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ABSTRACT. LetH andK be complex Hilbert spaces. Assuming the set-theore-
tical axiom on generalized continuum hypothesis it is shown that if the com-
mutativity relation in B(H), the algebra of bounded linear operators onH, is
the same as in B(K), then dimH = dimK.
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1. INTRODUCTION

The essence of the commutativity relation in a given algebra A is captured
in its commuting graph, Γ := Γ(A). By definition, this is a simple (= undirected,
loopless) graph, with vertex set V(Γ), consisting of all noncentral elements of
algebra A, and where two vertices x, y ∈ V(Γ) form an edge if xy = yx and
x 6= y. For the algebra B(H) of bounded operators on a complex Hilbert space,
the commuting graph Γ(B(H)) thus consists of all nonscalar operators (an oper-
ator is scalar if it is a scalar multiple of the identity), and two distinct nonscalar
operators A, B ∈ B(H) are connected by an edge (denoted henceforth by A B)
if they commute.

Clearly, the commuting graph can be defined on every grupoid (a nonempty
set equipped with inner operation). In abelian grupoids, each element is central
so its commuting graph is vacuous. However, on nonabelian grupoids, the com-
muting graph can capture quite a lot of information about the algebraic structure
despite its apparent simplicity. For example, it was recently established by Han,
Chen, Guo, Abdollahi, Shahverdi, Solomon, and Woldar [1], [13], [17] that com-
mutativity relation alone can distinguish among finite simple nonabelian groups.
More precisely, if the commuting graph of a finite simple nonabelian group S is
isomorphic to the commuting graph of some group G, then a group S is isomor-
phic to a group G. In a similar vein, it was shown by Mohammadian [15] that the
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commutativity relation alone distinguishes M2(F), the algebra of 2-by-2 matrices
over finite field F, among all unital rings.

It is our aim to show that the commutativity relation on B(H) completely
determines the dimension of the underlying complex Hilbert space H (see Theo-
rem 3.6 below and the paragraph preceding it). We remark that this result is in the
spirit of Akbari, Ghandehari, Hadian, and Mohammadian [2] who established a
similar conclusion in case of finite semisimple rings.

QUESTION. Recall that B(H) is an example of a factor von Neumann alge-
bra. It would be interesting to know if Theorem 3.6 also holds in this generality.
To put it on precise terms: Assume the commuting graphs of two factor von Neu-
mann algebras are isomorphic. Are the algebras isomorphic?

2. PRELIMINARIES

If dimH = n < ∞ we identify H with Cn, the space of column vectors of
size n and with e1, . . . , en as a standard basis, and we identify B(H) with n-by-n
matrix algebra Mn(C). Given two matrices A ∈ Mn(C), B ∈ Mm(C), we denote
the block-diagonal matrix

(
A 0
0 B
)
∈ Mn+m(C) by A ⊕ B. The commutant of an

operator A ∈ B(H) is the algebra

A′ := {X ∈ B(H) : AX = XA} ⊆ B(H).

Given a matrix A ∈ Mn(C), let AT denote its transpose. Vectors are considered
to be n-by-1 matrices, thus, a typical rank-one matrix in Mn(C) equals x f T where
x, f ∈ Cn are nonzero. A nonscalar matrix M is maximal if its commutant is
maximal in the sense that X′ ⊇ M′ for nonscalar matrix X implies X′ = M′. It was
shown by Šemrl ([16], Lemma 3.1) that M is maximal if an only if M = λI + µP
or M = λI + νN for some λ, µ ∈ C, with µ 6= 0, where P2 = P /∈ {0, I} is
an idempotent, I is the identity matrix, and N2 = 0 but N 6= 0. A dimension
argument gives that for each nonscalar matrix B there exists a maximal matrix M
with B′ ⊆ M′. Given a subset Ω ⊆ Cn we let Lin(Ω) ⊆ Cn be its linear span.

We will also require the basic terminology from graph theory. A path in a
graph is a finite sequence of vertices v0, v1, . . . , vk such that vi is connected to vi−1
for every i = 1, 2, . . . , k, the integer k is the length of this path. A path of length
k, which in a commuting graph Γ = Γ(A) connects noncentral elements v, w, is
thus a sequence of k + 1 noncentral elements v0 = v, v1, . . . , vk = w from A such
that

vivi−1 = vi−1vi i = 1, . . . , k.
Recall that a graph is connected if every two vertices can be joined with a path
(containing only finitely many vertices). The length of the shortest possible path
between two vertices v, w is their distance and is denoted by d(v, w). This dis-
tance makes a connected graph into a metric space. The diameter, diam(Γ), of a
connected graph Γ is the supremum of all possible distances. A component of a
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graph is a maximal connected subgraph. A graph is complete if every two dis-
joint vertices form an edge. The cardinality, |Γ| of a graph Γ is the cardinality of
its vertex set.

The Proposition 2.1 below is one of the cornerstones of our proof. It already
shows that the commutativity relation alone can distinguish separable from non-
separable Hilbert spaces, and can distinguish two-dimensional Hilbert spaces
among finite-dimensional ones. The rest of the proof will be devoted to show that
commutativity alone can distinguish among finite-dimensional Hilbert spaces of
dimension greater than two. Finally, to distinguish among non-separable Hilbert
spaces of different cardinalities we will assume the axiom on generalized con-
tinuum hypothesis (abbreviated GCH). Recall that GCH axiom states that, given
any infinite set Ω, there is no set whose cardinality would lie strictly between |Ω|
and |2Ω|, the latter denoting the cardinality of the power set of Ω. By Gödel’s and
Cohen’s results, GCH is independent of the standard ZFC axioms of set theory
(see [12] and the book [6]). By assuming GCH we assured that the power function
is injective among the cardinals in the sense that

ℵ < ℵ̄ implies 2ℵ < 2ℵ̄

(to see this note that, under GCH, 2ℵ 6 ℵ̄ � 2ℵ̄). We remark that this argument
fails if GCH does not hold since then there exists a cardinal ℵ̄ with ℵ < ℵ̄ <
2ℵ. Worse still, Easton’s theorem [11] (see also Theorem 15.18 of [14] for modern
treatment) shows that on regular cardinals the power function can be wild. Our
basic reference for cardinal arithmetic is a book by Dugundji [10].

PROPOSITION 2.1. The following holds for the commuting graph Γ = Γ(B(H))
of the algebra of bounded operators on a complex Hilbert spaceH.

(i) If dimH = 2, then Γ is disconnected. Each of its component is a complete graph
of infinite cardinality.

(ii) If 2 < dimH < ∞, then Γ is connected and diam(Γ) = 4.
(iii) If H is separable and dimH = ∞, then Γ is disconnected and contains a compo-

nent (generated by rank-one operators) which is not a complete graph.
(iv) IfH is non-separable, then Γ is connected and diam(Γ) = 2.

Proof. (i) Identify B(H) = M2(C) and observe that every nonzero matrix
A ∈ M2(C) is a sum of a rank-one matrix and a scalar matrix. As far as com-
mutativity is concerned we may thus assume rank A = 1. By applying a suitable
similarity matrix and multiplying A with a suitable scalar we may further assume
that A = E11 =

(
1 0
0 0
)

or A = E12 =
(

0 1
0 0
)
. In both cases, if λ, µ ∈ C and µ 6= 0,

then A′ = (λI + µA)′ = CI +CA is an abelian algebra. With scalar matrices re-
moved it forms a complete subgraph of Γ which is simultaneously a component
of Γ (see also Remark 2 of [4]).

Item (ii) was proved in Corollary 7 of [3] (but see also Corollary 2.2 of [9] for
a short proof that diam(Γ) 6 4). Items (iii)–(iv) were proved in [5].
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3. MAIN RESULTS

To distinguish among finite-dimensional Hilbert spaces we will rely on five
lemmas which were motivated by our recent results in [8]. The first Lemma 3.1
was already proved in Lemma 2.3 of [8]; but for the sake of convenience we
choose to present its full proof.

Recall that a Cauchy matrix, C = (1/(xi − yj))ij ∈ Mn(C) where xi, yj ∈
C are distinct scalars, has all its minors nonzero. In particular, if e1, . . . , en is a
standard basis of Cn and ci is any column of C, then {e1, . . . , en−1, ci} are linearly
independent vectors, hence a basis for Cn.

LEMMA 3.1. Let n > 3. Define matrices B1, . . . , Bn by Biek = ek+1 for k =
1, . . . , (n− 2), Bien−1 = ci, and Bici = 0, where ci is the i-th column of Cauchy ma-
trix C. Then, in the commuting graph, the distance d(Bi, Bj) = 4 for i 6= j.

Proof. Write the i-th column of Cauchy matrix as ci = ∑
j

cijej. Observe that

the matrix Bn−1
i annihilates {e2, . . . , en−1, ci} and maps e1 to ci. Hence Bi is non-

derogatory (i.e., its minimal and characteristic polynomials coincide) and Bn−1
i is

a trace-zero matrix of the form

Bn−1
i = ci(e1 + βien)

T,

where βi is such that (e1 + βien)Tci = ci1 + βicin = 0. Because all minors of C are
nonzero, the vectors (ci1, cin)

T and (cj1, cjn)
T are linearly independent for i 6= j.

Hence, the functional (1, βi) which annihilates the first vector cannot annihilate
also the second one, i.e., (cj1, cjn)

T. Therefore,

(3.1) Bn−1
i cj 6= 0, i 6= j.

We will now show that d(Bj, Bi) = 4 for i 6= j. Assume otherwise. Then there
exists a path Bj X Y Bi of length 3 in the commuting graph. That is,

BjX = XBj, and XY = YX, and YBi = BiY

holds. With no loss of generality X is a maximal matrix (i.e., its commutant is
maximal possible) for otherwise we can find a maximal matrix with greater com-
mutant than X and replace X with it. Now, X commutes with the nonderogatory
Bj so it is a polynomial in Bj (see for example Proposition 2.3 of [7]). Also, X is
maximal, hence by Lemma 3.1 of [16] takes the form X = λI + N ∈ Poly(Bj) for
some nonzero N with N2 = 0 and by subtracting from it λI and multiplying it
with a suitable nonzero scalar we can assume it is of the form

X = B
kj
j +

n−1

∑
k=kj+1

λjkBk
j
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for some k j > n/2. In particular, the image, Im X = Lin{ekj+1, ekj+2, . . . , en−1, cj}.
Likewise we can assume that

Y = Bki
i +

n−1

∑
k=ki+1

λikBk
i

for some ki > n/2. Observe that Y annihilates all the vectors ekj+1, . . . , en−1 ∈
Im X but does not annihilate cj because if x is a vector with Xx = cj, then, by (3.1),

Bn−ki−1
i YXx = Bn−1

i Xx = Bn−1
i cj 6= 0.

Hence, YX is of rank-one. Likewise, XY is of rank-one and it does not annihi-
late ci.

Now, we assume YX = XY. If ki > k j, then 0 6= Ycj = YXen−kj
=

XYen−kj
= X(0) = 0, a contradiction. Likewise if ki < k j. Lastly, suppose ki = k j.

Then

(3.2) Ycj = YXen−kj
= XYen−kj

= Xci.

The equation XY = YX implies that the kernel, ker Y is invariant for X. Since
ci ∈ ker Y = Lin{en−ki+1, . . . , en−1, ci} the vector Xci is spanned by the vectors
en−ki+1, . . . , en−1, ci. Hence, as ki > n/2 implies ki > 2 and therefore e1, en /∈
Lin{en−ki+1, . . . , en−1} we see that pr2(Xci) is a scalar multiple of pr2(ci), where
pr2 : (x1, . . . , xn)T 7→ (x1, xn)T is a projection of the vector onto its first and last
components. Likewise, pr2(Ycj) is a scalar multiple of pr2(cj). But, since C is a
Cauchy matrix, pr2(cj) and pr2(ci) are linearly independent, a contradiction to
(3.2). Hence XY 6= YX. So, d(Bj, Bi) > 3 and by (ii) of Proposition 2.1, d(Bj, Bi) =
4 for j 6= i.

LEMMA 3.2. Let n > 3. Let A = Ir ⊕ 0n−r ∈ Mn(C) be an idempotent with 1 6
r = rank A 6 n/2 and let B1, . . . , Bn−1 be nilpotent matrices defined in Lemma 3.1. If
Xi ∈ B′i are nonscalar matrices, then we have {A, X1, . . . , Xn−1}′ = CI.

Proof. We can assume with no loss of generality that Xi are already maximal
for otherwise we can find maximal matrices X̂i with X̂′i ⊇ X′i , and if we have
{A, X̂1, . . . , X̂n−1}′ = CI then also {A, X1, . . . , Xn−1}′ = CI. Since Xi commutes
with the nonderogatory nilpotent Bi it is a polynomial in Bi, and since Xi is also
maximal, it equals λI + N, N2 = 0. So after subtracting λI and multiplying with
a suitable scalar we may assume that

(3.3) Xi = Bki
i +

n−1

∑
k=ki+1

λikBk
i for some ki >

n
2

.

Assume there exists a nonscalar T ∈ {A, X1, . . . , Xn−1}′. Again we may assume
that T is maximal. Then, XiT = TXi implies that

(3.4) Tci = TXien−ki
= XiTen−ki

∈ Im Xi = Im Bki
i = Lin{eki+1, . . . , en−1, ci}.
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Moreover, T commutes with A so it has a form T = Ṫ ⊕ T̈ ∈ Mr(C)⊕Mn−r(C).
Together with (3.4) we get Tci = (Ṫċi)⊕ (T̈c̈i) ∈ ξi(ċi ⊕ c̈i) + Lin{eki+1, . . . , en−1}
for some ξi ∈ C. Recall that ki + 1 > n/2 > r so eki+1, . . . , en−1 ∈ 0r ⊕Cn−r, and
therefore (Ṫċi) = ξi ċi. Hence, each ċi is an eigenvector of Ṫ. Since each minor
of a Cauchy matrix is nonzero, we have that ċ1, . . . , ċr are linearly independent.
Hence, Ṫ is diagonalizable. We claim Ṫ is a scalar matrix. This is obvious if r = 1.
Otherwise, 2 6 r 6 n/2 and as n > 3 we have that ċ1, . . . , ċn−1 are n − 1 >

n/2 > r vectors in Cr, so they are linearly dependent. Then, ċn−1 =
r
∑

k=1
αk ċk.

This linear combination has all coefficients nonzero, for otherwise, if say ċn−1 is
a linear combination of ċ1, . . . , ċr−1 then the vectors ċ1, . . . , ċr−1, ċn−1 would be
linearly dependent, and hence the corresponding r× r minor of a Cauchy matrix
C would be zero, a contradiction. From this it easily follows that all eigenvalues

of Ṫ are the same: ξn−1
r
∑

k=1
αk ċk = ξn−1 ċn−1 = Ṫċn−1 = ∑

k
αkṪċk = ∑

k
αkξk ċk, and

since αk 6= 0 we get ξk = ξn−1 for every k.
By subtracting a suitable scalar matrix from T we may hence assume with-

out loss of generality that T = 0⊕ T̈. Now, since each component of a vector ci is
nonzero while ki > n/2 > r we have

(3.5)

0⊕ T̈c̈i = Tci = TXien−ki
= XiTen−ki

∈ Im(0⊕ T̈) ∩ Im Xi

⊆ Lin{er+1, . . . , en−1, en} ∩ Lin{eki+1, . . . , en−1, ci}
= Lin{eki+1, . . . , en−1}.

But since each (n− r)× (n− r) minor of a Cauchy matrix is nonzero, the n− 1
vectors c̈1, . . . , c̈n−1 span the whole linear spaceCn−r. Hence, it follows from (3.5)
that Im T̈ ⊆ Lin{ëki+1, . . . , ën−1}, so the last row of T̈ vanishes. Also, Im T =

0r ⊕ Im T̈ ⊆ Lin{eki+1, . . . , en−1} ⊆ Lin{eb(n+1)/2c+1, . . . , en−1} ⊆ ker Xi, giving
that XiT = 0 for each i = 1, . . . , n− 1. Hence, TXi = XiT = 0, so T Im Xi = 0 and
in particular Tci = 0 for each i, and hence T̈c̈i = 0 for each i = 1, . . . , n− 1. Since
c̈1, . . . , c̈n−1 span the whole linear space Cn−r we have T̈ = 0 and hence T = 0, a
contradiction since T was not a scalar matrix.

The next lemma gives a similar result in the case of a square-zero matrix A.
It is understood that if r = n/2, then A =

(
0r 0
Ir 0r

)
.

LEMMA 3.3. Let n > 3. Let A =

(
0r 0 0
0 0n−2r 0
Ir 0 0r

)
∈ Mn(C) be a square-zero

matrix with 1 6 r = rank A 6 n/2 and let B1, . . . , Bn−1 be nilpotent matrices defined
in Lemma 3.1. If Xi ∈ B′i are nonscalar matrices, then we have {A, X1, . . . , Xn−1}′ =
CI.

Proof. Assume there exists a nonscalar T ∈ {A, X1, . . . , Xn−1}′. Since T ∈ A′

it easily follows that T =

(
Ṫ 0 0
∗ ∗ 0
∗ ∗ Ṫ

)
with blocks of appropriate size. Arguing as
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in the proof of Lemma 3.2 and keeping the same notations for Xi and ċi we can
assume that Xi are square-zero matrices of the form (3.3) and by (3.4) the first r
components of ci are scalar multiples of ci, i.e., Ṫċi ∈ Cċi. Hence, as before, Ṫ is a
scalar matrix and by subtracting a suitable scalar from T we may assume Ṫ = 0.

Similarly as in (3.5) we obtain that Tci ∈ Lin{eb(n+1)/2c+1, . . . , en−1} ⊆
ker Xj for each i, j 6 n − 1. Since the last r > 1 columns of T vanish we fur-
ther have Ten−r = · · · = Ten = 0. Note that c1, . . . , cn−1, en is a basis for Cn —
this follows by expanding the determinant of the matrix [c1| · · · |cn−1|en] by the
last column and noting that each (n− 1)× (n− 1) minor of a Cauchy matrix is
nonzero. Therefore, Im T = Lin{Tc1, . . . , Tcn−1, Ten} = Lin{Tc1, . . . , Tcn−1, 0}, so
XiT = 0. Then also TXi = XiT = 0, so in particular, Tci = 0 for each i, and, as
already noted, Ten = 0. Hence T = 0, a contradiction.

From the last two lemmas we obtain the following classification of dimen-
sion via a commuting graph.

B1

X1

Y

X2

B2

B3

X3

X4
B4

B5

X5
X6

B6

G

FIGURE 1. Visualization of Lemmas 3.4–3.5. By Lemma 3.5 such
subgraph exists in Γ(M8(C)), but not in Γ(M7(C)), for every
B1, . . . , B6 pairwise at distance 4.

LEMMA 3.4. Let 3 6 n = dimH < ∞. If G ∈ Γ(B(H)), then we can find n− 1
operators B1, . . . , Bn−1 ∈ Γ(B(H)), pairwise at distance 4 in a commuting graph, such
that there does not exist Y ∈ Γ(B(H)) for which we would simultaneously have (n−1

2 )
star-like paths

Bi Xi Y Xj Bj

G
where 1 6 i < j 6 (n− 1).

Proof. The statement about nonexistence of Y is clearly equivalent to the
fact that for every choice of nonscalar operators Xi ∈ B′i the only operators Y ∈
{G, X1, . . . , Xn−1}′ are the scalar ones.

Identify B(H) with Mn(C). By dimension argument there exists a maxi-
mal matrix A ∈ Mn(C) with G′ ⊆ A′. As already mentioned in the introduc-
tion, by subtracting a suitable scalar matrix from A and dividing with a suitable
scalar, we can achieve that either A2 = A is an idempotent or that A2 = 0 (see
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Lemma 3.1 of [16]). Hence, after a suitably chosen similarity we may further as-

sume with no loss of generality that A = Ir ⊕ 0n−r or that A =

(
0r 0 0
0 0n−2r 0
Ir 0 0r

)
.

In both cases take matrices B1, . . . , Bn−1 from Lemmas 3.2–3.3 to conclude that
{G, X1, . . . , Xn−1}′ ⊆ {A, X1, . . . , Xn−1}′ = CI whenever Xi ∈ B′i are nonscalar.
This is clearly equivalent to the statement of the lemma.

In contrast, with less operators Bi such paths are possible, provided the
operator G is suitably chosen. Note that the lemma below makes sense only if
dimH > 4.

LEMMA 3.5. Let 4 6 n = dimH < ∞. If G ∈ Γ(B(H)) has rank-one, then
for every choice of n− 2 operators B1, . . . , Bn−2 ∈ Γ(B(H)), pairwise at distance 4, we
can find Y ∈ Γ(B(H)) together with (n−2

2 ) star-like paths

Bi Xi Y Xj Bj

G
where 1 6 i < j 6 (n− 2).

Proof. Write G = xG f T
G for appropriate nonzero vectors xG, fG ∈ Cn. Con-

sider any n− 2 nonscalar matrices B1, . . . , Bn−2 ∈ Mn(C) pairwise at distance 4.
For each i = 1, . . . , n − 2, choose an eigenvector xi for Bi and an eigenvector fi
for BT

i , which both correspond to the same eigenvalue. Then, the rank-one ma-
trix Xi = xi f T

i clearly commutes with Bi for i = 1, . . . , n − 2. Now, the space
Lin{x1, . . . , xn−2, xG} is at most (n − 1)-dimensional, so there exists a nonzero
vector f such that f T annihilates this space. Likewise there exists a nonzero vec-
tor y such that f T

Gy = 0 and f T
i y = 0 for each i = 1, . . . , n − 2. This gives a

rank-one matrix Y = y f T which commutes with G and with each Xi = xi f T
i ∈ B′i ,

and establishes the desired paths.

The following is our main result. It shows that if the commutativity relation
on B(H) is indistinguishable from that on B(K), then B(H) ∼ B(K), that is,
the two algebras are isomorphic. Note that the centers of B(K) and B(H) are
both isomorphic to C so the indistinguishability of the commutativity relations is
exactly the fact that the two commuting graphs are isomorphic.

THEOREM 3.6. Let H,K be complex Hilbert spaces of dimension at least two.
If Γ(B(H)) is isomorphic to Γ(B(K)), then dimH = dimK and hence B(H) ∼
B(K).

Proof. By Proposition 2.1, if H is separable (finite or infinite-dimensional)
whileK is not, the commuting graphs cannot be isomorphic and the same conclu-
sion holds ifH is finite-dimensional, while K = `2 (square-summable sequences)
is separable but of infinite-dimension. It only remains to see that the two graphs
are not isomorphic if (i) 3 6 dimH < dimK < ∞ or if (ii) dimH < dimK and
bothH and K are non-separable.
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Assume (i) and let n = dimK > 4. By Lemma 3.5 there exists a vertex
G ∈ Γ(B(K)) (of rank-one) such that for every n − 2 vertices B1, . . . , Bn−2 ∈
Γ(B(K)), pairwise at distance 4, we can find a vertex Y ∈ Γ(B(K)) and (n−2

2 )
star-like paths

Bi Xi Y Xj Bj

G
.

Since m := dimH < n, Lemma 3.4 implies that the graph Γ(B(H)) contains
no vertex G with this properties (a vertex G ∈ Γ(B(H)) can induce star-like
paths with at most m − 2 vertices Bi, which is less than what can be obtaind in
Γ(B(K))). The two graphs are therefore not isomorphic.

Finally assume (ii) and let H be non-separable with ℵ = dimH the cardi-
nality of its dimension. This means that there exists an orthonormal basis B ⊆ H
with |B| = ℵ. Let us show that

(3.6) |B(H)\CI| = 2ℵ.

To this end, note that every x ∈ H can be uniquely expanded by a fixed or-
thonormal basis B ⊆ H and, by Bessel inequality, all but at most countably many
coefficients of this expansion vanish. Thus, to each vector x ∈ H there corre-
sponds a unique finite or at most countably infinite subset Bx ⊆ B such that x
is expanded by orthonormal vectors from Bx and no coefficient of this expansion
vanishes; we agree here that 0 can be expanded on the empty subset of B. De-
note by ℵ0 = |N| the cardinality of positive integers N and by c := |C| = 2ℵ0 the
cardinality of continuum. Then, there are at least c and at most |`2| 6 cℵ0 = c

(see Example 7, p. 53 of [10] for the last identity), vectors which can be expanded
on a given at most countable nonempty subset of B. Clearly then, for each at
most countable nonempty subset Bλ ⊆ B, the set ΞBλ

⊆ H of vectors which can
be expanded by Bλ such that each coefficient of this expansion is nonzero, has
again cardinality c. Since H\{0} is a disjoint union of different ΞBλ

we deduce
that |H| = b · c+ 1 = b · c, where b is the cardinality of the set Cω(B) of at most
countable nonempty subsets of B. Note that there is a one-to-one, onto correspon-
dence between Cω(B) and the set BN of all functions fromN to B — taking images
of functions, Im: BN → Cω(B) is a surjection, while taking graphs of functions,
G : BN → Cω(N× B) ∼ Cω(B) is an injection. Thus, b = ℵℵ0 . Clearly, ℵ0 < ℵ, so
by Example 9, p. 54 of [10],

ℵ 6 b = ℵℵ0 6 2ℵ.

This gives that |H| = c · ℵℵ0 = max{c,ℵℵ0}. As for the cardinality of B(H),
note that each linear bounded operator is uniquely determined by prescribing
its values on vectors from orthonormal basis. It can map each basis vector to
any vector from H, as long as it remains bounded. Thus, |B(H)| 6 |H|ℵ =
max{cℵ, (ℵℵ0)ℵ}. Using cℵ = (2ℵ0)ℵ = 2ℵ0·ℵ = 2ℵ and using (ℵℵ0)ℵ = ℵℵ0ℵ =
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ℵℵ = 2ℵ we see that |B(H)| 6 2ℵ. On the other hand, each bijection on orthonor-
mal basis induces a unique unitary (hence bounded) operator onH. We will show
below that there are 2|B| = 2ℵ bijections on B so there are at least 2ℵ elements in
B(H). Combined with the previous estimate we now see that |B(H)| = 2ℵ and
(3.6) follows easily.

As for the cardinality of the set of all bijections on B, each A ⊆ B in-
duces a bijection φA : B × {0, 1} → B × {0, 1} by φA(a, i) = (a, i) if a ∈ A and
φA(x, 0) = (x, 1), φA(x, 1) = (x, 0) if x /∈ A; so there are at least as many bi-
jections on (B× {0, 1}) ∼ B as there are subsets of B. The converse estimate is
obtained by considering a graph of a bijection in (B× B) ∼ B.

Consequently, assuming the generalized continuum hypothesis, we have
for non-separable Hilbert spacesH andK that dimH < dimK implies |Γ(B(H))|
= 2dimH < 2dimK = |Γ(B(K))| and consequently the two commuting graphs
are not isomorphic.
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