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ABSTRACT. To every Fell bundle C over a locally compact group G one asso-
ciates a Banach ∗-algebra L1(G|C ). We prove that it is symmetric whenever G
with the discrete topology is rigidly symmetric. This generalizes the known
case of a global action without a twist. There is also a weighted version as well
as a treatment of some classes of associated integral kernels. We also deal with
the case of Fell bundles over discrete groupoids. We formulate a generaliza-
tion of rigid symmetry in this case and show its equivalence with an a priory
stronger concept. We also study the symmetry of transformation groupoids
and some permanence properties.
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1. INTRODUCTION

This article treats the symmetry of certain Banach ∗-algebras connected with
Fell bundles over discrete groupoids and locally compact groups (always sup-
posed to be Hausdorff). Let us recall the main classical concept.

DEFINITION 1.1. A Banach ∗-algebra B is called symmetric if the spectrum
of b∗b is positive for every b ∈ B (this happens if and only if the spectrum of any
self-adjoint element is real).

The symmetry of a Banach ∗-algebra admits many reformulations and has
many useful and interesting consequences [15, 27], which will not be discussed
here. Let us only mention that, in a suitable framework, it is connected with no-
tions as spectral invariance and stability under the holomorphic functional calcu-
lus. We also feel that this is not the right place to sketch a history of the subject.
A very useful and readable presentation may be found in [15]. More general ∗-
algebras are also studied from the point of view of symmetry, but this will no
longer be mentioned here.
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A great deal of effort has been dedicated to Banach algebras associated to
a locally compact group G. The basic example is the convolution algebra L1(G);
actually the interest in the symmetry property arouse around the Banach algebra
interpretation and treatment of the classical result [31] of Wiener on Fourier se-
ries. But there are increasingly general other classes, as global crossed products,
partial crossed products (both twisted by 2-cocycles or not), groupoid algebras
and L1-types algebras associated to Fell bundles. All of these played an impor-
tant theoretical role and lead to many applications. When looking for results and
examples, one aims to enlarge the collection of groups of groupoids that can be
treated, as well as the class of symmetric Banach ∗-algebras assigned to them. The
present paper is concerned with these purposes, adopting the very general point of view
of Fell bundles.

Until very recently, the largest class for which general results have been
found was that of crossed products attached to a global action of the group over
a C∗-algebra. A cohomological twist has also been permitted. The simplest case
of a trivial action leads to the projective tensor product between L1(G) and a C∗-
algebra. Some references are: [4, 5, 6, 14, 13, 15, 16, 17, 21, 23, 24, 27, 28]. Groupoid
algebras are much less studied in the setup of symmetry and spectral invariance;
a project on this topic started in [3].

The main body of the article is composed of two parts: Section 2 deals with
Fell bundles over discrete groupoids, while Section 3 treats Fell bundles over lo-
cally compact groups. These are significant extensions in different directions of
a result from [18]. Although connected by terminology and some of the tech-
niques, the reader could read Section 2 and Section 3 (and [18]) separately. We
provide a description of the two sections. But first it is convenient to use the fol-
lowing terminology; the points (i) and (ii) are classical notions. (An adaptation
for groupoids will follow below.)

DEFINITION 1.2. (i) The locally compact group G is called symmetric if the
convolution Banach ∗-algebra L1(G) is symmetric.

(ii) The locally compact group G is called rigidly symmetric if given any C∗-
algebra A, the projective tensor product L1(G)⊗A is symmetric.

(iii) The locally compact group G is called hypersymmetric if for every Fell bun-
dle C over G, the Banach ∗-algebra L1(G|C ) is symmetric.

The main result of [18], stated in the different but equivalent language of
graded algebras, says that rigid symmetry and (the seemingly much stronger) hy-
persymmetry are equivalent for discrete groups. This was supported by many inter-
esting examples in which the group and the Fell bundle structure were not even
visible.

1.1. THE CASE OF DISCRETE GROUPOIDS. This section aims mainly at extend-
ing the mentioned result from [18] to Fell bundles over discrete groupoids. In
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this case, even the concept of rigid symmetry must be suitably adapted. Unfor-
tunately, the symmetry issue in a groupoid setting is in a very incipient form
(see [3], however), so classes of rigidly symmetric groupoids still have to be
found, which will then insure the natural and general hypersymmetry, by The-
orem 2.2. As far as we know, the idea to embed more complicated algebras
attached to discrete groups into simpler ones (projective tensor products of the
usual L1 group algebra with C∗-algebras) originated in [13], and it has been used
in other papers. Here we adapt it to the framework of Fell bundles over discrete
groupoids, which seems to be the most general object for which such technique
is viable. Anyhow, this covers directly many natural examples, as transforma-
tion groupoids assigned to discrete group actions on discrete spaces and various
pull-backs and equivalence relations in a discrete setting. Theorem 2.3 makes
available the result for discrete groups in a form that will be useful in the next
section.

Going beyond the discrete groupoids (of a general form) seems difficult,
since in this case the integration/disintegration theory for Fell bundle represen-
tations becomes very intricate, cf. Sections 3, 4, 5 in [25]. This is why an analog of
Theorem 3.3 for locally compact groupoids is still out of reach, and in Section 3
we restrict to groups.

In Subsection 2.2 we provide an application to actions of discrete groupoids
on C∗-bundles. In the Abelian case, one gets a result about the symmetry of
transformation groupoids (the action space is no longer discrete).

Finally, in Subsection 2.3 we study morphisms. In Theorem 2.9 and Corol-
lary 2.10 it is shown that subgroupoids of symmetric groupoids are also symmet-
ric (and similarly for hypersymmetry). This should be compared with Propo-
sition 4.2 from [3]. Theorem 2.8 shows that symmetry transfers from a discrete
groupoid to any of its epimorphic image.

1.2. THE CASE OF LOCALLY COMPACT GROUPS. The initial motivation of [18] and
of the present article was the fact that partial group actions are very general and
that many of the interesting examples are not coming from a global action. It soon
became clear that Fell bundles, which are even more general, can also be treated
in a similar way. In [18] the case of a discrete group was considered. Here, using
ideas of Poguntke [28], we treat Fell bundles over a locally compact group G, but
for technical reasons we need to impose conditions on the same group Gdis with
the discrete topology.

A diagram with implications and equivalences is supposed to systematize
the actual state of art. If G is a locally compact group, we will denote by Gdis the
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same group with the discrete topology:

G symmetric G rigidly symmetric G hypersymmetric

Gdis symmetric Gdis rigidly symmetric Gdis hypersymmetric

I2 I7

I3

I1

I4
I6

I5

I8

Clearly, a rigidly symmetric group is symmetric, which is expressed by the
two horizontal arrows I1 and I2. It is still not known if the two notions are really
different.

The implications I3 and I4 are due to Poguntke [28].
In I5 one direction is trivial, since projective tensor products of the form

L1(G)⊗A are easily written as L1-algebras of some Fell bundle (a similar state-
ment holds for I7). The fact that, for discrete groups, rigid symmetry implies
hypersymmetry is one of the main results of [18].

The main results of Section 3 are the (equivalent) implications I6 and I8.
Replacing the implication I7 by an equivalence would certainly be consid-

ered a nice result. Neither arrow I3 nor arrow I4 can be reversed: any compact
connected semisimple real Lie group is rigidly symmetric, but in [8] it is shown
that it contains a (dense) free group on two elements. The discretization will not
be amenable; by [29] it cannot be symmetric.

In [14] there is a global action of the “ax+b” group, whose associated L1-
algebra is not symmetric. This provides an example of a symmetric but not hy-
persymmetric group. But this does not say which of the implications I2 or I7
cannot be reverted.

Since in I6 one starts with rigid symmetry of the discretization, it is rele-
vant to have examples. Classes of rigidly symmetric discrete groups are (cf. [23]):
(a) Abelian, (b) finite, (c) finite extensions of discrete nilpotent. This last class
includes all the finitely generated groups with polynomial growth. A central ex-
tension of a rigidly symmetric group is rigidly symmetric, by [23, Theorem 7]. In
[24, Corollary 2.16] it is shown that the quotient of a discrete rigidly symmetric
group by a normal subgroup is rigidly symmetric.

In Subsection 3.1 we recall briefly the terminology of Fell bundles and state
the main results. The implication I6 is formulated in Theorem 3.3. As a conse-
quence of [19, Theorem 1], if G is supposed to be only symmetric, but the C∗-
algebra A is type I, the projective tensor product ℓ1(G) ⊗A is symmetric. This
allows us to state and prove Theorem 3.4 which cannot be obtained directly from
the implication I6. The passage from I5 to I6 is stated in Theorem 3.2, which is the
main technical result.

The proof of this crucial Theorem 3.2 is done in Subsections 3.2 and 3.3,
following ideas of Poguntke [28] (see also [7, 14]). It makes use of a criterion for
symmetry of Banach ∗-algebras in terms of representations and a discretization
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procedure. The fact that the L1-sections of a Fell bundle do not take values in a
single Banach space is a source of complications.

A twisted partial action (θ, ω) of a locally compact group G by partial iso-
morphisms between ideals of a C∗-algebra A gives rise to a twisted crossed product
A⋌ω

θ G and to a Fell bundle [1, 10]. It is even true that if a Fell bundle is separa-
ble and the unit fibre is stable, there is always a twisted partial action (G, θ, ω,A)
around. In Subsection 3.4 we sketch the constructions and write down the sym-
metry result in this case, which contains other important families (global actions,
trivial cocycles).

In Subsection 3.5 we present a symmetry result involving weights.
In connection with a given Fell bundle, in Subsection 3.6 we introduce a

class of kernel-sections that are convolution dominated with respect to a weight.
Those which are covariant, in a suitable way, form a symmetric Banach ∗-algebra.
To get a better result, for a larger algebra, we define an enlarged Fell bundle,
canonically associated to the initial one.

2. THE CASE OF DISCRETE GROUPOIDS

2.1. FELL BUNDLES OVER DISCRETE GROUPOIDS AND SYMMETRY ISSUES. Let Ξ
be a discrete groupoid, with unit space Ξ(0) =: U, source map s and range map
r. The set of composable pairs is

Ξ(2) := {(x, y) : r(y) = s(x)}.

We are going to work with Fell bundles C
q→ Ξ over the groupoid Ξ

(see [20, 25, 30, 34]). Without spelling out the whole definition in detail, let us
recall that each fibre Cx := q−1({x}) is a Banach space with norm ∥ · ∥Cx , the
topology of C coincides with the norm topology on each fibre, there are antilin-
ear continuous involutions

Cx ∋ a → a• ∈ Cx−1

and for all (x, y) ∈ Ξ(2) there are continuous multiplications

Cx × Cy ∋ (a, b) → a • b ∈ Cxy

satisfying the following axioms for a ∈ Cx, b ∈ Cy, (x, y) ∈ Ξ(2):

(i) ∥ab∥Cxy ⩽ ∥a∥Cx∥b∥Cy ;
(ii) (ab)• = b•a•;

(iii) ∥a•a∥Cs(x)
= ∥a∥2

Cx
;

(iv) a•a is positive in Cs(x).

From these axioms it follows that Cu is a C∗-algebra for every unit u ∈ U.
Sometimes we simply write C =

⊔
x∈Ξ

Cx for the Fell bundle.
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The most important object for us is the Hahn algebra ℓ∞,1(Ξ | C ) adapted to
Fell bundles [25], which in our discrete case if formed by the sections Φ : Ξ → C

(thus satisfying Φ(x) ∈ Cx for every x ∈ Ξ) such that the Hahn-type norm

(2.1) ∥Φ∥∞,1 := max
{

sup
u∈U

∑
r(x)=u

∥Φ(x)∥Cx , sup
u∈U

∑
s(x)=u

∥Φ(x)∥Cx

}
is finite. It is a Banach ∗-algebra under the multiplication

(Φ ⋆ Ψ)(x) := ∑
yz=x

Φ(y) • Ψ(z)

and the involution
Φ⋆(x) := Φ(x−1)•.

The space Cc(Ξ | C ) of finitely-supported sections forms a dense ∗-algebra of
the Hahn algebra. The complexity of the multiplication, largely responsable for
the generality of the emerging algebras, comes both from the complexity of the
“inner” Fell multiplication • and from the groupoid-type convolution inherent to
the formula.

We need some special Fell bundles associated to Hilbert bundles H :=⊔
u∈U

Hu over the unit space; here the fact that Ξ is discrete will be crucial. For

u, v ∈ U we set B(Hu,Hv) ≡ B(u, v) for the Banach space of all bounded linear
operators A : Hu → Hv. Taking advantage of the norm, the obvious multiplica-
tions

B(Hw,Hv)×B(Hu,Hw) → B(Hu,Hv)

and the obvious involutions B(Hu,Hv) → B(Hv,Hu), one constructs the Fell
bundle

BH :=
⊔

(u,v)∈U×U

B(u, v) → U × U

over the pair groupoid. Actually we are interested in the pull-back Fell bundle

BH := (s, r)∗(BH )

of B through the groupoid morphism (s, r) : Ξ → U × U. We denote it by

BH :=
⊔

x∈Ξ

Bx
p→ Ξ,

with fibres Bx := B(s(x), r(x)) and obvious structure.

DEFINITION 2.1. (i) The discrete groupoid Ξ is called symmetric if the con-
volution Banach ∗-algebra ℓ∞,1(Ξ) is symmetric.

(ii) The discrete groupoid Ξ is called rigidly symmetric if, given any Hilbert
bundle H =

⊔
x∈X

Hx over its unit space, the Banach ∗-algebra ℓ∞,1(Ξ | BH ) is

symmetric.
(iii) The discrete groupoid Ξ is called hypersymmetric if given any Fell bundle

C =
⊔

x∈Ξ
Cx, the Banach ∗-algebra ℓ∞,1(Ξ | C ) is symmetric.
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It is clear that rigid symmetry implies symmetry; just take the constant field
Hu := C for every u. As said in the Introduction, even for discrete groups it is
still unknown if the two notions are identical.

THEOREM 2.2. For a discrete groupoid, rigid symmetry and hypersymmetry co-
incide.

Proof. The fact that hypersymmetry implies rigid symmetry is obvious, since
BH is a particular type of discrete groupoid Fell bundle. So we need to show the
converse implication.

We will first prove a result concerning the existence of isometric represen-
tations of such Fell bundles. We rely on the integrated form of such a represen-
tation. In general the connections between representations and their integrated
forms is an intricate issue (see [25, Sections 3, 4, 5] for instance), especially at the
level of “disintegration”, but for discrete Ξ this simplifies a lot. We will sketch
the constructions we need without saying how they fit the general case. But just
a hint: the counting measure on U is invariant with respect to the Haar system
composed of counting measures on the fibers of the discrete groupoid.

Let C =
⊔

x∈Ξ
Cx

q→ Ξ be an arbitrary Fell bundle and

π : C → BH =
⊔

x∈Ξ

B(Hs(x),Hr(x))

be a representation, where H =
⊔

u∈U
Hu is a Hilbert bundle over U. In our context

this just means that π is a morphism of Fell bundles. Its integrated form

Π : ℓ∞,1(Ξ | C ) → B
( ⊕

u∈U
Hu

)
is defined by

(2.2) [Π(Φ)h](u) := ∑
r(x)=u

π[Φ(x)]h[s(x)], ∀h ∈
⊕
u∈U

Hu.

For any unit v we embed Cv into Cc(Ξ | C ) ⊂ ℓ∞,1(Ξ | C ), setting for each a ∈ Cv

(θva)(x) := a if x = v, (θva)(x) := 0Cx if x ̸= v,

and we get from (2.2)

[Π(θva)h](u) = π(a)h(v) if u = v, [Π(θva)h](u) = 0Hu if u ̸= v.

It follows immediately that if Π is injective, then the restriction of π to Cv is also
injective, i.e. isometric. Actually Π extends to the full C∗-algebra C∗(Ξ | C ) of the
Fell bundle, which contains densely ℓ∞(Ξ | C ). Injective representations of C∗-
algebras do exist; we conclude that the Fell bundle representation π is isometric
on the C∗-algebras corresponding to the units. But then, by a standard argument,



34 FELIPE FLORES, DIEGO JAURÉ AND MARIUS MĂNTOIU

the isometry also propagates on all the Banach spaces of the Fell bundle: if b ∈ Cx
the axioms allow us to write

∥π(b)∥2
Bx

= ∥π(b)∗π(b)∥Bs(x)
= ∥π(b• • b)∥Bs(x)

= ∥b• • b∥Cs(x)
= ∥b∥2

Cx
.

Now define

Υπ : ℓ∞,1(Ξ | C ) → ℓ∞,1(Ξ | BH ), (Υπ(Φ))(x) := π(Φ(x)).

It is a well-defined linear isometry: we compute for the range part of the norm
(2.1) (using more detailed notations); the same is true for the source part:

∥Υπ(Φ)∥r
ℓ∞,1(Ξ|BH ) = sup

u
∑

r(x)=u
∥π(Φ(x))∥Bx

= sup
u

∑
r(x)=u

∥Φ(x)∥Cx = ∥Φ∥r
ℓ∞,1(Ξ|C ).

It is also an involutive morphism. For the multiplication, for instance, we have:

[Υπ(Φ) ⋆ Υπ(Ψ)](Ξ) = ∑
yz=x

[Υπ(Φ)](y)[Υπ(Ψ)](z) = ∑
yz=x

π[Φ(y)]π[Ψ(z)]

= π
(

∑
yz=x

Φ(y) • Ψ(z)
)
= [π(Φ ⋆ Ψ)](x) = [Υπ(Φ ⋆ Ψ)](x).

Thus we proved that ℓ∞,1(Ξ | C ) can be embedded as a closed ∗-algebra
of the symmetric Banach ∗-algebra ℓ∞,1(Ξ | BH ), so it is also symmetric, by
[27, Theorem 11.4.2]. The proof is finished.

The next result, valid for discrete groups, has essentially been stated and
proven in [18] in the language of graded algebras. Rephrasing it in the context of
Fell bundles is straightforward. We re-obtain here the (most important) point (i)
as a consequence of Theorem 2.2. It will be useful in the next sections.

THEOREM 2.3. Let D be a Fell bundle over the discrete group H. Assume any of
the hypotheses:

(i) H is rigidly symmetric (cf. Definition 1.2(ii));
(ii) H is symmetric and C∗(H|D) is a type I C∗-algebra.

Then ℓ1(H|D) is a symmetric Banach ∗-algebra.

Proof. (i) If Ξ ≡ H is a discrete group with unit e, since U = {e}, the ℓ∞,1-
algebras reduce to the usual ℓ1-algebras associated to Fell bundles with discrete
groups [11]. The Hilbert bundle reduces to a single Hilbert space He =: H,
the Fell bundle BH is only composed of B(H) and then ℓ∞,1(H|BH ) becomes
ℓ1(H,B(H)), which is isomorphic to the projective tensor product ℓ1(H)⊗B(H).
We recover in this case the classical notion of rigidly symmetric group, cf. [28] and
Definition 1.2(ii). This explains a posteriori our terminology. In the same way

ℓ∞,1(H|D) = ℓ1(H|D),

and then we apply Theorem 2.2.
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2.2. ACTIONS OF DISCRETE GROUPOIDS ON CONTINUOUS FIELDS OF C∗-ALGE-
BRAS.

DEFINITION 2.4. By a left groupoid action of a discrete groupoid Ξ on the C∗-

bundle A :=
⊔

u∈U
Au

p→ U over its unit space we understand a continuous map

A ⋊ Ξ := {(α, x) ∈ A × Ξ : p(α) = s(x)} ∋ (α, x) → T (α, x) ≡ Tx(α) ∈ A ,

satifying the axioms:
(i) p[Tx(α)] = r(x), ∀x ∈ Ξ, α ∈ As(x);

(ii) each Tx is an isomorphism : As(x) → Ar(x);
(iii) Tu = idAu , ∀u ∈ U;
(iv) if (x, y) ∈ Ξ(2) and (α, y) ∈ A⋊ Ξ, then (Ty(α), x) ∈ A⋊ Ξ and Txy(α) =

Tx[Ty(α)].

We denote by Cc,A (Ξ) the vector space of all the finitely supported func-
tions F : Ξ → ⊔

u∈U
Au satisfying F(x) ∈ Ar(x) for every x ∈ Ξ. It becomes a

∗-algebra with the laws

(F † G)(x) := ∑
y∈Ξr(x)

F(y)Ty[G(y−1x)],(2.3)

F†(x) := Tx[F(x−1)]∗.(2.4)

Completing in the Hahn-type norm

(2.5) ∥F∥
ℓ∞,1
A (Ξ)

:= max
{

sup
u∈U

∑
r(x)=u

∥F(x)∥Au , sup
u∈U

∑
s(x)=u

∥F(x−1)∥Au

}
,

one finds a Banach ∗-algebra ℓ∞,1
A (Ξ). Its enveloping C∗-algebra is known as the

crossed product associated to the action (A , p, T , Ξ), cf. [26] for example.

COROLLARY 2.5. Let (A , p, T , Ξ) be an action of the discrete rigidly symmetric
groupoid Ξ on the C∗-bundle A . The Banach ∗-algebra ℓ∞,1

A (Ξ) is symmetric.

Proof. The proof consists in putting the objects in the framework of Fell bun-
dles over groupoids and apply Theorem 2.2. We follow closely [25].

We endow the bundle C := A ⋊ Ξ with the operations:

(α, x) • (β, y) := (αTx(β), xy), (α, x)• := (Tx−1(α∗), x−1),

and get a Fell bundle over Ξ. A section is now a map Φ : Ξ → A ⋊ Ξ such that

Φ(x) ≡ (φ(x), x) ∈ Cx = As(x) × {x}, ∀x ∈ Ξ.

With such notations, on ℓ∞,1(Ξ | C ) the relevant mathematical structure is

(Φ ⋆ Ψ)(x) = ∑
yz=x

(φ(y), y) • (ψ(z), z) = ∑
yz=x

(φ(y)Ty[ψ(z)], yz)

= ∑
y∈Ξr(x)

(φ(y)Ty[ψ(y−1x)], x),



36 FELIPE FLORES, DIEGO JAURÉ AND MARIUS MĂNTOIU

Φ⋆(x) = (φ(x−1), x−1)• = (Tx[φ(x−1)∗], x)

and

∥Φ∥ℓ∞,1(Ξ|C ) = max
{

sup
u∈U

∑
r(x)=u

∥(φ(x), x)∥Ar(x)×{x},

sup
u∈U

∑
s(x)=u

∥(φ(x−1), x−1)∥As(x)×{x}

}
.

Comparing this with (2.3), (2.4) and (2.5), respectively, it becomes obvious that
the Banach ∗-algebras ℓ∞,1

A (Ξ) and ℓ∞,1(Ξ | C ) are isomorphic. Applying Theo-
rem 2.2 finishes the proof.

EXAMPLE 2.6. By a left groupoid action of a discrete groupoid Ξ on the Haus-
dorff locally compact space Σ we understand a pair (ρ, τ), where ρ : Σ → U =

Ξ(0) is continuous surjection, defining the topological subspace

Σ ∗ Ξ ≡ Σ ⋊ρ
τ Ξ := {(σ, x) ∈ Σ × Ξ : ρ(σ) = s(x)} ⊂ Σ × Ξ,

and a continuous map Σ ⋊ρ
τ Ξ ∋ (σ, x) → τ(σ, x) ≡ τx(σ) ∈ Σ satifying the

axioms:
(i) τρ(σ)(σ) = σ, ∀σ ∈ Σ;

(ii) if (x, y) ∈ Ξ(2) and (σ, y) ∈ Σ ⋊ρ
τ Ξ;

then (τy(σ), x) ∈ Σ ⋊ρ
τ Ξ and τxy(σ) = τx[τy(σ)].

To a groupoid action (Ξ, ρ, τ, Σ) one associates (cf. [26]) the transformation
(or action or crossed product) groupoid, with unit space which can be identified to
Σ, by endowing Σ ⋊ρ

τ Ξ with the structure maps:

(τx(σ), y)(σ, x) := (σ, yx), (σ, x)−1 := (τx(σ), x−1),

s(σ, x) := (σ, ρ(σ)) ≡ σ, r(σ, x) := (τx(σ), r(x)) ≡ τx(σ).

For each u ∈ U one defines the open set Σu := ρ−1(u) ⊂ Σ and then the Abelian
C∗-algebra Au := C0(Σu). The homeomorphisms τx−1 : Σr(x) → Σs(x) induce
by composition isomorphisms Tx : As(x) → Ar(x). One gets an action T of Ξ

on the C∗-bundle A =
⊔

u∈U
Au. It turns out that ℓ∞,1

A (Ξ) has the Hahn algebra

L∞,1(Σ ⋊ρ
τ Ξ) of the transformation groupoid Σ ⋊ρ

τ Ξ as a quotient. The next re-
sult, consequence of this isomorphism and Corollary 2.5, converts the rigid sym-
metry of a discrete groupoid into the symmetry of any of its possible transforma-
tion groupoids (which may be much more complicated). Note that the space Σ
needs not be discrete.

COROLLARY 2.7. Let (Ξ, ρ, τ, Σ) be an action of the discrete rigidly symmetric
groupoid Ξ on the locally compact space Σ. The transformation groupoid Σ ⋊ρ

τ Ξ is
symmetric.
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2.3. BEHAVIOR OF SYMMETRY WITH RESPECT TO EPIMORPHISMS AND MONO-
MORPHISMS. We will work with a morphism of discrete groupoids j : Ξ → Ξ′, which
are assumed at the beginning to have the same unit space U (or that j|U : U → U′

is a bijection).

THEOREM 2.8. Let j : Ξ → Ξ′ be an surjective morphism of discrete groupoids.
If Ξ is symmetric, then Ξ′ is symmetric.

Proof. We define J : Cc(Ξ) → Cc(Ξ′) by

[J(Φ)](x′) := ∑
j(x)=x′

Φ(x).

It is a linear map satisfying supp[J(Φ)] ⊂ j[supp(Φ)]. Since j is onto, J is also
onto (check that if supp(Φ′) = {x′0} then Φ′ belongs to the range of J).

The application J is multiplicative:

[J(Φ) ⋆ J(Ψ)](x′)= ∑
x′1x′2=x′

∑
j(x1)=x′1

Φ(x1) ∑
j(x2)=x′2

Ψ(x2)= ∑
j(x)=x′

∑
x1x2=x

Φ(x1)Ψ(x2)

= ∑
j(x)=x′

(Φ ⋆ Ψ)(x) = [J(Φ ⋆ Ψ)](x′).

For the involution:

[J(Φ)]⋆(x′)= [J(Φ)](x′−1)= ∑
j(y)=x′−1

Φ(y)= ∑
j(x)=x′

Φ(x−1)= ∑
j(x)=x′

Φ⋆(x)=J(Φ⋆)(x′).

We check now that J is contractive for the Hahn norms. We only treat the
r-part of the Hahn norm; the s-part is similar:

∥J(Φ)∥r
ℓ∞,1(Ξ′) = sup

u′∈U′
∑

r′(x′)=u′

∣∣∣ ∑
j(x)=x′

Φ(x)
∣∣∣ ⩽ sup

u′∈U′
∑

r′(x′)=u′
∑

j(x)=x′
|Φ(x)|

= sup
u∈U

∑
r′(x′)=j(u)

∑
j(x)=x′

|Φ(x)| = sup
u∈U

∑
r(x)=u

|Φ(x)| = ∥Φ∥r
ℓ∞,1(Ξ).

In the next-to-last step we used the identity r′ ◦ j = j ◦ r and also the injectivity of
j, to make sure that j[r(x)] = j(u) is equivalent to r(x) = u.

Now let Φ ∈ Cc(Ξ), with (finite) support F ⊂ Ξ, and define Ψ ∈ Cc(Ξ) to
be null if F ∩ j−1[j(x)] = ∅ and

Ψ(x) :=
(JΦ)[j(x)]

#(F ∩ j−1[j(x)])
=

∑j(y)=j(x) Φ(y)

#(F ∩ j−1[j(x)])

if F ∩ j−1[j(x)] ̸= ∅. A short computation shows that J(Ψ) = J(Φ). Additionally

∥Ψ∥r
ℓ∞,1(Ξ) = sup

u∈U
∑

r(x)=u

|(JΦ)[j(x)]|
#(F ∩ j−1[j(x)])

= sup
u∈U

∑
r′ [j(x)]=u

|(JΦ)[j(x)]|
#(F ∩ j−1[j(x)])

= sup
u∈U

∑
r′(x′)=u

|(JΦ)(x′)| = ∥J(Ψ)∥ℓ∞,1(Ξ′)
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so

(2.6) ∥Ψ∥ℓ∞,1(Ξ) = ∥J(Ψ)∥ℓ∞,1(Ξ′) = ∥J(Φ)∥ℓ∞,1(Ξ′).

By (2.6) and the contractivity of J, one concludes that

∥J(Φ)∥ℓ∞,1(Ξ′) = min{∥Ψ∥ℓ∞,1(Ξ)|J(Ψ) = J(Φ)}

(the quotient norm). It follows that J extends to a surjective contraction from
ℓ∞,1(Ξ) to ℓ∞,1(Ξ′), which is a ∗-morphism as shown in the first part of the proof.
Or, to put it differently, ℓ∞,1(Ξ′) identifies as a Banach ∗-algebra with the quotient
ℓ∞,1(Ξ)/ ker J.

The statement about symmetry follows, since by [27, Theorem 10.4.4] the
quotient of a symmetric Banach ∗-algebra through a closed bi-sided self-adjoint
ideal is symmetric.

We finish this section with a result concerning monomorphisms. In fact, in
the injective case, it is possible to work with morphism of Fell bundles

(J, j) : (C , q, Ξ) → (C ′, q′, Ξ′)

over discrete groupoids. Thus j : Ξ → Ξ′ is a groupoid morphism and J : C →
C ′ is a continuous map such that q′ ◦ J = j ◦ q. It is assumed that the induced
applications

Jx : Cx → C′
j(x), x ∈ Ξ

are linear, one has

Jxy(a • b) = Jx(a) • J(b), ∀a ∈ Cx, b ∈ Cy, (x, y) ∈ Ξ(2)

and Jx−1(a•) = Jx(a)• if a ∈ Cx.
It follows that Ju : Cu → C′

j(u) are C∗-morphisms for all the units u ∈ U,
thus they are contractions. Then for every b ∈ Cx, x ∈ Ξ, one gets

∥Jx(b)∥2
C′

j(x)
=∥Jx(b)• • Jx(b)∥C′

s′ [j(x)]
=∥Js(x)(b

• • b)∥C′
j[s(x)]

⩽ ∥b• • b∥Cs(x)
=∥b∥2

Cx
,

therefore all the operators Jx : Cx → C′
j(x) are contractive. In addition, if J is in-

jective (this is equivalent to its injectivity on the algebras corresponding to units),
they are all isometries.

THEOREM 2.9. Let (J, j) : (C , q, Ξ) → (C ′, q′, Ξ′) be a monomorphism of Fell
bundles. If ℓ∞,1(Ξ′ | C ′) is symmetric, then ℓ∞,1(Ξ | C ) is symmetric.

Proof. Let J : ℓ∞,1(Ξ | C ) → ℓ∞,1(Ξ′ | C ′), where [J(Φ)](x′) := 0C′
x′

if x′

does not belong to the range of j and

[J(Φ)](x′) := Jx[Φ(x)] if j(x) = x′.

It is straightforward to check that J is an isometric ∗-morphism, so ℓ∞,1(Ξ | C )
embeds as a closed ∗-subalgebra of ℓ∞,1(Ξ′ | C ′). For the isometry, we need the
remark made above, saying that J is isometric if it is injective. The conclusion
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follows recalling that closed ∗-subalgebras of symmetric Banach ∗-algebras are
themselves symmetric.

This can be applied, for instance, if Ξ = Ξ′ and C is a Fell sub-bundle of C ′.

COROLLARY 2.10. Suppose that Ξ is a subgroupoid of the discrete groupoid Ξ′.
(i) If Ξ′ is symmetric, then Ξ is symmetric.

(ii) If Ξ′ is hypersymmetric, then Ξ is hypersymmetric.

Proof. (i) One gets the result about symmetry by taking the trivial Fell bun-
dles C = C ′ := C× Ξ.

(ii) For hypersymmetry one starts with an arbitrary Fell bundle C over Ξ,
extends it somehow over the entire Ξ′ (by zero fibers, for instance) and then ap-
plies Theorem 2.9.

Corollary 2.10 can be applied to various interesting subgroupoids, as the
isotropy groupoid for instance, or as the (maybe non-invariant) restriction

ΞM
M := {x ∈ Ξ : s(x) ∈ M, r(x) ∈ M}

with M ⊂ U. For M = {u} one gets the isotropy group Ξu
u. We point out that

in [3, Proposition 4.2] it is shown that the isotropy subgroups of a symmetric
groupoid are symmetric, under some assumptions on the big groupoid (ample,
with compact unit space and satisfying an extra technical condition). A twist is
also considered.

3. THE CASE OF LOCALLY COMPACT GROUPS

3.1. THE MAIN RESULTS FOR LOCALLY COMPACT GROUPS. For the remaining
part of the article, G will be a (Hausdorff) locally compact group with unit e and
left Haar measure dµ(x) ≡ dx. We are also given a Fell bundle C =

⊔
x∈G

Cx

over G. Its sectional L1(G|C ) Banach ∗-algebra is the completion of the space
Cc(G|C ) of continuous sections with compact support. Its (universal) C∗-algebra
its denoted by C∗(G|C ). For the general theory of Fell bundles over groups we
followed [11, Chapter VIII], to which we refer for details. The case of a discrete
group and associated graded C∗-algebras is developed in [9]. We only recall the
product on L1(G|C )

(3.1) (Φ ∗ Ψ)(x) =
∫
G

Φ(y) • Ψ(y−1x)dy

and its involution

(3.2) Φ∗(x) = ∆(x−1)Φ(x−1)•,

in terms of the operations (•,• ) on the Fell bundle.
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We are going to make use both of C and its discrete version; the following
result is obvious.

LEMMA 3.1. Let C =
⊔

x∈G
Cx be a Fell bundle over the locally compact group G

and Gdis the same group with the discrete topology. We denote by C dis the space C with
the disjoint union topology defined by the fibres {Cx : x ∈ G} (a subset is open if and
only if its intersection with every Cx is open). Then C dis is a Fell bundle over Gdis, called
the discretization of the initial one. One has

Cc(G
dis|C dis)={Φ : G → C |Φ(x) ∈ Cx, ∀x ∈ G and supp(Φ) is finite},

L1(Gdis|C dis)≡ ℓ1(G|C )=
{

Φ : G→C |Φ(x)∈Cx, ∀x∈G and ∑
x∈G

∥Φ(x)∥<∞
}

,

C∗(Gdis|C dis)= the enveloping C∗-algebra o f ℓ1(G|C ).

The critical technical result is the next theorem. It will be proven in Sec-
tion 3.3, on the lines of [14, 28], where only particular cases of Fell bundles have
been treated. Some technical complications which have to be overcome are due
to the fact that our L1-sections do not take values in a single Banach space.

THEOREM 3.2. Let C be a Fell bundle over the locally compact group G. If ℓ1(G|C )
is symmetric, then L1(G|C ) is also symmetric.

We state now two main results of the paper. They follow immediately from
the two theorems above, where H = Gdis and D is the discretization of C .

THEOREM 3.3. Let C be a Fell bundle over the locally compact group G for which
the discrete group Gdis is rigidly symmetric. Then L1(G|C ) is a symmetric Banach ∗-
algebra.

If one only knows that Gdis is symmetric, there is still a result if we ask more
on the C∗-algebraic side.

THEOREM 3.4. Let C be a Fell bundle over the locally compact group G for which
the discrete group Gdis is symmetric. Suppose that C∗(Gdis|C dis) is a type I C∗-algebra.
Then L1(G|C ) is symmetric.

3.2. DISCRETIZATION OF REPRESENTATIONS. Our proof of Theorem 3.2, to be
found in the next section, relies on a discretization procedure in the setting of Fell
bundles, that we now present.

Let Γ : L1(G|C ) → B(E) be a non-trivial algebraically irreducible represen-
tation on the vector space E . Even for general Banach algebras, it is known how
to turn it into a Banach space representation. In our case, for ξ0 ∈ E , the norm

∥ξ∥E := inf{∥Φ∥L1(G|C ) : Γ(Φ)ξ0 = ξ}
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makes E a Banach space and Γ a contractive representation. If E was already a
Banach space, this new norm is equivalent to the previous one, so we lose nothing
by assuming that this is the norm of E .

We will define a representation Γdis of ℓ1(G|C ) ≡ L1(Gdis|C dis) on E , called
its discretization. The procedure consists in disintegrating the initial representa-
tion, reinterpreting it in the discrete setting and integrating it back. The new one
will act in the same space, but it will be very different.

By algebraic irreducibility, we may write every ξ ∈ E as ξ = Γ(Ψ)ξ0. Using
this form, the representation Γ induces bounded operators {γ(a)}a∈C , given by

γ(a)[Γ(Ψ)ξ0] := Γ(a · Ψ)ξ0

where, in terms of the bundle projection q : C → G, we set

(a · Ψ)(x) := a • Ψ(q(a)−1x) ∈ Cx, ∀x ∈ G.

We are thinking of a ∈ C as a multiplier of L1(G|C ), that we treat directly, without
indicating references. So we provide a direct proof of the following result.

LEMMA 3.5. The map γ : C → B(E) is a well-defined, contractive, Banach
representation of the Fell bundle C and does not depend on the choices.

Proof. Let ξ = Γ(Ψ)ξ0 = Γ(Φ)ξ1 and let {Υi : i ∈ I} ⊂ L1(G|C ) be some
approximate unit. Then one has

0=Γ(a·Υi)(ξ−ξ)=Γ(a·Υi)(Γ(Ψ)ξ0−Γ(Φ)ξ1)=Γ(a·[Υi∗Ψ])ξ0−Γ(a·[Υi∗Φ])ξ1.

So by passing to the limit we get the equality

γ(a)ξ = Γ(a · Ψ)ξ0 = Γ(a · Φ)ξ1.

Let us proceed to check that γ has the defining properties of a representation,
starting by γ(a)γ(b) = γ(ab) for every a, b ∈ C :

γ(a)γ(b)[Γ(Ψ)ξ0] = Γ(ab • Ψ(q(b)−1q(a)−1·))ξ0 = Γ(ab • Ψ(q(ab)−1·))ξ0

= γ(ab)[Γ(Ψ)ξ0].

We now show that ∥γ(a)∥B(E) ⩽ ∥a∥Cq(a)
. By the definition of ∥ · ∥E , there exists

{Φn}n∈N ⊂ L1(G|C ) for which Γ(Φn)ξ0 = ξ and ∥Φn∥L1(G|C ) → ∥ξ∥E . Then

γ(a)ξ = γ(a)Γ(Φn)ξ0 = Γ(a · Φn)ξ0,

which yields ∥γ(a)ξ∥E ⩽ ∥a · Φn∥L1(G|C ). But

∥a · Φn∥L1(G|C ) =
∫
G

∥a • Φn(q(a)−1x)∥Cx dx ⩽
∫
G

∥a∥Cq(a)
∥Φn(q(a)−1x)∥Cq(a)−1x

dx

= ∥a∥Cq(a)

∫
G

∥Φn(x)∥Cx dx = ∥a∥Cq(a)
∥Φn∥L1(G|C ).

So
∥a · Φn∥L1(G|C ) ⩽ ∥a∥Cq(a)

∥Φn∥L1(G|C ) → ∥a∥Cq(a)
∥ξ∥E ,
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hence ∥γ(a)ξ∥E ⩽ ∥a∥Cq(a)
∥ξ∥E and ∥γ(a)∥B(E) ⩽ ∥a∥Cq(a)

.
For the continuity of a 7→ γ(a)ξ, write (again) ξ = Γ(Ψ)ξ0 and observe that

γ(b)ξ − γ(a)ξ = γ(b)Γ(Ψ)ξ0 − γ(a)Γ(Ψ)ξ0

= Γ(b • Ψ(q(b)−1·)− a • Ψ(q(a)−1·))ξ0 = Γ(b · Ψ − a · Ψ)ξ0.

In consequence, the continuity of a 7→ γ(a)ξ follows from the continuity of a 7→
a · Ψ ∈ L1(G|C ).

REMARK 3.6. The initial representation Γ can be recovered from the opera-
tors {γ(a)}a∈C by

(3.3) Γ(Φ)ξ =
∫
G

γ(Φ(x))ξdx.

Indeed, writing ξ ∈ E as ξ = Γ(Ψ)ξ0 we get∫
G

γ(Φ(x))ξdx =
∫
G

γ(Φ(x))[Γ(Ψ)ξ0]dx =
∫
G

Γ(Φ(x) • Ψ(x−1·))ξ0dx

= Γ
( ∫
G

Φ(x) • Ψ(x−1·)dx
)

ξ0 = Γ(Φ ∗ Ψ)ξ0

= Γ(Φ)[Γ(Ψ)ξ0] = Γ(Φ)ξ.

This is part of the so called “integration/desintegration” theory for Fell bundles.

DEFINITION 3.7. With the assumptions given above, the discretization of the
representation Γ : L1(G|C ) → B(E) is Γdis : ℓ1(G|C ) → B(E) given by

(3.4) Γdis(φ)ξ := ∑
x∈G

γ(φ(x))ξ, for φ ∈ ℓ1(G|C ).

REMARK 3.8. Γdis is an irreducible representation of a cross-sectional alge-
bra, so it also induces operators {γdis(a)}a∈C . We point out that γdis(a) = γ(a),
which follows from the existing definitions by a straightforward computation.
On the other hand, the discrete setting allows a simpler treatment (multipliers
are no longer needed). The Fell bundle C dis injects isometrically in ℓ1(G|C ) by

(3.5) [µ(a)](x) := δq(a),xa, ∀a ∈ C , x ∈ G

(which may be written simply µ(a) = aδq(a)), and then we set γdis := Γdis ◦ µ. To
check that this is the same object, one proves immediately that µ(a) ∗ ψ = a · ψ

and then apply Γdis:

Γdis[µ(a)]Γdis(ψ)ξ0 = Γdis[µ(a) ∗ ψ]ξ0 = Γdis(a · ψ)ξ0 = γ(a)Γdis(ψ)ξ0.

To obtain the main result of this section, which is Proposition 3.11, let us
state a couple of lemmas.
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LEMMA 3.9. Let T : X → Y be a bounded operator between Banach spaces. If T
satisfies the condition

∀y ∈ Y , ∀ε > 0, ∃x ∈ X such that max{∥x∥ − ∥y∥, ∥Tx − y∥} ⩽ ε,

then it must be surjective.

Proof. This is Lemma A2 from [7]; see also [28, pag. 193].

LEMMA 3.10. For every η ∈ E and ε > 0 there exists φ ∈ ℓ1(G|C ) such that

(3.6) ∥φ∥ℓ1(G|C ) ⩽ ∥η∥E + ε, ∥Γdis(φ)ξ0 − η∥E ⩽ ε.

Proof. Let 0 < δ, to be fixed later. Due to the definition of the norm in E and
the density of Cc(G|C ) in L1(G|C ), there is an element Φ ∈ Cc(G|C ) such that

(3.7) ∥Φ∥L1(G|C ) ⩽ ∥η∥E + δ, ∥Γ(Φ)ξ0 − η∥E ⩽ δ∥ξ0∥E .

Recall that, for such a section, the maps x 7→ ∥Φ(x)∥Cx and x 7→ γ(Φ(x))ξ0 are
uniformly continuous. The support of Φ will be denoted by Σ. Let us fix an open
relatively compact neighborhood V of e ∈ G such that

∥γ(Φ(xu))ξ − γ(Φ(x))ξ∥E ⩽
δ

µ(Σ)
, ∀x ∈ G, u ∈ V and(3.8)

|∥Φ(yu)∥Cyu − ∥Φ(y)∥Cy | ⩽
δ

µ(Σ)
, ∀x ∈ G, u ∈ V.(3.9)

Choose x1, . . . , xm ∈ G such that Σ ⊂
m⋃

j=1
xjV. Setting M1 := x1V ∩ Σ, and then

inductively
Mk := (xkV ∩ Σ) \

⋃
j<k

Mj, k = 2, . . . , m,

one gets a measurable partition of Σ. The solution to our problem is expected to
be the finitely supported function

φ :=
m

∑
j=1

µ(Mj)Φ(xj)δxj .

Its single non-null values are φ(xj) = µ(Mj)Φ(xj) ∈ Cxj , j = 1, . . . , m, so φ ∈
ℓ1(G | C ). One has

∥Φ∥L1(G|C ) =
m

∑
j=1

∫
Mj

∥Φ(x)∥Cx dµ(x) ⩾
m

∑
j=1

[
∥Φ(xj)∥Cxj

− δ

µ(Σ)

] ∫
Mj

dµ(x)

=
m

∑
j=1

∥Φ(xj)∥Cxj
µ(Mj)− δ = ∥φ∥ℓ1(G|C ) − δ.

For the inequality we used (3.9) with y = xk and the fact that Mj ⊂ xjV. Combin-
ing this with the first identity in (3.7), we get

∥φ∥ℓ1(G|C ) ⩽ ∥η∥E + 2δ.
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To reach the second condition in (3.6), by (3.7), we only need to control the dif-
ference Γ(Φ)ξ0 − Γdis(φ)ξ0, using the formulae (3.3) and (3.4), which in our case
become

Γ(Φ)ξ0 =
m

∑
j=1

∫
Mj

γ(Φ(x))ξ0dx and

Γdis(φ)ξ0 =
m

∑
j=1

µ(Mj)γ(Φ(xj))ξ0 =
m

∑
j=1

∫
Mj

γ(Φ(xj))ξ0dx.

Therefore, by (3.8)

∥Γ(Φ)ξ0−Γdis(φ)ξ0∥E =
∥∥∥ m

∑
j=1

∫
Mj

γ(Φ(x))ξ0 − γ(Φ(xj))ξ0dx
∥∥∥
E

⩽
m

∑
j=1

∫
Mj

∥γ(Φ(x))ξ0−γ(Φ(xj))ξ0∥Edx⩽
m

∑
j=1

δµ(Mj)

µ(Σ)
=δ.

So we have

∥Γdis(φ)ξ0 − η∥E ⩽ ∥Γ(Φ)ξ0 − Γdis(φ)ξ0∥E + ∥Γ(Φ)ξ0 − η∥E ⩽ δ(1 + ∥ξ0∥E ).

We finish by taking δ < min{ ε
1+∥ξ0∥E

, ε
2}.

PROPOSITION 3.11. The discretization Γdis is an algebraically irreducible repre-
sentation.

Proof. We need to show that every non-null vector ξ0 is cyclic. This can be
restated as the surjectivity of the operator

Tξ0 : ℓ1(G|C ) → E , Tξ0(φ) := Γdis(φ)ξ0,

which is a consequence of Lemmas 3.9 and 3.10.

3.3. PROOF OF THEOREM 3.2.

DEFINITION 3.12. Let Γ : B → B(E) be a representation of the Banach ∗-
algebra B in the Banach space E . The representation is called preunitary if there
exists a Hilbert space H, a topologically irreducible ∗-representation Π : B →
B(H) and an injective linear and bounded operator W : E → H such that

WΓ(ϕ) = Π(ϕ)W, ∀ϕ ∈ B.

Our interest in this notion lies in the next characterization, taken from [22].

LEMMA 3.13. The Banach ∗-algebra B is symmetric if and only if all its non-
trivial algebraically irreducible representations are preunitary.

Let us now prove Theorem 3.2.
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Proof of Theorem 3.2. We start the proof with a non-trivial algebraically irre-
ducible representation Γ : L1(G|C ) → B(E) and, as above, we denote by Γdis

its discretization. By Proposition 3.11, it is also algebraically irreducible. Since
ℓ1(G|C ) is symmetric, Lemma 3.13 says that Γdis is preunitary, hence there ex-
ists a topologically irreducible ∗-representation Πdis : ℓ1(G|C ) → B(H) and an
injective bounded linear operator W : E → H such that

(3.10) WΓdis(φ) = Πdis(φ)W, ∀φ ∈ ℓ1(G|C ).

The representation Πdis induces a representation πdis of the Fell bundle C dis in
the same Hilbert space H, which also satisfies πdis(a∗) = πdis(a)∗ for every a ∈
C . Similarly to Remark 3.8, it is enough to set πdis := Πdis ◦ µ, where µ has been
defined in (3.5); one easily checks that

Πdis(φ) = ∑
y∈G

πdis[φ(y)], ∀φ ∈ ℓ1(G|C ).

For each a ∈ C , using (3.10) and Remark 3.8, we obtain

(3.11) πdis(a)W = Πdis[µ(a)]W = WΓdis[µ(a)] = Wγdis(a).

Let us define the ∗-representation Π : L1(G|C ) → B(H) by

(3.12) Π(Φ)ξ :=
∫
G

πdis(Φ(x))ξdx.

Recall that γdis = γ (see Remark 3.6). We have:

WΓ(Φ)ξ
(3.3)
= W

∫
G

γ(Φ(x))ξdx
(3.11)
=

∫
G

πdis(Φ(x))Wξdx
(3.12)
= Π(Φ)Wξ.

This means that Π(Φ)W = WΓ(Φ) for every Φ ∈ L1(G|C ). So the representation
Γ is preunitary, hence L1(G|C ) is symmetric.

3.4. TWISTED PARTIAL GROUP ACTIONS AND CROSSED PRODUCTS. Let Θ :=
(G, θ, ω,A) be a continuous twisted partial action of the locally compact group G
on the C∗-algebra A. We refer to [1, 10] for an exposure of the general theory. In
any case, the action is implemented by isomorphisms between ideals

θx : Ax−1 → Ax, x ∈ G

and unitary multipliers

ω(y, z) ∈ UM(Ay ∩Ayz), y, z ∈ G

satisfying suitable algebraic and topological axioms. (See [10, Definition 2.1].)
In [10], Exel associates to (G, θ, ω,A) the twisted partial semidirect product Fell

bundle in the following way: the total space is

C (Θ) := {(a, x) : a ∈ Ax}
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with the topology inherited from A×G and the obvious bundle projection p(a, x)
:= x. One has

(3.13) Cx(Θ) = Ax × {x}, ∀x ∈ G,

with the Banach space structure transported from Ax in the obvious way. The
algebraic laws of the bundle are:

(a, x) •Θ (b, y) := (θx[θ
−1
x (a)b]ω(x, y), xy), ∀x, y ∈ G, a ∈ Ax, b ∈ Ay,(3.14)

(a, x)•Θ := (θ−1
x (a∗)ω(x−1, x)∗, x−1), ∀x ∈ G, a ∈ Ax.(3.15)

REMARK 3.14. In [10] it is shown that twisted partial semidirect product
Fell bundles are very general: every separable Fell bundle with stable unit fiber
Ce is of such a type.

For a (continuous) section Φ and for any x ∈ G one has Φ(x) = (Φ̃(x), x),
with Φ̃(x) ∈ Ax ⊂ A. This allows identifying Φ with a function Φ̃ : G → A such
that Φ̃(x) ∈ Ax ⊂ A for each x ∈ G. By this identification L1(G|C (Θ)) can be
seen as L1

Θ(G,A), the completion of

Cc(G, {Ax}x) := {Φ̃ ∈ Cc(G,A) : Φ̃(x) ∈ Ax, ∀x ∈ G}

in the norm
∥Φ̃∥L1

Θ(G,A) :=
∫
G

∥Φ̃(x)∥Adx ≡ ∥Φ̃∥L1(G,A),

so it sits as a closed (Banach) subspace of L1(G,A). The substantial difference
is the semidirect product Fell bundle algebraic structure of Cc(G, {Ax}x), conse-
quence of (3.1), (3.2), (3.14) and (3.15):

(Φ̃ ∗Θ Ψ̃)(x) =
∫
G

θy[θ
−1
y (Φ̃(y))Ψ̃(y−1x)]ω(y, y−1x)dy and

Φ̃∗Θ(x) = ∆(x−1)θx[Φ̃(x−1)∗]ω(x−1, x),

which extends to L1
Θ(G,A). The C∗-envelope of L1

Θ(G,A) is A⋌Θ G :=C∗(G|C (Θ))
and it is called the (partial, twisted) crossed product of G and A. The translation of
Theorems 3.3 and 3.4 to this setting implies the following corollary.

COROLLARY 3.15. Let Θ := (G, θ, ω,A) be a continuous twisted partial action of
the locally compact group G for which either the discrete group Gdis is rigidly symmetric,
or it is symmetric and A⋌Θ Gdis is type I. Then L1

Θ(G,A) is a symmetric Banach ∗-
algebra.

REMARK 3.16. A (very) particular case is the one of global twisted actions,
basically characterized by Ax = A for every x ∈ G. Even more particularly, one
may take A = C, with the trivial action, and then ω : G× G → T is a multiplier.
In [2] Austad shows for such a case similar results, but assuming that the exten-
sion Gω of T by G associated to ω is symmetric. These are good assumptions,
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since rigid symmetry or discretization are not required. On the other hand, the
extension could be much more complicated than the group itself.

3.5. A WEIGHTED SYMMETRY RESULT. A weight on the locally compact group G
is a continuous function ν : G → [1, ∞) satisfying

ν(xy) ⩽ ν(x)ν(y), ν(x−1) = ν(x), ∀x, y ∈ G.

This gives rise to the Banach ∗-algebra L1,ν(G) defined by the norm

∥ψ∥L1,ν(G) :=
∫
G

ν(x)|ψ(x)|dx.

Let C be a Fell bundle over G. On Cc(G | C ) we introduce the norm

(3.16) ∥Φ∥L1,ν(G|C ) ≡ ∥Φ∥L1,ν :=
∫
G

ν(x)∥Φ(x)∥Cx dx.

The completion in this norm, denoted by L1,ν(G | C ), is a Banach ∗-algebra with
the algebraic structure inherited from L1(G | C ). In this context we are going to
improve Theorem 3.3.

THEOREM 3.17. Let G be a locally compact group which is rigidly symmetric as
a discrete group and ν a weight. Assume that there exists a generating subset U of G
containing the unit e such that almost everywhere

(i)

(3.17) lim
n→∞

sup
x∈Un

ν(x)1/n = 1;

(ii) for some finite constant C one has for any n ∈ N

(3.18) sup
x∈Un\Un−1

ν(x) ⩽ C inf
x∈Un\Un−1

ν(x).

Then L1,ν(G | C ) is a symmetric Banach ∗-algebra for every Fell bundle C over G.

Proof. We are going to adapt to our more general setting the strategy from
[13], involving spectral radii and Hulanicki’s Lemma (in the form of [12, Lem-
ma 3.1], to allow for non-unital algebras); see also [18].

As ν(·) ⩾ 1, we have ∥ · ∥L1 ⩽ ∥ · ∥L1,ν ; the spectral radius formula implies
that

rL1(Φ) ⩽ rL1,ν(Φ), ∀Φ ∈ L1,ν(G | C ).

To prove the opposite inequality, pick U as in the statement. Later on we will also
need the product of several elements. From (3.1) we get

(Φ1 ∗ · · · ∗ Φn)(x)

=
∫
G

∫
G

· · ·
∫
G

Φ1(y1) • Φ2(y−1
1 y2) • · · · • Φn(y−1

n−1x)dy1dy2 · · ·dyn−1.(3.19)
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Setting Φ1 = . . . = Φn ≡ Φ in (3.19), combining this with (3.16), making a change
of variables and using the decomposition G=

⊔
m∈N

(Um\Um−1), one easily obtains:

∥Φ∗n∥L1,ν

⩽
∫
G

· · ·
∫
G

ν(x)∥Φ(y1)∥Cy1
∥Φ(y−1

1 y2)∥C
y−1

1 y2
· · ·∥Φ(y−1

n−1x)∥C
y−1

n x

dy1· · ·dyn−1dx

=
∫
G

· · ·
∫
G

ν(x1 · · · xn)∥Φ(x1)∥Cx1
· · ·∥Φ(xn)∥Cxn

dx1· · ·dxn

= ∑
m1,...,mn

∫
Um1\Um1−1

· · ·
∫

Umn\Umn−1

ν(x1 · · · xn)∥Φ(x1)∥Cx1
· · · ∥Φ(xn)∥Cxn

dx1 · · ·dxn.(3.20)

Define
v(n) := sup

x∈U|n|
ν(x), ∀n ∈ Z.

It is a weight and one has the obvious associated weighted space ℓ1,ν(Z). If xj ∈
Umj \ Umj−1, then x1 · · · xn ∈ Um1+···+mn and so the weight satisfies

ν(x1 · · · xn) ⩽ sup
y∈Um1+···+mn

ν(y) = v(m1 + · · ·mn).

Set β(m) :=
∫

Um\Um−1
∥Φ(x)∥Cx dx and extend it by null values for negative m.

Then we have ∥Φ∥L1 = ∥β∥ℓ1(Z). The condition (3.18) implies immediately that

C−1∥β∥ℓ1,v(Z) ⩽ ∥Φ∥L1,ν ⩽ ∥β∥ℓ1,v(Z).

Returning to (3.20) and denoting by β⋆n the iterated self-convolution of β, we
obtain

∥Φ∗n∥L1,ν ⩽
∞

∑
m1,...,mn=1

v(m1 + · · ·+ mn)β(m1) · · · β(mn) = ∥β⋆n∥ℓ1,v(Z) < ∞.

By its definition and by (3.17), the weight v on the group Z satisfies the GRS-
condition lim

n→∞
v(n)1/n = 1, and ℓ1,v(Z) is symmetric by [12]. Hence

rL1,ν(Φ) = lim
n→∞

∥Φ∗n∥1/n
L1,ν ⩽ lim

n→∞
∥β⋆n∥1/n

ℓ1,v(Z) = rℓ1,v(Z)(β) = rℓ1(Z)(β)

⩽ ∥β∥ℓ1(Z) = ∥Φ∥L1 .

So for all k ∈ N we have

rL1,ν(Φ) = rL1,ν(Φ∗k)1/k ⩽ ∥Φ∗k∥1/k
L1 .
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Letting k → ∞ we obtain the required inequality rL1,ν(Φ) ⩽ rL1(Φ), which fin-
ishes the proof by Hulanicki’s Lemma, since L1(G|C ) is symmetric, by Theo-
rem 3.3.

REMARK 3.18. The algebra L1,ν(G|C ) is very close in nature to the algebras
previously considered. One can form a Banach ∗-algebraic bundle C ν (it fails to
satisfy the C∗-condition) such that

L1,ν(G|C ) = L1(G|C ν).

The bundle C ν is easily constructed by taking C as the underlying space but
changing the norm in Cx to the equivalent one ∥ · ∥Cν

x := ν(x)∥ · ∥Cx .

3.6. KERNELS FOR FELL BUNDLES OVER LOCALLY COMPACT GROUPS. We are
now interested in vector-valued kernels in the presence of a Fell bundle C

q→ G
and a weight ν. We assume that G is unimodular.

DEFINITION 3.19. A kernel-section is a measurable function K : G2 ≡ G×
G → C such that K(x, y) ∈ Cxy−1 for almost every x, y ∈ G. It is ν-convolution-
dominated, and we write K ∈ Kν(G2|C ), if there exists k ∈ L1,ν(G) such that almost
everywhere

(3.21) ∥K(x, y)∥Cxy−1 ⩽ k(xy−1).

Such a kernel-section is called covariant if K(xz, yz) = K(x, y) almost everywhere.
We write K ∈ Kν

cov(G
2|C ). When ν = 1 we write simply K(G2|C ) and Kcov(G2|C ).

It is not difficult to verify that Kν(G2|C ) is a Banach ∗-algebra with the
product

(K ⋄ L)(x, y) :=
∫
G

K(x, z) • L(z, y)dz,

the involution

K⋄(x, y) := K(y, x)•

and the norm

∥K∥Kν := inf{∥k∥L1,ν(G) : k satisfies (3.21)}.

In addition, Kν
cov(G

2|C ) is a closed ∗-subalgebra.

PROPOSITION 3.20. The mapping Γ : L1,ν(G|C ) → Kν(G2|C ) given by

(ΓΦ)(x, y) := Φ(xy−1), ∀x, y ∈ G,

is an isometric ∗-algebraic morphism. Its range is Kν
cov(G

2|C ). On this range, the inverse
reads

(Γ−1K)(x) := K(x, e), ∀x ∈ G.
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Proof. Obviously, the values of Γ are all kernel-sections and are covariant.
Each ΓΦ is convolution dominated, with k(x) := ∥Φ(x)∥Cx , and

∥ΓΦ∥
Kν = ∥k∥L1,ν(G)

(3.16)
= ∥Φ∥L1,ν(G|C ).

All the algebraic verifications are trivial.

COROLLARY 3.21. In the setting of Theorem 3.17, for every Fell bundle C over G,
the Banach ∗-algebra Kν

cov(G
2|C ) is symmetric.

Proof. This follows from Proposition 3.20 and Theorem 3.17.

To find a larger symmetric Banach ∗-algebra of convolution-dominated

section-kernels, from the Fell bundle C
q→ G with algebraic operations (•,• ) we

construct a new Fell bundle C̃
Q→ G, with fibres

C̃x ≡RUC(G,Cx)

:={ f : G → Cx : f bounded and continuous, lim
z→e

sup
y

∥ f (z−1y)− f (y)∥Cx =0},

norm
∥ f ∥C̃x

:= sup
y

∥ f (y)∥Cx

and the algebraic structure given by:

( f •̃g)(z) := f (z) • g(Q( f )−1z),(3.22)

f •̃(z) := f (Q( f )z)•.(3.23)

It is easy to check all the axioms. Using notations of the form

[F(x)](z) ≡ F(x, z) ∈ Cx, x, z ∈ G,

the algebraic operations on L1,ν(G | C̃ ) are

(F∗̃G)(x, z) =
∫
G

F(y, z) • G(y−1x, y−1z)dy,

F∗̃(x, z) := F(x−1, x−1z)•.

REMARK 3.22. Note that C can be seen as a Fell sub-bundle of C̃ ; in each
fiber one only consider the constant functions. Consequently L1,ν(G | C ) may be
identified with a ∗-subalgebra of L1,ν(G | C̃ ).

EXAMPLE 3.23. Let (A, α,G) be a global C∗-algebraic dynamical system [32]
(the partial version is more complicated but similar). For simplicity A is unital.
From it we construct the Fell bundle with Cx := A × {x} for every x ∈ G and
with algebraic rules

(a, x) • (b, y) := (aαx(b), xy), (a, x)• := (α−1
x (a)∗, x−1).
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One has (a, x) = (a, e) • (1A, x). It can be checked that, modulo suitable identi-
fications, the Fell bundle C̃ arises from the dynamical system (RUC(G,A), α̃,G)
for the global action

α̃ : G → Aut[RUC(G,A)], [α̃x( f )](z) := αx[ f (x−1z)].

There are also cohomologically twisted versions of the global and even of the
partial dynamical system [10] that fit in the Fell bundle framework, that we do
not make explicit here.

PROPOSITION 3.24. The map Σ : L1,ν(G|C̃ ) → Kν(G2|C ), given by

(3.24) [Σ(F)](x, y) := [F(xy−1)](x) ≡ F(xy−1, x),

is an isometric morphism of Banach ∗-algebras. Its range, denoted by Kν
RUC(G

2|C ), can
be characterized as the family of elements K ∈ Kν(G2|C ) such that for almost every
z ∈ G

lim
y→e

ess sup
x

∥K(y−1x, z−1y−1x)− K(x, z−1x)∥Cx = 0.

Proof. Although not strictly necessary, a fuller story is told in the next com-
mutative diagram:

L1,ν(G|C ) L1,ν(G|C̃ )

K ν
cov(G

2|C ) K ν
cov(G

2|C̃ ) K ν(G2|C )

?

Γ

-

Q
Q

Q
Q
QQs

Σ

?

Γ̃

6

-

6

--Ω

The unlabeled horizontal arrows are just obvious inclusions; see Remark 3.22.
Proposition 3.20 applied to the Fell bundle C̃ justifies the isomorphism Γ̃. The
morphism Ω : K ν

cov(G
2|C̃ ) → K ν(G2|C ) is given by

(ΩK)(x, y) := [K(x, y)](x) ≡ K(x, y; x),

so that composing Ω with Γ̃ we get (3.24). Let us check that Ω is indeed a mor-
phism. For the product, using natural notations, one gets:

Ω(K⋄̃L)(x, y) = (K⋄̃L)(x, y; x) =
∫
G

[K(x, z)•̃L(z, y)](x)dz

(3.22)
=

∫
G

K(x, z; x) • L(z, y; zx−1x)dz =
∫
G

(ΩK)(x, z) • (ΩL)(z, y)dz

= (ΩK ⋄ ΩL)(x, y).
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When aplying (3.22), we also used the fact that Q[K(x, z)]−1 = zx−1. For the
involution one can write

(ΩK⋄̃)(x, y) = [K⋄̃(x, y)](x) = [K(y, x)]•̃(x)
(3.23)
= [K(y, x)](yx−1x)•

= (ΩK)(y, x)• = (ΩK)⋄(x, y).

For isometry, it is sufficient (and easier) to work with Σ, first defined on Cc(G|C̃ ).
In this case, the condition ∥(ΣF)(x, y)∥Cxy−1 ⩽ k(xy−1) for every x, y can be
rewritten as

∥F(z)∥C̃z
= sup

x
∥F(z, x)∥Cz ⩽ k(z), ∀z ∈ G.

Then one gets the isometry just by applying the definitions of the norms. The
characterization of the range follows from an examination of the mapping Σ.

COROLLARY 3.25. In the setting of Theorem 3.17, for every Fell bundle C over G,
the Banach ∗-algebra Kν

RUC(G
2|C ) is symmetric.

Proof. Consequence of Proposition 3.24 and Theorem 3.17.
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Beca de Doctorado Nacional Conicyt. M. Măntoiu has been supported by the Fondecyt
Project 1200884. We are grateful to V. Nistor; due to his advice, the paper improved a lot.

REFERENCES

[1] F. ABADIE, Envelopping actions and Takai duality for partial actions, J. Funct. Anal.
197(2003), 14–67.

[2] A. AUSTAD, Spectral invariance of ∗-representations of twisted convolution algebras
with applications in Gabor analysis, J. Fourier Anal. Appl. 27(2021), 56.

[3] A. AUSTAD, E. ORTEGA, Groupoids and hermitian Banach ∗-algebras, Internat. J.
Math. 33(2022), No. 14, Article ID 2250090, 25.
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