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ABSTRACT. We describe the norm-closures of the set CE of commutators of
idempotent operators and the set E−E of differences of idempotent operators
acting on a finite-dimensional complex Hilbert space, as well as characterise
the intersection of the closures of these sets with the set K(H) of compact op-
erators acting on an infinite-dimensional complex separable Hilbert space H.
Finally, we characterise the closures of the set CP of commutators of orthog-
onal projections and the set P − P of differences of orthogonal projections
acting on a complex separable Hilbert space.

KEYWORDS: Commutators, differences, idempotents, projections, closures.

MSC (2020): 47B47, 47A58.

1. INTRODUCTION

1.1. Let H be a complex separable Hilbert space. By B(H), we denote the norm-
closed algebra of all bounded linear operators acting on H. There are surpris-
ingly few well-understood classes of continuous linear operators acting on H, but
amongst the best understood of these is the class of orthogonal projections. Recall
that an operator P ∈ B(H) is said to be an orthogonal projection if P = P∗ = P2.

The three most important notions of equivalence of Hilbert space operators
are similarity, unitary equivalence and approximate unitary equivalence. Given A, B ∈
B(H), we shall write A ∼ B to indicate that A is similar to B; i.e. there exists
S ∈ B(H) invertible such that B = S−1 AS. We write A ≃ B to indicate that A is
unitarily equivalent to B; i.e. there exists a unitary operator U ∈ B(H) such that
B = U∗AU. Finally, we write A ≃a B to indicate that A is approximately unitarily
equivalent to B, meaning that there exists a sequence (Un)n of unitary operators
in B(H) such that B = lim

n
U∗

n AUn. This is equivalent to saying that the (norm)

closure CLOS U (A) of the unitary orbit U (A) := {U∗AU : U ∈ B(H) unitary} of
A coincides with CLOS U (B).
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It is easy to verify that an operator Q ∈ B(H) is approximately unitarily
equivalent to a projection P if and only if Q is unitarily equivalent to P, in which
case Q is itself a projection. Furthermore, it is a standard exercise in operator
theory to show that an operator E ∈ B(H) is similar to some projection if and
only if E is idempotent; that is, E2 = E.

There exists a substantial literature centred around the characterisation of
specific linear and/or multiplicative combinations of projections and idempo-
tents in B(H), and indeed in other C∗-algebras [1, 3, 10, 11, 16, 18, 19, 22, 23, 24,
25, 26, 27, 29, 30].

We shall focus on two particular instances of this problem, namely: com-
mutators and differences. More specifically, our interest will lie in describing the
norm-closures of the sets described below.

1.2. NOTATION. Given a Hilbert space H, we define E := {E ∈ B(H) : E = E2},
P := {P ∈ B(H) : P = P∗ = P2}, and we set

E− E := {E − F : E, F ∈ E} and P−P := {P − Q : P, Q ∈ P}.

Following [13], we refer to differences of idempotents as DOIs, and in light of this
we refer to differences of projections as DOPs.

Given A, B ∈ B(H), we denote by [A, B] := AB − BA the commutator of A
and B. We also define the sets

CE := {[E, F] : E, F ∈ E} and CP := {[P, Q] : P, Q ∈ P}.

The elements of CE are commutators of idempotents (we shall refer to them as
COIs), and we shall refer to elements of CP as COPs, short for commutators of pro-
jections.

Finally (keeping in mind that an involution is an invertible operator S ∈
B(H) such that S = S−1), we shall write

NEGS(H) := {T ∈ B(H) : T is similar to − T};

NEGU(H) := {T ∈ B(H) : T is unitarily equivalent to − T}; and

NEGINVS(H) := {T ∈ B(H) : T is similar by an involution to − T}.

Obviously

NEGU(H) ⊆ NEGS(H) and NEGINVS(H) ⊆ NEGS(H).

1.3. Our first goal will be to classify the norm-closures of the sets CE and E− E.
We note that in the case where the underlying Hilbert space is finite-dimensional,
the (non-closed) sets themselves have been classified.

Indeed, when dim H is finite, the characterisation of CE is due to Drnovšek
et al. [8, Theorem 8].

THEOREM 1.1 (Drnovšek, Radjavi and Rosenthal). If n := dim H < ∞ and
T ∈ B(Cn), then T ∈ CE if and only if T ∼ −T and the Riesz component T1 of T

corresponding to
{

1
2 i
}

has the property that T2
1 + 1

4 I has a square root.



COMMUTATORS AND DIFFERENCES OF IDEMPOTENTS 99

The corresponding result for E−E is due to Hartwig and Putcha [13, Theo-
rem 1b].

THEOREM 1.2 (Hartwig and Putcha). If n := dim H < ∞ and T ∈ B(Cn),
then T ∈ E − E if and only if the elementary divisors (see, e.g. [15]) of T satisfy the
following three conditions:

(i) there are no restrictions on the elementary divisors zk;
(ii) the elementary divisors (z − α)k, (z + α)k with α ̸= 0,±1 occur in pairs with the

same multiplicities; and
(iii) the elementary divisors (z − 1)mk , (z + 1)nk , k = 1, 2, . . . , r obey |mk − nk| ⩽ 1

when listed in non-increasing order.

A complete characterisation of the sets CE and E − E in the case where
dim H = ∞ is not yet available, though the paper of Wang and Wu [28] has
many interesting partial results. The problem of characterising CLOS (CE) and
CLOS (E− E) in this setting seem quite delicate. To wit: although all nilpotent
operators of order two are known to lie in CE, it is not known which nilpotent
operators of order three are commutators of idempotents.

1.4. Our study of the classes CE and E − E will require us to understand the
spectrum of an operator which is similar to its own negative. Recall that the semi-
Fredholm domain of an operator T ∈ B(H) is the set

ρsF(T) :={α∈C : ran (T−αI) is closed, min(NUL(T−αI), NUL(T−αI)∗)<∞}.

A standard result (see, e.g. [4]) shows that α ∈ ρsF(T) if and only if π(T − αI)
is either left- or right-invertible in B(H)/K(H), where K(H) denotes the closed,
two-sided ideal of compact operators acting on H, and π : B(H) → B(H)/K(H)
is the canonical quotient map. When α ∈ ρsF(T), one defines the semi-Fredholm
index

IND (T − αI) = NUL (T − αI)− NUL (T − αI)∗.
Note that if T ∼ −T, say −T = R−1TR for some invertible operator R, then

α ∈ ρsF(T) implies that

R−1(T − αI)R = (−T − αI) = −(T + αI),

so that T + αI is semi-Fredholm and

IND (T + αI) = IND (−(T + αI)) = IND (T − αI).

In light of the above observations, the following definition will prove useful.

DEFINITION 1.3. Let T ∈ B(H). We say that T is balanced if
(i) σ(T) = σ(−T);

(ii) whenever Ω1, Ω2⊆C are disjoint open sets such that σ(T)⊆Ω1∪Ω2, then

dimH(Ω1; T) = dimH(−Ω1; T),

where H(Ω1; T) is the generalised eigenspace (i.e. the range of the corresponding
Riesz idempotent E(Ω1; T)) corresponding to σ(T) ∩ Ω1;
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(iii) If α ∈ C, then T − αI is semi-Fredholm if and only if T + αI is semi-
Fredholm, in which case

IND (T − αI) = IND (T + αI).

We denote the set of balanced operators by BAL(H).

2. ELEMENTARY AND GENERAL RESULTS

2.1. Our ultimate goal would be to describe the relationships between each of
the classes of operators defined above, as well as their norm-closures in B(H).
In the case where dim H = ∞, our incomplete understanding of the sets CE

and E − E themselves complicates matters. For this reason, when considering
the closures of CE and E− E, in this paper we shall focus mostly on two cases.
First, we shall direct our attention to the case where dim H < ∞, where the sets
CE and E − E are fully understood. Next, we turn to a description of the sets
CLOS(CE) ∩K(H) and CLOS (E− E) ∩K(H).

Because the sets CP and P−P are fully understood independently of the
dimension of the underlying Hilbert space, in Section 5 we shall be able to char-
acterise their closures.

We begin with a couple of general and elementary observations concerning
the classes CE and BAL(H) which will be used throughout the paper.

PROPOSITION 2.1. For any Hilbert space H,

CE ⊆ NEGINVS(H) ⊆ NEGS(H) ⊆ BAL(H).

Proof. It is routine to verify that all four sets above are invariant under sim-
ilarity, and this will be used implicitly below.

The proof that CE ⊆ NEGINVS is an immediate consequence of Theorem 1 in
the paper [8], while the inclusion NEGINVS(H) ⊆ NEGS(H) is trivial.

If T∈NEGS(H) and −T=S−1TS, then clearly σ(T)=σ(S−1TS)=σ(−T),

dim H(Ω1; T) = dim H(Ω1; S−1TS) = dim H(Ω1;−T) = dim H(−Ω1; T),

and for α ∈ ρsF(T),

IND (T − αI) = IND S−1(T − αI)S = IND (−T − αI) = IND (T + αI),

so that T ∈ BAL(H).

The following observation can easily be derived from the above result and
Lemma 1.1 of the paper of Wang and Wu [28]. We include an alternate proof since
it is so short.

PROPOSITION 2.2. For any Hilbert space H,

CE ⊆ E− E.
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Proof. Since both of these sets are invariant under similarity, it suffices to

consider T ∈ CE of the form T = [P, F], where P =

[
I 0
0 0

]
is an orthogonal

projection, and F =

[
F1 F2
F3 F4

]
relative to this decomposition.

Then

T = [P, F] =
[

0 F2
−F3 0

]
=

[
I F2
0 0

]
−

[
I 0

F3 0

]
∈ E− E.

2.2. We finish this section with some easy observations:

(i) CE is self-adjoint: note that [E, F]∗ = (EF − FE)∗ = F∗E∗ − E∗F∗ = [F∗, E∗]
and E∗, F∗ are idempotents when E, F are.

(ii) From this it follows that CLOS (CE) is also self-adjoint.
(iii) If T ∈ CP, then H := iT is self-adjoint, so that CLOS (iCP) is also contained

in the set B(H)sa of self-adjoint operators on H.
(iv) The set P−P and its closure CLOS (P−P) are contained in B(H)sa.

3. THE CLOSURES OF CE AND OF E− E IN THE FINITE-DIMENSIONAL SETTING

3.1. We now turn our attention to the case where n := dim H < ∞, and concen-
trate on the problem of describing the closures of the set CE of commutators of
idempotent operators and the set E−E of differences of idempotent operators in
B(Cn) ≃ Mn(C).

PROPOSITION 3.1. If dim H < ∞, then NEGU(H) is closed.

Proof. Suppose that (Tm)m is a sequence in NEGU(H), and that T = lim
m

Tm.

Choose Um unitary such that −Tm = U∗
mTmUm. Since (Um)m is bounded, there

exists a subsequence (Umj)j which converges in norm to a (necessarily unitary
operator) V ∈ B(H).

Then

V∗TV = lim
j

U∗
mj

Tmj Umj = lim
j
−Tmj = −T,

so that T ∈ NEGU(H).

NOTATION 3.2. If dim H < ∞, then given an operator T ∈ B(H) and an
eigenvalue α ∈ σ(T), we denote by µ(α) the algebraic multiplicity of α.

PROPOSITION 3.3. If dim H = n < ∞, then

BAL(H) = {T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)},

and thus BAL(H) is closed.
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Proof. Let T ∈ BAL(H). Since σ(T) = σ(−T) by definition of BAL(H), it
follows that α ∈ σ(T) implies that −α ∈ σ(T). Also, taking Ωε = {z ∈ C : |z −
α| < ε} for sufficiently small ε > 0 (to ensure that Ωε ∩ σ(T) = {α}), condition
(ii) from Definition 1.3 implies that µ(α) = µ(−α). Thus

BAL(H) ⊆ {T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)}.

Conversely, the condition that α ∈ σ(T) implies −α ∈ σ(T) is equivalent
to the statement that σ(T) = σ(−T), and if Ω ⊆ C is any open set which non-
trivially intersects σ(T), then there exist 1 ⩽ κ ⩽ n and α1, α2, . . . , ακ ∈ σ(T) such
that Ω ∩ σ(T) = {α1, α2, . . . , ακ}. Thus

dim H(Ω; T) =
κ

∑
j=1

µ(αj) =
κ

∑
j=1

µ(−αj) = dim H(−Ω; T).

Note that condition (iii) from Definition 1.3 always holds in the finite-dimensional
setting. Thus

{T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)} ⊆ BAL(H),

so that equality of these two sets holds.
Suppose that (Tm)m is a sequence in

{T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)}

and that T = lim
m

Tm. Since the function σ that takes an element T ∈ B(H) to its

spectrum σ(T) ⊆ C is continuous when dim H is finite, we see that α ∈ σ(T)
implies that −α ∈ σ(T). Furthermore, if Ω is any open neighbourhood of α ∈
σ(T) such that Ω ∩ σ(T) = {α}, then for all m ⩾ 1,

dim H(Ω; Tm) = dim H(−Ω; Tm)

since Tm is balanced, and so

dim H(Ω; T) = dim H(−Ω; T).

From this it follows that

{T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)}

is closed, and thus that BAL(H) is closed.

It is worth observing that as a consequence of Proposition 3.3, an operator
T ∈ B(Cn) is balanced if and only if its characteristic polynomial is either an even
function or an odd function.

THEOREM 3.4. Suppose that dim H < ∞. Then

CLOS (CE) = BAL(H).
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Proof. By Proposition 2.1, CE ⊆ BAL(H). Thus

CLOS (CE) ⊆ CLOS (BAL(H)) = BAL(H).

By Proposition 3.3, we have that

BAL(H) = {T ∈ B(H) : α ∈ σ(T) implies − α ∈ σ(T) and µ(α) = µ(−α)}.

Now consider the converse, and suppose that T ∈ BAL(H). Then we may
write the elements of σ(T) (repeated according to their algebraic multiplicity) as
an n-tuple

ΣT := (α1, α2, . . . , αn),

where α2k = −α2k−1 for all 1 ⩽ k ⩽ n
2 , and αn = 0 if n is odd. Furthermore, we

can upper-triangularise T so that if [T] = [tij], then

(•) tij = 0 if i > j, and
(•) tkk = αk for all 1 ⩽ k ⩽ n.

Let ε > 0. It is relatively easy to show that we can find βk ∈ C, 1 ⩽ k ⩽ n
such that

(•) each |βk − αk| < ε;
(•) if i ̸= j, then βi ̸= β j;
(•) for all 1 ⩽ k ⩽ n

2 , β2k = −β2k−1; and (•) βn = 0 if n is odd.

Let D = DIAG(β1, β2, . . . , βn). Then D is a normal operator and (by the last
two conditions) D is unitarily equivalent to −D. Furthermore, all eigenvalues of
D are distinct. By considering Jordan forms, any operator X ∈ Mn(C) such that
σ(X) = σ(D) is similar to D.

Let X ∈ Mn(C) be the operator whose matrix is [xij], where

xij =

{
tij if i ̸= j,
βk if i = k = j.

Then X is similar to D.
Now, by Proposition 3 of [8], D ∈ CE. Since CE is invariant under similarity,

X ∈ CE. But

X − T = DIAG(x11 − t11, x22 − t22, . . . , xnn − tnn)

= DIAG(β1 − α1, β2 − α2, . . . , βn − αn),

so ∥X − T∥ = max
1⩽k⩽n

|βk − αk| < ε.

Since ε > 0 is arbitrary, it follows that T ∈ CLOS (CE).

COROLLARY 3.5. Suppose that dim H < ∞. Then

CLOS(CE)=CLOS(NEGINVS(H))=CLOS(NEGS(H))=CLOS(BAL(H))=BAL(H).

Proof. This is an immediate consequence of Proposition 2.1, Proposition 3.3
and Theorem 3.4.
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We now turn our attention to the closure of the set E− E of differences of
idempotents.

LEMMA 3.6. (i) Let α ∈ C. Then B := α ⊕ −α ∈ B(C2) is a difference of
idempotents.

(ii) If dim H < ∞ and N ∈ B(H) is nilpotent, then N ∈ E− E.
(iii) If Hk is a Hilbert space and Bk ∈ B(Hk) lies in E − E, 1 ⩽ k ⩽ K, then

B :=
K⊕

k=1
Bk is a difference of idempotents in B(⊕K

k=1 Hk).

Proof. (i) If α = 0, then B = 0 is trivially a difference of idempotents. If
α ̸= 0, then

B ≃
[

0 α
α 0

]
=

[
1 α
0 0

]
−

[
1 0
−α 0

]
∈ E− E.

(ii) By Proposition 6 of [8], N ∈ CE ⊆ E− E.

(iii) Setting Bk = [Ek, Fk], 1 ⩽ k ⩽ K and E :=
K⊕

k=1
Ek, F :=

K⊕
k=1

Fk, we see that

B = [E, F].

PROPOSITION 3.7. Suppose that 2 ⩽ n := dim H < ∞. If T ∈ BAL(H), then
T ∈ CLOS (E− E). Nevertheless, there exists T ∈ BAL(H) such that T ̸∈ E− E.

Proof. By Theorem 3.4, BAL(H) = CLOS (CE), while Proposition 2.2 shows
that CE ⊆ E− E, whence

BAL(H) ⊆ CLOS (E− E).

As for the second statement, note that if X =

[
2 0
0 2

]
and Y =

[
−2 1
0 −2

]
,

then W = X ⊕Y is invertible, as are W + I4 and W − I4. Note that W ∈ BAL(C4).
By Proposition 4 of [13], W ∈ E− E if and only if W is similar to D ⊕ −D for
some invertible operator D ∈ B(C2). But clearly the Jordan form of W prohibits
this from happening. Thus W ∈ BAL(C4) \ (E− E).

PROPOSITION 3.8. Let 2 ⩽ n := dim H < ∞, and let sl(H) := {A ∈ B(H) :
TR(A) = 0}. Then

sl(H) ∩ CLOS(E− E) = BAL(H).

Proof. Clearly BAL(H)⊆sl(H), and by Proposition 3.7, we have that BAL(H)
⊆ CLOS(E− E), so that

BAL(H) ⊆ sl(H) ∩ CLOS(E− E).

Now suppose that T ∈ sl(H) ∩ (E− E). We may decompose H as H = H1 ⊕
H2 ⊕H3 in such a way that relative to this decomposition, we have

T =

T11 T12 T13
0 T22 T23
0 0 T33

 ,
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where σ(T11) = {0}, σ(T22) ⊆ {−1, 1} and σ(T33) ⊆ C \ {−1, 0, 1}. Since the
spectra of T11, T22 and T33 are all disjoint, we see that T is similar to T11 ⊕T22 ⊕T33,
and that we find from Lemma 2 of [13] that T ∈ E−E if and only if each of T11, T22
and T33 is.

Now σ(T11) = {0}, so T11 is balanced. Also, by Proposition 4 of [13],
T33 ∈ E− E if and only if T33 is similar to D ⊕ −D for some invertible opera-
tor D ∈ B(H3), implying that T33 is balanced. Thus TR(T11) = 0 = TR(T33).
Since TR(T) = 0, it follows that TR(T22) = 0. But σ(T22) ⊆ {−1, 1}, which then
implies that T22 is balanced. Hence T ∈ BAL(H), being the direct sum of balanced
operators.

Finally, if X ∈ sl(H) ∩ CLOS(E− E), then X = lim
n

Tn, where each Tn ∈ E−
E. Since TR(·) is continuous and integer-valued on E− E, and since TR(X) = 0,
it follows that there exists n0 ⩾ 1 such that Tn ∈ sl(H) ∩ (E− E) for all n ⩾ n0.
But then Tn ∈ BAL(H) for all n ⩾ n0. Since BAL(H) is closed by Proposition 3.3,
X ∈ BAL(H). This completes the proof.

Let n ⩾ 2 and denote by {ek : 1 ⩽ k ⩽ n} the standard orthonormal basis
for Cn. We shall denote by Jn the standard n × n Jordan cell in Mn(C); that is, Jn
is the unique operator satisfying Jne1 = 0, while Jnek = ek−1, 2 ⩽ k ⩽ n.

LEMMA 3.9. Let H be a Hilbert space with n = dim H < ∞ and Z ∈ B(H) ≃
Mn(C). Suppose that:

(i) σ(Z) ⊆ {−1, 1};
(ii) TR(Z) = r ∈ N; and

(iii) NUL (Z − I) ⩾ r.
Then Z ∈ CLOS(E− E).

Proof. Suppose first that σ(Z) = {1}. Then, from (ii) and (iii), we know each
elementary divisor of Z has degree one. Hence, Z is similar to Ir, whence Z = Ir.
Thus we may assume that σ(Z) = {−1, 1}.

Consider the Jordan form of Z, namely

Z ∼
[⊕κ+

j=1
(Imj + Jmj)

]
⊕

[⊕κ−

j=1
(−Inj + Jnj)

]
.

Let s :=
κ−

∑
j=1

nj. Observe that:

(•) the fact that NUL (Z − I) ⩾ r implies that κ+ ⩾ r; and

(•) the fact that TR(Z) = r implies that
κ+

∑
j=1

mj − s = r.

Here we agree that J1 = 0.
Since −1 ∈ σ(Z), s ⩾ 1. If s < r, set c = r − s. According to the above facts,

it is easy to deduce that there exists a subset Λ ⊂ {1, . . . , κ+} with |Λ| = c, such
that mj = 1, when j ∈ Λ. By reindexing, we may assume that Λ = {κ+ − c +
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1, . . . , κ+}. Then

Z ∼
[⊕κ+−c

j=1
(Imj + Jmj)

]
⊕

[⊕κ−

j=1
(−Inj + Jnj)

]
⊕ Ic := Z1 ⊕ Ic.

It is clear that Z ∈ CLOS(E − E) if Z1 ∈ CLOS(E − E). Now let r1 = s, then
σ(Z1) = {−1, 1}, TR(Z1) = r1 ∈ N, and NUL (Z1 − I) ⩾ r1. Furthermore,

s1 :=
κ−

∑
j=1

nj = s = r1. Hence, without loss of generality, we may add a further

assumption that “s ⩾ r” to Z.
For each n ⩾ 1, we define a diagonal operator

Dn = DIAG(d(n)1 , d(n)2 , . . . , d(n)s )

with the properties that:

(•) for any fixed n ⩾ 1, all of the diagonal entries d(n)j ∈ (0, 1), 1 ⩽ j ⩽ s are
distinct; and

(•) lim
n

d(n)j = 1 for all 1 ⩽ j ⩽ s.

Partition the set {1, 2, . . . , s} into r + 1 disjoint sets Ω1, Ω2, . . . , Ωr+1, where
|Ωj|=mj−1 for 1⩽ j⩽r and Ωr+1 contains the remaining elements of {1, 2, . . . , s}.

(It is possible that Ωr+1 might be empty.) Define D(n)
j = DIAG{d(n)ℓ : ℓ ∈ Ωj},

1 ⩽ j ⩽ r + 1, and note that Dn ≃
r+1⊕
j=1

D(n)
j . Set

Y+
n =

[⊕r

j=1
(1 ⊕ D(n)

j )
]
⊕ D(n)

r+1.

(The point is that Y+
n is a direct sum of r diagonal operators acting on spaces

of dimension m1, m2, . . . , mr, and each of these diagonal operators has first entry
equal to 1, along with another diagonal operator which brings the dimension of
the space upon which Y+

n acts up to s. Other than the 1’s which appear r := TR(Z)
times, all other diagonal entries of Y+

n should be distinct.) Because all of the
diagonal entries of (1 ⊕ D(n)

j ) are distinct, we see that

(1 ⊕ D(n)
j ) ∼ A(n)

j := (1 ⊕ D(n)
j ) + Jmj , 1 ⩽ j ⩽ r, n ⩾ 1.

Also, because all of the diagonal entries of D(n)
r+1 are distinct (for any n ⩾ 1), we

see that
D(n)

r+1 ∼ A(n)
r+1 := D(n)

r+1 +
[⊕κ+

j=r+1
Jmj

]
.

In other words,

Y+
n ∼ Bn :=

[⊕r

j=1
A(n)

j

]
⊕ A(n)

r+1, n ⩾ 1.

Observe also that

lim
n

Bn = lim
n

[⊕r

j=1
A(n)

j

]
⊕ A(n)

r+1 =
[⊕κ+

j=1
(Imj + Jmj)

]
.
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Next, let Y−
n := −Dn. Since all of the diagonal entries of Dn were distinct

(for all n ⩾ 1), we see that

Y−
n = −Dn ∼ Cn := −Dn +

[⊕κ−

j=1
Jnj

]
,

and thus

lim
n

Cn =
[⊕κ−

j=1
(−Inj + Jnj)

]
.

But Yn := Y+
n ⊕ Y−

n ≃ Ir ⊕ Dn ⊕ −Dn ∈ E − E by the Hartwig–Putcha
Theorem [13, Theorem 1a], and Yn ∼ Bn ⊕ Cn, implying that Bn ⊕ Cn ∈ E− E.
Finally,

lim
n
(Bn ⊕ Cn) = Z,

and therefore Z ∈ CLOS(E− E).

LEMMA 3.10. Let H be a Hilbert space with n = dim H < ∞ and let T ∈
B(Cn) ≃ Mn(C). Suppose that TR(T) = r ∈ N. If T ∈ CLOS(E−E), then NUL (T −
I) ⩾ r.

Proof. Suppose that T = lim
n→∞

Tn, where Tn ∈ E−E. By the continuity of the

spectrum and therefore of the trace, we may assume without loss of generality
that TR(Tn) = r for all n ∈ N.

By the Hartwig–Putcha Theorem 1.2, the eigenvalues of Tn which belong to
C \ {−1, 1} come in pairs {−α, α}, and therefore do not contribute to the trace.
From this, and again by the Hartwig–Putcha Theorem, it follows that if we fix
the exponents m(n)

j occurring in the elementary divisors of Tn corresponding to 1

and n(n)
j corresponding to −1, for any n ∈ N, we will always have at least r j’s for

which
m(n)

j − n(n)
j = 1.

Then NUL (Tn − I) ⩾ r. Since the function NUL(·) is upper-semicontinuous (for
the rank function is lower-semicontinuous), NUL (T − I) ⩾ r.

The hypothesis in the next theorem that the trace of the operator T should
be non-negative is there only to simplify the statement of the result. Note that
T ∈ CLOS(E− E) if and only if −T ∈ CLOS(E− E), so by replacing T by −T if
necessary, the trace of T may always be assumed to be a non-negative integer.

THEOREM 3.11. Let T ∈ B(Cn) ≃ Mn(C) and suppose that TR(T) = r ∈ N.
The following are equivalent:

(i) T ∈ CLOS(E− E); and
(ii) T ∼ B ⊕ Z, where B is balanced, σ(Z) ⊆ {−1, 1} and NUL (Z − I) ⩾ r.

Proof. (i) =⇒ (ii) By using Riesz idempotent theorem, we may assume that
T = B ⊕ Z, where σ(B) ∈ C \ {−1, 1}, and σ(Z) ⊂ {−1, 1}. We claim that B is
balanced. Indeed, there exists 0 < δ < 1 such that σ(B) ⊆ {z ∈ C : |z| < δ}. If
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T = lim
m

Tm where Tm ∈ E− E for all m ⩾ 1, then by the continuity of the map

X 7→ σ(X) in the finite-dimensional setting (with eigenvalues counted according
to their algebraic multiplicities), we see that σ(T) is the limit of σ(Tm), and thus
σ(B) is the limit of σ(Tm) ∩ {z ∈ C : |z| < δ}. But Tm ∈ E − E implies that
µ(α) = µ(−α) whenever α ̸∈ {−1, 0, 1}, from which we deduce that 0 ̸= α ∈ σ(B)
implies that −α ∈ σ(B) and µ(α) = µ(−α); in other words, B is balanced.

Since T ∈ CLOS(E− E), by Lemma 3.10, NUL (Z − I) = NUL (T − I) ⩾ r.
Since B is balanced, TR(Z) = TR(T) = r.

(ii) =⇒ (i) Suppose that T ∼ B ⊕ Z, with B and Z as in the statement of
(ii). Since B is balanced, B ∈ CLOS(E−E). And by Lemma 3.9, Z ∈ CLOS(E−E).
Then it is clear that T ∈ CLOS(E− E) also.

4. COMPACT OPERATORS

4.1. Recall from Proposition 2.1 that

CE ⊆ NEGINVS(H) ⊆ NEGS(H) ⊆ BAL(H).

When H is finite-dimensional, the norm-closures of all of these sets coincide and
BAL(H) is closed (see Corollary 3.5). Our goal in this section is to show that the
same result holds if we restrict our attention to the set of compact operators acting
on an infinite-dimensional complex separable Hilbert space H. That is to say, we
wish to prove that

CLOS (CE) ∩K(H) = BAL(H) ∩K(H).

We emphasise the fact that we do not require the approximants to be com-
pact; that is, we allow for an element T ∈ CLOS (CE) ∩ K(H) (respectively T ∈
BAL(H) ∩ K(H)) to be expressed as a limit of operators (Tm)m which are non-
compact elements of CE (respectively non-compact elements of BAL(H)).

Of course, when K ∈ K(H) and λ ∈ C, either λ = 0 and K − λI = K + λI =
K is not semi-Fredholm (in which case condition (iii) of Definition 1.3 does not
apply), or λ ̸= 0 in which case K − λI, K + λI are both Fredholm of index zero,
and so (iii) of Definition 1.3 holds automatically.

The fact that every quasinilpotent operator Q ∈ B(H) is a limit of nilpotent
operators is a deep result due to Apostol and Voiculescu [2]. When Q is both
quasinilpotent and compact, the fact that the approximating nilpotent operators
may be chosen to be of finite rank is much simpler. As we have been unable to
locate a specific reference for this result, we have decided to include the outline of
its proof. Let ε > 0 and choose a finite-rank operator F such that ∥Q− F∥ < ε and
σ(F) ⊆ {z ∈ C : |z| < ε}. That this is possible is a consequence of the fact that
Q is compact, combined with the upper semicontinuity of the spectrum. Write
F ≃ F0 ⊕ 0, where F0 ∈ Mn(C) for appropriate n ⩾ 1, and upper-triangularising
F0, observe that all diagonal entries have magnitude less than ε. Thus a diagonal
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perturbation D0 + F0 of F0 of norm at most ε (D0 simply represents the negative
of the diagonal of F0) results in a finite-rank nilpotent operator N ≃ (D0 + F0)⊕ 0
which approximates Q to within 2ε.

PROPOSITION 4.1. Let Q ∈ K(H) be quasinilpotent. Then Q ∈ CLOS (CE).
Moreover, we can choose the approximants in CE to be nilpotent themselves.

Proof. Let ε > 0. We have just seen that every compact quasinilpotent oper-
ator is a limit of finite-rank nilpotent operators, and as such, there exists a finite-
rank nilpotent operator L such that ∥Q − L∥ < ε. Let R := span{ran L, ran L∗}.
Then R is finite-dimensional, and relative to the decomposition H = R⊕R⊥,
we may write

L =

[
L0 0
0 0

]
.

Since L is nilpotent, so is L0. By Proposition 6 of [8], L0 is a commutator of two

finite-rank idempotents E0, F0 ∈ B(R). Let E :=
[

E0 0
0 0

]
and F :=

[
F0 0
0 0

]
.

Then E and F are idempotents and

L = [E, F] ∈ CE.

Since ε > 0 was arbitrary, Q ∈ CLOS (CE).

EXAMPLE 4.2. We temporarily digress to show that CE∩K(H) is not closed.
Indeed, let V ∈ B(L2[0, 1], dx) be the classical Volterra operator defined by

(V f )(x) =
x∫

0

f (t)dt, f ∈ L2[0, 1].

It is well known that V is compact and quasinilpotent. By Proposition 4.1, we
know V ∈ CLOS (CE).

A result of Kalisch (see, e.g. [17, Theorem 2] or [9, Proposition 1]) shows that
if α ∈ C, then V and αV are similar if and only if α = 1. In particular, V is not
similar to −V, and thus V ̸∈ CE by Proposition 2.1.

We now return to the task of extending Corollary 3.5 to the setting of com-
pact operators.

PROPOSITION 4.3. BAL(H) ∩K(H) ⊆ CLOS (CE).

Proof. After a moment’s thought, and keeping in mind that every quasinil-
potent, compact operator lies in CLOS (CE), without loss of generality, we may
assume K ∈ BAL(H) ∩ K(H) is not quasinilpotent and 0 is a cluster point of
σ(K).

Note that we may denote the sequence of non-zero eigenvalues of K as
(αn)n, where α2k = −α2k−1, k ⩾ 1. Since K ∈ BAL(H) ∩K(H), it follows that

dim H({α2k}; K) = dim H({α2k−1}; K) for all k ⩾ 1.
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Define Mn := span {H({αk}; K)}n
k=1, set H∞ =

⊕
n
(Mn ⊖Mn−1) and H0 = H⊖

H∞. Relative to the decomposition H = H∞ ⊕H0, K admits an upper triangular
form

K =


K11 K12 K13 · · · K1,0
0 K22 K23 · · · K2,0
0 0 K33 · · · K3,0

0 0 0
. . . . . .

...
0 0 0 0 · · · K00

 .

Given n ⩾ 1, let Pn denote the orthogonal projection of H onto Mn, let P0
denote the orthogonal projection of H onto H0 and P∞ denote the orthogonal
projection of H onto H∞.

Observe that (Pn + P0)n is an increasing sequence of projections tending
strongly to the identity operator. Since K ∈ K(H), it follows that

K = lim
n
(Pn + P0)K(Pn + P0).

Let

L2n := P2nKP2n + P0KP0 =



K11 K12 K13 · · · K1,2n 0 · · · 0
0 K22 K23 · · · K2,2n 0 · · · 0

0 0
. . . · · · 0 · · · 0

0 0 0
. . .

...
... · · · 0

0 0 0 0 K2n,2n 0 · · · 0
...

...
0 · · · 0 · · · K00


.

We may think of this as L2n = P2nKP2n ⊕ P0KP0. Now, P2nKP2n ∈ B(H∞) is
a balanced, finite-rank operator. Thus there exist finite-rank idempotents E2n,∞,
F2n,∞ ∈ B(H∞) such that P2nKP2n = [E2n,∞, F2n,∞].

Since σ(K00) = {0}, by Proposition 4.1, there exist idempotents En,0, Fn,0 ∈
B(H0) such that K00 = lim

n
[En,0, Fn,0], and each [En,0, Fn,0] is nilpotent.

Then Qn := E2n,∞ ⊕ En,0 and Rn := F2n,∞ ⊕ Fn,0 are idempotents in B(H)
such that

lim
n

∥L2n − [Qn, Rn]∥ = 0.

Now [Qn, Rn] = [E2n,∞, F2n,∞]⊕ [En,0, Fn,0] ∈ CE, and therefore any opera-
tor similar to [Qn, Rn] is also in CE. Since σ(P2nKP2n|M2n) ∩ {0} = ∅, a simple
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argument using Rosenblum’s operator (see [14, Corollary 3.2]) shows that

[Qn, Rn] ∼ Xn :=



K11 K12 K13 · · · K1,2n 0 · · · K1,0
0 K22 K23 · · · K2,2n 0 · · · K2,0

0 0
. . . · · · 0 · · ·

...

0 0 0
. . . 0 · · ·

...
0 0 0 0 K2n,2n 0 · · · K2n,0
...

... 0
. . . 0

0 · · · 0 · · · [En,0, Fn,0]


.

Hence Xn ∈ CE for all n ⩾ 1.
Note that

lim
n

∥Xn − (P2n + P0)K(P2n + P0)∥ = lim
n

∥K00 − [En,0, Fn,0]∥ = 0.

Since K = lim
n
(P2n + P0)K(P2n + P0), we conclude that

K = lim
n

Xn ∈ CLOS (CE).

We shall have reason to appeal to the next result of Herrero’s more than
once below. We first recall that a Cauchy domain is an open set Ω ⊆ C such that
Ω has finitely many components, the closures of any two of which are disjoint,
and whose boundary ∂(Ω) consists of a finite number of closed, rectifiable Jordan
curves, any two of which are disjoint.

PROPOSITION 4.4 ([14, Corollary 1.6]). Let X, Y ∈ B(H). If σ ̸= ∅ is a rela-
tively closed and open subset of σ(X), and Ω (a Cauchy domain) is a neighbourhood of σ

satisfying (σ(X) \ σ) ∩ Ω = ∅, then
(i) ∥X − Y∥ < MIN{∥(λI − X)−1∥−1 : λ ∈ ∂(Ω)} implies that σ′ := σ(Y) ∩

Ω ̸= ∅; and
(ii) dim H(σ; X) = dim H(σ′; Y).

PROPOSITION 4.5. Let K ∈ K(H) ∩ CLOS (CE). Then K ∈ BAL(H).

Proof. Let 0 ̸= λ ∈ σ(K). It suffices to prove that −λ ∈ σ(K) and that

dimH({λ}; K) = dimH({−λ}; K).

Let Ω := Ω1 ∪ Ω2 ∪ Ω3 be the disjoint union of three open sets satisfying:

(I) Ω3 = −Ω1;
(II) λ ∈ Ω1 (and thus −λ ∈ Ω3); and

(III) σ(K) \ {λ,−λ} ⊆ Ω2.
That this is possible is clear, since σ(K) is at most an infinite sequence of

isolated points converging to zero. In fact, we can do this while choosing Ω1 to
be a disc of arbitrarily small radius centred at λ.

Let ε := inf{∥(αI −K)−1∥−1 : α ∈ ∂Ω} > 0. By Proposition 4.4, if T ∈ B(H)
and ∥T − K∥ < ε, then
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(I) σ(T) ∩ Ω1 ̸= ∅;
(II) dim(H({λ}; K)) = dim(H(Ω1; T)); and

(III) dim(H(Ω3; K)) = dim(H(Ω3; T)).

Since K ∈ CLOS (CE), there exists X ∈ CE such that ∥X − K∥ < ε. But
X ∈ CE implies that X ∼ −X, and thus X ∈ BAL(H). Hence

dim(H(Ω3; K)) = dim(H(Ω3; X)) = dim(H(−Ω3; X)) = dim(H(Ω1; X))

= dim(H({λ}; K)) > 0.

It follows that −λ ∈ σ(K) and that

dim(H({−λ}; K)) = dim(H({λ}; K)).

In other words, K ∈ BAL(H) ∩K(H).

COROLLARY 4.6.

K(H) ∩ BAL(H) = K(H) ∩ CLOS (CE).

Proof. This is an immediate consequence of Proposition 4.3 and Proposi-
tion 4.5.

COROLLARY 4.7. We have:

[CLOS (CE)] ∩K(H) = [CLOS (NEGINVS(H))] ∩K(H)

= [CLOS (NEGS(H))] ∩K(H) = BAL(H) ∩K(H).

EXAMPLE 4.8. Let K =
⊕
n

[
0 1

n
0 0

]
, so that K is compact and of infinite rank.

Then K = [E, F], where E :=
⊕
n

[
1 0
0 0

]
and F :=

⊕
n

[
1 1

n
0 0

]
are idempotents.

Note, however, that if E1 and F1 are compact idempotents, then they are
necessarily of finite rank, and thus [E1, F1] is also a finite-rank operator. Thus
CE ∩K(H) ̸= {[E, F] : E, F are compact idempotents}.

The following simple lemma will be of use to us in the next example.

LEMMA 4.9. Let H1 and H2 be Hilbert spaces and T1 = R1 ⊕ 0, T2 = R2 ⊕ 0 ∈
B(H1 ⊕H2), where R1, R2 ∈ B(H1 ⊕H2) are invertible. If T1 and T2 are similar, then
so are R1 and R2.

Proof. Since T1 and T2 are similar, there exists an invertible operator S =[
A B
C D

]
∈ B(H1 ⊕H2) such that ST1 = T2S. Thus

ST1=

[
A B
C D

] [
R1 0
0 0

]
=

[
AR1 0
CR1 0

]
, T2S=

[
R2 0
0 0

] [
A B
C D

]
=

[
R2 A R2B

0 0

]
.

From this we see that AR1 = R2 A, CR1 = 0, R2B = 0.
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As R1 and R2 are invertible, we conclude that B = 0 and C = 0. This in turn
implies that A is invertible in B(H1), whence R1 is similar to R2 via A.

EXAMPLE 4.10. We now produce an example of a compact operator T such
that T is unitarily equivalent to −T but it is not a commutator of idempotents in
B(H). While it is based upon an example from [8], the extension of their result to
infinite dimensions requires a surprisingly long argument.

Let A0 =

[ i
2 1
0 i

2

]
∈ M2(C). If T0 = A0 ⊕ −A0 ∈ M4(C), then by Exam-

ple 10 of [8], T0 is similar to −T0 via an involution (this is trivial), but T0 is not a
commutator of idempotents.

Let A = A0 ⊕ 0(∞), and let T = A ⊕−A. Observe that RANK T = 4. Again,

it is trivial to see that T is similar to −T via an involution, namely J =

[
0 I
I 0

]
,

but we claim that T is not a commutator of idempotents. (Note that J is in fact a
unitary involution.)

The proof below is an adaptation of the proof of Proposition 5 of [8].
Suppose to the contrary that T = [E, F] where E and F are idempotents.

After conjugating by an appropriate similarity S, we may write

S−1TS = [P, Q],

where P =

[
I 0
0 0

]
and Q =

[ 1
2 I + B X
−Y 1

2 I − C

]
are idempotents (but Q is not

necessarily a projection). Let us assume that this decomposition of P and Q is
relative to the decomposition H = H1 ⊕H2 of the Hilbert space.

A calculation (which is used in [8] and which is not hard to verify) yields
that BX = XC and YB = CY. It follows that C(ker X) ⊆ ker X and that
B(ker Y) ⊆ ker Y.

Now

RANK [P, Q] = 4 = RANK

[
0 X
Y 0

]
= RANK X + RANK Y.

Furthermore,

RANK(XY ⊕ YX) = RANK([P, Q]2) = RANK(S−1T2S) = RANK(S−1(A2 ⊕ A2)S),

and therefore RANK XY + RANK YX = 4 and σ(XY ⊕ YX) = σ(T2) = {− 1
4 , 0}.

But σ(XY) ∪ {0} = σ(YX) ∪ {0}, and thus − 1
4 ∈ σ(XY) ∩ σ(YX), implying that

XY ̸= 0 ̸= YX.
Now RANK X + RANK Y = 4 from above, and neither operator is zero. Sup-

pose RANKX = 1. Then RANK XY ⩽ 1, RANK YX ⩽ 1 and so RANK [P, Q]2 ⩽ 2 ̸=
RANKT2, a contradiction. Hence RANK X = RANK Y = 2.

Let M1 := (ker X)⊥ and M2 := H2 ⊖M1. Let N1 := ker Y and N2 :=
H1 ⊖ N1. Relative to the decomposition H = N1 ⊕ N2 ⊕M1 ⊕M2, we may



114 LAURENT W. MARCOUX, HEYDAR RADJAVI AND YUANHANG ZHANG

write

P =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 ,

and recalling that BN1 ⊆ N1 and CM2 ⊆ M2 from above,

Q =


1
2 I + B1 B2 X1 0

0 1
2 I + B4 X3 0

0 −Y2
1
2 I − C1 0

0 −Y4 −C2
1
2 I − C4

 .

Thus, with respect to the decomposition H=N1⊕M2⊕M1⊕N2, we have

P =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I

 ,

and recalling that BN1 ⊆ N1 and CM2 ⊆ M2 from above,

Q =


1
2 I + B1 0 X1 B2

0 1
2 I − C4 −C2 −Y4

0 0 1
2 I − C1 −Y2

0 0 X3
1
2 + B4

 .

This shows that

[P, Q] =


0 0 X1 0
0 0 0 Y4
0 0 0 Y2
0 0 X3 0

 .

Now dim (M1 ⊕N2) = 4 (since each of these spaces has dimension 2), and

[P, Q]2 =


0 0 0 X1Y2
0 0 Y4X3 0
0 0 Y2X3 0
0 0 0 X3Y2

 .

This is similar to T2 which has four eigenvalues all equal to − 1
4 , and so σ(Y2X3) =

{− 1
4} = σ(X3Y2). In particular, X3 and Y2 are invertible, and thus so is

[
0 Y2

X3 0

]
.

It follows (using Rosenblum’s Theorem [14, Corollary 3.2]) that [P, Q] is similar to

R :=


0 0 0 0
0 0 0 0
0 0 0 Y2
0 0 X3 0

 .
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But then by Lemma 4.9,
[

0 Y2
X3 0

]
is similar to A0 ⊕−A0, proving that A0 ⊕−A0

is (similar to) the commutator of the idempotents

P0 :=
[

0 0
0 I

]
and Q0 :=

[ 1
2 I − C1 −Y2

X3
1
2 I + B4

]
.

NOTATION 4.11. Given ∅ ̸= L ⊆ C and ε > 0, we define Lε := {z ∈ C :
DIST (z, L) < ε}.

Recall that if ∆ := {A ⊆ C : A is compact}, then the Hausdorff metric on ∆ is
the metric defined by

dH(A, B) := MAX (MAXa∈ADIST(a, B), MAXb∈BDIST(b, A)).

THEOREM 4.12. Let K ∈ CLOS (E− E) ∩K(H), and write

K =

[
K1 K2
0 K4

]
relative to the decomposition H = H({−1, 1}; K)⊕ (H({−1, 1}; K))⊥. By considering
−K instead of K if necessary, we may assume without loss of generality that

TR (K1) ⩾ 0.

Then
(i) NUL (K − I) ⩾ TR K1; and

(ii) K4 is balanced.

REMARKS 4.13. An equivalent formulation of (ii) is that if 0 ̸= α ∈ σ(K) \
{−1, 1}, then −α ∈ σ(K) and µ(α) = µ(−α). Also, if σ(K) ∩ {−1, 1} = ∅, then
K1, K2 above are absent and K = K4 in the argument below, meaning that one
is only required to prove that K4 is balanced. As such, the first half of the proof
(regarding K1) only applies if σ(K) ∩ {−1, 1} ̸= ∅.

Proof. Since K is compact, we know that 0 ̸= α ∈ σ(K) implies that α is
isolated, and thus there exists δ > 0 such that if G−1 := {−1}δ, G1 := {1}δ and
G0 := (σ(K) \ {−1, 1})δ, then (using ⊔ to denote the disjoint union of sets)

σ(K) ⊆ G−1 ⊔ G1 ⊔ G0.

Let (Tm)m be a sequence in E− E such that K = lim
m

Tm. By Proposition 4.4, there

exists m0 ⩾ 1 such that m ⩾ m0 implies that:
(a) σ(Tm) ⊆ G−1 ⊔ G1 ⊔ G0;
(b) σ(Tm) ∩ G−1 ̸= ∅, σ(Tm) ∩ G1 ̸= ∅, σ(Tm) ∩ G0 ̸= ∅; and
(c) dimH(G1; T)=dimH(G1; K)<∞, dimH(G−1; T)=dimH(G−1; K)<∞.

Clearly TR K1 = dim H(G1; K)− dim H(G−1; K).
Meanwhile, if we write

Tm =

[
T(m)

1 T(m)
2

0 T(m)
4

]
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relative to the decomposition H = H(G1 ⊔ G−1; Tm)⊕ (H(G1 ⊔ G−1; Tm))⊥, then
T(m)

1 acts on a finite-dimensional space and TR(T(m)
1 ) = ∑{µ(β)β : β ∈ σ(Tm) ∩

(G1 ⊔ G−1)}.
Since σ(−T(m)

1 ) ∩ σ(T(m)
4 ) = ∅, by Lemma 2 of Hartwig and Putcha [13]

(the reader should be aware that there is a typographical error in the statement of
their lemma — the correct hypothesis there should be that σ(−P)∩ σ(Q) = ∅, as
they require in their proof), T(m)

1 ∈ E− E. From this and their characterisation of

E− E (i.e. the eigenvalues of T(m)
1 which are different from 0,−1 and 1 come in

pairs when counted with algebraic multiplicity) and Lemma 3.10, it follows that:

TR K1 = dimH(G1; K)− dimH(G−1; K) = dimH(G1; Tm)− dimH(G−1; Tm)

= dimH(G1; T(m)
1 )− dimH(G−1; T(m)

1 )

= dimH({1}; T(m)
1 )− dimH({−1}; T(m)

1 )

= TR(T(m)
1 ) ⩽ NUL(T(m)

1 − I) = NUL(Tm − I).

But K = lim
m

Tm, and thus NUL (K − I) ⩾ NUL (Tm − I), whence NUL (K −
I) ⩾ TR K1, proving (i) above.

There remains to show that K4 is balanced. Obviously it suffices to consider
the case where K ̸= 0. Fix a strictly decreasing sequence (δn)n of strictly positive
real numbers satisfying:

(i) δ2 < 1 < δ1 < δ0 := ∥K∥+ 1;
(ii) α ∈ σ(K) and δ2 < |α| < δ1 implies that |α| = 1;

(iii) α ∈ σ(K) implies that |α| ̸∈ {δn}n; and
(iv) lim

n
δn = 0.

Since σ(K) is a sequence converging to 0, this is easy to do.
Given 0 < r < s, let Ar,s := {z ∈ C : r < |z| < s} be the open annulus

centred at 0 of inner radius r and outer radius s. Abbreviate this to Ωn := Aδn+1,δn ,
n ⩾ 0.

For any n ⩾ 0, it is clear that dim H(Ωn; K) < ∞. Also, if {−1, 1} ∩ σ(K) ̸=
∅, then {−1, 1} ∩ σ(K) ⊆ Ω1.

Let ε > 0 and choose N ⩾ 1 such that δN < ε. Let Ω :=
N⋃

n=0
Ωn, and let

Γ := {z ∈ C : |z| < δN+1}. Then Ω, Γ are open and disjoint, and σ(K) ⊆ Ω ∪ Γ.
In fact, for 0 ⩽ j ⩽ N, σ(K) ∩ Ωn is a finite set (including multiplicity). Define

η1 :=
1
2

min{|α − β| : α, β ∈ Ω ∩ σ(K), α ̸= β},

η2 := min{DIST(α, ∂Ωn) : α ∈ Ωn ∩ σ(K), 0 ⩽ n ⩽ N},

and choose 0 < η < min(η1, η2).
Then we may find open sets Ω

(n)
j , 1 ⩽ j ⩽ rn, 0 ⩽ n ⩽ N such that:
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(I) σ(K) ∩ Ω
(n)
j contains exactly one element for all 1 ⩽ j ⩽ rn, 0 ⩽ n ⩽ N

(though possibly with algebraic multiplicity greater than one);

(II) σ(K) ∩ Ω =
N⋃

n=0

rn⋃
j=1

(σ(K) ∩ Ω
(n)
j );

(III) DIAM Ω
(n)
j < η for all 1 ⩽ j ⩽ rn, 0 ⩽ n ⩽ N; and

(IV) DIAM Ω
(n)
j = DIAM Ω

(n)
k for all 1 ⩽ j, k ⩽ rn, 0 ⩽ n ⩽ N.

(In essence, we take a ball of radius η around each α ∈ σ(K) ∩ Ω, and ob-
serve that η < η1 ensures that each such ball only contains one element of σ(K),
and that no two such balls intersect. Furthermore, if α ∈ Ωn for some 0 ⩽ n ⩽ N,
then η < η2 implies that the entire ball of radius η centred at α is contained in
that Ωn.)

By the upper-semicontinuity of the spectrum and (an induction argument
using Proposition 4.4), there exists ζ > 0 such that if T ∈ B(H) and ∥T − K∥ < ζ,
then

(a) σ(T) ⊆
(⋃

0⩽n⩽N

(⋃
1⩽j⩽rn Ω

(n)
j

))
∪ Γ; and

(b) dim H(Ω
(n)
j ; T) = dim H(Ω

(n)
j ; K) < ∞, 1 ⩽ j ⩽ rn, 0 ⩽ n ⩽ N.

In particular, since K ∈ CLOS (E− E), we may assume that T ∈ E− E and
that ∥T − K∥ < ζ.

The fact that σ(T) ⊆
N⋃

n=0
Ωn ∪ Γ and that these sets are open and disjoint

ensures that relative to the decomposition H =
N⊕

n=0
H(Ωn; T)⊕H(Γ; T), we may

write T as an upper-triangular operator matrix

T = [Ti,j].

Note that for all 0 ⩽ n ⩽ N, σ(Tn,n) ⊆ Ωn, and thus if 0 ⩽ i ̸= j ⩽ N, then
σ(−Ti,i) ∩ σ(Tj,j) = ∅. Furthermore, Ωn ∩ Γ = ∅ for all 0 ⩽ n ⩽ N, and
σ(TN+1,N+1) ⊆ Γ. From this we conclude that

T ∼ DIAG(T0,0, T1,1, T2,2, . . . , TN,N , TN+1,N+1).

By the Hartwig–Putcha Theorem [13], since T ∈ E−E, it follows that each Tn,n ∈
E− E, 0 ⩽ n ⩽ N + 1. But Tn,n ∈ B(H(Ωn; T)), and dim H(Ωn; T) < ∞, 0 ⩽
n ⩽ N. By the Hartwig–Putcha characterisation of DOIs in the finite-dimensional
setting, each σ(Tn,n) is balanced, 0 ⩽ n ⩽ N, n ̸= 1, and σ(T1,1) \ {−1, 1} is
balanced.

Let α ∈ σ(K) ∩ Ω, α ̸∈ {−1, 1}, and choose 0 ⩽ n ⩽ N, 1 ⩽ j ⩽ rn such that
α ∈ Ω

(n)
j . From (b) above,

dim H(Ω
(n)
j ; T) = dim H(Ω

(n)
j ; K) = µ(α),



118 LAURENT W. MARCOUX, HEYDAR RADJAVI AND YUANHANG ZHANG

the algebraic multiplicity of α in σ(K). Since T is balanced,

dim H(Ω
(n)
j ; T) = dim H(−Ω

(n)
j ; T).

Now from condition (a) above, the Hausdorff metric

DISTH(σ(T) ∩ Ω, σ(K) ∩ Ω) < η,

and thus there exists β ∈ σ(K) such that |β − (−α)| < 2η. But η > 0 can be
chosen arbitrarily small, implying that −α ∈ σ(K) ∩ Ωn. Since α ̸= 0, −α ∈ Ω

(n)
i

for some 1 ⩽ i ̸= j ⩽ rn and hence Ω
(n)
i = −Ω

(n)
j .

But then

dim H(Ω
(n)
j ; K) = dim H(Ω

(n)
j ; T) = dim H(−Ω

(n)
j ; T) = dim H(Ω

(n)
i ; T)

= dim H(Ω
(n)
i ; K) = dim H(−Ω

(n)
j ; K),

which implies that (σ(K) \ {−1, 1}) ∩ Ω is balanced.
Recall that Ω =

⋃
0⩽n⩽N

Ωn, and that the only condition on N ⩾ 1 was that

we must have δN < ε. In particular, we can choose N arbitrarily large, and from
this we conclude that if α ∈ σ(K) \ {−1, 1}, then −α ∈ σ(K) and µ(α) = µ(−α).
This completes the proof.

THEOREM 4.14. Let K ∈ K(H) and write

K =

[
K1 K2
0 K4

]
relative to the decomposition H = H({−1, 1}; K)⊕ (H({−1, 1}; K))⊥. Without loss of
generality (by considering −K instead of K if necessary), we may suppose that TR (K1) ⩾
0. The following are equivalent:

(i) K ∈ CLOS(E− E);
(ii) NUL (K1 − I) ⩾ TR (K1) and σ(K4) is balanced.

Proof. (i) =⇒ (ii) This is Theorem 4.12.
(ii) =⇒ (i) If σ(K) ∩ {−1, 1} = ∅, then K = K4 and there remains only

to show that K4 is balanced. Otherwise, observe that since σ(K1) ⊆ {−1, 1}
and σ(K4) ⊆ σ(K) \ {−1, 1}, we have that σ(−K1) ∩ σ(K4) = ∅, whence K ∼[

K1 0
0 K4

]
. Since dim H({−1, 1}; K) < ∞, K1 acts on a finite-dimensional space,

and so we may apply Lemma 3.9 to conclude that K1 ∈ CLOS (E− E).
Since K4 is balanced, K4 ∈ CLOS (E− E) by Proposition 4.3.
It is now clear that K1 ⊕K4 ∈ CLOS (E−E). Since K is similar to K1 ⊕K4 and

since E−E is invariant under conjugation by invertible elements, K ∈ CLOS (E−
E).
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5. COMMUTATORS AND DIFFERENCES OF ORTHOGONAL PROJECTIONS

5.1. Our goal in this section is to describe the sets CLOS (CP) and CLOS (P −
P). We are aided by the fact that the sets CP and P−P have been completely
characterised by Li [20] and Davis [7], respectively. We begin with CLOS (CP).

THEOREM 5.1 (Li). Let H be a complex separable Hilbert space. An operator
T ∈ B(H) is a commutator of two orthogonal projections if and only if

(i) T∗ = −T;
(ii) ∥T∥ ⩽ 1

2 ; and
(iii) T ≃ T∗.

5.2. It is worth observing that when n := dimH < ∞, both CP and P−P are
norm-closed. Indeed, if (Pn)n, (Qn)n are two sequences of orthogonal projections
in B(Cn), then the fact that the closed unit ball of B(Cn) is compact can be used
to prove that there exists a strictly increasing sequence (nk)k of positive integers
such that P := lim

k
Pnk and Q := lim

k
Qnk both exist. Clearly both P and Q are

orthogonal projections, and thus if T = lim
n
[Pn, Qn], we conclude that T = [P, Q],

while if R = lim
n
(Pn − Qn), then R = P − Q.

5.3. We remark that unlike the situation with idempotents, CP ̸⊆ P−P. For

example, if P =

[
1 0
0 0

]
and Q =

[ 1
2

1
2

1
2

1
2

]
, then

[P, Q] =

[
0 1

2
− 1

2 0

]
̸= [P, Q]∗,

while any difference of orthogonal projections is clearly self-adjoint. Indeed, con-
dition (a) of Li’s Theorem above implies that CP ∩ (P−P) = {0}.

LEMMA 5.2. Let H be a complex separable Hilbert space and K = K∗ ∈ B(H).
Suppose furthermore that K ≃a −K. Given ε > 0, there exists an operator Lε = L∗

ε ∈
B(H) satisfying:

(i) ∥Lε∥ ⩽ ∥K∥;
(ii) ∥Lε − K∥ < 2ε; and

(iii) Lε ≃ −Lε.

Proof. Clearly it suffices to consider the case where ∥K∥ = 1.
By hypothesis, K is self-adjoint (hence normal) and K is approximately uni-

tarily equivalent to −K. It follows from the Weyl–von Neumann–Berg Theorem
(see, e.g. [6, Theorem II.4.4]) that σ(K) = −σ(K), and if α ∈ σ(K) is isolated, then

NUL (K − αI) = NUL (K + αI).

Thus, if 0 < ε < 1, then σ(K) ∩ [ε, 1] = −(σ(K) ∩ [−1,−ε]), including the
multiplicity (finite or infinite) of isolated eigenvalues. Let M+

ε := H(σ(K) ∩
[ε, 1]; K) and M−

ε := H(σ(K) ∩ [−1,−ε]; K). Set Nε := H⊖ (M+
ε ⊕M−

ε ).
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Again, by the Weyl–von Neumann–Berg Theorem,

K|M+
ε
≃a −K|M−

ε
.

Relative to H = M−
ε ⊕Nε ⊕M+

ε , we may write

K =

K−
ε

K◦
ε

K+
ε

 .

From above, K−
ε ≃a −K+

ε , and so we can find a unitary operator V such that

∥V∗(−K+
ε )V − K−

ε ∥ < ε.

Also, ∥K◦
ε ∥⩽ ε. Define (with respect to the same decomposition of H) the operator

Lε :=

V∗(−K+
ε )V

0
K+

ε

 .

Clearly Lε ≃ −Lε, and ∥Lε − K∥ ⩽ ε < 2ε. Note also that ∥Lε∥ = ∥K+
ε ∥ ⩽

∥K∥.

REMARK 5.3. We note that from the construction of Lε above, if ∥K∥ is not
an eigenvalue of K, then neither −∥K∥ nor ∥K∥ are eigenvalues of Lε.

We are now in a position to characterise CLOS (CP).

THEOREM 5.4. Let H be a complex separable Hilbert space. An operator T ∈
B(H) is a limit of commutators of projections if and only if it satisfies the following three
conditions:

(i) T∗ = −T;
(ii) ∥T∥ ⩽ 1

2 ; and
(iii) T is approximately unitarily equivalent to T∗.

Proof. Suppose that T satisfies the above three conditions. Let K := iT. Then
K∗ = (iT)∗ = −i(−T) = iT = K, ∥K∥ = ∥T∥ ⩽ 1

2 , and if T∗ = lim
n

U∗
n TUn, where

each Un is unitary, n ⩾ 1, then

K = K∗ = −iT∗ = −i lim
n

U∗
n TUn = lim

n
U∗

n(−iT)Un = lim
n

U∗
n(−K)Un.

That is, K is self-adjoint and approximately unitarily equivalent to −K.
Let ε > 0, and using Lemma 5.2, we may choose Lε = L∗

ε such that:

(a) ∥Lε∥ ⩽ ∥K∥ ⩽ 1
2 ;

(b) ∥Lε − K∥ < 2ε; and
(c) Lε ≃ −Lε.

By Theorem 5.1, Tε := −iLε ∈ CP and clearly ∥T − Tε∥ < 2ε. It follows that
T ∈ CLOS (CP).

The reverse containment is straightforward and is left to the reader.
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Our next goal is to classify the closure CLOS (P −P) of the set P −P of
differences of projections in B(H), where H is a complex separable Hilbert space.
We first recall the Theorem of Davis [7, Theorem 6.1].

THEOREM 5.5 (Davis). Let H ∈ B(H) be a self-adjoint operator of norm at most
one, and define H0 := (ker(H + I)⊕ ker H ⊕ ker(H − I))⊥. The following are equiv-
alent:

(i) H ∈ P−P;
(ii) H0 ≃ −H0, where H0 := H|H0 .

We require a couple of standard results; the first is due to Newburgh [21]
(alternatively, see [12, Problem 105]).

THEOREM 5.6 (Newburgh). Let (Mk)k be a sequence of normal operators on H
which converge in norm to M ∈ B(H). Then (σ(Mk))k converges to σ(M) in the
Hausdorff metric.

The essential spectrum of an operator T ∈ B(H) is the spectrum σe(T) :=
σ(π(T)), where π : B(H) → B(H)/K(H) is the canonical quotient map. When
T is a normal operator, the relationship between σ(T) and σe(T) is particularly
simple, and is given by the next result [5, Proposition 4.6].

PROPOSITION 5.7. If N ∈ B(H) is a normal operator, then

σ(N) \ σe(N)={λ∈σ(N) : λ is an isolated eigenvalue of finite multiplicity of N}.

We now have all the tools we need to characterise the set CLOS (P−P).

THEOREM 5.8. An operator H ∈ B(H) is a limit of differences of projections if
and only if it satisfies the following two conditions:

(i) −I ⩽ H ⩽ I; and
(ii) if N := (ker(H2 − I))⊥, and H1 := H|N , then H1 ≃a −H1.

Proof. Suppose that Kn ∈ P−P, n ⩾ 1 and that H = lim
n

Kn. Since Kn = K∗
n

for all n ⩾ 1, we have that H = H∗. Also, since −I ⩽ Kn ⩽ I for all n ⩾ 1, we
have that −I ⩽ H ⩽ I.

It is now a consequence of the Weyl–von Neumann–Berg Theorem [6, The-
orem II.4.4] and Proposition 5.7 that to prove that H1 ≃a −H1, it suffices to show
that σ(H1) = −σ(H1), and if α ∈ σ(H1) satisfying |α| < 1 is an isolated eigen-
value of finite multiplicity µ(α), then −α ∈ σ(H1) is an isolated eigenvalue of
the same multiplicity. (Note that σ(H1) = −σ(H1) implies that σ(H1) ⊆ [−1, 1]
is symmetric about the origin. Furthermore, by definition of N , 1 ∈ σ(H1) if
and only if 1 is a limit of a sequence (αn)n in σ(H1) ∩ (−1, 1), in which case
−αn ∈ σ(H1) for all n ⩾ 1, and thus −1 = lim

n
−αn ∈ σ(H1) as well.)

Recall that H = lim
n

Kn. By Newburgh’s Theorem 5.6,

lim
n

dH(σ(Kn), σ(H)) = 0.
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Hence, if α ∈ σ(H) with |α| < 1, there exists αn ∈ σ(Kn) with lim
n

αn = α. Of

course, this in turn implies that there exists N1 ⩾ 1 such that n ⩾ N1 implies that
|αn| < 1.

But Kn ∈ P − P, and thus by Davis’ Theorem 5.5, −αn ∈ σ(Kn). By
Newburgh’s Theorem 5.6 (once again), −α = lim

n
−αn ∈ σ(H). Thus σ(H1) ∩

(−1, 1) = −σ(H1) ∩ (−1, 1), and from this we see that σ(H1) = −σ(H1).
Suppose next that α ∈ σ(H1) ∩ (−1, 1) is an isolated eigenvalue of finite

multiplicity µ(α). Since σ(H1) = −σ(H1), −α ∈ σ(H1) is an isolated eigenvalue
of multiplicity µ(−α). Fix 0 < ε < min(|α|, 1 − |α|) such that

(α − ε, α + ε) ∩ σ(H1) = {α}.

By the symmetry of σ(H1) ⊆ R about the origin, we have that

(−α − ε,−α + ε) ∩ σ(H1) = {−α}.

Furthermore,
µ(α) = dim H((α − ε, α + ε) ∩ σ(H1); H1).

By Proposition 4.4, there exists N2 ∈ N such that n ⩾ N2 implies that

dim H((α − ε, α + ε) ∩ σ(Kn); Kn) = µ(α), and

dim H((−α − ε,−α + ε) ∩ σ(Kn); Kn) = µ(−α).

The fact that each Kn ∈ P−P implies (by Davis’ Theorem) that

dim H((α − ε, α + ε) ∩ σ(Kn); Kn) = dim H((−α − ε,−α + ε) ∩ σ(Kn); Kn),

whence
µ(α) = µ(−α),

completing the proof of the fact that H∈P−P implies both conditions (i) and (ii).
Conversely, suppose that H satisfies (i) and (ii) above. Of course, −I <

H1 < I is an hermitian operator. Relative to H = N⊥ ⊕N , we may write

H =

[
H◦

H1

]
.

(Note that H◦ is hermitian with σ(H◦) ⊆ {−1, 1}.) Let ε > 0. Using Lemma 5.2,
we can find an hermitian operator Lε such that:

(a) ∥Lε∥ ⩽ ∥H1∥ ⩽ 1;
(b) ∥Lε − H1∥ < 2ε; and
(c) Lε ≃ −Lε.

Let Hε :=
[

H◦

Lε

]
. As noted in Remark 5.3 (and keeping in mind that

∥Lε∥ ⩽ ∥H1∥), since 1 is not an eigenvalue of H1, neither −1 nor 1 are eigenvalues
of Lε. It is clear that ∥Hε − H∥ < 2ε and Hε ∈ P−P by Theorem 5.5.

Thus H ∈ CLOS (P−P).
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