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ABSTRACT. For an arbitrary complex ∗-algebra A, we prove that every topo-
logically irreducible ∗-representation of A on a Hilbert space is finite dimen-
sional precisely when the Lebesgue decomposition of representable positive
functionals over A is unique. In particular, the uniqueness of the Lebesgue
decomposition of positive functionals over the L1-algebras of locally compact
groups provides a new characterization of Moore groups.
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1. INTRODUCTION

The classical measure-theoretic Lebesgue decomposition is a fundamental
theorem for every mathematician. It states that, if µ and ν are finite measures on
the measurable space (Ω, F ), then there exist measures µr and µs on (Ω, F ) such
that µr is absolutely continuous with respect to ν, µs and ν are singular to each
other and µ is decomposed as the sum µ = µr + µs. A simple but very important
property holds for this decomposition: it is unique in the manner that if µ′

r, µ′
s are

measures on (Ω, F ) such that µ′
r is absolutely continuous with respect to ν, µ′

s
and ν are singular, µ = µ′

r + µ′
s, then µ′

r = µr and µ′
s = µs.

J. von Neumann’s proof of the Radon–Nikodym theorem involving Hilbert
space techniques [23, Lemma 3.2.3 and Theorem VII] inspired B. Simon [31] to in-
vestigate the closability of non-negative quadratic forms on Hilbert spaces. More
generally (see Appendix B in [10]), dropping the assumption of the completeness,
one can say that a (non-negative quadratic) form f on the complex vector space
A is closable with respect to another form g on A, if the property

(f(an − am, an − am) → 0 ∧ g(an, an) → 0) ⇒ f(an, an) → 0
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is true for any sequence (an)n∈N in A. In their remarkable paper [10, Theorem 7.7],
A. Gheondea and A.Ş. Kavruk proved that f is closable with respect to g if and
only if there exist a sequence (fn)n∈N of forms on A and a sequence (αn)n∈N of
positive numbers such that

fn ⩽ fn+1, fn ⩽ αng (∀n ∈ N), f(a, b) = lim
n→+∞

fn(a, b) (∀a, b ∈ A).

If the latter condition is fulfilled, then we say that f is absolutely continuous with
respect to g.

The terms above are supported by the following observation. Let µ and ν
be finite measures on the measurable space (Ω, F ) and let A be the linear span
of the characteristic functions of the sets in F over the complex numbers. Then
the formulas

f(a, b) :=
∫
Ω

ab dµ; g(a, b) :=
∫
Ω

ab dν (a, b ∈ A)

define forms on the vector space A, moreover f is absolutely continuous with
respect to g if and only if µ is absolutely continuous with respect to ν. A similar
observation is true, if we define singularity for forms as follows: f and g are
singular, if for every form p′ the inequalities p′ ⩽ f and p′ ⩽ g imply that p′ = 0.

For a further important generalization, notice that the set A of simple func-
tions is not just a vector space. It is a complex ∗-algebra with the pointwise oper-
ations, furthermore the formulas

(1.1) f (a) :=
∫
Ω

a dµ; g(a) :=
∫
Ω

a dν (a ∈ A)

define positive linear functionals on A. If we introduce the notions of absolute
continuity and singularity for these objects by the form-related definitions with
f(a, b) = f (b∗a), then one can show that f is absolutely continuous with respect
to g exactly when µ is absolutely continuous with respect to ν. Moreover, f
and g are singular precisely when µ and ν are singular (e.g., [33, Lemma 4.1];
see also Example 1 in [9]). Since the definitions do not involve the commutativ-
ity, these concepts can be investigated over arbitrary ∗-algebras. This leads to
the Lebesgue decomposition theory of positive functionals defined on ∗-algebras
(see Subsection 2.2 below).

In the past decades, several non-commutative generalizations of the Lebes-
gue–Radon–Nikodym theory have been appeared in the mathematical literature.
Without being exhaustive, we mention here a few directions and papers (for fur-
ther reference, see the introductions and the bibliographies of [10] and [12]). In
the case of

(i) non-negative quadratic forms on complex vector spaces: B. Simon [31];
A. Gheondea, A.Ş. Kavruk [10]; S. Hassi, Z. Sebestyén and H. de Snoo [12].

(ii) positive operators on Hilbert spaces: T. Ando [1]; A. Gheondea, A.Ş. Kavruk
[10].
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(iii) operator valued completely positive maps on C∗-algebras: W.B. Arveson
[3]; K.R. Parthasarathy [26]; A. Gheondea, A.Ş. Kavruk [10].

(iv) positive functionals on ∗-algebras: S. Sakai [29, (1.24)]; S.P. Gudder [9];
H. Kosaki [18]; Zs. Szűcs [33].

Using Ando’s famous Lebesgue theory for positive operators ([1]; [10, Ap-
pendix A]), Gheondea and Kavruk [10, Theorem 7.8] proved the following note-
worthy form related decomposition. Every form f on a complex vector space A
can be decomposed as a sum

(1.2) f = fr + fs

with respect to another form g on A, where fr is absolutely continuous with re-
spect to g, while fs and g are singular. The form fr is the greatest among all of
the forms f0 on A such that f0 ⩽ f and f0 is absolutely continuous with respect to
g. This result implies the form decomposition of Simon [31, Theorem 2.5]. (Note
here that, in [12, Theorems 2.11 and 3.9], Hassi, Sebestyén and de Snoo obtained
the decomposition (1.2) without Ando’s results, but (1.2) appeared first in [10].)

By Ando’s results, another decomposition was obtained in [10, Theorem 3.1]
namely, Parthasarathy’s decomposition for completely positive maps [26, p. 44].
But, similar to the case of positive operators and forms, the maximality of the ab-
solutely continuous part was also proved in this theorem. Moreover, Appendix
C in [10] shows that Ando’s theory can be derived from the form and the com-
pletely positive map case. Thus, [10] makes a remarkable connection between the
different settings of the non-commutative Lebesgue–Radon–Nikodym theory.

For positive functionals, Gudder [9, Corollary 3] proved a Lebesgue decom-
position theorem on unital Banach ∗-algebras. In [18, Theorem 3.5] H. Kosaki
gave a similar decomposition for normal states on σ-finite von Neumann al-
gebras. As a common generalization, using the form decomposition (1.2), the
first author of the present paper introduced a Lebesgue decomposition for rep-
resentable positive functionals on arbitrary ∗-algebras ([33, Corollary 3.2]; see
Theorem 2.6 and Remark 2.7 below). Note that the C∗-algebra version is a special
case of the decomposition related to completely positive maps.

Turning to the subject of the present paper, we examine the question of the
uniqueness. In contrast to the measure-theoretic decomposition above, the de-
compositions in the non-commutative settings are not unique in general. For in-
stance, in the form case this means that there exist forms f, g on the vector space
A such that f = f′r + f′s, where the form f′r is absolutely continuous with respect
to g, the forms f′s and g are singular, moreover f′r ̸= fr and f′s ̸= fs. For positive
operators, Ando ([1, Theorem 6]; [10, Theorem 6.5]) showed that the Lebesgue
decomposition of a positive operator S1 with respect to S2 is unique if and only
if S2 uniformly dominates the absolutely continuous part of S1. By Corollary 7
in [1] (see also Corollary 6.6 in [10]), one can easily find operators for which the
decomposition is not unique.
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Using Ando’s attractive characterization statement on the uniqueness, Ghe-
ondea and Kavruk [10, Theorem 7.12(1)] proved that a similar result holds in the
case of the form decomposition. Namely, the decomposition f = fr + fs in (1.2) is
unique if and only if there is an α ⩾ 0 such that

fr(a, a) ⩽ αg(a, a)

is true for any a ∈ A. This theorem implies that the decomposition of Simon
is not unique in general as well. Moreover, Corollary 7.12 (2) in [10] also gives
equivalent properties for the uniqueness of the decomposition with respect to g.

The case of completely positive maps is complicated. Similar to the form
case [10, Corollary 7.12(2)], Proposition 3.8 in [10] presents conditions on the
uniqueness, but they are not necessary properties. Example 3.9 in [10] and the
discussion before it explains the reasons (see also Example 5.14 in [34]).

For positive functionals, a major unanswered question remained: which
∗-algebras have the property that the Lebesgue decomposition of representable
positive functionals over the ∗-algebra is unique? Can one obtain a characteriz-
ing assertion? Until now, the solution of this problem had only partial results, for
example, uniqueness over commutative ∗-algebras, non-uniqueness over prop-
erly infinite von Neumann algebras (see the discussion after Definition 2.8). The
main subject of the paper is to settle this uniqueness problem in full generality.
As a solution, we give a concrete characterizing criterion for the uniqueness via
the representation theory of the underlying ∗-algebra. This is our main result,
Theorem 2.9.

2. PRELIMINARIES

To make our aim more clear, we introduce the fundamental definitions and
theorems related to the Lebesgue decomposition theory in the context of posi-
tive functionals defined on ∗-algebras. In the first place, we have to recall some
indispensable concepts and results of the representation theory of ∗-algebras on
Hilbert spaces.

2.1. SOME GENERALITIES. The following well-known facts can be found in the
textbooks which are listed in the bibliography [5, 6, 7, 16, 25, 27, 29, 35]. We use
them further without any reference.

Let us fix a ∗-algebra A, that is, an algebra over the complex numbers C,
endowed with an involution ∗ : A → A. By a (∗-)representation of A we always
mean a ∗-homomorphism π : A → B(H), where H is a complex Hilbert space
with inner product (·|·) and B(H) is the ∗-algebra of bounded linear operators
on H. A linear subspace H0 of H is π-invariant, if

π⟨A⟩H0 := {π(a)ξ : a ∈ A, ξ ∈ H0} ⊆ H0.

We say that a non-zero representation π of A on the Hilbert space H is
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(i) non-degenerate or essential, if the span of

π⟨A⟩H := {π(a)ξ : a ∈ A, ξ ∈ H}

is dense in H.
(ii) cyclic, if there exists a ξ ∈ H such that the subspace

π⟨A⟩ξ := {π(a)ξ : a ∈ A}

is dense in H. We call such a vector π-cyclic vector.
(iii) faithful, if the mapping π is injective.
(iv) topologically irreducible, if the closed π-invariant subspaces are only {0} and

H. This is equivalent to the property that every ξ ∈ H \ {0} is a π-cyclic vector.
(v) algebraically irreducible, if the π-invariant subspaces are only {0} and H.

This is equivalent to the property that π⟨A⟩ξ = H holds for every ξ ∈ H \ {0}.

REMARK 2.1. According to Definition 9.2.1 in [25] and Definitions 4.1.1,
4.2.1 in [24], our convention is that the terms topologically/algebraically irreducible
representations always refer to non-zero representations.

If S ⊆ B(H) is an arbitrary set of operators, then the commutant of S is

S ′ := {U ∈ B(H) : US = SU for all S ∈ S }.

A linear functional f : A → C is positive, if f (a∗a) ⩾ 0 for any a ∈ A
(in notation: f ⩾ 0). For positive functionals f and g defined on A, we write
f ⩽ g, if the functional g − f is positive. It is obvious that the sum of positive
functionals and non-negative multiples of positive functionals are positive. The
notation L f stands for the left kernel of f , i.e., the left ideal

L f := {a ∈ A : f (a∗a) = 0}.

We call f faithful, if L f = {0}.
A positive functional f is said to be representable, if there exist a Hilbert space

H, a cyclic representation π : A → B(H) and a π-cyclic vector ξ ∈ H such that

f (a) = (π(a)ξ | ξ) (∀a ∈ A).

We note that the sum and non-negative multiples of representable positive func-
tionals are representable. Moreover, if ( fn)n∈N is an increasing sequence of rep-
resentable positive functionals on A (that is, fn ⩽ fn+1 for all n ∈ N) which
is bounded by a representable positive functional on A, then ( fn)n∈N converges
pointwise to a representable positive functional [34, Remark 2.14]. The notation
sup
n∈N

fn stands for this functional.

REMARK 2.2. We record here that there exists a topologically irreducible
(hence non-zero) representation of A if and only if there is a non-zero repre-
sentable positive functional on A. This follows from Theorems 9.6.4 and 9.6.6(b)
in [25] (see Definitions 9.4.21 and 9.6.3 in [25]).
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Let M be a von Neumann algebra, that is, a C∗-algebra of operators on a
Hilbert space H which is closed in the strong operator topology and contains the
identity. Equivalently, M = M′′ in B(H). A positive functional f : M → C is said
to be normal, if whenever (xi)i∈I is a norm-bounded increasing net in the set of
positive elements of M with x = sup

i∈I
xi, then f(x) = sup

i∈I
f(xi). It is obvious that

the sum and non-negative multiples of normal positive functionals are normal.
Moreover, if f, g : M → C are positive functionals and g is normal, then f ⩽ g

implies the normality of f. The von Neumann algebra M is σ-finite, if there exists
a faithful normal positive functional on M.

2.2. LEBESGUE DECOMPOSITION OF POSITIVE FUNCTIONALS. This part contains
the precise concepts of the theory, including the decomposition theorem for repre-
sentable positive functionals on ∗-algebras (Theorem 2.6). We discuss the subject
of the paper below, namely, the problem of the uniqueness of the Lebesgue de-
composition, and we present the solution of this problem as the main result of
this article (Theorem 2.9).

The notion of absolute continuity has many equivalent formulations, e.g.,
in the case of

(i) forms: [31]; [10, Appendix B]; [12, 2.5 and Theorem 3.8].
(ii) positive operators: [1, Introduction, Lemma 1 and Section 3]; [10, Appendix

A].
(iii) completely positive maps: [26, p. 48]; [10, II and Corollary 3.5].
(iv) positive functionals: Theorem 1 and Corollary 2 in [9]; Theorem 2.2 in [18];

Theorem 2.15 in [34].

We only need the following version.

DEFINITION 2.3. Let A be a ∗-algebra and let f , g : A → C be representable
positive functionals on A. We say that f is absolutely continuous with respect to g,
if there exist a sequence ( fn)n∈N of representable positive functionals on A and a
sequence (αn)n∈N of positive numbers such that

fn ⩽ fn+1, fn ⩽ αng (∀n ∈ N), f = sup
n∈N

fn.

In notation, we use f ≪ g.

The concept of singularity also has various equivalent formulations, e.g., in
the case of

(i) forms: [10, p. 24 and Corollary 7.11]; [12, 2.5 and Corollary 3.11].
(ii) positive operators: [1, Introduction and Corollary 3]; [10, Appendix A].

(iii) completely positive maps: [3, Corollary 1.4.4]; [10, Corollary 3.6].
(iv) positive functionals: p. 146 in [9]; Theorem 8.1 in [18]; Theorem 3 in [32].

The following is the suitable version for us.
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DEFINITION 2.4. Let A be a ∗-algebra. We say that the representable posi-
tive functionals f , g : A → C are singular (to each other), if for every representable
positive functional p′ on A the conditions

p′ ⩽ f , p′ ⩽ g

imply that p′ = 0. In notation, we use f ⊥ g for this property.

REMARK 2.5. We record here some easy consequences of the definitions
of absolute continuity and singularity. Let A be a ∗-algebra, f and g are repre-
sentable positive functionals on A.

(i) Let B be a ∗-subalgebra of A. If f is absolutely continuous with respect to
g, then the same is true for the restrictions f |B and g|B. (These functionals are
representable as well.)

(ii) The implications

(2.1) f ⩽ g ⇒ f ≪ g ⇒ Lg ⊆ L f

are true in general.
(iii) If f and g are singular and f is absolutely continuous with respect to g at

the same time, then the functional f is zero. Indeed, by singularity, every fn is
zero in Definition 2.3.

The following general Lebesgue decomposition theorem for representable
positive functionals on ∗-algebras can be found in the first author’s papers
([33, Corollary 3.2], or Corollary 2.17 and Proposition 1.13 in [34]). We also note
that the original measure-theoretic Lebesgue decomposition is an easy conse-
quence by the associations in (1.1) (e.g., [33, Theorem 4.2]).

THEOREM 2.6. Let A be a ∗-algebra and let f , g be representable positive func-
tionals on A. Then there is a representable positive functional fr : A → C such that
fr is the greatest among all of the representable positive functionals f0 such that f0 ⩽ f
and f0 is absolutely continuous with respect to g. The positive functional fs := f − fr
is representable, moreover fs and g are singular functionals, as well as fs and fr. In
notation:

f = fr + fs; fr ≪ g, fs ⊥ g, fs ⊥ fr.

The sum f = fr + fs is the Lebesgue decomposition of f with respect to g, where fr
is called the absolutely continuous or regular part of f with respect to g, and fs is the
singular part of f .

REMARK 2.7. In [33, Corollary 3.2] the statements of the previous theo-
rem were immediate consequences of a result on representable forms over non-
involutive complex algebras [33, Theorem 2.6]. This was obtained directly from
the form decomposition (1.2), which is originally due to Gheondea and Kavruk
[10, Theorem 7.8]. For the latter, a different proof can be found in [12, Theorems
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2.11 and 3.9]. However, since every positive functional on a C∗-algebra is a com-
pletely positive map, in the case of C∗-algebras, Theorem 2.6 follows from Theo-
rem 3.1 in [10], that is, the Lebesgue decomposition of completely positive maps.
Moreover, the general version above can be obtained from the C∗-algebra version
by the factorizing methods what we use in Subsection 3.3. Thus, since Theorem
3.1 in [10] relies upon Ando’s theory ([1]; [10, Appendix A]), Theorem 2.6 is a
consequence of the Lebesgue decomposition theory of positive operators.

We must note that the similar decompositions of Gudder [9, Corollary 3]
and Kosaki [18, Theorem 3.5] coincide with the decomposition in Theorem 2.6
in the same settings, namely, over unital Banach ∗-algebras and von Neumann
algebras (but in [9] the maximality of the absolutely continuous part has not been
pointed out).

One major question remained after the existence Theorem 2.6: what can we
say about the uniqueness of the decomposition? It is not an obvious one, as it
can be seen from the results below. The main subject of this paper is to give a
complete answer by the aid of the representation theory of ∗-algebras.

We formulate the precise meaning of the uniqueness in the next definition.

DEFINITION 2.8. We say that the Lebesgue decomposition f = fr + fs of f
with respect to g is unique, if for arbitrary representable positive functionals f ′r
and f ′s on A the properties

f = f ′r + f ′s; f ′r ≪ g, f ′s ⊥ g

force that f ′r = fr and f ′s = fs.
Throughout the paper the phrase “the Lebesgue decomposition of representable

positive functionals over A is unique” (or shortly, “the Lebesgue decomposition over A
is unique”) means that for every pair of representable positive functionals f , g :
A → C the Lebesgue decomposition of f with respect to g is unique.

The general problem on the uniqueness is the following: what kind of as-
sumptions do we have to make on the ∗-algebra in order to imply the uniqueness
of the Lebesgue decomposition of representable positive functionals over A? In
the Introduction, we mentioned several results on the uniqueness of the decom-
position in the case of positive operators, forms and completely positive maps.
So, let us summarize here what progress have been made on this question over
the years in the case of positive functionals. (See also [34, Section 5]).

The first (highly non-trivial) non-uniqueness result is due to Kosaki
[18, 10.5 and 10.6]. He gave an example of a properly infinite von Neumann al-
gebra M which has the property that the Lebesgue decomposition is not unique
over M, even for normal positive functionals. (Note that over finite von Neu-
mann algebras the uniqueness is true for normal positive functionals. We prove
this in Corollary 3.15.) In a recent paper [37, Examples 6.4 and 6.6], by the aid of
Ando’s non-uniqueness result on positive operators [1, Theorem 6], Tarcsay and
Titkos showed that the Lebesgue decomposition is not unique over the ∗-algebra
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of compact operators on an infinite dimensional Hilbert space H, as well as over
the full operator algebra B(H). Despite the beautiful connection with Ando’s de-
composition for positive operators [1], which was proved in [37], this way seems
to be a dead end. The usability of Ando’s non-uniqueness theorem relies upon
the well-known dualities between the compact operators, the trace-class opera-
tors and the full operator algebra [29, 1.19]. Hence, in general (for instance, in the
case of NGCR/antiliminal C∗-algebras; [5, Definition IV.1.3.1]), Ando’s theorem
presumably cannot be applied.

For positive results on the uniqueness, we cite the paper [34] of the first
author. In Section 5, it was mentioned that for finite dimensional vector spaces
the Lebesgue decomposition of forms is unique (in particular, for representable
positive functionals defined on finite dimensional ∗-algebras). It was showed
that over commutative ∗-algebras the Lebesgue decomposition of representable
positive functionals is unique. The proof uses the Gelfand–Naimark theorem and
the Riesz-representation theorem, hence works only in the commutative case. In
[34], the uniqueness was also proved in the case of the Banach ∗-algebras L1(G)
where G is a compact group.

The results above show that the uniqueness is a rather complicated problem.
Neither the commutativity, nor the finite dimensionality characterize it. It was al-
ready highlighted in [34, p. 244] that the topologically irreducible representations
of finite dimensional ∗-algebras, commutative ∗-algebras and L1-algebras of com-
pact groups are all finite dimensional. The ∗-algebras in the non-uniqueness ex-
amples have infinite dimensional irreducible representations. In the light of these
observations, our main goal is to prove the following theorem.

THEOREM 2.9. If A is a ∗-algebra, then the Lebesgue decomposition of repre-
sentable positive functionals over A is unique if and only if every topologically irreducible
representation of A is finite dimensional.

Section 3, the main part of the article, provides the proof of this theorem.
Section 4 collects examples and remarks related to the Lebesgue decomposition
and the uniqueness over general ∗-algebras. In particular, we present examples
which are not C∗-algebras, but admit many non-zero representable positive func-
tionals and topologically irreducible representations. For these ∗-algebras, the
Lebesgue decomposition theory of representable positive functionals is non-trivi-
al. To mention here such an example, the L1-space of a Hausdorff locally compact
group is a Banach ∗-algebra in a natural manner. The finite dimensional property
for irreducible representations in our Theorem 2.9 indicates a connection with
an important class of locally compact groups. The so-called Moore groups are
the ones that have only finite dimensional continuous, unitary, topologically ir-
reducible representations. This suggests that the uniqueness of the Lebesgue de-
composition of positive functionals over the L1-algebras actually characterizes
Moore groups. We verify this in Corollary 4.8, and other examples from the
classes of G∗-algebras and C∗-convex algebras are also included in Section 4.
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3. PROOF OF THE THEOREM 2.9

We divide the proof into three parts. First we show that if a C∗-algebra A
admits an infinite dimensional irreducible representation, then the Lebesgue de-
composition of positive linear functionals over A is not unique (Theorem 3.4).
The argument makes a heavy use of Kadison’s theorem on transitivity of irre-
ducible representations of C∗-algebras (see Theorem 3.1 below), and a technical
result on the uniqueness (Lemma 3.2).

The second part deals with the converse: if a C∗-algebra A has only fi-
nite dimensional irreducible representations, then the Lebesgue decomposition
over A is unique (Theorem 3.17). The proof relies upon the following results: a
theorem on extensions from closed hereditary ∗-subalgebras (Corollary 3.6), the
correspondence between the positive functionals on A and the normal positive
functionals on the enveloping von Neumann algebra W∗(A) (Lemma 3.8, Corol-
lary 3.11), H. Kosaki’s theorem on finite von Neumann algebras (Theorem 3.12)
and M. Hamana’s characterization of C∗-algebras with only finite dimensional
irreducible representations (Theorem 3.16). (We recall the property “hereditary”
and the concept of the enveloping von Neumann algebra in the concrete subsec-
tion.)

From these two special cases, we conclude the characterization for general
∗-algebras in the third part (Theorem 3.26).

3.1. C∗-ALGEBRAS WITH INFINITE DIMENSIONAL IRREDUCIBLE REPRESENTATI-
ONS. Before we prove our result on the non-uniqueness, we must record some
facts of the representation theory of C∗-algebras.

R.V. Kadison’s remarkable theorem states that a topologically irreducible
representation of a C∗-algebra is algebraically irreducible ([14]; Theorem 9.6.2
in [25]). Hence, in the case of C∗-algebras, we simply speak about irreducible
representations.

Every positive functional f on a C∗-algebra A is continuous and repre-
sentable [25, Theorem 9.5.17]. If A is unital, then for the identity 1 we have
f (1) = ∥ f ∥ [6, Proposition 2.1.4]. We say that a linear functional f : A → C
is a state, if it is positive and ∥ f ∥ = 1. A non-zero positive functional p on A is
pure, if for every p′ : A → C positive functional, the inequality p′ ⩽ p implies the
existence of a non-negative number λ such that p′ = λp. By 2.5.4 in [6], this is
equivalent to the property that the representation πp is irreducible, where πp is
the representation associated with p by the GNS-construction (see II.6.4 in [5]). It
is obvious that a positive multiple of a pure functional is pure.

The following version of Kadison’s transitivity theorem on irreducible rep-
resentations is extremely useful for us (see Lemma 5.4.2 and the proof of Theo-
rem 5.4.3 in [15]).

THEOREM 3.1. Let π : A → B(H) be an irreducible representation of the C∗-
algebra A on the Hilbert space H, and let m ∈ N+, r ⩾ 0. If (ξk)1⩽k⩽m and (ηk)1⩽k⩽m
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are vector systems in H such that (ξk)1⩽k⩽m is orthonormal and ∥ηk∥ ⩽ r for every
1 ⩽ k ⩽ m, then there exists an element a ∈ A with the properties:

π(a)ξk = ηk (1 ⩽ k ⩽ m), ∥π(a)∥ ⩽ r
√

2m.

We need the following statement (e.g.: [34, Lemma 5.2]), which character-
izes the decomposition’s uniqueness by means of absolute continuity and singu-
larity. It is also indispensable in the finite dimensional case, as well as in the proof
of our main result, Theorem 3.26.

LEMMA 3.2. Assume that A is a ∗-algebra. Then the following statements are
equivalent:

(i) the Lebesgue decomposition of representable positive functionals over A is unique;
(ii) for all representable positive functionals t, f and g on A, the property

t ⩽ f ≪ g

implies that t ≪ g;
(iii) for all representable positive functionals f , g and p on A, the properties

p ⩽ f ≪ g, p ⊥ g

imply that p = 0.

REMARK 3.3. We note here that if p = 0 in (iii) is not fulfilled, then the
Lebesgue decomposition of the representable functional h := f + p with respect
to g is not unique. Indeed, if p ⩽ f ≪ g, p ⊥ g with p ̸= 0 and the decomposition
(Theorem 2.6) would be unique for every pair of representable positive function-
als, then for the functional h the assumptions imply that hr = f and hs = p in
the decomposition with respect to g. In accordance to the theorem, the regular
and singular parts are singular to each other, i.e., f ⊥ p. But together with the
inequality p ⩽ f , this is impossible by Remark 2.5, if p ̸= 0. (See also the proof of
Lemma 5.2 in [34].)

Our first result is the non-uniqueness over C∗-algebras with infinite dimen-
sional irreducible representations.

THEOREM 3.4. Let A be a C∗-algebra and assume that π : A → B(H) is an
irreducible representation on the infinite dimensional Hilbert space H. Then the Lebesgue
decomposition of positive functionals over A is not unique.

Proof. We show that there exist non-zero positive functionals f , g and p on
A such that

(3.1) p ⩽ f ≪ g and p ⊥ g.

Thus, by Lemma 3.2(iii), we conclude that the Lebesgue decomposition of posi-
tive functionals over A is not unique.
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Let us choose an orthonormal system (ξk)k∈N+ in H and put

ξ :=
+∞

∑
k=1

1
2k ξk.

Define the mappings f , g, p : A → C by the next formulas:

f (a) :=
+∞

∑
k=1

1
2k (π(a)ξk|ξk); g(a) :=

+∞

∑
k=1

1
10k (π(a)ξk|ξk); p(a) := (π(a)ξ|ξ).

Since π is a representation, it is easy to see that these functions are positive linear
functionals on A, and for any a ∈ A

(3.2) f (a∗a)=
+∞

∑
k=1

1
2k ∥π(a)ξk∥2; g(a∗a)=

+∞

∑
k=1

1
10k ∥π(a)ξk∥2; p(a∗a)=∥π(a)ξ∥2.

Each of these functionals is not zero by the irreducibility of π, since every non-
zero vector in H is cyclic, in particular, ξ and ξk are cyclic vectors for every
k ∈ N+. Moreover, the positive functional p is pure, since the vector states de-
termined by irreducible representations are pure (e.g., [16, p. 728]). According to
∥ξ∥2 = 1

3 , the functional 3p is a pure vector state.
The inequality p ⩽ f holds. Indeed, if a ∈ A, then by (3.2), we have

p(a∗a) = ∥π(a)ξ∥2 =
∥∥∥π(a)

( +∞

∑
k=1

1
2k ξk

)∥∥∥2
=

∥∥∥ +∞

∑
k=1

1
2k (π(a)ξk)

∥∥∥2

⩽
( +∞

∑
k=1

1
2k ∥π(a)ξk∥

)2
=

( +∞

∑
k=1

√
1
2k · ∥π(a)ξk∥√

2k

)2

⩽
( +∞

∑
k=1

1
2k

) +∞

∑
k=1

∥π(a)ξk∥2

2k = f (a∗a),

where we applied the Cauchy–Schwarz inequality to the sequences
(√

1
2k

)
k∈N+

and
(
∥π(a)ξk∥√

2k

)
k∈N+

in the last estimate.

The functional f is absolutely continuous with respect to g. For all n ∈ N+

and a ∈ A, let

fn(a) =
n

∑
k=1

1
2k (π(a)ξk|ξk).

Then for arbitrary a ∈ A and n ∈ N+, it is obvious that the inequality

fn(a∗a) ⩽ fn+1(a∗a)

and the equation

f (a∗a) = sup
n∈N

fn(a∗a)
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hold true. Moreover,

1
10n fn(a∗a) =

1
10n

n

∑
k=1

1
2k (π(a∗a)ξk|ξk) ⩽

1
10n

n

∑
k=1

(π(a∗a)ξk|ξk)

⩽
n

∑
k=1

1
10k (π(a∗a)ξk|ξk) ⩽ g(a∗a),

that is, fn ⩽ 10ng for every n ∈ N+. Thus, Definition 2.3 implies that f ≪ g.
To see that p and g are singular, we verify Definition 2.4. Suppose that p′ is

a positive functional such that

p′ ⩽ p, p′ ⩽ g.

We have to prove that p′ = 0. First note that the pureness of p implies the exis-
tence of a number λ ⩾ 0 for which p′ = λp is true, i.e., λp ⩽ g holds.

For every positive natural number n let

ξ ′n := ξ −
n

∑
k=1

1
2k ξk =

+∞

∑
k=n+1

1
2k ξk.

An easy calculation shows that

∥ξ ′n∥ =
∥∥∥ +∞

∑
k=n+1

1
2k ξk

∥∥∥ =
1

2n
√

3
.

Note that (ξ1, . . . , ξn, 2n
√

3ξ ′n) is an orthonormal system in H. Then, considering
the system (ηk)1⩽k⩽n+1 with ηk = 0 for 1 ⩽ k ⩽ n and ηn+1 = 2n

√
3ξ, in view

of the irreducibility of π, by the Kadison’s Theorem 3.1, there exists an element
an ∈ A for all n ∈ N+ such that

π(an)ξk =0 (1⩽k⩽n); π(an)[2n
√

3ξ ′n]=2n
√

3ξ; ∥π(an)∥⩽2n
√

2(n+1).

For the operator π(an), we get

π(an)ξ = π(an)
( +∞

∑
k=1

1
2k ξk

)
= π(an)

( +∞

∑
k=n+1

1
2k ξk

)
= π(an)ξ

′
n = ξ.

Hence, for the functionals p and g, we obtain by (3.2) that

p(a∗nan)=∥π(an)ξ∥2 = ∥ξ∥2 =
1
3

;

g(a∗nan)=
+∞

∑
k=1

1
10k ∥π(an)ξk∥2 =

+∞

∑
k=n+1

1
10k ∥π(an)ξk∥2

⩽
+∞

∑
k=n+1

1
10k ∥π(an)∥2∥ξk∥2⩽

(
2n

√
2(n + 1)

)2 +∞

∑
k=n+1

1
10k =

2
9

(2
5

)n
(n + 1).

Using the inequality λp = p′ ⩽ g, we conclude for every n ∈ N+ that

λ = λ3p(a∗nan) ⩽ 3g(a∗nan) ⩽
2
3

(2
5

)n
(n + 1),
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so the number λ is zero. We proved all of the conditions in (3.1), the non-unique-
ness follows.

According to Remark 3.3, the Lebesgue decomposition of f + p with respect
to g is not unique. Hence, our proof gives concrete positive functionals for which
the Lebesgue decomposition is not unique.

From the arguments above, it is easy to obtain an example which shows the
non-uniqueness of the Lebesgue decomposition of normal positive functionals on
von Neumann algebras. Let H be an infinite dimensional Hilbert space. The iden-
tity representation of B(H) on H is irreducible, thus, the arguments above ob-
viously work well for A := B(H) and the identity representation. Furthermore,
the functionals f , g and p are normal functionals on the von Neumann algebra
B(H) [5, III.2.1.4]. (We note that this ∗-algebra also appeared in Example 6.6 of
[37] to reveal the non-uniqueness over von Neumann algebras. However, the ar-
guments make a heavy use of Ando’s non-trivial theorems from [1]. In contrast
to this example, we have no need of the results of Ando.)

3.2. C∗-ALGEBRAS HAVING ONLY FINITE DIMENSIONAL IRREDUCIBLE REPRESEN-
TATIONS. In this part, we prove the uniqueness over C∗-algebras without infinite
dimensional irreducible representations (Theorem 3.17). The main idea is that the
uniqueness problem can be transferred to the case of enveloping von Neumann
algebras and normal functionals. That is, the decomposition is unique over a C∗-
algebra A precisely when the decomposition is unique among the normal positive
functionals on the enveloping von Neumann algebra W∗(A) (Corollary 3.11). By
the aid of highly non-trivial results of Kosaki (Theorem 3.12) and Hamana (The-
orem 3.16), we are able to prove the uniqueness over the latter ∗-algebra.

For this purpose, we need some preparations. First, we obtain results on
positive extensions from closed hereditary ∗-subalgebras which preserves abso-
lute continuity. After that, we turn to enveloping von Neumann algebras and
normal positive functionals (see the discussion after Remark 3.7).

We recall some facts about positive extensions of functionals defined on a
C∗-subalgebra B. (By an extension of a positive functional we always mean a
positive linear extension.) It is obvious that the norm of every extension is equal
or greater than the norm of the functional on B. Moreover, every h : B → C
positive functional has a norm preserving extension to A [27, Proposition 3.1.6].

If h1, h2 : B → C are positive functionals, h̃1 and h̃2 are norm preserving
extensions to A, then their sum h̃1 + h̃2 is a norm preserving extension of h1 +
h2. Indeed, it clearly extends h1 + h2. Furthermore, using the terminology of
1.4 in [27], for every approximate unit (ei)i∈I in B, the net ( f (ei))i∈I converges to
∥ f ∥ for a positive functional f defined on B [27, 3.1.4]. Thus, on the one hand,

(3.3) ∥h1∥+ ∥h2∥ = lim
i,I

h1(ei) + lim
i,I

h2(ei) = lim
i,I

(h1 + h2)(ei) = ∥h1 + h2∥.
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On the other hand, if the net (ẽj)j∈J is an approximate unit in A, then norm pre-
servity implies

(3.4) ∥h1∥+ ∥h2∥ = lim
j,J

h̃1(ẽj) + lim
j,J

h̃2(ẽj) = lim
j,J

(h̃1 + h̃2)(ẽj) = ∥h̃1 + h̃2∥.

Hence, by (3.3) and (3.4), we conclude that

(3.5) ∥h̃1 + h̃2∥ = ∥h̃1∥+ ∥h̃2∥ = ∥h1∥+ ∥h2∥ = ∥h1 + h2∥.

The following lemma shows the existence of norm preserving extensions
which also preserve the relation ≪.

LEMMA 3.5. If A is a C∗-algebra, then for positive functionals f and g defined on
a closed ∗-subalgebra B of A the following are true:

(i) f ⩽ g ⇔ there exist norm preserving extensions f̃ , g̃ of f and g to A such that
f̃ ⩽ g̃;

(ii) f ≪ g ⇔ there exist norm preserving extensions f̃ , g̃ of f and g to A such that
f̃ ≪ g̃.

Proof. ⇐ If there are norm preserving extensions f̃ and g̃ such that f̃ ⩽ g̃
or f̃ ≪ g̃, then from the definitions it is obvious that these relations hold for the
restrictions f̃ |B = f and g̃|B = g.

⇒ Step 1. Suppose that f ⩽ g. This means that the functional g − f is
positive, g = (g − f ) + f , so for arbitrary norm preserving extensions f̃ and
g̃ − f to A, we have that the functional

g̃ := g̃ − f + f̃

is a positive extension of g. Trivially f̃ ⩽ g̃ holds, moreover ∥g∥ = ∥g̃∥, thanks
to (3.5):

∥g̃∥ = ∥g̃ − f + f̃ ∥ = ∥g̃ − f ∥+ ∥ f̃ ∥ = ∥g − f ∥+ ∥ f ∥ = ∥(g − f ) + f ∥ = ∥g∥.

⇒ Step 2. Assume that f ≪ g. By Definition 2.3, fix a sequence of positive
numbers (αn)n∈N and an increasing sequence ( fn)n∈N of positive functionals on
B with the conditions

sup
n∈N

fn = f ; fn ⩽ αng (n ∈ N).

We show by induction that there is an increasing sequence ( f̃n)n∈N of positive
functionals on A such that for any n ∈ N the functional f̃n is a norm preserving
extension of fn. To see this, let f̃0 be an arbitrary norm preserving extension of f0

to A, and let ˜fn+1 − fn be an arbitrary norm preserving extension of fn+1 − fn for
any n ∈ N. Now define for every natural number n the positive functional f̃n+1
by the recursion

(3.6) f̃n+1 := ˜fn+1 − fn + f̃n.
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From this equation, it is obvious that f̃n ⩽ f̃n+1 is true for all n. By induction, it
is also clear that these functionals are extensions: f̃0(b) = f0(b) for any b ∈ B,
furthermore

f̃n+1(b) = ˜fn+1 − fn(b) + f̃n(b) = ( fn+1 − fn)(b) + fn(b) = fn+1(b).

The equalities for the norms also can be proved with induction: for n = 0 we
have chosen f̃0 to be norm preserving. Now, if we suppose that ∥ f̃n∥ = ∥ fn∥ for
an n ∈ N, then by (3.5) and (3.6),

∥ f̃n+1∥ = ∥ ˜fn+1 − fn∥+ ∥ f̃n∥ = ∥ fn+1 − fn∥+ ∥ fn∥ = ∥ fn+1∥.

Since for any a ∈ A

| f̃n(a)| ⩽ ∥ fn∥∥a∥ ⩽ ∥ f ∥∥a∥

is true, the supremum functional f̃ := sup
n∈N

f̃n exists. The previous estimate also

shows that ∥ f̃ ∥ ⩽ ∥ f ∥. But f̃ is an extension of f (which is then norm preserving
from the inequality), because for all b ∈ B

f (b) = lim
n→+∞

fn(b) = lim
n→+∞

f̃n(b) = f̃ (b).

Now we show the existence of a norm preserving extension g̃ of g and a
sequence (α̃n)n∈N of positive numbers with the property

(3.7) f̃n ⩽ α̃n g̃ (n ∈ N).

Together with the properties of the increasing sequence ( f̃n)n∈N, this leads to the
conclusion f̃ ≪ g̃.

For every n ∈ N, choose ˜αng − fn to be an arbitrary norm preserving exten-
sion of the positive functional αng − fn. Let

g̃n :=
1

αn
( ˜αng − fn + f̃n).

It is easy to see that, for all n ∈ N, g̃n is an extension of g:

g̃n(b) =
1

αn
( ˜αng − fn + f̃n)(b) =

1
αn

((αng − fn)(b) + fn(b)) = g(b) (b ∈ B).

Furthermore, by (3.5), the equation ∥g̃n∥ = ∥g∥ holds:

∥g̃n∥ =
1

αn
∥ ˜αng − fn + f̃n∥ =

1
αn

∥(αng − fn) + fn∥ = ∥g∥.

Take a sequence (δm)m∈N of positive numbers with sum 1. Define the func-
tional g̃ by the equation

g̃ :=
+∞

∑
m=0

δm g̃m.
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The sum converges in the functional-norm and this is a norm preserving exten-
sion of g. Indeed,

∥g̃∥ ⩽
+∞

∑
m=0

δm∥g̃m∥ =
+∞

∑
m=0

δm∥g∥ = ∥g∥,

moreover for every b ∈ B we infer that

g̃(b) =
+∞

∑
m=0

δm g̃m(b) =
+∞

∑
m=0

δmg(b) = g(b).

Lastly, for n ∈ N, let

α̃n :=
αn

δn
.

With these numbers

α̃n g̃ =
αn

δn

+∞

∑
m=0

δm g̃m ⩾
αn

δn
δn g̃n = αn

1
αn

( ˜αng − fn + f̃n) ⩾ f̃n,

that is, (3.7) holds. The proof is complete.

Let A be a C∗-algebra and denote by A+ the set of the positive elements in
A. A C∗-subalgebra B of A is hereditary ([27, 1.5]; [5, II.3.4]), if whenever a ∈ A+

and b ∈ B+ are such that a ⩽ b, it follows that a ∈ B. The standard examples of
hereditary C∗-subalgebras are the closed ideals of A and the corner ∗-subalgebras
eAe with a projection e ∈ A.

In Proposition 3.1.6 of [27], it was shown that every positive functional de-
fined on a closed hereditary ∗-subalgebra has a unique norm preserving extension
to A. In fact, this property characterizes hereditary C∗-subalgebras (this is a the-
orem of M. Kusuda [19]).

The following result plays an important role in the proof of Lemma 3.13.

COROLLARY 3.6. Let B be a closed hereditary ∗-subalgebra of the C∗-algebra A.
Let f , g : B → C be positive functionals, and denote by f̃ (respectively g̃) the unique
positive norm preserving extension of f (respectively g) to A. Then the following equiv-
alences hold:

(i) f ⩽ g ⇔ f̃ ⩽ g̃;
(ii) f ≪ g ⇔ f̃ ≪ g̃.

Proof. These statements are immediate from Lemma 3.5.

REMARK 3.7. We note here that there are similar characterizations for sin-
gularity via the extensions. Namely, for positive functionals f and g defined on a
closed ∗-subalgebra B of a C∗-algebra A, f ⊥ g is equivalent to the relation f̃ ⊥ g̃
for every norm preserving extensions of f and g to A. If B is hereditary, then the
latter property reduces to the pair of the unique norm preserving extensions f̃
and g̃.
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Moreover, in the case of hereditary B, one can show the following corre-
spondence between the Lebesgue decompositions (Theorem 2.6) of the original
and the extended functionals:

f̃r = ( f̃ )r; f̃s = ( f̃ )s.

Neither of these statements are required henceforth, so we omit the proofs.

As we mentioned before, we need the notion of the enveloping von Neu-
mann algebra of a C∗-algebra. Every property and idea we introduce here can be
found in the standard textbooks (for example: [5, 6, 16, 25, 27]).

Let A be a C∗-algebra. Let Υ : A → B(HΥ) be the universal represen-
tation of A, that is, Υ is the orthogonal direct sum of all of the representations
π f obtained by the GNS-construction ([5, II.6.4]; [25, Section 9.4]), where f runs
through the set of all positive functionals on A ([5, III.5.2]; [25, Definition 10.1.5]).
It is known that Υ is a non-degenerate and faithful representation of A on the
Hilbert space HΥ (this is the orthogonal direct sum of the Hilbert spaces H f ). Let
W∗(A) := (Υ⟨A⟩)′′, i.e., the bicommutant of Υ. Then W∗(A) is a von Neumann
algebra, what we call the enveloping von Neumann algebra of A. (The notations A′′

and A∗∗ are also common ([27, 3.7.6], [5, III.5.2]); the latter refers to the fact that
the enveloping von Neumann algebra W∗(A) and the second Banach dual of A
are isomorphic as Banach spaces.) Following the usual terminology (indentifying
A with Υ⟨A⟩), we regard A as a norm closed ∗-subalgebra of W∗(A).

Every positive functional f on A can be uniquely extended to a normal pos-
itive functional f on the enveloping von Neumann algebra W∗(A) . The extension
mapping f 7→ f is an isometric bijection onto the set of normal positive function-
als, which is order preserving, that is,

(3.8) f ⩽ g ⇔ f ⩽ g.

See, for example, 12.1.3 in [6].
Now we can continue gathering the facts that support our proof of the

uniqueness. The next stament shows that absolute continuity between positive
functionals also holds true between the normal extensions.

LEMMA 3.8. Let A be a C∗-algebra and let W∗(A) be its enveloping von Neu-
mann algebra. With the preceding notations, we have the equivalence

f ≪ g ⇔ f ≪ g

for positive functionals f and g on A.

Proof. Since absolute continuity passes down to restrictions (Remark 2.5),
f ≪ g follows from f ≪ g.

For the converse, assume that f is absolutely continuous with respect to g.
Then, by Definition 2.3, there exist a sequence of positive numbers (αn)n∈N and
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an increasing sequence ( fn)n∈N of positive functionals on A with the properties

sup
n∈N

fn = f ; fn ⩽ αng (n ∈ N).

Therefore, the order preserving property (3.8) implies for any n ∈ N that

fn ⩽ fn+1 ⩽ f; fn ⩽ αng.

Hence, for f ≪ g, it is enough to show that sup
n∈N

fn = f. The previous inequalities

imply that sup
n∈N

fn ⩽ f, so sup
n∈N

fn is a normal positive functional on W∗(A), since f

is normal. But, by the equality sup
n∈N

fn = f , it is an extension of f . Thus, the bijec-

tion between the positive functionals on A and the normal extensions to W∗(A)
proves the equality sup

n∈N
fn = f.

REMARK 3.9. Similar to the case of hereditary subalgebras (Remark 3.7), the
unique normal extensions to W∗(A) preserve singularity, that is, f ⊥ g ⇔ f ⊥ g.
Furthermore, the normal extension preserves the regular and singular parts in
the Lebesgue decompositions (Theorem 2.6) with respect to g and g:

fr = (f)r; fs = (f)s.

Since these properties are not relevant in this paper, we omit their proofs.

The following analogue of Lemma 3.2 deals with the uniqueness of the
Lebesgue decomposition of normal positive functionals on a von Neumann al-
gebra. That is, we say for a von Neumann algebra M that the Lebesgue decom-
position of normal positive functionals over M is unique, if for every pair of nor-
mal positive functionals f and g on M the decomposition of f with respect to g

is unique. We note that the uniqueness for normal positive functionals does not
imply the uniqueness for positive functionals over M in general (see (i) in Ques-
tion 3.20).

LEMMA 3.10. Let M be a von Neumann algebra. Then the following statements
are equivalent:

(i) the Lebesgue decomposition of normal positive functionals over M is unique;
(ii) for all normal positive functionals t, f and g on M, the property

t ⩽ f ≪ g

implies that t ≪ g.

Proof. The proof is the same as in Lemma 5.2 of [34] (just substitute the
property “representable” with “normal”).

We have arrived to another important result.

COROLLARY 3.11. Let A be a C∗-algebra with enveloping von Neumann algebra
W∗(A). The next statements are equivalent:
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(i) the Lebesgue decomposition of positive functionals over A is unique;
(ii) the Lebesgue decomposition of normal positive functionals over W∗(A) is unique.

Proof. According to Lemma 3.2(ii), the uniqueness over A is equivalent to
the hypothesis that for any positive functionals t, f and g on A, the condition

t ⩽ f ≪ g

implies that t ≪ g. By the connections between the positive functionals on A and
the normal positive functionals on W∗(A) ((3.8) and Lemma 3.8), this is equiva-
lent to the property that for all normal positive functionals t, f and g on W∗(A),
the condition

t ⩽ f ≪ g

implies that t ≪ g. But Lemma 3.10 shows that this property holds exactly when
the Lebesgue decomposition of normal positive functionals over W∗(A) is uni-
que.

The uniqueness over C∗-algebras highly depends on the following Theo-
rem 3.12 of Kosaki on σ-finite von Neumann algebras ([18, Corollaries 2.3 and
2.4], there is no need to assume that g is a state). Moreover, even the uniqueness
for the decomposition of normal positive functionals over finite von Neumann
algebras follows from this theorem. (Corollary 3.15 below; this fact is also new,
since it has not been pointed out in Kosaki’s paper [18].)

We recall here that a von Neumann algebra M is finite, if for every x ∈ M,
the equation x∗x = 1 implies xx∗ = 1. It is well known that if M is a finite
von Neumann algebra, then for any projection e in M the corner von Neumann
algebra eMe is finite as well [5, 7, 29, 35].

THEOREM 3.12. For a von Neumann algebra M with a faithful normal positive
functional g on M, the following are equivalent:

(i) M is finite;
(ii) every normal positive functional on M is absolutely continuous with respect to g.

For further properties, we have to record here some significant observations
on the support projections and the norm preserving extensions of normal positive
functionals ([5, p. 254]; [7, p. 63]; [35, p. 134]).

Let M be a von Neumann algebra. If g is a normal positive functional on M,
then the left kernel

Lg = {a ∈ M : g(a∗a) = 0}
is a left ideal generated by a projection eg ∈ M, i.e., Lg = Meg. By definition, the
support projection of g is s(g) = 1 − eg. For every x ∈ M, we have

(3.9) g(x) = g(s(g)x) = g(xs(g)) = g(s(g)xs(g)),

moreover g|s(g)Ms(g) is a faithful normal positive functional on the corner
von Neumann algebra s(g)Ms(g). In particular, since the unit element of the lat-
ter von Neumann algebra is s(g) and positive functionals on unital C∗-algebras
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attain their norm at the unit, the equation (3.9) for x = 1 gives

∥g∥ = g(1) = g(s(g)) = g|s(g)Ms(g)(s(g)) = ∥g|s(g)Ms(g)∥.

Together with the remarks on hereditary ∗-subalgebras preceding Corollary 3.6,
this norm equality actually shows that the unique norm preserving positive ex-
tension of the positive functional g|s(g)Ms(g) from the norm closed hereditary ∗-
subalgebra s(g)Ms(g) to M is g.

Suppose that f is another normal positive functional on M. Then, by Propo-
sition 5 on p. 65 in [7], the inclusion Lg ⊆ Lf is equivalent to the inequality
s(f) ⩽ s(g) between the supports. Since s(g) ⩽ 1, the positivity of f implies
that

f(s(f)) ⩽ f(s(g)) ⩽ f(1) = ∥f∥.
But the argument presented in the previous paragraph shows that f(s(f)) = f(1).
Hence,

∥f∥ = f(s(g)) = ∥f|s(g)Ms(g)∥,

that is, f is the unique norm preserving positive extension of f|s(g)Ms(g) to M.
The next statement is the key to the uniqueness over C∗-algebras. It is a

consequence of the preceding remarks, Kosaki’s theorem and the result dealing
with extensions from hereditary subalgebras (Corollary 3.6).

LEMMA 3.13. Let M be a finite von Neumann algebra and let f, g : M → C be
normal positive functionals. Then the inclusion Lg ⊆ Lf for the left kernels implies that
f is absolutely continuous with respect to g.

Proof. The finiteness of M implies that the von Neumann algebra s(g)Ms(g)
is finite too, which admits the faithful normal positive functional g|s(g)Ms(g). So,
by Kosaki’s Theorem 3.12, we conclude

f|s(g)Ms(g) ≪ g|s(g)Ms(g).

From the remarks above related to the unique norm preserving extensions of
these functionals to M, Corollary 3.6(ii) guarantees that f is absolutely continu-
ous with respect to g.

REMARK 3.14. In the context of Hilbert space operators, the preceding lem-
ma says the following. For a positive functional f on M, let Hf be the Hilbert
space associated to f by the GNS-construction, that is, Hf is the completion of the
pre-Hilbert space M/Lf endowed with the inner product

(·|·)f : M/Lf × M/Lf → C; (a + Lf|b + Lf)f := f(b∗a).

Then the statement of the lemma is that if

Hg ∋ a + Lg 7→ a + Lf ∈ Hf

is a well-defined mapping, then it is automatically (a densely defined) closable
operator for normal positive functionals f and g on a finite von Neumann alge-
bra M.
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From the previous facts, we immediately get the uniqueness for the decom-
position of normal positive functionals over finite von Neumann algebras. In
Question 3.20, we examine the relationship of the normal-uniqueness and the
C∗-algebra-uniqueness over von Neumann algebras closer.

COROLLARY 3.15. On finite von Neumann algebras the Lebesgue decomposition
of normal positive functionals is unique.

Proof. Let M be a finite von Neumann algebra. We have to check property
(ii) in Lemma 3.10. Take normal positive functionals t, f and g on M with the
hypothesis

t ⩽ f ≪ g.

We need t ≪ g. From the assumptions and (2.1) in Section 2, we get the following
inclusions for the left kernels:

Lg ⊆ Lf ⊆ Lt.

Thus, the previous Lemma 3.13 implies t ≪ g.

We need the following characterization of finite enveloping von Neumann
algebras from Hamana’s paper [11, Lemma 5].

THEOREM 3.16. Let A be a C∗-algebra. Then every irreducible representation of
A is finite dimensional if and only if W∗(A) is a finite von Neumann algebra.

We are in position to prove the C∗-algebra version of our main Theorem 2.9.

THEOREM 3.17. If A is a C∗-algebra, then the following statements are equivalent:
(i) the Lebesgue decomposition of positive functionals over A is unique;

(ii) every irreducible representation of A is finite dimensional.

Proof. (i) ⇒ (ii) This implication was proved in Theorem 3.4.
(ii) ⇒ (i) If every irreducible representation of A is finite dimensional, then

by Hamana’s Theorem 3.16, the enveloping von Neumann algebra W∗(A) of A
is finite. Hence, it follows from Corollary 3.15 that the Lebesgue decomposition
of normal positive functionals over W∗(A) is unique. But Corollary 3.11 asserts
that this occurs exactly when the Lebesgue decomposition of positive functionals
over A is unique.

In the terms of enveloping von Neumann algebras, the preceding theorem
can be formulated into the next corollary.

COROLLARY 3.18. Let A be a C∗-algebra with enveloping von Neumann algebra
W∗(A). The following assertions are equivalent:

(i) the Lebesgue decomposition of normal positive functionals over W∗(A) is unique;
(ii) W∗(A) is a finite von Neumann algebra.

Proof. Corollary 3.11, Theorems 3.17 and 3.16 show the equivalence.
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Now we examine the connections between the uniqueness over a C∗-algebra
A and the uniqueness over closed ∗-subalgebras of A. As a special case, we con-
sider closed ideals of A (cf. 1.5.3 in [27]).

It is well known and not hard to obtain that if a C∗-algebra A has only finite
dimensional irreducible representations, then every closed ∗-subalgebra B of A
possesses this property. Indeed, Proposition 4.1.8 in [27] states that if (ρ,K) is
an irreducible representation of a C∗-subalgebra B, then there is an irreducible
representation (π,H) of A with a closed subspace H1 ⊆ H such that (ρ,K) is
unitarily equivalent to (π|B,H1). Thus, the dimension of K is finite. Therefore,
an instant consequence of Theorem 3.17 is the following proposition.

PROPOSITION 3.19. If A is a C∗-algebra, then the Lebesgue-decomposition of pos-
itive functionals over A is unique if and only if the decomposition is unique over every
closed ∗-subalgebra B of A.

Turning to closed ideals of C∗-algebras, we can make other interesting ob-
servations. On the one hand, for a C∗-algebra A with only finite dimensional
irreducible representations it is true that every closed ideal I of A and the quo-
tient C∗-algebra A/I (cf. 1.5.5 in [27]) have only finite dimensional irreducible
representations (since such a representation on the latter algebra can be pulled
back to an irreducible representation of A). On the other hand, if a C∗-algebra A
has a closed ideal I such that I and A/I have only finite dimensional irreducible
representations, then the dimensions of irreducible representations of A are finite
as well. Indeed, it is known that for an irreducible representation π of A, the
restriction π|I is zero or irreducible [6, 2.11.3]. Hence, if π|I ̸= 0, then the finite
dimensionality of this representation shows that the dimension of π is finite too.
If π|I = 0, then π can be treated as a representation of A/I, thus, the finite di-
mensionality of π also follows in this case. As a consequence, we get that every
C∗-algebra contains a largest closed ∗-ideal I (possibly the zero ideal) such that
all of the irreducible representations of I are finite dimensional, and the quotient
C∗-algebra A/I has no closed ideals with only finite dimensional irreducible rep-
resentations. (The ideal I is just the sum of the closed ∗-ideals with only finite
dimensional irreducible representations.)

According to our Theorem 3.17, these remarks can be presented in the con-
text of the Lebesgue decomposition of positive linear functionals: for a C∗-algebra
A, the decomposition over A is unique if and only if there is a closed ideal I of
A such that the decomposition is unique over I and A/I. Furthermore, for any
C∗-algebra A there is a largest closed ideal ALU in A such that the Lebesgue de-
composition over ALU is unique, and in the C∗-algebra A/ALU the zero ideal
is the only closed ideal with unique Lebesgue decomposition over it. In addi-
tion, the operation A 7→ ALU has radical-like abilities similar to the cases of the
so-called Leptin-radical ([25, 9.8.5 and 9.8.6] and Barnes-radical [25, 10.5.21 and
10.5.23)]):

(i) (A/ALU)LU = {0}.
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(ii) For any closed ideal I ⊆ A, ILU = I ∩ ALU. In particular, (ALU)LU = ALU.
(iii) For every closed ideal I ⊆ A, if (A/I)LU = {0}, then ILU = ALU.
(iv) (A/I)LU = ALU/I, if I is a closed ideal in ALU.

The proofs of these properties are fairly straightforward, so we omit the
details.

Before proceeding to the general ∗-algebra case, it is worth to ask some na-
tural questions.

QUESTION 3.20. Let M be a von Neumann algebra.
(i) Is it true that if the Lebesgue decomposition of normal positive functionals

over M is unique, then the uniqueness holds in the case of all positive functionals
over M?

The answer is no in general. If M is a type II1 von Neumann algebra
(e.g., [25, 9.3.27]), then M is finite, so the uniqueness over M holds for normal pos-
itive functionals (Corollary 3.15). However, regarding M as a C∗-algebra, it has
infinite dimensional irreducible representations, since every von Neumann alge-
bra with only finite dimensional irreducible representations is of type I. Hence,
by Theorem 3.17, the uniqueness over M is not true for all positive functionals.

A more concrete finite type I example to this phenomena is the von Neu-
mann algebra below, which is, in addition, an enveloping von Neumann alge-
bra. For a positive natural number n, let (Mn(C), ∥ · ∥n) be the C∗-algebra of
n by n matrices. Let A be the so-called c0-direct sum of the C∗-algebra system
(Mn(C))n∈N+ , that is,

A ∼= {(an)n∈N+ : an ∈ Mn(C), lim
n→+∞

∥an∥n = 0}.

It is known that the enveloping von Neumann algebra of A is ∗-isomorphic with
the ℓ∞-direct sum of the C∗-algebra system (Mn(C))n∈N+ , that is,

W∗(A) ∼=
{
(an)n∈N+ : an ∈ Mn(C), sup

n∈N
∥an∥n < +∞

}
.

On the one hand, W∗(A) is a finite type I von Neumann algebra, so the unique-
ness holds for normal positive functionals (Corollary 3.15). On the other hand, as
a C∗-algebra, W∗(A) has infinite dimensional irreducible representations, since it
is GCR by [17, Lemma 7.5].

We do not know the answer for the two following questions in general:

(ii) Is the converse of Corollary 3.15 true? That is, if the uniqueness holds for
normal positive functionals over M, is it true that M is finite? And for σ-finite M?

(iii) From the proof of Corollary 3.15, it can be seen that if the assumption

(3.10) Lg ⊆ Lf ⇒ f ≪ g

holds for every normal positive functionals f and g on a von Neumann algebra,
then the uniqueness comes true for the Lebesgue decomposition in the normal
case. Does the uniqueness imply this condition? Furthermore, can the finiteness
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of the algebra be derived from the property that (3.10) holds for every pair of
normal positive functionals? (For the latter question the answer is positive in
the case of σ-finite von Neumann algebras, since Kosaki’s Theorem 3.12 (ii) ⇒ (i)
shows this.)

3.3. THE CASE OF GENERAL ∗-ALGEBRAS. To conclude the solution of the gen-
eral uniqueness problem by the C∗-algebra case, we recall the concept of a C∗-
seminorm on a ∗-algebra A (see 9.5 in [25]). It is a seminorm σ : A → R+ which
satisfies the C∗-property: σ(a∗a) = σ(a)2 for every a ∈ A. A remarkable theorem
of Z. Sebestyén ([30], or Theorem 9.5.14 in [25]) shows that a C∗-seminorm σ on
A is actually submultiplicative, i.e., σ(ab) ⩽ σ(a)σ(b) for any a, b ∈ A. More-
over, the equation σ(a∗) = σ(a) holds for every a ∈ A. Note that every ∗-algebra
admits a C∗-seminorm (namely, the identically zero seminorm).

For a C∗-seminorm σ on A, the kernel of σ, that is, the ∗-ideal

{a ∈ A : σ(a) = 0}

is denoted by ker(σ). If ker(σ) = {0}, i.e., σ is a (possibly incomplete) norm, then
we say that σ is a pre-C∗-norm and (A, σ) is a pre-C∗-algebra.

By Theorem 9.5.17 in [25], a positive linear functional f : A → C is repre-
sentable if and only if there is a C∗-seminorm σ on A such that f is continuous
with respect to σ. That is, there exists a K ∈ R+ such that

| f (a)| ⩽ Kσ(a) (∀a ∈ A).

The following observation is useful.

REMARK 3.21. Let A be a ∗-algebra and assume that t, f , g : A → C are rep-
resentable positive functionals on A. By the theorem mentioned above, there are
C∗-seminorms σt, σf and σg on A and there exist non-negative numbers Kt, K f , Kg
such that the inequalities

|t(a)|⩽ Ktσt(a); | f (a)| ⩽ K f σf (a); |g(a)| ⩽ Kgσg(a)

hold for any a ∈ A. With the number K := max{Kt, K f , Kg} and the C∗-seminorm
σ := max{σt, σf , σg}, we have for every a ∈ A

|t(a)| ⩽ Kσ(a); | f (a)| ⩽ Kσ(a); |g(a)| ⩽ Kσ(a),

that is, the functionals are continuous with respect to σ.

LEMMA 3.22. Let A be a ∗-algebra and let I ⊆ A be a ∗-ideal. If the Lebesgue
decomposition of representable positive functionals is unique over A, then the same is
true over the quotient ∗-algebra A/I.

Proof. We verify the condition in Lemma 3.2(ii), so consider representable
positive functionals t′, f ′ and g′ on A/I such that

t′ ⩽ f ′ ≪ g′.
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To see that t′ ≪ g′, denote by j the canonical A → A/I surjective ∗-homorphism
(i.e., j(a) := a + I), and let

t = t′ ◦ j; f = f ′ ◦ j; g = g′ ◦ j.

It is obvious that these mappings are positive functionals on A, moreover they
are representable. Indeed, by the preceding Remark 3.21, there is a C∗-seminorm
σ′ on A/I with K ∈ R+ such that

|t′(a + I)| ⩽ Kσ′(a + I); | f ′(a + I)| ⩽ Kσ′(a + I); |g′(a + I)| ⩽ Kσ′(a + I)

is true for any a ∈ A. Using the mapping j in the formulation, we infer that

|t′(j(a))| ⩽ Kσ′(j(a)); | f ′(j(a))| ⩽ Kσ′(j(a)); |g′(j(a))| ⩽ Kσ′(j(a)),

which exactly means that the functionals t, f , g are continuous with respect to the
C∗-seminorm σ := σ′ ◦ j.

From Definition 2.3 of absolute continuity, it is easy to see that

t ⩽ f ≪ g

holds (the inequality t ⩽ f is trivial). Hence, the uniqueness over A provides that
t ≪ g, which immediately shows that t′ ≪ g′.

REMARK 3.23. An observation similar to the preceding proof is the follow-
ing. Let A be a ∗-algebra and let t, f , g be representable positive functionals on
A. Assume that the functionals are continuous with respect to the C∗-seminorm
σ : A → R+. Denote by I the kernel of the seminorm, that is, I := ker(σ). Then
the functionals

t′(a + I) := t(a); f ′(a + I) := f (a); g′(a + I) := g(a) (a ∈ A)

are well-defined, positive linear and representable on the quotient ∗-algebra A/I.
In fact, this ∗-algebra possesses the quotient pre-C∗-norm σ′ induced by σ, and
the functionals are continuous with respect to this norm.

The following equivalence, which we use later, can be easily obtained from
the definitions:

(3.11) (t ⩽ f ≪ g) ⇔ (t′ ⩽ f ′ ≪ g′).

The next statement is a special case of Lemma 2.10 in [34]. We note that if
f is a positive functional on a C∗-algebra A , then every restriction of f to a ∗-
subalgebra D is obviously representable, since f is continuous with respect to the
C∗-norm.

LEMMA 3.24. Let A be a C∗-algebra with a dense ∗-subalgebra D . If f and g are
positive functionals on A , then

(i) f ⩽ g if and only if f |D ⩽ g|D ;
(ii) f is absolutely continuous with respect to g if and only if f |D is absolutely con-

tinuous with respect to g|D .

The last essential observation is the following corollary.
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COROLLARY 3.25. If A is a C∗-algebra with a dense ∗-subalgebra D , then the
uniqueness of the Lebesgue decomposition of representable positive functionals over D
implies the uniqueness of the decomposition of positive functionals over A .

Proof. We use Lemma 3.2(ii) to prove the uniqueness over A , so let t, f , g be
positive functionals on A with the condition

t ⩽ f ≪ g.

From the previous Lemma 3.24, we conclude that

t|D ⩽ f |D ≪ g|D .

Thus, the uniqueness over D implies that t|D ≪ g|D . Using Lemma 3.24 again,
we obtain that t ≪ g, that is, the uniqueness over A follows.

All of the necessary results and tools are on hand now, so we prove our main
Theorem 2.9 on the connection of the uniqueness of the Lebesgue decomposition
and finite dimensional irreducible representations. We restate it here for the sake
of clarity.

THEOREM 3.26. For a ∗-algebra A, the following statements are equivalent:
(i) the Lebesgue decomposition of representable positive functionals over A is unique;

(ii) every topologically irreducible representation of A is finite dimensional.

Proof. According to Remarks 2.1 and 2.2, the set of topologically irreducible
representations of A is void if and only if the zero functional is the only repre-
sentable positive functional on A. Hence, in this case, the equivalence of (i) and
(ii) is obvious.

For the rest of the proof, we assume that there is a topologically irreducible
representation of A.

(i) ⇒ (ii) Consider a topologically irreducible representation π : A → B(H)
of A on the Hilbert space H. Let D be the range ∗-algebra π⟨A⟩, and denote by
A the norm closure of D in B(H).

The identity representation of the C∗-algebra A on H is irreducible, thanks
to the topological irreducibility of π. Hence, if we show that the Lebesgue de-
composition of positive functionals over A is unique, then Theorem 3.17 forces
the dimension of H to be finite, providing (ii). But the uniqueness comes easily
from the lemmas: in virtue of (i) and Lemma 3.22, the uniqueness holds for rep-
resentable positive functionals over D , so the preceding Corollary 3.25 proves the
uniqueness over A .

(ii) ⇒(i) Suppose that every topologically irreducible representation of A is
finite dimensional. To check the uniqueness, let t, f , g be representable positive
functionals on A such that

t ⩽ f ≪ g.

In accordance to Lemma 3.2(ii), we need to show that t ≪ g. The representability
implies the existence of a C∗-seminorm σ on A such that the three functionals
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are continuous with respect to σ (Remark 3.21). Let I be the kernel of σ. Denote
by D the quotient ∗-algebra A/I and let j be the canonical A → A/I surjection.
Consider the positive functionals t′, f ′, g′ and the pre-C∗-norm σ′ on A/I = D
according to Remark 3.23. By (3.11), we have

(t ⩽ f ≪ g) ⇔ (t′ ⩽ f ′ ≪ g′).

Let A stand for the completion of the pre-C∗-algebra (D , σ′). Since the positive
functionals are continuous (with respect to the C∗-norm) on the dense ∗-algebra
D , they admit unique positive linear extensions T′, F′, G′ to the whole C∗-algebra
A . Now Lemma 3.24 infers that

(t′ ⩽ f ′ ≪ g′) ⇔ (T′ ⩽ F′ ≪ G′).

Thus, if we show that T′ ≪ G′, then using Lemma 3.24 again, t′ ≪ g′ follows.
Consequently, t ≪ g by means of Remark 3.23.

To claim that T′ is absolutely continuous with respect to G′, it is enough to
prove that every irreducible representation of the C∗-algebra A is finite dimen-
sional. Indeed, in this case Theorem 3.17 provides that the Lebesgue decomposi-
tion of positive functionals over A is unique, thus, from the property T′ ⩽ F′ ≪
G′, Lemma 3.2 forces that T′ ≪ G′. But, if π : A → B(H) is an irreducible
representation, then density implies that π|D is a topologically irreducible repre-
sentation of D . Hence, the surjectivity of j implies that (π|D ) ◦ j : A → B(H) is a
topologically irreducible representation of A. From the assumption (ii), it is finite
dimensional, consequently π is finite dimensional. The proof is complete.

4. REMARKS AND EXAMPLES

The last section of the paper contains interesting examples and remarks rele-
vant to the Lebesgue decomposition theory of positive functionals and our char-
acterization Theorem 3.26.

To throw more light on the non-C∗-algebra version of the Lebesgue decom-
position and the uniqueness, we collect several facts and examples from the the-
ories of general ∗-algebras [25] and topological ∗-algebras [8]. We discuss the
question here of which kind of ∗-algebras have non-trivial Lebesgue decompo-
sition theory for representable positive functionals. Moreover, if possible, one
might require that every element of the ∗-algebra would be involved in the in-
vestigations.

Let A be a ∗-algebra. Following T.W. Palmer [25, Section 9.7], we recall the
next definition.

DEFINITION 4.1. Denote by AR the intersection of the kernels of all of the
(∗-)representations of A. The ∗-ideal AR is the reducing ideal of A. If AR = {0}
(respectively AR = A), then A is said to be reduced (respectively ∗-radical).
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Theorem 9.7.2 in [25] shows that

(4.1) AR =
⋂

σ is a C∗-seminorm on A

ker(σ),

and, in fact, AR is the intersection of the kernels of the representable positive
functionals on A. Furthermore, the reducing ideal is equal to the intersection of
the kernels of all of the topologically irreducible representations of A. In particu-
lar, A = AR if and only if A does not admit such a representation, and this occurs
exactly when the only representable positive functional on A is the zero func-
tional (Remark 2.2). Hence, to get non-trivial Lebesgue decomposition theory,
we seek ∗-algebras which are reduced, i.e., there are enough representable pos-
itive functionals/topologically irreducible representations to separate the points
of the algebra in question. Note that the Jacobson-radical AJ of A [24, Defi-
nition 4.3.1 and Theorem 4.3.6] is always contained in the reducing ideal AR
[25, Theorem 9.7.11], so a reduced ∗-algebra is (Jacobson-)semisimple (i.e., AJ =
{0}), while a Jacobson-radical ∗-algebra (i.e., AJ = A) is ∗-radical.

By (4.1), it is obvious that pre-C∗-algebras (in particular, C∗-algebras) are
reduced. In Subsections 4.1 and 4.2, we list many different types of reduced ∗-
algebras which are not C∗-algebras. On the other extreme, we must record here
that there are many interesting ∗-algebras which are ∗-radicals. Some of them are
included in the next example.

EXAMPLE 4.2. The trivial example for a ∗-radical ∗-algebra is an arbitrary
complex vector space A with an involution and zero multiplication. By definition,
every linear functional on A is positive. On the other hand, the zero functional
is the only representable positive functional on A. Indeed, if f is a representable
positive functional on A, then by Theorem 9.4.15 in [25], there exists a K ∈ R+

such that
| f (a)|2 ⩽ K f (a∗a)

holds for any a ∈ A. Hence f must be zero.
The following non-trivial examples are from Palmer’s book [25] (the num-

bers refer to this work):

(9.7.27) The ∗-algebra of all complex N×N matrices that have only finitely many
non-zero entries in each row and column is a unital, semisimple, and ∗-radical
∗-algebra.

(9.7.29) The ∗-algebra of all complex rational functions is a field (hence simple),
which is a ∗-radical. In fact, any positive linear functional on this ∗-algebra is
zero.

(9.7.31) The convolution disc ∗-algebra is a Jacobson-radical (hence ∗-radical) com-
mutative Banach ∗-algebra. Note that this algebra has no non-zero divisors of
zero [24, 4.8.3].

(9.7.33) The complex matrix algebras Mn,k, endowed with the exotic involutions
described preceding to Theorem 9.1.46 in [25], are also ∗-radicals. (As the referee
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pointed out, similar involutions can be defined on the Banach algebra B(H) for
an infinite dimensional Hilbert space H.)

Now let A be a general ∗-algebra. We have seen that the proof of Theo-
rem 3.26 on the uniqueness of the Lebesgue decomposition over A relies upon
the C∗-algebra version of the uniqueness (Theorem 3.17). We used factorization
arguments (see the lemmas and remarks in Subsection 3.3) to transfer positive
functionals and representations to certain C∗-algebras. Similarly to the latter ar-
guments, the existence theorem on the Lebesgue decomposition of representable
positive functionals over A (Theorem 2.6) can be obtained through the C∗-algebra
version of the existence (in fact, by Lemma 3.8 and Remark 3.9, the von Neu-
mann algebra version is sufficient). However, if we look at the proof of The-
orem 3.26, then we see that the transferring methods issue different (probably
infinitely many) C∗-algebras for different functionals (and representations). So,
one might ask the following question.

QUESTION 4.3. Is there a distinguished C∗-algebra C∗(A) such that the Le-
besgue decomposition theory of representable positive functionals over a reduced
∗-algebra A, including the uniqueness property, is essentially the same as that of
the Lebesgue decomposition theory of positive functionals over C∗(A)?

After Proposition 4.20, we point out that the answer is positive only for a
special class of ∗-algebras, the so-called G∗-algebras [25, Section 10.1]. Thus, ac-
cording to the discussion above, we handle two cases in the context of reduced
∗-algebras: G∗-algebras and non-G∗-algebras. The latter case involves a class of
topological ∗-algebras, the so-called locally C∗-algebras [8, Chapter II]. In the end
of Subsection 4.2, we show for a reduced ∗-algebra A that the Lebesgue decompo-
sition theory of representable positive functionals over A is essentially the same
as that over a distinguished locally C∗-algebra E(A).

4.1. REDUCED G∗-ALGEBRAS. First we recall the concepts of G∗-algebras and the
Gelfand–Naimark seminorm [25, Definition 10.1.1].

DEFINITION 4.4. Let A be a ∗-algebra. For every a ∈ A, let

γA(a) := sup{∥π(a)∥ : π is a ∗-representation of A on a Hilbert space}.

If γA is finite valued, then it is called the Gelfand–Naimark seminorm of A, and we
say that A is a G∗-algebra.

By Proposition 10.1.2 in [25], it follows for any ∗-algebra A and a ∈ A that

(4.2) γA(a) = sup{σ(a) : σ is a C∗-seminorm on A}.

If A is a G∗-algebra, then γA is the greatest C∗-seminorm on A and AR = ker γA.
Thus, a G∗-algebra A is reduced if and only if γA is a norm. Moreover, a positive
functional on A is representable exactly when it is continuous with respect to γA
[25, Theorem 10.1.3 and Corollary 10.1.8].
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Every Banach ∗-algebra is a G∗-algebra (e.g., by Theorem 11.1.5 in [25]), as
well as the ∗-algebras in Example 4.2. However, we are interested in reduced
examples. For such a ∗-algebra, we recall the notion and the properties of the
enveloping C∗-algebra [25, 10.1.10–12].

DEFINITION 4.5. Let A be a reduced G∗-algebra. Denote by C∗(A) the com-
pletion of A with respect to the pre-C∗-norm γA. Then the C∗-algebra C∗(A) is
called the enveloping C∗-algebra of A.

Theorem 10.1.12 in [25] shows, for a ∗-algebra A, that representable positive
functionals and the ∗-representation theory of A are essentially the same with
those of its enveloping C∗-algebra C∗(A). From this, it was shown in Subsec-
tion 5.1 of [34] that the Lebesgue decomposition theory of representable positive
functionals over A coincides with the Lebesgue decomposition theory of positive
functionals over C∗(A) (this also follows from the discussions in Subsection 4.2
below). Hence, in the case of reduced G∗-algebras, Question 4.3 has a positive
answer.

Now we present some examples of reduced G∗-algebras.

EXAMPLE 4.6. Let (A , ∥ · ∥) be an (infinite dimensional) approximately finite
dimensional C∗-algebra in the following sense [36, Chapter XIX, Section 1]: there
exists an increasing sequence (An)n∈N consisting of finite dimensional ∗-subal-
gebras of A such that

A =
⋃

n∈N
An.

By (4.1), the ∗-algebra A :=
⋃

n∈N
An is reduced, since the restriction ∥ · ∥|A is a

pre-C∗-norm on A. In fact, ∥ · ∥|A is the only pre-C∗-norm on A. Indeed, let
σ : A → R+ be a pre-C∗-norm and let a ∈ A be an arbitrary element. There exists
an n ∈ N such that a ∈ An. The finite dimensionality of An implies that the pre-
C∗-norms ∥ · ∥|An and σ|An are actually complete. It is well known that there is at
most one C∗-norm on a ∗-algebra [25, Proposition 10.1.9], so σ(a) = ∥a∥ follows.
Thus, γA(a) = ∥a∥, and by (4.2), A is G∗-algebra. A concrete example for such
an A is the ∗-algebra of finitely supported complex sequences with the pointwise
operations and the norm ∥(xn)n∈N∥ := sup

n∈N
|xn|.

Other examples for reduced G∗-algebras can be found in [25]: 10.3.17, 10.3.18
and the ∗-algebras that appear in Theorem 10.6.11. Excluding the cases of the lat-
ter, there are no complete submultiplicative norms on these ∗-algebras.

As we mentioned above, every Banach ∗-algebra A is a G∗-algebra. Hence,
by (4.1), A is reduced if and only if there is a pre-C∗-norm on A. In the earlier
literature, reduced Banach ∗-algebras were called A∗-algebras.

EXAMPLE 4.7. Below we list some examples of reduced Banach ∗-algebras
which are not C∗-algebras.
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(i) The disc ∗-algebra A(D) on the closed unit disc D [25, 9.7.25]. That is,
endowed with the pointwise operations and the supremum norm, A(D) is the
Banach algebra of continuous complex valued functions on D that are analytic on
the interior of D, equipped with the involution

∗ : A(D) → A(D); a∗(z) = a(z) (z ∈ D).

The enveloping C∗-algebra of A(D) is the C∗-algebra of continuous functions on
the interval [−1, 1].

(ii) The Banach ∗-algebras of the Hilbert–Schmidt and the trace-class operators
on an infinite dimensional Hilbert space H [25, Theorems 9.1.32. and 9.1.35] are
not C∗-algebras. The enveloping C∗-algebra of both ∗-algebras is the C∗-algebra
of the compact operators on H.

The Lebesgue decompositions over the ∗-algebras in (i) is unique, while
non-uniqueness occurs for the ∗-algebras in (ii).

Because of its importance, we treat the case of the L1-algebras of locally
compact groups separately. As we mentioned at the end of the Preliminaries, the
uniqueness of the Lebesgue decomposition provides a new characterization of
Moore groups. These groups were named after C.C. Moore, due to his famous ar-
ticle [22], in which many beautiful properties and characterizing criterions were
proved. For a comprehensive description, see Sections 12.4 and 12.5 in Palmer’s
book [25]. The basic definition of such a locally compact group G is the following.
If V : G → B(H) is a continuous, unitary representation on the Hilbert space H
which is topologically irreducible [25, Definition 9.2.19], then H is finite dimen-
sional. Hence finite groups, compact groups and locally compact abelian groups
belong to Moore groups.

Let G be a locally compact group. For a fixed left Haar measure β on G the
space L1(G) is a Banach ∗-algebra with the convolution product related to β and a
natural isometric involution ([6, 13.2]; [25, 9.1.8]). Moreover, well-known results
[25, Theorem 12.4.4 and Corollary 12.4.5] show that there exists a pre-C∗-norm
on L1(G), hence it is a reduced Banach ∗-algebra. The enveloping C∗-algebra of
L1(G) is the so-called full group-C∗-algebra (with common notation: C∗(G)). It is
a remarkable fact that every positive functional defined on L1(G) is continuous
and representable ([6, B29 and 13.2.5]; [25, Corollary 11.3.8]).

Theorem 12.4.1 in [25] describes a natural bijective correspondence between
the continuous unitary representations of G and the non-degenerate representa-
tions of L1(G) (as well as the non-degenerate representations of C∗(G)). By this
bijection, one can point out that G is a Moore group if and only if every topo-
logically irreducible representation of L1(G) is finite dimensional. Hence, our
main Theorem 3.26 and the previous comments immediately imply the following
corollary.

COROLLARY 4.8. Let G be a locally compact group. Then the following statements
are equivalent:
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(i) G is a Moore group;
(ii) the Lebesgue decomposition of positive functionals over L1(G) is unique;

(iii) the Lebesgue decomposition of positive functionals over C∗(G) is unique.

4.2. REDUCED ∗-ALGEBRAS WHICH ARE NOT G∗-ALGEBRAS. In this subsection,
we refer the reader mainly to [8] and [25]. Let us begin with examples.

EXAMPLE 4.9. For every positive integer n, denote by (Mn(C), ∥ · ∥n) the
C∗-algebra of n by n matrices. Let AM be the complete direct product ∗-algebra
of the Mn(C)’s, endowed with the coordinatewise operations, i.e.,

AM := ∏
n∈N+

Mn(C) = {(an)n∈N+ : an ∈ Mn(C)}.

It is not hard to obtain that a non-zero C∗-seminorm on AM has the form

(4.3) σF : AM → R+; σF((an)n∈N+) = sup
n∈F

∥an∥n,

where F is a non-void finite subset of N+. By Theorem 9.5.4 in [25], for every C∗-
seminorm σ on AM there is a ∗-representation π of AM such that σ(a) = ∥π(a)∥
for all a ∈ AM. Now, by the very similar calculations as in 9.7.26 and 9.7.27 of
[25], we conclude that there is a finite subset F of N+ such that

ker(π) ⊇ {(an)n∈N+ ∈ A : an = 0 for all n ∈ F}.

Indeed, if 1n denotes the identity matrix in Mn(C), then for every m ∈ N+ con-
sider the element em = (emn)n∈N+ ∈ A such that

emn =

{
0 if 1 ⩽ n ⩽ m,
1n if m < n.

Let a = (n1n)n∈N+ . In the natural ordering of self-adjoint operators, the elements
above satisfy π((m + 1)em) ⩽ π(a) (m ∈ N+), thus (m + 1)∥π(em)∥ ⩽ ∥π(a)∥.
But π(em) is a projection, so its norm must be 0 or 1. From this we get that
π(em) = 0 for all but finitely many m ∈ N+. Now (4.3) follows. In fact, we
obtained that the range of every ∗-representation π is finite dimensional, and, in
particular, every topologically irreducible representation of AM is finite dimen-
sional. (Such a representation can be obtained by the “projection” onto the nth
coordinate.) It follows that the Lebesgue decomposition over AM is unique (The-
orem 3.26).

Hence, there is no pre-C∗-norm on AM. By (4.1), AM is a reduced (the in-
tersection of the kernels of all C∗-seminorms is {0}). Furthermore, AM is not a
G∗-algebra (the element a above has γAM (a) = +∞).

EXAMPLE 4.10. Let A be the ∗-algebra of all functions a : R → C that are
polynomials, endowed with pointwise operations and complex conjugation as
the involution. Then every non-zero C∗-seminorm on A is of the form

σK : A → R+; σK(a) = sup
t∈K

|a(t)|,
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where K is an arbitrary non-void compact subset of R. For an infinite K, σK is a
pre-C∗-norm, hence A is reduced. Moreover, for a non-constant a we have that

γA(a) = sup{σK(a) : K ⊆ R, K is non-void and compact} = +∞.

Thus, A is not a G∗-algebra (but admits many pre-C∗-norms). Note here that the
Lebesgue decomposition over A is unique, since every topologically irreducible
representation of A is one dimensional [25, Theorem 9.6.10].

Now let A be a reduced ∗-algebra. As we mentioned after (4.2), if A is a
G∗-algebra, then a positive functional f on A is representable if and only if f
is continuous with respect to the Gelfand–Naimark norm γA. However, if A is
not a G∗-algebra, a concrete locally convex Hausdorff topology τR can be de-
fined on A such that the representable positive functionals on A are exactly the
τR-continuous positive functionals (Theorem 4.13). We exhibit this below. More-
over, it turns out that the Lebesgue decomposition theory of representable pos-
itive functionals over A is actually the same as the theory over a distinguished
topological ∗-algebra E(A) (Definition 4.17, discussion after Proposition 4.20).

For the general theory of topological algebras and ∗-algebras we refer the
reader to A. Mallios’ work [20] and M. Fragoulopoulou’s book [8]. Let A be an
algebra. A locally m-convex topology τ = τΓ on A is a topology which is defined
by a directed/saturated [8, p. 7] family Γ = {σi : i ∈ I} of submultiplicative
seminorms on A. The algebra A, equipped with τ, is a locally m-convex algebra,
which is denoted by A[τ]. It is Hausdorff if and only if Γ separates the points of
A. Moreover, A[τ] has a (jointly) continuous multiplication. We call metrizable
complete locally m-convex algebras Fréchet locally m-convex algebras. If A[τΓ] is a
locally m-convex algebra which is also a ∗-algebra, and in addition every σ ∈ Γ
satisfies σ(a∗) = σ(a) (a ∈ A), then we use the term locally m-convex ∗-algebra.

The following is Definition 7.5 on p. 102 in [8] (see also: [2, 13, 28]).

DEFINITION 4.11. A Hausdorff locally m-convex ∗-algebra A[τ], whose to-
pology τ = τΓ is determined by a family Γ = {σi : i ∈ I} of C∗-seminorms, is
called C∗-convex algebra. If A[τ] is complete, then it is called locally C∗-algebra.

REMARK 4.12. By definition, a C∗-convex algebra A[τΓ] is reduced, and it
has continuous multiplication and involution. Hence, its (Hausdorff) completion
Ã[τΓ̃] [8, p. 8] is a locally C∗-algebra. The topology of Ã is determined by the
family Γ̃ consisting the unique continuous extensions of the elements of Γ to Ã.

According to [8] (p. 99, Introduction to Chapter II), the term “locally C∗-
algebra” is due to A. Inoue [13]. Other names, such as “b∗-algebras” (e.g., [2]) or
“pro-C∗-algebras” (e.g., [28]) have been appeared for this kind of (generally non-
normed) ∗-algebras. There is an extensive literature dealing with their theory, in
particular, the Chapters II–IV in [8] (see also the above mentioned works and the
Introduction to Chapter II in [8]). These references also contain many applications
of the class of locally C∗-algebras.
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Before providing some examples, our purposes need a concrete locally m-
convex topology, which can be naturally defined on an arbitrary ∗-algebra A, and
which makes each representable positive functional on A to be continuous. So,
we can involve this topology in the investigations of the Lebesgue decomposition
theory. We treat only the reduced case.

Following Palmer [25], we introduce the ∗-representation topology (Defini-
tion 9.7.5, Proposition 9.7.6, Theorems 9.7.7 and 10.1.3).

THEOREM 4.13. Let A be a reduced ∗-algebra and let ΓA be the family of all C∗-
seminorms on A. If τR denotes the topology defined by ΓA, then τR is called the ∗-
representation topology on A, which has the following properties:

(i) if A is a G∗-algebra, then τR equals the norm topology induced by γA;
(ii) τR is the strongest among all topologies τ on A such that A[τ] is a C∗-convex

algebra;
(iii) τR is the weakest topology on A which makes each ∗-representation π : A →

B(H) continuous with respect to the norm topology on B(H);
(iv) a positive functional f on A is representable if and only if f is τR-continuous.

The following statement shows that there is an important class of locally C∗-
algebras such that the given topology is actually the ∗-representation topology.

PROPOSITION 4.14. If A[τ] is a Fréchet locally m-convex ∗-algebra, then every
C∗-seminorm on A is τ-continuous. In particular, for Fréchet locally C∗-algebras A[τ]
the equation τ = τR holds.

Proof. Let σ be a C∗-seminorm on A. By Theorem 9.5.4 in [25], there exists
a ∗-representation π of A such that σ(a) = ∥π(a)∥ for all a ∈ A. Now Corol-
lary 17.2 in [8] implies that π is τ-continuous, so σ is a continuous C∗-seminorm
on A[τ]. If, in addition, A[τ] is a locally C∗-algebra, property (ii) of the previous
Theorem 4.13 concludes that τ = τR.

EXAMPLE 4.15. The ∗-algebra AM := ∏
n∈N+

Mn(C) appeared in Example 4.9,

endowed with the product topology τ, is a locally C∗-algebra. In fact, τ is the
∗-representation topology τR. To see this, let us consider a more general case.
Let (An, ∥ · ∥n)n∈N be a sequence of C∗-algebras. By Example 7.6 (2) in [8], the
product topology τ on A := ∏

n∈N
An is actually determined by the family of the

C∗-seminorms Γ = {σF : F ⊆ N, F is non-void and finite}, where

(4.4) σF : A → R+; σF((an)n∈N) = sup
n∈F

∥an∥n,

moreover A[τ] is a locally C∗-algebra. However, the C∗-seminorms

σm : A → R+; σm((an)n∈N) = sup
n⩽m

∥an∥n, (m ∈ N)
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also determine the topology τ, hence A[τ] is a Fréchet locally C∗-algebra. Now
Proposition 4.14 implies that τ = τR. (This also concludes that the C∗-seminorms
on A have the form (4.4).)

Consider again the locally C∗-algebra AM[τR]. The so-called bounded part of
AM is the ∗-subalgebra

(AM)b :=
{
(an)n∈N+ : an ∈ Mn(C), sup

n∈N
∥an∥n < +∞

}
,

which is a C∗-algebra (cf. Question 3.20(i)) with the norm

∥(an)n∈N+∥ := sup
n∈N

∥an∥n,

and it is τR-dense in AM ([2, Theorem 2.3]; [8, Theorem 10.23]). In Example 4.9,
we derived that the Lebesgue decomposition of representable positive function-
als over AM is unique, because every topologically irreducible representation of
AM is finite dimensional. In contrast with this, the Lebesgue decomposition of
positive functionals over the τR-dense C∗-subalgebra (AM)b is not unique, since
(as we have seen in Question 3.20(i)) (AM)b is not a GCR C∗-algebra.

EXAMPLE 4.16. A Hausdorff topological space X is said to be a k-space if,
whenever a subset G ⊆ X intersects each compact K ⊆ X in an open set (in the
relative topology of K), then G is open in X. For example, a Hausdorff, locally
compact or first countable space is a k-space (e.g., [21, Appendix D].

Let X be a Hausdorff completely regular k-space. Denote by A := C (X;C)
the ∗-algebra of all continuous complex valued functions on X, with the point-
wise operations. If K stands for the set of all non-void compact subsets of X then,
for any K ∈ K the mapping

σK : A → R+; σK(a) = sup
t∈K

|a(t)|,

is a C∗-seminorm. According to Examples 3.10 (4) and 7.6 (3) in [8], the Hausdorff
topology τK induced by the family Γ = {σK : K ∈ K} is the topology of compact
convergence and A[τK] is a locally C∗-algebra. Denote this topological ∗-algebra
by Cc(X;C).

Note here that τK is weaker than the ∗-representation topology τR in gen-
eral. Indeed, let X be a Hausdorff countably compact (i.e., every infinite subset
of X has a limit point), non-compact, completely regular space which is either lo-
cally compact or first countable (a concrete example is in the Remark after Propo-
sition 12.2 (b) in [21]). Then, by Proposition 12.2 (b) in [21], the locally C∗-algebra
Cc(X;C) admits a discontinuous multiplicative linear functional f . Since such
a functional on a locally C∗-algebra is hermitian (that is, f (a∗) = f (a) for any
a ∈ Cc(X;C)) by Proposition 2.5 in [2], f is a positive functional on A. It is triv-
ially continuous with respect to the C∗-seminorm

Cc(X;C) ∋ a 7→ | f (a)| ∈ R+,



IRREDUCIBLE REPRESENTATIONS, LEBESGUE DECOMPOSITION 91

hence, according to the discusson preceding Remark 3.21, f is representable.
Thus τK = τR is not true, since every representable positive functional is τR-
continuous (Theorem 4.13(iv)).

On the other hand, if Cc(X;C) is Fréchet, then by Proposition 4.14 the equa-
tion τK = τR holds. Remark (ii) on p. 36 in [8] shows that Cc(X;C) is Fréchet if
and only if X is hemicompact, e.g., X is locally compact and σ-compact. So, there
are many interesting cases when the topology of compact convergence is the ∗-
representation topology.

Other interesting and important examples can be found in, e.g., [2, 4, 8, 13,
28].

We introduce another relevant concept, the so-called enveloping locally C∗-
algebra ([8, Section 18 in Chapter IV]; [4, Section 2]). It can be defined in a more
general setting (in the case of not necessarily m-convex or reduced ∗-algebras),
but for simplicity we make extra assumptions.

DEFINITION 4.17. Let A[τ] be a Hausdorff locally m-convex ∗-algebra. Sup-
pose that the family ΓC∗ of the τ-continuous C∗-seminorms separate the points of
A. Then the completion Ã[τΓ̃C∗

] of the C∗-convex algebra A[τΓC∗ ] is the enveloping
locally C∗-algebra of A[τ], and it is denoted by E(A)[τE] (or simply E(A), if there
is no confusion).

EXAMPLE 4.18. If A[τ] is a C∗-convex algebra, then E(A) is just the com-
pletion of A[τ] (in particular, if A[τ] is complete, then E(A) is A[τ] itself). For
instance, the ∗-algebra of polynomials in Example 4.10, endowed with the topol-
ogy of compact convergence τK (which equals with ∗-representation topology) is
a C∗-convex algebra. Its completion/enveloping locally C∗-algebra is Cc(R;C).

For a non-C∗-convex example, consider the algebra (with pointwise oper-
ations) O(C) of all analytic functions defined on the entire plane C. Similar to
Example 4.7(i), define the involution by

∗ : O(C) → O(C); a∗(z) = a(z) (z ∈ C).

Then the family Γ of the submultiplicative norms

σn : A → R+; σn(a) = sup
|z|⩽n

|a(z)| (n ∈ N+)

determines a Hausdorff locally m-convex topology on O(C), and O(C)[τΓ] is a
Fréchet locally m-convex ∗-algebra [8, Examples 2.4 (5) and 3.2 (4)], which is not
a locally C∗-algebra. The enveloping locally C∗-algebra of O(C)[τΓ] is Cc(R;C)
[8, 18.9 (1)].

Note that for Fréchet locally m-convex ∗-algebras with a separating system
of continuous C∗-seminorms, the topology of the enveloping locally C∗-algebra
is the ∗-representation topology. Indeed, E(A) is metrizable ([4], the paragraph
preceding to Lemma 2.5), thus Proposition 4.14 applies.
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REMARK 4.19. The concept of the enveloping locally C∗-algebra does not
necessarily agree with the enveloping C∗-algebra (Definition 4.5). For instance,
the disc ∗-algebra A(D) in Example 4.7(i) is a reduced Banach ∗-algebra (hence
a G∗-algebra) and its enveloping C∗-algebra C∗(A(D)) is C ([−1, 1];C) equipped
with the supremum norm. On the other hand, if we endow A(D) with the topol-
ogy τ induced by the pre-C∗-norm

σ[0,1] : A(D) → A(D); σ[0,1](a) := sup
t∈[0,1]

|a(t)|,

then A[τ] is a C∗-convex algebra and E(A) = C ([0, 1];C) equipped with the
topology induced by the supremum norm on [0, 1].

The difference is that E(A) depends on the initial topology of A[τ], while
(when A is a G∗-algebra) C∗(A) is the completion with respect to the concrete
pre-C∗-norm γA. The latter C∗-algebra has the “same” ∗-representation theory as
that of A (discussion after Definition 4.5), while E(A) has the “same” continuous
∗-representation theory as that of A[τ] (e.g.: [8, p. 207, Introduction to Chap-
ter IV and Theorem 18.8]). However, in the case of the ∗-representation topology,
E(A) = C∗(A) holds for G∗-algebras (see Proposition 4.20 below).

We answer Question 4.3 after the following helpful statement.

PROPOSITION 4.20. Let A be a reduced ∗-algebra and let τR be the ∗-representa-
tion topology on A. The following statements are equivalent:

(i) A is a G∗-algebra;
(ii) the enveloping locally C∗-algebra E(A) of the C∗-convex algebra A[τR] is topo-

logically ∗-isomorphic to a C∗-algebra.
If the conditions are fulfilled, then E(A) = C∗(A).

Proof. (i) ⇒ (ii) If A is a G∗-algebra, then by Theorem 4.13(i), τR is norm
topology induced by γA. Thus (ii) and E(A) = C∗(A) are immediately following.

(ii) ⇒ (i) Assume that the topology of E(A) is determined by the C∗-norm
σE(A) and let σ be a C∗-seminorm on A. We prove for any a ∈ A that

σ(a) ⩽ σE(A)(a)

holds true and hence, consequently σE(A)|A = γA and A is a G∗-algebra.
By Theorem 9.5.4 in [25], there exists a ∗-representation π of A such that

σ(a) = ∥π(a)∥ for all a ∈ A. Since π is τR-continuous (Theorem 4.13(iii)), it ex-
tends to a (continuous) ∗-representation π̃ of the enveloping locally C∗-algebra
E(A). But it is well known that each ∗-representation of a C∗-algebra is a contrac-
tion [25, Theorem 9.5.12(e)] that is,

∥π̃(a)∥ ⩽ σE(A)(a)

for every a ∈ E(A). Now the conclusion follows.
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Our last comment answers Question 4.3 and explains that the most general
setting for the Lebesgue decomposition theory of all representable positive func-
tionals over reduced ∗-algebras is in fact the case of locally C∗-algebras whose
topology is the ∗-representation topology.

Consider a reduced ∗-algebra A and equip it with the ∗-representation to-
pology τR. Let E(A) be the completion/enveloping locally C∗-algebra of A[τR].
Then the topology τE of E(A) is its ∗-representation topology. Since the repre-
sentable positive functionals on A are precisely the τR-continuous positive func-
tionals (Theorem 4.13(iv)), their unique τE-continuous linear extensions to E(A)
are positive and representable. Moreover, if f and g are representable positive
functionals on A such that f ⩽ g, then their extensions f̃ and g̃ satisfy f̃ ⩽ g̃. By
the definitions of absolute continuity and singularity (Definitions 2.3 and 2.4) and
the Lebesgue decomposition (Theorem 2.6), it is easy to see that the following are
true:

(i) f ≪ g ⇔ f̃ ≪ g̃ and f ⊥ g ⇔ f̃ ⊥ g̃.
(ii) If f = fr + fs is the Lebesgue decomposition with respect to g and f̃ =

( f̃ )r + ( f̃ )s is the Lebesgue decomposition with respect to g̃, then ( f̃ )r = f̃r and
( f̃ )s = f̃s. Furthermore, since the ∗-representation theory of A is in a bijective
correspondence with the ∗-representation theory of E(A), the uniqueness holds
for the decomposition over A if and only if uniqueness holds over E(A) (Theo-
rem 3.26).

By Proposition 4.20, E(A) is a C∗-algebra if and only if A is a G∗-algebra.
Hence the discussion above completely answers Question 4.3 as well.
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