog of Arveson’s
boundary theorem. As an application, we compute boundary representations for
multiplier spaces associated with pairs of reproducing kernel Hilbert spaces.

The results of this paper can be seen as the beginning of a convexity theory
approach to the study of operator spaces. Convexity theory has played a cru-
cial role in the setting of Banach spaces, such as in the groundbreaking work of
Alfsen and Effros on M-ideals in Banach spaces [2], [3] or the work of Lazar and
Lindenstrauss on L1-predual spaces [35], [36]. This work can be seen as a first step
towards establishing noncommutative analogs of the results of Alfsen–Effros and
Lazar–Lindenstrauss mentioned above. We will see below that the crucial notion
of collinearity for bounded linear functionals on a Banach space, which is of key
importance for the work of Alfsen and Effros on facial cones and M-ideals, has a
natural interpretation in the setting of rectangular matrix convexity.

The results of the present paper have already found application in [37]. The
fact established here that an operator space is completely normed by its matrix-
valued completely contractive maps that are rectangular matrix extreme is used
there to prove that the noncommutative Gurarij space introduced by Oikhberg
in [38] is the unique separable nuclear operator space with the property that the
canonical map from the maximal TRO to the triple envelope is injective.

This paper is divided into three sections, besides the introduction. In Sec-
tion 1 we introduce the notion of boundary representation for operator spaces,
and prove that any operator space is completely normed by its boundary repre-
sentations. The boundary theorem for operator spaces and applications to multi-
plier spaces for pairs of reproducing kernel Hilbert spaces are also considered in
this section. In Section 2 we introduce the notion of compact rectangular matrix
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convex set and rectangular matrix extreme point. We prove the Krein–Milman
and bipolar theorem for compact rectangular matrix convex sets, and deduce the
correspondence between compact rectangular matrix convex sets and operator
spaces. Finally in Section 3 we consider the notion of matrix-gauged space. Such
a concept has recently been introduced by Russell in [41] in order to provide
an abstract characterization of selfadjoint subspaces of C∗-algebras (selfadjoint
operator spaces), and to capture the injectivity property of B(H) in such a cate-
gory. We prove in Section 3 that the construction of the injective envelope and
the C∗-envelope of an operator system can be naturally generalized to the setting
of matrix-gauged spaces. A geometric approach to the study of matrix-gauged
spaces and selfadjoint operator spaces is also possible, as we show that matrix-
gauged spaces are in functorial one-to-one correspondence with compact matrix
convex sets with a distinguished matrix extreme point.

1. BOUNDARY REPRESENTATIONS AND THE SHILOV BOUNDARY OF AN OPERATOR SPACE

1.1. NOTATION AND PRELIMINARIES. Recall that a ternary ring of operators
(TRO) T is a subspace of the C∗-algebra B(H) of bounded linear operators on
a Hilbert space H that is closed under the triple product (x, y, z) 7→ xy∗z. An
important example of a TRO is the space B(H, K), where H, K are Hilbert spaces.
A TRO has a canonical operator space structure coming from the inclusion T ⊂
B(H), which does not depend on the concrete representation of T as a ternary
ring of operators on H. A triple morphism between TROs is a linear map that
preserves the triple product. Any TRO can be seen as the 1-2 corner of a canon-
ical C∗-algebra L(T) called its linking algebra. A triple morphism between TROs
can be seen as the 1-2 corner of a ∗-homomorphism between the corresponding
linking algebras [29]; see also Corollary 8.3.5 of [9].

The notions of (nondegenerate, irreducible, faithful) representations admit
natural generalizations from C∗-algebras to TROs. A representation of a TRO T
is a triple morphism θ : T → B(H, K) for some Hilbert spaces H, K. A linear map
ψ : T → B(H, K) is nondegenerate if, whenever p, q are projections in B(H) and
B(K), respectively, such that qθ(x) = θ(x)p = 0 for every x ∈ T, one has p = 0
and q = 0. Similarly a representation θ of T is irreducible if , whenever p, q are pro-
jections in B(H) and B(K), respectively, such that qθ(x)p + (1− q)θ(x)(1− p) =
θ(x) for every x ∈ T (equivalently, qθ(x) = θ(x)p for every x ∈ T), one has p = 1
and q = 1, or p = 0 and q = 0. Finally, θ is called faithful if it is injective or,
equivalently, completely isometric. Various characterizations of nondegenerate
and irreducible representations are obtained in Lemma 3.1.4 and Lemma 3.1.5 of
[10]. A concrete TRO T ⊂ B(H, K) is said to act nondegenerately or irreducibly
if the corresponding inclusion representation is nondegenerate or irreducible, re-
spectively.
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In the following we will use frequently without mention the Haagerup–
Paulsen–Wittstock extension theorem ([39], Theorem 8.2), asserting that, if H, K
are Hilbert spaces, then the space B(H, K) of bounded linear operators from H to
K is injective in the category of operator spaces and completely contractive maps.
We will also often use the canonical way, due to Paulsen, to assign to an operator
space X ⊂ B(H, K) an operator system S(X) ⊂ B(K⊕ H). This operator system,
called the Paulsen system, is defined to be the space of operators{ [λIK x

y∗ µIH

]
: x, y ∈ X, λ, µ ∈ C

}
where IH and IK denote the identity operator on H and K, respectively. Any com-
pletely contractive map φ : X → Y between operator spaces extends canonically
to a unital completely positive map S(φ) : S(X)→ S(Y) defined by[

λIK x
y∗ µIH

]
7→
[

λIK φ(x)
φ(y)∗ µIH

]
,

see Lemma 8.1 of [39]. (The Paulsen system is defined in Chapter 8 of [39] and
Section 1.3 of [9] only in the case when H = K. The same proofs from Chapter 8
of [39] and Section 1.3 of [9] apply with no change to this more general situation.)

1.2. DILATIONS OF RECTANGULAR OPERATOR STATES. Suppose that X is an op-
erator space. A rectangular operator state on X is a nondegenerate linear map
φ : X → B(H, K) such that ‖φ‖cb = 1. We say that a rectangular operator state
ψ : X → B(H̃, K̃) is a dilation of φ if there exist linear isometries v : H → H̃
and w : K → K̃ such that w∗ψ(x)v = φ(x) for every x ∈ X. The same proof as
Theorem 8.4 of [39] gives the following proposition.

PROPOSITION 1.1. Any rectangular operator state φ : T → B(H, K) on a TRO
T ⊂ B(H0, K0) can be dilated to a nondegenerate triple morphism θ : T → B(H̃, K̃). If
H0, K0, H, K are finite-dimensional, then one can take H̃ and K̃ to be finite-dimensional.

In order to prove Proposition 1.1 one can proceed as in Theorem 8.4 of [39],
by replacing M2(A) for a given C∗-algebra A with the C∗-algebra generated by
S(T) inside B(K0⊕H0). It is clear that in Proposition 1.1 one can choose θ and the
linear isometries v : H → H̃ and w : K → K̃ in such a way that K̃ is the linear span
of θ(T)θ(T)∗wK ∪ θ(T)vH, and H̃ is the linear span of θ(T)∗θ(T)vH ∪ θ(T)∗wK.
In this case, we call such a dilation θ a minimal dilation of φ. In the sequel, it will
often be convenient to identify H with a subspace of H̃ and K with a subspace
of K̃.

DEFINITION 1.2. Let φ : X → B(H, K) be a rectangular operator state and
let ψ : X → B(H̃, K̃) be a dilation of φ. We can assume that H ⊂ H̃ and K ⊂ K̃.
Let p be the orthogonal projection from H̃ onto H and let q be the orthogonal
projection from K̃ onto K. The dilation ψ is trivial if

ψ(x) = qψ(x)p + (1− q)ψ(x)(1− p)
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for every x ∈ X. The operator state φ on an operator space X is maximal if it has
no nontrivial dilation.

It is clear that, when X is an operator system, H̃ = K̃, q = p, and ψ is a unital
completely positive map, the notion of trivial dilation as above recovers the usual
notion of trivial dilation.

DEFINITION 1.3. Suppose that X is a subspace of a TRO T such that T is
generated as a TRO by X. The operator state φ on X has the unique extension
property if any rectangular operator state φ̃ of T whose restriction to X coincides
with φ is automatically a triple morphism.

We now observe that a rectangular operator state on an operator space is
maximal if and only if it has the unique extension property. The analogous fact
for unital completely positive maps on operator systems is well known; see [6].

LEMMA 1.4. For a TRO T, the set of positive elements of the C∗-algebra TT∗ is
the closed convex cone generated by {xx∗ : x ∈ T}.

Proof. Let C ⊂ TT∗ denote the closed convex cone generated by {xx∗ :
x ∈ T}. It is clear that C is contained in the set of positive elements of TT∗.
Conversely, suppose that a ∈ TT∗ is positive. By the remarks at the beginning of
Section 2.2 of [22], the C∗-algebra TT∗ admits a contractive approximate identity
(ei) of elements of the form

∑
j

xjx∗j

where xj ∈ T. For such an element of TT∗ one has that

a1/2
(

∑
j

xjx∗j
)

a1/2 = ∑
j
(a1/2xj)(a1/2xj)

∗ ∈ C,

as T is a left TT∗-module. Thus, a1/2eia1/2 ∈ C for every i. It follows that a =
lim

i
a1/2eia1/2 ∈ C.

LEMMA 1.5. Let T be a TRO, let ψ : T → B(H̃, K̃) be a completely contractive
linear map and suppose that H ⊂ H̃ and K ⊂ K̃ are closed subspaces with corresponding
orthogonal projections p ∈ B(H̃) and q ∈ B(K̃). If the map

θ : T → B(H, K), x 7→ qψ(x)p,

is a non-degenerate triple morphism, then ψ is a trivial dilation of θ.

Proof. By dilating ψ if necessary, we may assume without loss of generality
that ψ is a triple morphism. Thus, there exists a unique ∗-homomorphism

σ : TT∗ → B(K̃) such that σ(xy∗) = ψ(x)ψ(y)∗ (x, y ∈ T).

The assumption further implies that there exists a ∗-homomorphism

π : TT∗ → B(K) such that π(xy∗) = qψ(x)pψ(y)∗q.
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Since θ is non-degenerate, π is non-degenerate as well. Consider now the map

ϕ : TT∗ → B(K), a 7→ qσ(a)q− π(a).

We claim that ϕ = 0. To this end, observe that if x ∈ T, then

ϕ(xx∗) = qψ(x)(1− p)ψ(x)∗q > 0,

so ϕ is a positive map by Lemma 1.4. Let (ei) be an approximate identity for TT∗.
Since π is non-degenerate, π(ei) tends to q in the strong operator topology. Since
qσ(ei)q 6 q, it follows that ϕ(ei) = qσ(ei)q − π(ei) tends to zero in the strong
operator topology. Combining this with positivity of ϕ, it follows that ϕ = 0 (see,
e.g. Lemma I.9.5 of [15]).

In particular, we see that for x ∈ T,

0 = ϕ(xx∗) = qψ(x)(1− p)ψ(x)∗q = [qψ(x)(1− p)][qψ(x)(1− p)]∗,

so that qψ(x)(1− p) = 0. A similar argument, replacing TT∗ with T∗T, shows
that pψ(x)∗(1− q) = 0. Thus, ψ is a trivial dilation of θ.

PROPOSITION 1.6. Suppose that φ : X → B(H, K) is a rectangular operator state
of X, and T is a TRO containing X as a generating subspace. Then φ is maximal if and
only if it has the unique extension property.

Proof. Suppose initially that φ is maximal. Let φ̃ : T → B(H, K) be an ex-
tension of φ. Let θ : T → B(H̃, K̃) be a dilation of φ̃ to a triple morphism. We
can identify H with a subspace of H̃ and K with a subspace of K̃. Let p and q
be the orthogonal projections of H̃ and K̃ onto H and K, respectively. We have
that φ̃(x) = qθ(x)|H for every x ∈ T. The restriction of θ to X is a rectan-
gular operator state that dilates φ. By maximality of φ, we can conclude that
θ(x) = qθ(x)p + (1 − q)θ(x)(1 − p) for every x ∈ X. Since X generates T as
a TRO and θ is a triple morphism, it follows that this identity holds for every
x ∈ T. It follows that φ̃ is a triple morphism as well.

Suppose now that φ has the unique extension property. Let ψ : X →
B(H̃, K̃) be a dilation of φ. As above, we will identify H and K as subspaces
of H̃ and K̃, respectively, and denote by p and q the corresponding orthogonal
projections. We can extend ψ to a rectangular operator state ψ : T → B(H̃, K̃).
Observe that x 7→ qψ(x)|H is a rectangular operator state extending φ. Since φ
has the unique extension property, x 7→ qψ(x)|H is a triple morphism. Hence
from Lemma 1.5 we can conclude that ψ is a trivial dilation of φ. Since ψ was
arbitrary, we can conclude that φ is maximal.

Simple examples show that the implication “unique extension property im-
plies maximal” of Proposition 1.6 may fail if φ is a degenerate completely con-
tractive map. Indeed, there are degenerate representations of TROs which have
non-trivial dilations.
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1.3. BOUNDARY REPRESENTATIONS. Suppose that X is an operator space, and T
is a TRO containing X as a generating subspace.

DEFINITION 1.7. A boundary representation for X is a rectangular operator
state φ : X → B(H, K) with the property that any rectangular operator state on T
extending X is an irreducible representation of T.

In other words, a rectangular operator state φ : X → B(H, K) is a boundary
representation for X if and only if it has the unique extension property, and the
unique extension of φ to T is an irreducible representation of T. In the following
we will identify a boundary representation of X with its unique extension to an
irreducible representation of T. It follows from Proposition 1.6 that the notion of
boundary representation does not depend on the concrete realization of X as a
space of operators. We remark that our terminology differs slightly from Arve-
son’s original use of the term boundary representation in the context of operator
systems [4]. Indeed, for Arveson, a boundary representation is a representation
of the C∗-algebra generated by the operator system. More precisely, if S is an
operator system that generates the C∗-algebra A, then according to Arveson, a
boundary representation for S is an irreducible representation π of A such that
π is the unique completely positive extension of π|S. We follow the convention,
which is for example used in [16], that a boundary representation of S is a unital
completely positive map φ : S → B(H) such that every extension of φ to a com-
pletely positive map on A is an irreducible representation of A. Since this notion
does not depend on the concrete representation of S, these two points of view are
equivalent.

In the rest of this section, we will observe that the boundary representations
of X completely norm X. This will be deduced from the corresponding fact about
operator systems, proved in [6] in the separable case and in [16] in full generality.

PROPOSITION 1.8. Suppose ω : S(X)→ B(Lω) is a boundary representation of
the Paulsen system S(X) associated with X. Then one can decompose Lω as an orthogo-
nal direct sum Kω ⊕Hω in such a way that ω = S(ψ) for some boundary representation
ψ : X → B(Hω, Kω) of X.

Proof. Suppose that T ⊂ B(H, K) is a TRO containing X as a generating
subspace. Let A be the C∗-algebra generated by S(X) inside B(K⊕ H). Observe
that

A=
{ [x11 + λIK x12

x21 x22 + µIH

]
: x11∈TT∗, x12∈T, x21∈T∗, x22∈T∗T, λ, µ∈C

}
.

Since ω is a boundary representation of S(X), it extends to an irreducible repre-
sentation ω : A→ B(Lω). Set

qω := ω
( [IK 0

0 0

] )
, and pω := ω

( [0 0
0 IH

] )
.
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Observe that pω, qω ∈ B(Lω) are orthogonal projections such that pω + qω = ILω .
Denote by Kω the range of qω and by Hω the range of pω. The fact that ω is a
unital ∗-homomorphism implies that, with respect to the decomposition Lω =
Kω ⊕ Hω, one has that

ω =

[
σ θ
θ∗ π

]
where θ : T → B(Hω, Kω) is a triple morphism.

We claim that θ is irreducible. Suppose that p ∈ B(Hω) and q ∈ B(Kω) are
projections such that qθ(x) = θ(x)p for every x ∈ T. Since σ(ab∗) = θ(a)θ(b)∗

and π(a∗b) = θ(a)∗θ(b) for every a, b ∈ T, we can conclude that (q⊕ p)ω(x) =
ω(x)(q ⊕ p) for every x ∈ A. Since ω is an irreducible representation of A, it
follows that q⊕ p = 1 or q⊕ p = 0. This concludes the proof that θ is irreducible.

Denote by ψ the restriction of θ to X. Observe that ω=S(ψ). We claim that
ψ is maximal. Indeed, let φ : X→ B(H̃, K̃) be a dilation of ψ. We can identify H
and K as subspaces of H̃ and K̃, with corresponding orthogonal projections p and
q. Then S(φ) :S(X)→ B(K̃⊕H̃) is a dilation of ω. By maximality of ω, we have
that [

q 0
0 p

]
ω(x) = ω(x)

[
q 0
0 p

]
for every x ∈ S(X). It follows that qφ(x) = φ(x)p for every x ∈ X. This shows
that φ is a trivial dilation of ψ, concluding the proof that ψ is maximal.

The following result is now an immediate consequence of Proposition 1.8
and Theorem 3.4 of [16].

THEOREM 1.9. Suppose that X is an operator space. Then X is completely normed
by its boundary representations.

1.4. RECTANGULAR EXTREME POINTS AND PURE UNITAL COMPLETELY POSITIVE

MAPS. Suppose that X is an operator space, and φ : X → B(H, K) is a completely
contractive linear map. A rectangular operator convex combination is an expression
φ = α∗1φ1β1 + · · · + α∗nφnβn, where βi : H → Hi and αi : K → Ki are linear
maps, and φi : X → B(Hi, Ki) are completely contractive linear maps for i =
1, 2, . . . , ` such that α∗1α1 + · · · + α∗nαn = 1, and β∗1β1 + · · · + β∗nβn = 1. Such
a rectangular convex combination is proper if αi, βi are surjective, and trivial if
α∗i αi = λi1, β∗i βi = λi1, and α∗i φiβi = λiφ for some λi ∈ [0, 1].

DEFINITION 1.10. A completely contractive map φ : X → B(H, K) is a rect-
angular operator extreme point if any proper rectangular operator convex combina-
tion φ = α∗1φ1β1 + · · ·+ α∗nφnβn is trivial.

Suppose now that X is an operator system. An operator state on X is a unital
completely positive map φ : X → B(H). An operator convex combination is an
expression φ = α∗1φ1α1 + · · · + α∗nφnαn, where αi : H → Hi are linear maps,
and φi : X → B(Hi) are operator states for i = 1, 2, . . . , ` such that α∗1α1 + · · ·+
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α∗nαn = 1. Such an operator convex combination is proper if αi is right invertible
for i = 1, 2, . . . , `, and trivial if α∗i αi = λi1 and α∗i φiαi = λiφ for some λi ∈ [0, 1].

We say that φ is an operator extreme point if any proper operator convex com-
bination φ = α∗1φ1α1 + · · · + α∗nφnαn is trivial. The proof of Theorem B of [23]
shows that an operator state is an operator extreme point if and only if it is a pure
element in the cone of completely positive maps.

When H is finite-dimensional, the notion of proper operator convex combi-
nation coincides with the notion of proper matrix convex combination from [46].
In this case, the notion of operator extreme point coincides with the notion of
matrix extreme point from Definition 2.1 of [46].

LEMMA 1.11. Suppose that φ : X → B(H, K) is a completely contractive linear
map, Ψ : S(X) → B(K ⊕ H) is a completely positive map such that S(φ) − Ψ is
completely positive. Suppose that Ψ(1) is an invertible element of B(K⊕ H). Then there
exist positive invertible elements a ∈ B(K) and b ∈ B(H), and a completely contractive
map ψ : X → B(H, K) such that

Ψ
( [ λ x

y∗ µ

] )
=

[
a 0
0 b

] [
λIK ψ(x)

ψ(y)∗ µIH

] [
a 0
0 b

]
.

Proof. Fix a concrete representation X ⊂ B(L0, L1) of X. In this case S(X) ⊂
B(L1 ⊕ L0). Set Φ := S(φ) and let T ⊂ B(L0, L1) denote the TRO generated by
X. By Arveson’s extension theorem, we may extend Φ and Ψ to the C∗-algebra A
generated by S(X) inside B(L1 ⊕ L0) in such a way that Φ−Ψ is still completely
positive. In the following we regard Φ, Ψ as maps from A to B(K ⊕ H). Since
Φ − Ψ is completely positive, the argument in the proof of Theorem 8.3 in [39]
shows that there exist linear maps ϕ1 : TT∗ + CIL1 → B(K) and ϕ0 : T∗T +
CIL0 → B(H) such that

Ψ
( [x 0

0 0

] )
=

[
ϕ1(x) 0

0 0

]
and Ψ

( [0 0
0 y

] )
=

[
0 0
0 ϕ0(y)

]
.

In particular, w = Ψ(1) is a diagonal element, and the unital completely positive
map Ψ0 = w−1/2Ψw−1/2 satisfies

Ψ0

( [IL1 0
0 0

] )
=

[
IK 0
0 0

]
and Ψ0

( [0 0
0 IL0

] )
=

[
0 0
0 IH

]
.

It follows that the two projections
[

IL1 0
0 0

]
and

[
0 0
0 IL0

]
belong to the multi-

plicative domain of Ψ0 ([9], Proposition 1.3.11), so that there exists a completely
contractive map ψ : X → B(H, K) such that

Ψ0

( [λIL1 x
y∗ µIL0

] )
=

[
λIK ψ(x)

ψ(y)∗ µIH

]
,

which finishes the proof.
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PROPOSITION 1.12. Suppose that φ : X → B(H, K) is a completely contractive
map and S(φ) : S(X) → B(K ⊕ H) is the associated unital completely positive map
defined on the Paulsen system. The following assertions are equivalent:

(i) S(φ) is a pure completely positive map;
(ii) S(φ) is an operator extreme point;

(iii) φ is a rectangular operator extreme point.

Proof. We have already observed that the equivalence of (i) and (ii) holds,
as the argument in the proof of Theorem B in [23] shows.

(ii) ⇒(iii) Suppose that φ = α∗1φ1β1 + · · · + α∗`φ`β` is a proper rectangu-
lar matrix convex combination. Define γi = αi ⊕ βi for i = 1, 2, . . . , `. Then
we have that S(φ) = γ∗1S(φ1)γ1 + · · · + γ∗`S(φ`)γ` is a proper matrix convex
combination. Since by assumption S(φ) is an operator extreme point in the
state space of S(X), we can conclude that the proper matrix convex combination
γ∗1S(φ1)γ1 + · · ·+ γ∗`S(φ`)γ` is trivial. This implies that the proper rectangular
matrix convex combination α∗1φ1β1 + · · ·+ α∗`φ`β` is trivial as well.

(iii)⇒ (i) Suppose that S(φ) = Ψ1 + Ψ2 for some completely positive maps
Ψ1, Ψ2 : S(X) → B(K⊕ H). Fix ε > 0 and define Ξi = (1− ε)Ψi + (ε/2)S(φ) for
i = 1, 2. Then Ξ1, Ξ2 : S(X)→ B(K⊕ H) are completely positive maps such that
Ξ1 + Ξ2 = S(φ) and Ξi(1) is invertible for i = 1, 2; cf. the proof of Lemma 2.3 in
[16]. By Lemma 1.11 we have that, for i = 1, 2,

Ξi

( [ λ x
y∗ µ

] )
=

[
ai 0
0 bi

] [
λ1 ψi(x)

ψi(y)∗ µ1

] [
ai 0
0 bi

]
for some positive invertible elements ai ∈ B(K), bi ∈ B(H), and completely
contractive ψi : X → B(H, K). Thus we have that φ = a1ψ1b1 + a2ψ2b2 is a
proper rectangular operator convex combination. By assumption, we have that
a2

i = ti1, b2
i = ti1, and aiψibi = tiφ for some ti ∈ [0, 1] and i = 1, 2. It follows that

Ξi = tiS(φ) for i = 1, 2. Since this is true for every ε, it follows that the Ψi are also
scalar multiples of S(φ). This concludes the proof that S(φ) is pure.

The following corollary is an immediate consequence of Proposition 1.12,
Proposition 1.8, and Theorem 2.4 of [16].

COROLLARY 1.13. Suppose that φ : X → B(H, K) is a rectangular operator
state. If φ is rectangular operator extreme, then φ admits a dilation to a boundary repre-
sentation of X.

Suppose that X is a Banach space. We regard X as an operator space en-
dowed with its canonical minimal operator space structure obtained from the
canonical inclusion of X in the C∗-algebra C(Ball(X′)), where X′ denotes the
dual space of X. In [2] Alfsen and Effros considered the following notion. Sup-
pose that φ0, φ1 are nonzero contractive linear functionals on X. Then φ0, φ1 are
codirectional if ‖φ0 + φ1‖ = ‖φ0‖+ ‖φ1‖. This is equivalent to the assertion that
‖φ0 + φ1‖S((φ0 + φ1)/(‖φ0 + φ1‖)) = ‖φ0‖S(φ0/‖φ0‖) + ‖φ1‖S(φ1/‖φ1‖). The
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relation ≺ on nonzero contractive linear functionals is defined by setting φ ≺ ψ
if and only if either φ = ψ or φ and ψ− φ are codirectional. This is equivalent to
the assertion that ‖φ‖S(φ/‖φ‖) 6 ‖ψ‖S(ψ/‖ψ‖).

PROPOSITION 1.14. Suppose that X is a Banach space and φ is a bounded linear
functional on X of norm 1. The following statements are equivalent:

(i) φ is an extreme point of Ball(X′);
(ii) if ψ ∈ Ball(X′) is a nonzero linear functional such that ψ ≺ φ, then ψ is a scalar

multiple of φ;
(iii) φ is a rectangular extreme point.

Proof. The implications (iii)⇒ (i)⇒ (ii) are straightforward.
(ii)⇒ (iii) Suppose that, for every nonzero ψ ∈ Ball(X′), ψ ≺ φ implies that

ψ is a scalar multiple of φ. The proof of Proposition 1.12 shows that it suffices
to show that every proper rectangular convex combination of two elements is
trivial. Thus, consider a rectangular convex combination φ = s0t0φ0 + s1t1φ1 for
some φ0, φ1 ∈ Ball(X′) and non-zero s0, s1, t0, t1 ∈ C such that |s0|2 + |s1|2 = 1
and |t0|2 + |t1|2 = 1. Observe that

1 = ‖s0t0φ0 + s1t1φ1‖ 6 ‖s0t0φ0‖+ ‖s1t1φ1‖
6 |s0t0|‖φ0‖+ |s1t1|‖φ1‖ 6 |s0t0|+ |s1t1| 6 1.

Hence ‖s0t0φ0‖+ ‖s1t1φ1‖ = ‖φ0‖ = ‖φ1‖ = 1 and |s0| = |t0| and |s1| = |t1|. By
hypothesis we have that s0t0φ0 = ρ0φ and s1t1φ1 = ρ1φ for some ρ0, ρ1 ∈ C. In
particular, |ρi| = |si|2 = |ti|2 for i = 0, 1. Since φ = s0t0φ0 + s1t1φ1, it follows that
ρ0 + ρ1 = 1. Combined with |ρ0| + |ρ1| = 1, this implies that ρ0, ρ1 ∈ [0, 1], so
that the rectangular convex combination was trivial.

1.5. TRO-EXTREME POINTS. Suppose that X is an operator space and ϕ : X →
B(H, K) is a completely contractive map. We say that ϕ is a TRO-extreme point
if whenever ϕ = α∗1 ϕ1β1 + · · · + α∗` ϕ`β` is a proper rectangular matrix convex
combination such that ϕi : X → B(H, K) for i = 1, 2, . . . , `, then α∗i αi = ti1, β∗i βi =
ti1, and α∗i ϕiβi = ti ϕ for some ti ∈ [0, 1]. When H, K are finite-dimensional, this
is equivalent to requiring that there exist unitaries ui ∈ Mn(C) and wi ∈ Mm(C)
such that ϕi = u∗i ϕwi. This can be seen arguing as in the proof of Lemma 2.7
below. The notion of TRO-extreme point can be seen as the operator space analog
of the notion of C∗-extreme point considered in [25], [26], [32].

A similar proof as Theorem B of [23] gives the following lemma.

LEMMA 1.15. Let X be an operator space, and A be the C∗-algebra generated by
S(X). If ϕ : X → B(H, K) is a TRO-extreme point such that the range of ϕ is an
irreducible subspace of B(H, K), then there exists a pure unital completely positive map
Φ : A→ B(K⊕ H) that extends S(ϕ).

Using this lemma, one can prove similarly as Theorem C of [23] the follow-
ing fact.
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PROPOSITION 1.16. Suppose that T is a TRO, and ϕ : T → B(H, K) is a TRO-
extreme point. Then there exist pairwise orthogonal projections (pi)i∈I in B(H) and
(qi)i∈I in B(K) such that pi ϕqi is rectangular operator extreme for every i, and pi ϕqj =
0 for every i 6= j.

1.6. THE SHILOV BOUNDARY OF AN OPERATOR SPACE. Suppose that X is an op-
erator space. A triple cover of X is a pair (ι, T) where T is a TRO and ι : X → T is
a completely isometric linear map whose range is a subspace of T that generates
T as a TRO. Among the triple covers there exists a canonical one: the triple enve-
lope. This is the (unique) triple cover (ιe, Te(X)) with the property that for any
other triple cover (ι, T) of X, there exists a triple morphism θ : T → Te(X) such
that θ ◦ ι = ιe. The existence of the triple envelope was established by Hamana in
[28] using the construction of the injective envelope of an operator space; see also
Section 4.4 of [9].

The triple envelope of an operator space is referred to as the (noncommu-
tative) Shilov boundary in [8]. It is remarked in [8] at the beginning of Section 4,
referring to the Shilov boundary of an operator space, that “the spaces above are
not at the present time defined canonically”, and “this lack of canonicity is always
a potential source of blunders in this area, if one is not careful about various iden-
tifications”. We remark here that the theory of boundary representations provides
a canonical construction of the Shilov boundary of an operator space X. Indeed
one can consider ιe : X → B(H, K) to be the direct sum of all the boundary rep-
resentations for X, and then let (ιe, Te(X)) be the subTRO of B(H, K) generated
by the image of ιe. Proposition 1.6 implies that ιe is maximal, so we may argue
as in the proof of Theorem 4.1 in [17] that Te(X) is indeed the triple envelope of
X. It also follows that if X has a completely isometric boundary representation
θ : X → B(H), then the triple envelope of X is the TRO generated by the range of
θ inside B(H).

1.7. THE SHILOV BOUNDARY OF A BANACH SPACE. A TRO T is commutative if
xy∗z = zy∗x for every x, y, z ∈ T. Several equivalent characterizations of commu-
tative TROs are provided in Proposition 8.6.5 of [9]. Suppose that E is a locally
trivial line bundle over a locally compact Hausdorff space U. Then the space
Γ0(E) of continuous sections of E that vanish at infinity is a commutative TRO
such that Γ0(E)∗Γ0(E) = C0(E). Conversely, it is observed in Section 4 of [8] (see
also [18]) that any commutative TRO is of this form. One can also describe the
commutative TROs as the Cσ-spaces from the Banach space literature.

Suppose that E is a locally trivial line bundle over a locally compact Haus-
dorff space U with point at infinity ∞ and X ⊂ Γ0(E) be a closed subspace. As-
sume that the set of elements {〈x, y〉 : x, y ∈ X} of C0(U) separates the points of
U and does not identitically vanish at any point of U. This is equivalent to the
assertion that X generates Γ0(E) as a TRO, as proved in Theorem 4.20 of [8]. An
irreducible representation of Γ0(E) is of the form x 7→ x(ω0) for some ω0 ∈ U.
A linear map from Γ0(E) to C of norm 1 has the form x 7→

∫
x(ω)dµ(ω) for
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some Borel probability measure µ on U. We say that µ is a representing measure for
ω0 ∈ U if ∫

x(ω)dµ(ω) = x(ω0) for every x ∈ X.

A point ω0 ∈ U is a Choquet boundary point if the point mass at ω0 is the unique
representing measure for ω0. It follows from the observations above that ω0 is a
Choquet boundary point for X if and only if the map x 7→ x(ω0) is a boundary
representation for X. The Choquet boundary Ch(X) of X is the set of Choquet
boundary points of X.

Suppose that ∂SX ∪ {∞} is the closure of Ch(X) ∪ {∞} inside U ∪ {∞}.
Then it follows from Theorem 1.9 that E|∂SX is the Shilov boundary of X in the
sense of Theorem 4.25 in [8]. This means that the linear map X → Γ0(E|∂SX), x 7→
x|∂SX is isometric, and for any locally trivial line bundle over a locally compact
Hausdorff space V and linear isometry J : X → Γ0(V) with the property that
the set {J(x)∗ J(y) : x, y ∈ X} separates the points of V and does not identically
vanish at any point of V, there exists a proper continuous injection ϕ : ∂SX → V
with the property that J(x) ◦ ϕ = x|∂SX for every x ∈ X. This gives a canonical
construction of the Shilov boundary of a Banach space, analogous to the canonical
construction of a Shilov boundary of a unital function space; see Section 4.1 of [9].

1.8. THE RECTANGULAR BOUNDARY THEOREM. Arveson’s boundary theorem
([5], Theorem 2.1.1) asserts that if S ⊂ B(H) is an operator system which acts
irreducibly on H such that the C∗-algebra C∗(S) contains the algebra of compact
operatorsK(H), then the identity representation of C∗(S) is a boundary represen-
tation for S if and only if the quotient map B(H)→ B(H)/K(H) is not completely
isometric on S.

The following result is a rectangular generalization of Arveson’s boundary
theorem.

THEOREM 1.17. Let X ⊂ B(H, K) be an operator space such that the TRO T
generated by X acts irreducibly and such that T ∩ K(H, K) 6= {0}. Then the identity
representation of T is a boundary representation for X if and only if the quotient map
B(H, K)→ B(H, K)/K(H, K) is not completely isometric on X.

Proof. Suppose first that the quotient map π is completely isometric on X.
Then π, regarded as a map from X → π(X), admits a completely isometric in-
verse, which extends to a complete contraction ψ : B(H, K)/K(H, K)→ B(H, K).
Clearly, ψ ◦ π is a completely contractive map which extends the inclusion of X
into B(H, K), but it does not extend the inclusion of T into B(H, K), since it anni-
hilates the compact operators.

Conversely, suppose that the quotient map is not completely isometric on
X. Let S(X) ⊂ B(K ⊕ H) denote the Paulsen system associated with X. We will
verify that S(X) satisfies the assumptions of Arveson’s boundary theorem.

To see that S(X) acts irreducibly, suppose that p is an orthogonal projection
on K⊕H which commutes with S(X). In particular, p commutes with IK ⊕ 0 and
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0⊕ IH , from which we deduce that p = p1⊕ p2, where p1 ∈ B(K) and p2 ∈ B(H)
are orthogonal projections. For x ∈ X, we therefore have[

0 p1x
0 0

]
=

[
p1 0
0 p2

] [
0 x
0 0

]
=

[
0 x
0 0

] [
p1 0
0 p2

]
=

[
0 xp2
0 0

]
,

hence p1x = xp2 for all x ∈ X. Since X acts irreducibly, it follows that either
p1 ⊕ p2 = 0 or p1 ⊕ p2 = IK⊕H , so that S(X) acts irreducibly. The assumption
that T contains a non-zero compact operator implies that S(X) contains a non-
zero compact operator, hence by irreducibility of S(X), we see that K(K⊕ H) ⊂
C∗(S(X)).

Since the quotient map B(H, K) → B(H, K)/K(H, K) is not completely iso-
metric on X, there exists x ∈ Mn(X) and k ∈ Mn(K(H, K)) such that ‖x− k‖ <
‖x‖. Regarding x as an element of Mn(S(X)) in the canonical way and cor-
respondingly k as an element of Mn(K(K ⊕ H)), we see that the quotient map
B(K ⊕ H) → B(K ⊕ H)/K(K ⊕ H) is not completely isometric on S(X). Thus,
Arveson’s boundary theorem implies that the identity representation is a bound-
ary representation of S(X). According to Proposition 1.8, there exists a boundary
representation ψ : X → B(L1, L2) of X such that S(ψ) is the inclusion of S(X) into
B(K ⊕ H). It easily follows now that L1 = H, L2 = K and that ψ is the inclusion
of X into B(H, K), which finishes the proof.

1.9. RECTANGULAR MULTIPLIERS. A reproducing kernel Hilbert space H on a set X
is a Hilbert space of functions on X such that for every x ∈ X, the functional

H → C, f 7→ f (x),

is bounded. The unique function k : X × X → C which satisfies k(·, x) ∈ H for
all x ∈ X and

〈 f , k(·, x)〉 = f (x)
for all x ∈ X and f ∈ H is called the reproducing kernel of H. We will always
assume that H has no common zeros, meaning that there does not exist x ∈ X
such that f (x) = 0 for all x ∈ X. Equivalently, k(x, x) 6= 0 for all x ∈ X. We
refer the reader to the books [1] and [40] for background material on reproducing
kernel Hilbert spaces.

If H and K are reproducing kernel Hilbert spaces on the same set X, we
define the multiplier space

Mult(H, K) = {ϕ : X → C : ϕ · f ∈ K for all f ∈ H},
where (ϕ · f )(x) = ϕ(x) f (x) for x ∈ X; see Section 5.7 of [40]. By Theorem 5.21
of [40], every ϕ ∈ Mult(H, K) induces a bounded multiplication operator Mϕ :
H → K. Moreover, since K has no common zeros, every multiplier ϕ is uniquely
determined by its associated multiplication operator Mϕ. We may thus regard
Mult(H, K) as a subspace of B(H, K).

The best studied case occurs when H = K, in which case Mult(H) =
Mult(H, H) is an algebra, called the multiplier algebra of H ([1], Section 2.3).
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Nevertheless, the rectangular case of two different reproducing kernel Hilbert
spaces has been studied as well, see for example [44] and [45], where multipliers
between weighted Dirichlet spaces are investigated.

We say that a reproducing kernel Hilbert space K on X with reproducing
kernel k is irreducible if X cannot be partitioned into two non-empty sets X1 and
X2 such that k(x, y) = 0 for all x ∈ X1 and y ∈ X2. This definition is more general
than the definition of irreducibility in Definition 7.1 of [1], but it suffices for our
purposes.

For the next lemma, we observe that if H contains the constant function 1,
then Mult(H, K) is contained in K.

LEMMA 1.18. Let H and K be reproducing kernel Hilbert spaces on the same set.
Suppose that:

(i) H contains the constant function 1;
(ii) Mult(H, K) is dense in K; and

(iii) K is irreducible.
Then Mult(H, K) ⊂ B(H, K) acts irreducibly.

Proof. Suppose that p ∈ B(H) and q ∈ B(K) are orthogonal projections
which satisfy qMϕ = Mϕ p for all ϕ ∈ Mult(H, K). Define ψ = p1 ∈ H. Then for
all ϕ ∈ Mult(H, K), the identity

qϕ = qMϕ1 = Mϕ p1 = ψϕ

holds. Since Mult(H, K) is dense in K, we deduce that ψ ∈ Mult(K) and that
q = Mψ. We claim that ψ is necessarily constant. To this end, let k denote the
reproducing kernel of K. Note that Mψ is in particular selfadjoint, so that

ψ(x)k(x, y) = 〈Mψk(·, y), k(·, x)〉 = 〈k(·, y), Mψk(·, x)〉 = ψ(y)k(x, y)

for all x, y ∈ X. Hence ψ(x) is real for all x ∈ X and ψ(x) = ψ(y) if k(x, y) 6= 0.
Fix x0 ∈ X, and suppose for a contradiction that

X1 = {x ∈ X : ψ(x) = ψ(x0)}

is a proper subset of X and let X2 = X \ X1. If x ∈ X1 and y ∈ X2, then ψ(y) 6=
ψ(x0) = ψ(x), hence k(x, y) = 0. This contradicts irreducibility of K, so that ψ
is constant. Moreover, since Mψ is a projection, we necessarily have ψ = 1 or
ψ = 0. If ψ = 1, then q = Mψ = IK and Mϕ(IH − p) = 0 for all ϕ ∈ Mult(H, K).
Similarly, if ψ = 0, then q = 0 and Mϕ p = 0 for all ϕ ∈ Mult(H, K). We may thus
finish the proof by showing that⋂

ϕ∈Mult(H,K)

ker(Mϕ) = {0}.

To this end, note that if x ∈ X, then { f ∈ K : f (x) = 0} is a proper closed
subspace of K, as K has no common zeros. Since Mult(H, K) is dense in K, it
cannot be contained in such a subspace, thus for every x ∈ X, there exists ϕ ∈
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Mult(H, K) such that ϕ(x) 6= 0. If f ∈ H satisfies Mϕ f = 0 for all ϕ ∈ Mult(H, K),
it therefore follows that f (x) = 0 for all x ∈ X, that is, f = 0, as desired.

We can now use the rectangular boundary theorem to show that for many
multiplier spaces, the identity representation is always a boundary representa-
tion.

PROPOSITION 1.19. Let H and K be reproducing kernel Hilbert spaces on the
same set and let M = Mult(H, K). Suppose that:

(i) H contains the constant function 1;
(ii) M is dense in K;

(iii) K is irreducible; and
(iv) M contains a non-zero compact operator.

Then the identity representation is a boundary representation of M. In particular, the
triple envelope of M is the TRO generated by M.

Proof. Lemma 1.18 shows that M acts irreducibly. Moreover, the quotient
map by the compacts is not isometric on M since M contains a non-zero compact
operator. An application of the rectangular boundary theorem (Theorem 1.17)
now finishes the proof.

For s ∈ R, let

Hs =
{

f (z) =
∞

∑
n=0

anzn : ‖ f ‖H2
s
=

∞

∑
n=0
|an|2(n + 1)−s < ∞

}
.

This is a reproducing kernel Hilbert space on the open unit disc D with reproduc-
ing kernel

ks(z, w) =
∞

∑
n=0

(n + 1)s(zw)n.

This scale of spaces is a frequent object of study in the theory of reproducing
kernel Hilbert spaces. The space H0 is the classical Hardy space H2, the space
H−1 is the Dirichlet space, and the space H1 is the Bergman space.

The elements of Mult(Hs, Ht) were characterized in [44] and [45]. We re-
mark that the spaces Dα of [45] are related to the spaces above via the formula
Dα = H−α. In [44], a slightly different convention is used. There, Dα = H−2α,
at least with equivalent norms. Theorem 4 of [45] shows that Mult(Hs, Ht) =
{0} if s > t. On the other hand, if s 6 t, then Hs ⊂ Ht, hence Mult(Hs) ⊂
Mult(Hs, Ht). Since Mult(Hs) at least contains the polynomials, the same is true
for Mult(Hs, Ht).

In the square case s = t, boundary representations of operator spaces related
to the algebras Mult(Hs), and their analogs on higher dimensional domains, were
studied in [13], [27], [33]; see in particular Section 2 of [27] and Section 5.2 of [33].
It is well known that if s > 0, then Mult(Hs) = H∞, the algebra of all bounded
analytic functions on the unit disc, endowed with the supremum norm. This
can be deduced, for example, from Proposition 26(ii) of [43]. In particular, the
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C∗-envelope of Mult(Hs) is commutative, so that the identity representation of
Mult(Hs) on Hs is not a boundary representation. On the other hand, if s < 0,
then the identity representation of Mult(Hs) on Hs is a boundary representation.
This follows, for instance, from Corollary 2 in Section 2 of [5] and its proof.

We use the results above to prove that, in the rectangular case, the identity
representation is always a boundary representation.

COROLLARY 1.20. If s < t, then the identity representation is a boundary repre-
sentation of Mult(Hs, Ht).

Proof. We verify that the pair (Hs, Ht) satisfies the assumptions of Proposi-
tion 1.19. It is clear that Hs contains the constant function 1. By the remark above,
Mult(Hs, Ht) contains the polynomials, and is therefore dense in K. Moreover,
since kt(0, w) = 1 for all w ∈ D, the space Ht is irreducible. Finally, since

‖zn‖2
Ht

‖zn‖2
Hs

= (n + 1)s−t,

which tends to zero as n → ∞, the inclusion Hs ⊂ Ht is compact, so that M1 ∈
Mult(Hs, Ht) is a compact operator. Therefore, the result follows from Proposi-
tion 1.19.

2. OPERATOR SPACES AND RECTANGULAR MATRIX CONVEX SETS

In the following we will use notation from [21] and [46]. In particular, if V
and V′ are vector spaces in duality via a bilinear map 〈·, ·〉, x = [xij] ∈ Mn,m(V),
and ψ = [ψαβ] ∈ Mr,s(V′), then we let 〈〈x, ψ〉〉 be the element [〈xij, ψαβ〉] of
Mnr,ms(C), where the rows of 〈〈x, ψ〉〉 are indexed by (i, α) and the columns of
〈〈x, ψ〉〉 are indexed by (j, β). We also let ψ(n,m) be the map 〈〈·, ψ〉〉 : Mn,m(V) →
Mnr,ms(C).

2.1. RECTANGULAR MATRIX CONVEX SETS.

DEFINITION 2.1. A rectangular matrix convex set in a vector space V is a
collection K = (Kn,m) of subsets of Mn,m(V) with the property that for any
αi ∈ Mni ,n(C) and βi ∈ Mmi ,m(C) and vi ∈ Kni ,mi for 1 6 i 6 ` such that

‖α∗1α1 + · · ·+ α∗`α`‖‖β∗1β1 + · · ·+ β∗`β`‖ 6 1

one has that α∗1v1β1 + · · ·+ α∗`v`β` ∈ Kn,m.

When V is a topological vector space, we say that K is compact if Kn,m is
compact for every n, m. The following characterization of rectangular matrix con-
vex sets can be easily verified using Proposition 1.1 and the fact that any finite-
dimensional representation of Mn,m(C) as a TRO is unitarily conjugate to a finite
direct sum of copies of the identity representation ([10], Lemma 3.2.3).
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LEMMA 2.2. Suppose that K = (Kn,m) where Kn,m ⊂ Mn,m(V). The following
assertions are equivalent:

(i) K is a rectangular convex set;
(ii) x ⊕ y ∈ Kn+m,r+s for any x ∈ Kn,r and y ∈ Km,s, and α∗xβ ∈ Kr,s for any

x ∈ Kn,m, α ∈ Mn,r(C) and β ∈ Mm,s(C) with ‖α∗α‖‖β∗β‖ 6 1;
(iii) x⊕ y ∈ Kn+m,r+s for any x ∈ Kn,r and y ∈ Km,s, and (σ⊗ idV)[Kn,m] ⊂ Kr,s

for any completely contractive map σ : Mn,m(C)→ Mr,s(C).

It is clear that, if K is a rectangular matrix convex set, then (Kn,n) is a matrix
convex set in the sense of [48]. Furthermore if K and T are rectangular matrix
convex sets such that Tn = Kn for every n ∈ N then Tn,m = Kn,m for every n, m ∈
N. If S = (Sn,m) is a collection of subsets of a (topological) vector space V, the
(closed) rectangular matrix convex hull of S is the smallest (closed) rectangular
matrix convex set containing S.

EXAMPLE 2.3. Suppose that X is an operator space. Set Kn,m to be space of
completely contractive maps from X to Mn,m(C). Then CBall(X) = (Kn,m) is a
rectangular matrix convex set.

2.2. THE RECTANGULAR POLAR THEOREM. Suppose that V and V′ are vector
spaces in duality. We endow both V and V′ with the weak topology induced
from such a duality. Let S = (Sn,m) be a collection of subsets Sn,m ⊂ Mn,m(V). We
define the rectangular matrix polar Sρ to be the closed rectangular matrix convex
subset of V′ such that f ∈ Sρ

n,m if and only if ‖〈〈v, f 〉〉‖ 6 1 for every r, s ∈ N and
every v ∈ Sr,s. The same proof as Lemma 5.1 of [21] shows that f ∈ Sρ

n,m if and
only if ‖〈〈v, f 〉〉‖ 6 1 for every v ∈ Sn,m.

If A ⊂ V, then its absolute polar A◦ is the set of f ∈ V′ such that |〈v, f 〉| 6 1
for every v ∈ A. The classical bipolar theorem asserts that the absolute bipolar
A◦◦ is the closed absolutely convex hull of A ([14], Theorem 8.1.12). We will
prove below the rectangular analog of this fact. The proof is analogous to the one
of Theorem 5.4 in [21].

THEOREM 2.4. If S = (Sn,m) is a collection of subsets Sn,m ⊂ Mn,m(V), then the
rectangular matrix bipolar Sρρ is the closed rectangular matrix convex hull of S.

The proof of Theorem C in [20] shows that if K is a rectangular matrix con-
vex set in a vector space V, and F is a linear functional on Mn,m(V) satisfying
‖F|Kn,m‖ 6 1, then

(i) there exist states p on Mn(C) and q on Mm(C) such that |F(α∗vβ)|2 6
p(α∗α)q(β∗β) for every r, s ∈ N, α ∈ Mn,r(C), β ∈ Mm,s(C), and v ∈ Mr,s(V),
and

(ii) there exist matrices γ ∈ Mn2,1(C), δ ∈ Mm2,1(C), and a map ϕ : V →
Mn,m(C), such that F(w) = γ∗〈〈w, ϕ〉〉δ for every w ∈ Mn,m(W) and ‖〈〈w, ϕ〉〉‖ 6
1 for every r, s ∈ N and w ∈ Kr,s.
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From this one can easily deduce the following proposition, which gives the
rectangular matrix bipolar theorem as an easy consequence.

PROPOSITION 2.5. Suppose that V and V′ are vector spaces in duality, and K
is a compact rectangular convex space in V. If v0 ∈ Mn,m(V)\Kn,m, then there exists
ϕ ∈ Kρ

n,m such that ‖〈〈v0, ϕ〉〉‖ > 1.

Proof. By the classical bipolar theorem there exists a continuous linear func-
tional F on Mn,m(V) such that ‖F|Kn,m‖ 6 1 and |F(v0)| > 1. By the remarks
above there exists ϕ ∈ Kρ

n,m and contractive γ ∈ Mn2×1(C) and δ ∈ Mm2×1(C)
such that F(v) = γ∗〈〈v, ϕ〉〉δ. Thus we have

‖〈〈v0, ϕ〉〉‖ > ‖γ∗〈〈v0, ϕ〉〉δ‖ = ‖F(v0)‖ > 1.

2.3. REPRESENTATION OF RECTANGULAR CONVEX SETS. Suppose thatK is a rect-
angular matrix convex set in a vector space V. A rectangular matrix convex combi-
nation in a rectangular convex set K is an expression of the form α∗1v1β1 + · · ·+
α∗`v`β` for vi ∈ Kni ,mi , αi ∈ Mni ,n(C), and βi ∈ Mmi ,m(C) such that α∗1α1 + · · ·+
α∗`α` = 1, and β∗1β1 + · · · + β∗`β` = 1. A proper rectangular matrix convex com-
bination is a rectangular convex combination α∗1v1β1 + · · · + α∗`v`β` where fur-
thermore α1, . . . , α` and β1, . . . , β` are right invertible. Observe that these notions
are a particular instance of the notions of (proper) rectangular operator convex
combination introduced in Subsection 1.4.

DEFINITION 2.6. A rectangular matrix affine mapping from a rectangular con-
vex set K to a rectangular convex set T is a sequence θ of maps θn,m : Kn,m → Tn,m
that preserves rectangular matrix convex combinations.

When K and T are compact rectangular convex sets, we say that θ is con-
tinuous (respectively, a homeomorphism) when θn,m is continuous (respectively,
a homeomorphism) for every n, m ∈ N.

Given a compact rectangular matrix convex set K we let Aρ(K) be the com-
plex vector space of continuous rectangular matrix affine mappings from K to
CBall(C). Here CBall(C) is the compact rectangular matrix convex set defined
as in Example 2.3, where C is endowed with its canonical operator space struc-
ture. The space Aρ(K) has a natural operator space structure where Mn,m(Aρ(K))
is identified isometrically with a subspace of C(Kn,m, Mn,m(C)) endowed with
the supremum norm. More generally if Y is any operator space, then we de-
fine Aρ(K, Y) to be the operator space of continuous rectangular affine mappings
from K to CBall(Y). Observe that Mn,m(Aρ(K)) is completely isometric to Aρ(K).

Starting from the operator space Aρ(K) one can consider the compact rect-
angular matrix convex set CBall(Aρ(K)′) as in Example 2.3. Here Aρ(K)′ denotes
the dual space of the operator space Aρ(K), endowed with its canonical opera-
tor space structure. There is a canonical rectangular matrix affine mapping θ
from K to CBall(Aρ(K)′) given by point evaluations. It is clear that this map
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is injective. It is furthermore surjective in view of the rectangular bipolar theo-
rem. The argument is similar to the one of the proof of Proposition 3.5 in [46].
This shows that the map θ is indeed a rectangular matrix affine homeomorphism
from K onto CBall(Aρ(K)′). This implies that the assignment X 7→ CBall(X′)
is a 1:1 correspondence between operator spaces and rectangular convex sets. It
is also not difficult to verify that this correspondence is in fact an equivalence
of categories, where morphisms between operator spaces are completely contrac-
tive linear maps, and morphisms between rectangular convex sets are continuous
rectangular matrix affine mappings.

2.4. THE RECTANGULAR KREIN–MILMAN THEOREM. The notion of (proper)
rectangular convex combination yields a natural notion of extreme point in a
rectangular convex set. An element v of a rectangular convex set K is a rect-
angular matrix extreme point if for any proper rectangular convex combination
α∗1v1β1 + · · · + α∗`v`β` = v for vi ∈ Kni ,mi one has that, for every 1 6 i 6 `,
ni = n, mi = m, and vi = u∗i vwi for some unitaries ui ∈ Mn(C) and wi ∈ Km.
We now observe that the notion of rectangular extreme point coincides with the
notion of rectangular operator extreme operator state from Definition 1.10. The
argument is borrowed from the proof of Theorem B in [23].

LEMMA 2.7. Suppose that X is an operator space, K = CBall(X), and φ ∈ Kn,m.
Then φ is a rectangular matrix extreme point of K if and only if it is a rectangular operator
extreme operator state of X.

Proof. It is clear that a rectangular operator extreme point is a rectangular
matrix extreme point. We prove the converse implication. Suppose that φ is a
rectangular matrix extreme point. Let φ = α∗1φ1β1 + · · · + α∗`φ`β` be a proper
rectangular matrix convex combination, where φi ∈ Kni ,mi for i = 1, 2, . . . , `. By
assumption, we have that ni = n and mi = m for i = 1, 2, . . . , m, and there exist
unitaries ui ∈ Mn(C) and wi ∈ Mm(C) such that φi = u∗i φwi for i = 1, 2, . . . , `.
Therefore we have that

(2.1) φ = (u1α1)
∗φ(w1β1) + · · ·+ (u`α`)

∗φ`(w`β`).

Define R ⊂ Mm+m(C) to be the range of S(φ). Observe that it follows from
the fact that φ is a rectangular extreme point that the commutant of R is one-
dimensional. Set

Ai =

[
uiαi 0

0 wiβi

]
for i = 1, 2, . . . , n. Define the unital completely positive map Ψ : Mn+m(C) →
Mn+m(C), z 7→ A∗1zA1 + · · ·+ A∗` zA`. By equation (2.1) we have that Ψ(z) = z
for every z ∈ R. It follows from this and Theorem 2.11 of [5] that Ψ(z) = z for
every z ∈ Mn+m(C). By the uniqueness statement in the Choi’s representation
of a unital completely positive map [12], we deduce that there exist λi ∈ C such
that Ai = λi1 for i = 1, 2, . . . , `. Therefore α∗i αi = (uiαi)

∗(uiαi) = |λi|21, β∗i βi =
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(wiβi)
∗(wiβi) = |λi|21, and α∗i φiβi = (uiαi)

∗φ(wiβi) = |λi|2φ. This concludes the
proof that φ is a rectangular operator extreme point.

We denote by ∂ρK = (∂ρKn,m) the set of rectangular matrix extreme points
of K. Recall that the Krein–Milman theorem asserts that, if K ⊂ V is a com-
pact convex subset of a topological vector space V, then K is the closed convex
hull of the set of its extreme points. The following is the natural analog of the
Krein–Milman theorem for compact rectangular matrix convex sets. The proof
is analogous to the proof of the Krein–Milan theorem for compact matrix convex
sets ([46], Theorem 4.3).

THEOREM 2.8. Suppose that K is a compact rectangular convex set. Then K is
the closed rectangular matrix convex hull of ∂ρK.

Proof. Suppose that K is a compact rectangular convex set. In view of the
representation theorem from Subsection 2.3, we can assume without loss of gen-
erality that K = CBall(X′) for some operator space X. We will assume that X is
concretely represented as a subspace of B(H) for some Hilbert space H. We will
also canonically identify Mn,r(X′) with the space of bounded linear functionals
on Mn,r(X).

Fix n, m ∈ N. Let X̃ be the space of operators of the form[
λI
⊕

n x
y∗ µI

⊕
m

]
for λ, µ ∈ C and x, y ∈ Mn,m(X), where I

⊕
n and I

⊕
m are the identity oper-

ator on, respectively, the n-fold and m-fold Hilbertian sum of H by itself. If
ϕ ∈ Mr,s(X′), then we denote by ϕ̃ ∈ Mnr+ms(X̃′) the element defined by[

λI
⊕

n x
y∗ µI

⊕
n

]
7→
[

λIrn ϕ(n,m)(x)
ϕ(n,m)(y)∗ µIms

]
where Irn and Ims denote the identity rn × rn and ms × ms matrices. If ξ ∈
Mr,n(C) and η ∈ Ms,m(C) we also set

ξ � η :=
[

In ⊗ ξ 0
0 Im ⊗ η

]
.

We let ∆n,m be the set of elements of Mn2+m2(X̃′) of the form (ξ � η)∗ ϕ̃(ξ � η) for
r, s ∈ N, ϕ ∈ Kr,s, ξ ∈ Mr,n(C) and η ∈ Ms,m(C) such that ‖ξ‖2 = ‖η‖2 = 1. It
is not difficult to verify as in Section 4 of [46] that one can assume without loss of
generality that r 6 n, s 6 m, and ξ, η are right invertible. The computation below
shows that ∆n,m is convex. If t1, t2 ∈ [0, 1] are such that t1 + t2 = 1 then

t1(ξ1 � η1)
∗ ϕ̃1(ξ1 � η1) + t2(ξ1 � η1)

∗ ϕ̃2(ξ2 � η2) = (ξ � η)∗ϕ(ξ � η)

where

ξ =

[
t1ξ1
t2ξ2

]
, η =

[
t1η1
t2η2

]
, and ϕ =

[
ϕ1 0
0 ϕ2

]
.
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Thus ∆n,m is a compact convex subset of the space of unital completely positive
maps from X̃ to Mn2+m2(C). Consider now an element (ξ � η)∗ ϕ̃(ξ � η) of ∆n,m,
where ξ ∈ Mr,n(C) and η ∈ Ms,m(C) are right invertible and ϕ ∈ Kn,m. Assume
that (ξ � η)∗ ϕ̃(ξ � η) is an extreme point of ∆n,m. We claim that this implies that
ϕ is a rectangular extreme point of K. Indeed suppose that, for some sk, rk ∈ N,
ϕk ∈ Krk ,sk , δk ∈ Msk ,s(C), and γk ∈ Mrk ,r(C), γ∗1 ϕ1δ1 + · · ·+ γ∗` ϕ`δ` is a proper
rectangular convex combination in K that equals ϕ. Then we have that

(ξ� η)∗ ϕ̃(ξ� η) = (γ1ξ� δ1η)∗ ϕ̃1(γ1ξ� δ1η)+ · · ·+(γ1ξ� δ1η)∗ ϕ̃`(γ1ξ� δ1η).

Let tk = ‖(γkξ � δkη)‖2 for k = 1, 2, . . . , `. Observe that

`

∑
k=1

t2
k =

1
r + s

`

∑
k=1

(rTr(ξ∗γ∗k γkξ) + sTr(η∗δ∗k δkη)) = 1.

Therefore, if we set

ψk := t−2
k (ξγ1 � ηδ1)

∗ ϕ̃k(ξγ1 � ηδ1)

for k = 1, 2, . . . , `, we obtain elements ψ1, . . . , ψ` of ∆n,m such that t2
1ψ1 + · · · +

t2
`ψ` = (ξ � η)∗ ϕ̃(ξ � η). Since by assumption (ξ � η)∗ ϕ̃(ξ � η) is an extreme

point of ∆n,m, we can conclude that ψk = (ξ � η)∗ ϕ̃(ξ � η) for k = 1, 2, . . . , `.
The fact that ξ and η are right invertible now easily implies that rk = r, sk = s,
γ∗i γi = t2

i 1, δ∗i δi = t2
i 1, and γ∗i ϕiδi = t2

i ϕ. This conclude the proof that ϕ is a
rectangular extreme point of K.

We are now ready to conclude the proof that K is the rectangular convex
hull of ∂ρK. In view of the rectangular bipolar theorem, it is enough to prove that
if n, m ∈ N and z ∈ Mn,m(X) are such that ‖ϕ(n,m)(z)‖ 6 1 for every r 6 n, s 6 m,
and ϕ ∈ ∂ρKs,t, then ‖ψ(n,m)(z)‖ 6 1 for every ψ ∈ Kn,m. If x ∈ Mn,m(X) then we
let x̃ be the element [

I
⊕

n x
x∗ I

⊕
m

]
of X̃. Observe that if ϕ ∈ Mr,s(X′) and x ∈ Mn,m(X), then

ϕ̃(n,m)(x) =

[
Inr ϕ(n,m)(x)

ϕ(n,m)(x)∗ Ims

]
∈ Mnr+ms(C).

If furthermore ξ ∈ Mr,n(C) and η ∈ Ms,m(C) then

(ξ � η)∗ ϕ̃(x)(ξ � η) =

[
In ⊗ ξ∗ξ (ξ∗ϕη)(n,m)(x)

(ξ∗ϕη)(n,m)(x)∗ Im ⊗ η∗η

]
.

Let now (ξ � η)∗ ϕ̃(ξ � η) be an extreme point of ∆n,m, where ξ ∈ Mr,n(C) and
η ∈ Ms,m(C) are right invertible and such that ‖ξ‖2 = ‖η‖2 = 1, and ϕ ∈ ∂Kr,s.
By assumption we have that ‖(idMn,m(C) ⊗ ϕ)(z)‖ 6 1. Thus by Lemma 3.1 of
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[39] we have [
Inr ϕ(n,m)(z)

ϕ(n,m)(z)∗ Ims

]
> 0

and hence

(ξ � η)∗ ϕ̃(z)(ξ � η) =

[
In ⊗ ξ∗ξ (ξ∗ϕη)(n,m)(z)

(ξ∗ϕη)(n,m)(z)∗ Im ⊗ η∗η

]
> 0.

It follows from this and the classical Krein–Milman theorem that ψ(z) > 0 for
any ψ ∈ ∆n,m. Let us fix ϕ ∈ Kn,m. If ξ = In and η = Im then (ξ � η)∗ ϕ̃(ξ � η) ∈
∆n,m and

(ξ � η)∗ ϕ̃(z)(ξ � η) =

[
In ⊗ ξ∗ξ (ξ∗ϕη)(n,m)(z)

(ξ∗ϕη)(n,m)(z)∗ Im ⊗ η∗η

]

=

[
Inr (ϕ(n,m))(z)

ϕ(n,m)(z)∗ Ims

]
> 0.

This implies again by Lemma 3.1 of [39] that ‖ϕ(n,m)(z)‖ 6 1. Since this is valid
for an arbitrary element of Kn,m, the proof is concluded.

REMARK 2.9. The proof of Theorem 2.8 shows something more precise: if
K is a rectangular convex set, then for every n, m ∈ N, Kn,m is equal to the closed
rectangular convex hull of Kr,s for r 6 n and s 6 m.

The following is an immediate corollary of the rectangular Krein–Milman
theorem as formulated in Remark 2.9.

COROLLARY 2.10. Suppose that X is an operator space, and K = CBall(X′)
is the corresponding compact rectangular matrix convex set. If n, m ∈ N and x ∈
Mn,m(X), then ‖x‖ is the supremum of ‖ϕ(n,m)(x)‖ where ϕ ranges among all the rect-
angular extreme points of Kr,s for r 6 n and s 6 m.

3. BOUNDARY REPRESENTATIONS AND THE C∗-ENVELOPE OF A MATRIX-GAUGED SPACE

3.1. SELFADJOINT OPERATOR SPACES. By a concrete selfadjoint operator space we
mean a closed selfadjoint subspace X of B(H). Any selfadjoint operator space is
endowed with a canonical involution, matrix norms, and matrix positive cones
inherited from B(H).

An (abstract) matrix-ordered matrix-normed ∗-vector space (see Subsec-
tion 3.1 of [41]) is a vector space V endowed with

(•) a conjugate-linear involution v 7→ v∗,
(•) a complete norm in Mn(V) for every n ∈ N,
(•) a distinguished positive cone Mn(V)+ ⊂ Mn(V),

such that, for every n, k ∈ N, x ∈ Mn(X), and a, b ∈ Mn,k(C),



162 ADAM H. FULLER, MICHAEL HARTZ, AND MARTINO LUPINI

(i) Mn(V)+ is proper, i.e. Mn(V)+ ∩ (−Mn(V)+) = {0},
(ii) Mn(V)+ is closed in the topology induced by the norm,

(iii) ‖a∗xb‖ 6 ‖a‖‖x‖‖b‖, and
(iv) a∗xa ∈ Mk(V)+, when x ∈ Mn(V)+.

A matrix-ordered matrix-normed ∗-vector space V is normal if, for every
n ∈ N and x, y, z ∈ Mn(V), x 6 y 6 z implies that ‖y‖ 6 max{‖x‖, ‖z‖}. It
is essentially proved in [47] (see also Theorem 3.2 of [41] and Theorem 5.6 of
[42]) that a matrix-ordered matrix-normed ∗-vector space V is normal if and only
if there exists a completely positive completely isometric selfadjoint linear map
φ : V → B(H), where H is a Hilbert space and the space B(H) of bounded linear
operators on H is endowed with its canonical matrix-ordered matrix-normed ∗-
vector space structure.

3.2. MATRIX-GAUGED SPACES. Suppose that V is a real vector space. A gauge
over V is a subadditive and positively-homogeneous function ν : V → [0,+∞).
The conjugate gauge ν is defined by ν(x) = ν(−x). The seminorm ‖x‖ν corre-
sponding to a gauge is given by ‖x‖ν = max{ν(x), ν(x)}. A gauge is proper if
the seminorm ‖ · ‖ν is a norm. The positive cone associated with a gauge ν is the
set V+,ν = {x ∈ V : ν(x) = 0}.

The following notion is considered in [41] under the name of L∞-matricially
ordered vector space.

DEFINITION 3.1. A matrix-gauged space is a ∗-vector space V endowed with
a sequence of proper gauges νn : Mn(V)sa → [0,+∞) for n ∈ N with the property
that, for every n, k ∈ N, x ∈ Mn(V), y ∈ Mk(V), and a ∈ Mn,k(C), one has that

νk(a∗xa) 6 ‖a‖2νn(x) and νn+k(x⊕ y) = max{νn(x), νk(y)}.
A linear map φ : V → W between matrix-gauged spaces is completely

gauge-contractive if it is selfadjoint and ν(φ(n)(x)) 6 ν(x) for every n ∈ N and
x ∈ Mn(X)sa, and completely gauge-isometric if it is selfadjoint and ν(φ(n)(x)) =
ν(x) for every n ∈ N and x ∈ Mn(X)sa; see Definition 3.11 of [41]. Matrix-gauged
spaces naturally form a category, where the morphisms are the completely gauge-
contractive maps, and isomorphism are completely gauge-isometric surjective
maps. In the following we will consider matrix-gauged spaces as objects in this
category. By Corollary 3.10 of [41], every matrix-gauged space is completely
gauge-isometrically isomorphic to a concrete selfadjoint operator space.

Any matrix-gauged space V has a canonical normal matrix-ordered matrix-
normed ∗-vector space structure, obtained by considering the gauge norms and
the gauge cones associated with the given matrix-gauges. Conversely, suppose
that V is a normal matrix-ordered matrix-normed ∗-vector space. Letting νn(x)
be the distance of x from −Mn(V)+ for every x ∈ Mn(V)sa defines a canonical
matrix-gauged structure on X. This matrix-gauge structure induces the original
matrix-order and matrix-norms on V that one started from; see Proposition 3.5 of
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[41]. Furthermore a selfadjoint linear map φ : V → B(H) is completely positive
and completely contractive if and only if it is completely gauge-contractive with
respect to these specific matrix-gauges. However, there might be different matrix-
gauges on V that induce the same matrix-order and matrix-norms on V.

Suppose now that S is an operator system with order unit 1. Then, in partic-
ular, S is a normal matrix-ordered matrix-normed ∗-vector space. Furthermore,
it admits a unique matrix-gauge structure compatible with its matrix-order and
matrix-norms. These matrix-gauges are defined by νn(x) = inf{t > 0 : x 6 t1}
for a selfadjoint x ∈ S. Uniqueness can be deduced from Arveson’s extension
theorem ([11], Theorem 1.6.1), as proved in Theorem 6.9 of [42]. In the following
we will regard an operator system as a matrix-gauge space with such canonical
matrix-gauges. A unital selfadjoint linear map between operator systems is com-
pletely positive if and only if it is completely gauge-contractive, and completely
isometric if and only if it is completely gauge-isometric.

It is proved in Subsection 3.3 of [41] that any matrix-gauged space W admits
a completely gauge isometric embedding as a subspace of codimension 1 into an
operator system W†, called the unitization of W, that satisfies the following uni-
versal property: any completely gauge-contractive map from W to an operator
system V admits a unique extension to a unital completely positive map from W†

to V. The unitization W† of W is uniquely characterized by the above. If W is a
normal matrix-ordered matrix-normed space, then we define the unitization of W
to be the unitization of W endowed with the canonical matrix-gauges described
above.

Suppose that A is a (not necessarily unital) C∗-algebra. Then A is endowed
with canonical matrix-gauges, obtained by setting νn(x) = ‖x+‖ for a selfadjoint
x ∈ A, where x+ denotes the positive part of x. In the following we will consider
a C∗-algebra as a matrix-gauged space with these canonical matrix-gauges. It
follows from the unitization construction that any matrix-gauged space admits a
completely gauge-isometric embedding into B(H). The following result can also
be found in Proposition 2.2.1 of [11] with a different proof.

LEMMA 3.2. Suppose that A ⊂ B(H) is a C∗-algebra such that the identity 1
of B(H) does not belong to A. Let Y be an operator system. Then for any completely
positive completely contractive map φ : A → Y there exists a unital completely positive
map ψ : span{A, 1} → Y extending φ.

Proof. Let Z := span{A, 1} ⊂ B(H) and assume that Y ⊂ B(L) for some
Hilbert space L. We have to prove that if z = x + α1 ∈ Mn(Z) for α ∈ Mn(C)
is positive, then φ(n)(x) + α1 ∈ Mn(Y) is positive. Since 1 /∈ A, we have that α
is positive. Without loss of generality, we can assume that α is invertible. After
replacing z with α−1/2zα−1/2 we can assume that α = 1. By Stinespring’s theorem
([7], Theorem II.6.9.7) there exist a Hilbert space K, a ∗-homomorphism π : A →
B(K), and a linear map v : L → K such that ‖v‖ = 1 and φ(x) = v∗π(x)v for
every x ∈ A. Observe that π extends to a unital ∗-homomorphism from Z into
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B(L), which we still denote by π. Let v(n) : H(n) → K(n) be the map v⊕ · · · ⊕ v.
Then we have that

φ(n)(x) + 1 = v(n)∗π(n)(x)v(n) + 1

> v(n)∗π(n)(x)v(n) + v(n)∗π(n)(1)v(n) = v(n)∗π(n)(x + 1)v(n) > 0.

This concludes the proof.

It follows from the previous lemma that the unitization of a C∗-algebra A
as a matrix-gauged space coincides with the unitization of A as a C∗-algebra; see
also Corollary 4.17 of [47]. Furthermore, it follows from Lemma 3.2, Theorem 6.9
of [42], and Arveson’s extension theorem that a C∗-algebra admits unique com-
patible matrix-gauges. One can then deduce from Theorem 3.16 of [41] that a lin-
ear map between C∗-algebras or operator systems is completely gauge-contractive
if and only if it is completely positive contractive.

3.3. THE INJECTIVE ENVELOPE OF A MATRIX-GAUGED SPACE. We say that a
matrix-gauged space is injective if it is injective in the category of matrix-gauged
spaces and completely gauge-contractive maps. Theorem 3.14 of [41] shows that
B(H) is an injective matrix-gauged space when endowed with its canonical
matrix-gauges. It follows from this that the unitization functor W 7→W† is an in-
jective functor from the category of matrix-gauged spaces and gauge-contractive
maps to the category of operator systems and unital completely positive maps.

Our goal now is to show that any injective matrix-gauged space is (com-
pletely gauge-isometrically isomorphic to) a unital C∗-algebra. This is a general-
ization of a theorem of Choi and Effros; see Theorem 15.2 of [39].

PROPOSITION 3.3. Let X be an injective matrix-gauged space. Then X is com-
pletely gauge-isometrically isomorphic to a unital C∗-algebra.

Proof. We may assume that X ⊂ B(H) is concretely represented as a self-
adjoint operator space. Since X is injective, there exists a gauge-contractive and
hence completely contractive and completely positive projection Φ : B(H) → X.
We define the Choi–Effros product on X by

x ◦Φ y = Φ(xy).

As in the proof of Theorem 15.2 in [39], one shows that

Φ(Φ(a)x) = Φ(ax) and Φ(xΦ(a)) = Φ(xa)

holds for all x ∈ X and all a ∈ B(H). Indeed, the proof only requires the
Schwarz inequality for unital completely positive maps, which remains valid
for completely positive completely contractive maps. In particular, we see that
e := Φ(IH) ∈ X is a unit for the Choi–Effros product. Moreover, the proof of
Theorem 15.2 in [39] shows that (X, ◦Φ), endowed with the norm and involution
of B(H), is a C∗-algebra.
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It is clear from the above that the identity map from X onto (X, ·Φ) is an
isometry. To see that it is an order isomorphism, suppose that x ∈ X is positive
with respect to the order on B(H). Then ‖cIH − x‖ 6 c for all c > ‖x‖, so since
Φ is contractive ‖ce− x‖ 6 c for all c > ‖x‖, thus x is a positive element of the
C∗-algebra (X, ◦Φ). Conversely, if x is positive in the C∗-algebra (X, ◦Φ), then
there exists y ∈ X such that x = y∗ ◦Φ y, hence x = Φ(y∗y) is positive in B(H).
Moreover, the argument at the end of the proof of Theorem 15.2 in [39] shows that
Mn(X), endowed with the Choi–Effros product ◦Φ(n) , is the C∗-tensor product
of (X, ◦Φ) with Mn(C). By the above, the identity map is an isometry and an
order isomorphism between Mn(X) ⊂ Mn(B(H)) and (Mn(X), ◦Φ). Therefore,
the identity map from X onto (X, ◦Φ(n)) is a selfadjoint complete isometry and
complete order isomorphism.

To see that the identity map from X onto (X, ◦Φ) is in fact a complete gauge
isometry, observe that Φ is a unital completely positive map from B(H) onto
(X, ◦Φ) by the preceding paragraph, so it is completely gauge contractive. Con-
versely, if x ∈ Mn(X) is self-adjoint and satisfies ‖x+‖ 6 1, where the positive
part is taken in the C∗-algebra (Mn(X), ◦Φ), then x 6 e(n) in (Mn(X), ◦Φ), hence
x 6 ICn ⊗ IH in Mn(B(H)) by the preceding paragraph, so that the identity map
from (X, ◦Φ) to X is completely gauge contractive as well.

In particular, we see that every injective matrix-gauged space is (completely
gauge-isometrically isomorphic to) an injective operator system. Conversely,
since the unitization functor is injective, every operator system that is injective
in the category of operator systems and unital completely positive maps is also
injective as a matrix-gauged space, when endowed with the unique compatible
matrix-gauge structure.

The usual proof of the existence of the injective envelope of an operator
system yields the existence of a gauge analog of Hamana’s injective envelope of
operator spaces. Let us say that a gauge-extension of a matrix-gauged space X
is a pair (Y, i) where Y is a matrix-gauged space and i : X → Y is a completely
gauge-isometric map. As in the case of operator systems, we say that such a
gauge-extension is:

(i) rigid if the identity map of Y is the unique gauge-contractive map φ : Y →
Y such that φ ◦ i = i;

(ii) essential if whenever u : Y → Z is a gauge-contractive map to a matrix-
gauged space Z such that u ◦ i is a completely gauge-isometric, then u is a com-
pletely gauge-isometric;

(iii) an injective envelope if Y is injective, and there is no proper injective sub-
space of Y that contains X.

The same proof as Lemma 4.2.4 of [9] shows that if X is a matrix-gauged
space, and (Y, i) is a gauge-extension of X such that Y is injective, then the fol-
lowing assertions are equivalent:
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(1) (Y, i) is an injective envelope of X;
(2) (Y, i) is essential;
(3) (Y, i) is rigid.

To this purpose one can consider the gauge analog of the notion of projec-
tions and seminorms from Subsection 4.2.1 of [9].

Suppose that W is a matrix-gauged space, and X is a selfadjoint subspace
of W. A completely gauge-contractive X-projection on W is an idempotent com-
pletely gauge-contractive map u : W → W that restricts to the identity on X. A
gauge X-seminorm on W is a seminorm of the form p(x) = ‖u(x)‖ for some com-
pletely gauge-contractive X-projection u on W. One can define an order on com-
pletely gauge-contractive X-projections by u 6 v if and only if u ◦ v = v ◦ u = u,
while gauge X-seminorms are ordered by pointwise comparison. The same proof
as Lemma 4.2.2 of [9] shows that any gauge X-seminorm majorizes a minimal
gauge X-seminorm, and if p is a minimal gauge X-seminorm and u : W → W is
a completely gauge-contractive map that restricts to the identity on X, then u is
a minimal gauge X-projection. To this purpose, it is enough to observe that the
set of completely gauge-contractive selfadjoint maps from W to B(H) is closed
in the weak* topology of the space of CB(W, B(H)) of completely bounded maps
from W to B(H). Indeed φ : W → B(H) is completely gauge-contractive if and
only if it is selfadjoint and 〈φ(n)(x)ξ, ξ〉 6 ν(x) for every n ∈ N, ξ ∈ H

⊕
n, and

x ∈ Mn(W)sa.
The proof of Lemma 4.2.4 in [9] can now be easily adapted to prove the

claim above, by replacing X-projections with gauge X-projections and X-semi-
norms with gauge X-seminorms. Similarly the same proof as Theorem 4.2.6 of [9]
shows that if a matrix-gauged space X is contained in an injective matrix-gauged
space W, then there exists an injective envelope X ⊂ Z ⊂ W. Furthermore the
injective envelope of X is essentially unique. We denote by I(X) the injective en-
velope of a matrix-gauged space X, and we identify X with a selfadjoint subspace
of I(X). It is clear that, when X is an operator system endowed with its canonical
matrix-gauges, the injective envelope of X as a matrix-gauged space coincides
with the injective envelope of X as an operator system (endowed with the canon-
ical matrix-gauges). Furthermore, it is a consequence of Proposition 3.3 that the
unitization of a matrix-gauged space X is span{X, 1} ⊂ I(X), where 1 denotes
the identity of the unital C∗-algebra I(X).

3.4. BOUNDARY REPRESENTATIONS. Most fundamental notions in dilation the-
ory admit straightforward versions in the setting of matrix-gauged spaces. Sup-
pose that X is a matrix-gauged space. An operator state on X is a completely
gauge-contractive map φ : X → B(H). We say that an operator state ψ : X →
B(H̃) is a dilation of φ if there exists a linear isometry v : H → H̃ such that
v∗ψ(x)v = φ(x) for every x ∈ X. It follows from Stinespring’s dilation theorem
([7], Theorem II.6.9.7) that if A is a C∗-algebra, then an operator state on A ad-
mits a dilation which is a ∗-homomorphism. A dilation ψ of an operator state
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φ : x 7→ v∗ψ(x)v on X is trivial if

ψ(x) = vv∗ψ(x)vv∗ + (1− vv∗)ψ(x)(1− vv∗).

We say that φ is maximal if it has no nontrivial dilation. As in the case of operator
systems, one can prove that an operator state φ : X → B(H) is maximal if and
only if for any dilation ψ of φ one has that ‖ψ(x)ξ‖ = ‖φ(x)ξ‖ for every x ∈ X,
and ξ ∈ H.

Suppose that X is a selfadjoint subspace of a C∗-algebra A such that A is
generated as a C∗-algebra by X. An operator state φ on X has the unique exten-
sion property if any completely positive contractive map φ̃ : A → B(H) whose
restriction to X coincides with φ is automatically a ∗-homomorphism. The same
argument as in the operator systems setting shows that an operator state is max-
imal if and only if it has the unique extension property; see [6].

DEFINITION 3.4. A boundary representation for a matrix-gauged space X ⊂
B(H) is an operator state φ : X → B(H) with the property that any completely
positive contractive map ψ : C∗(X) → B(H) extending X is an irreducible repre-
sentation of C∗(X).

In the following we will identify a boundary representation of X with its
unique extension to an irreducible representation of C∗(X). It follows from the
remarks above that the notion of boundary representation does not depend on
the concrete realization of X as a selfadjoint space of operators. In the following
we will assume that A is a C∗-algebra, and X ⊂ A is a selfadjoint subspace that
generates A as a C∗-algebra. We regard X as a matrix-gauged space endowed
with the matrix-gauges induced by A.

PROPOSITION 3.5. Suppose that φ : X → B(H) is an operator state of X, and
φ† : X† → B(H) is its canonical unital completely positive extension to the unitization
of X. If φ† is a boundary representation for X†, then φ is a boundary representation for X.

Proof. Let Φ : A → B(H) be a completely positive contractive map extend-
ing φ. Extend Φ to a unital completely positive Φ† : A† → B(H). Then since
by assumption φ† is a boundary representation, we conclude that Φ† is an irre-
ducible representation for A†. Therefore Φ|A is an irreducible representation of
A. This concludes the proof.

The following result is then a consequence of Proposition 3.5 and Theo-
rem 3.1 of [16].

THEOREM 3.6. Suppose that X is a matrix-gauged space. Then the matrix-gauges
of X are completely determined by the boundary representations of X. Precisely, if
x ∈ Mn(X), then νn(x) is the supremum of ‖φ(n)(x)+‖ where φ ranges among all
the boundary representations of X.

Suppose that X is a matrix-gauged space, and φ : X → B(H) is an operator
state. An operator convex combination is an expression φ = α∗1φ1α1 + · · ·+ α∗nφnαn,
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where αi : H → Hi are linear maps, and φi : X → B(Hi) are operator states for
i = 1, 2, . . . , `. Such a rectangular convex combination is proper if the αi’s are right
invertible and α∗1α1 + · · ·+ α∗nαn = 1 and trivial if

α∗i αi = λi1 and α∗i φiαi = λiφ for some λi ∈ [0, 1].

DEFINITION 3.7. An operator state φ : X → B(H) is an operator extreme
point if for any proper operator convex combination φ = α∗1φ1α1 + · · ·+ α∗nφnαn
is trivial.

Observe that the map φ 7→ φ† establishes a 1:1 correspondence between
operator states on X and operator states on the operator system X†. Furthermore
this correspondence is operator affine in the sense that it preserves operator convex
combinations. The following proposition is then an immediate consequence of
this observation and (the proof of) Theorem B in [23].

PROPOSITION 3.8. Suppose that φ : X → B(H) is an operator state, and let
φ† : X† → B(H) be its unital extension to the unitization of X. The following assertions
are equivalent:

(i) φ is a pure element in the cone of completely gauge-contractive maps from X to
B(H);

(ii) φ is an operator extreme point;
(iii) φ† is an operator extreme point.

The following corollary is an immediate consequence of Proposition 3.8,
Proposition 3.5, and [16].

COROLLARY 3.9. Suppose that X is a matrix-gauged space, and φ is an operator
state on X. If φ is operator extreme, then φ admits a dilation to a boundary representation
of X.

3.5. THE C∗-ENVELOPE OF A MATRIX-GAUGED SPACE. Suppose that X is a
matrix-gauged space. A pair (A, i) is a C∗-cover if A is a C∗-algebra and i : X → A
is a completely gauge-isometric map whose range generates A as a C∗-algebra.

DEFINITION 3.10. A C∗-envelope (C∗e (X), i) of X is a C∗-cover of X if it has
the following universal property: for any C∗-cover (B, j) of X, there exists a ∗-
homomorphism θ : B→ C∗e (X) such that θ ◦ j = i.

It is clear that the C∗-envelope of a matrix-gauged space, if it exists, is es-
sentially unique. We will prove below that any matrix-gauged space has a C∗-
envelope. The proof is essentially the same as the one for the existence of the
C∗-envelope of an operator system.

Suppose that X is a matrix-gauged space. Let X ⊂ I(X) be the injective
envelope of X. By Proposition 3.3, I(X) is a unital C∗-algebra. Let A be the C∗-
subalgebra of I(X) generated by X. As in the proof of Theorem 15.16 in [39], one
sees that (i, A) where i : X → A is the inclusion map, is the C∗-envelope of X.
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It follows from the construction that the C∗-envelope (as defined above) of
an operator system regarded as matrix-gauged space with its unique compati-
ble matrix-gauges coincides with the usual notion of C∗-envelope of an operator
system.

Alternatively, one can construct the C∗-envelope of a matrix-gauged space
using boundary representations, as for the C∗-envelope of an operator system. In-
deed let X be a matrix-gauged space. Define ιe : X → B(H) to be the direct sum
of all the boundary representations for X, and then let A be the C∗-subalgebra of
B(H) generated by the image of ιe. It follows from the unique extension prop-
erty of boundary representations that (ιe, A) is indeed the C∗-envelope of X. In
particular, this construction shows that, for any C∗-algebra B, C∗e (B) = B.

As in the case of operator systems and operator spaces, one can define a
maximal or universal C∗-algebra that contains a given ordered operator space as
a generating subset. Explicitly, the maximal C∗-algebra C∗max(X) of an ordered
operator space is a C∗-cover (i, A) of X that has the following universal property:
given any other completely gauge-contractive map f : X → B, where B is a C∗-
algebra, there exists a ∗-homomorphism θ : A → B such that θ ◦ i = f . In order
to see that such a maximal C∗-algebra exists, one can consider the collection F
of all completely gauge-contractive maps from X to Mn(C) for n ∈ N. Then let
i be the direct sum of the elements s : X → Mns(C) of F , and then A to be the

C∗-subalgebra of
∞⊕

s∈F
Mns(C) generated by the image of i. The same proof as

Proposition 8 of [34] shows that such a C∗-cover satisfies the required universal
property.

3.6. SELFADJOINT ORDERED OPERATOR SPACES AND COMPACT MATRIX CONVEX

SETS. We want to conclude by observing that selfadjoint operator spaces are in
canonical 1:1 correspondence with compact matrix convex sets with a distin-
guished extreme point.

Suppose that K = (Kn) is a compact matrix convex set, and e ∈ K1 is a
matrix extreme point. Define A0(K, e) to be the set of continuous matrix-affine
functions from K to (Mn(C))n∈N that vanish at e. Then A0(K, e) is a selfadjoint
subspace of codimension 1 of the operator system A(K).

Conversely suppose that X ⊂ B(H) is a selfadjoint operator space. Consider
X as a normal matrix-ordered and matrix-normed space with respect to the in-
duced matrix-cones and matrix-norms, and let X† be the unitization of X. Let, for
n ∈ N, Kn be the space of completely positive completely contractive selfadjoint
maps from X to Mn(C), endowed with the topology of pointwise convergence.
Observe that K = (Kn) is a compact matrix-convex set, and Kn can be identified
with the space of unital completely positive maps from X† to Mn(C). Let e ∈ K1
be the zero functional on X. We have a canonical unital complete order isomor-
phism X† ∼= A(K). Under this isomorphism X is mapped into A0(K, e). Since X
has codimension 1 in X†, such an isomorphism in fact maps X onto A0(K, e).
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The above construction shows that one can identify the unitization of
A0(K, e) with the operator system A(K). Furthermore it is easy to see that the
correspondence (K, e) 7→ A0(K, e) is a contravariant equivalence of categories
from the category of compact matrix convex sets K with a distinguished matrix
extreme point e ∈ K1, where morphisms are continuous matrix-affine maps that
preserve the distinguished point, to the category of selfadjoint operator spaces
and completely positive completely contractive selfadjoint maps.

The commutative analog of the argument above establishes a correspon-
dence between compact convex sets with a distinguished extreme point and self-
adjoint operator spaces that can be represented inside an abelian C∗-algebra (self-
adjoint function spaces).
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