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EMBEDDING FROM BERGMAN SPACES INTO TENT SPACES
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ABSTRACT. Let Ap
ω denote the Bergman space in the unit disc induced by a

radial weight ω with the doubling property
1∫
r

ω(s)ds ⩽ C
1∫

(1+r)/2
ω(s)ds. The

tent space Tq
s (ν, ω) consists of functions such that

∫
D

( ∫
Γ(ζ)

| f (z)|sdν(z)
)q/s

·

ω(ζ)dA(ζ) < ∞, where Γ(ζ) is a non-tangential approach region with vertex ζ
in the punctured unit discD\ {0}. We characterize the positive Borel measures
ν such that Ap

ω is embedded into the tent space Tq
s (ν, ω) for 0 < q < p < ∞,

by considering a generalized area operator.
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1. INTRODUCTION

Let D be the unit disc in the complex plane. For a non-negative function
ω ∈ L1[0, 1), its extension to D, defined by ω(z) = ω(|z|) for all z ∈ D, is called
a radial weight. As in [28], a radial weight ω belongs to the class D̂ if ω̂(r) =
1∫
r

ω(s)ds satisfies the doubling condition

sup
0⩽r<1

ω̂(r)
ω̂((1 + r)/2)

< ∞.

The class D̂ appears naturally when studying the boundedness of the Bergman
projection acting on weighted Bergman spaces [26]. Given 0 < p < ∞, the
weighted Bergman space Ap

ω is the set of all holomorphic functions f on D such
that

∥ f ∥Ap
ω
=

( ∫
D

| f (z)|pω(z)dA(z)
)1/p

< ∞,
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where dA is the normalized area measure on D. When ω(z) = (1 − |z|2)α with
α > −1, one obtains the standard Bergman spaces Ap

α , whose theory has been
extensively developed, see [9, 12, 31] for example. Recently, Bergman spaces Ap

ω

with more general weights ω have been studied in [22, 23, 24, 27, 28].
For α ∈ (0, π), the non-tangential approach region with vertexes in the unit

disc is defined to be

Γα(ζ) =
{

z ∈ D : |θ − arg(z)| < α
(

1 − |z|
r

)}
, ζ = reiθ ∈ D \ {0},

and the related tent is defined by

Tα(z) = {ζ ∈ D : z ∈ Γα(ζ)}, z ∈ D \ {0}.

Let ν be a positive Borel measure on D, finite on compact sets, and let ω ∈ D̂.
For 0 < q, s < ∞, 0 < α < π, the tent space Tq

s,α(ν, ω) consists of ν-equivalence
classes of ν-measurable functions f : D → C such that

∥ f ∥q
Tq

s,α(ν,ω)
=

∫
D

( ∫
Γα(ζ)

| f (z)|sdν(z)
)q/s

ω(ζ)dA(ζ) < ∞.

Tent spaces were introduced in the paper of Coifman, Meyer and Stein [6] in or-
der to study problems in harmonic analysis, and further studied by Cohn and
Verbitsky [5] among others. These spaces turned to be quite useful in developing
further the classical theory of Hardy spaces, closely related to tent spaces due to
the importance of the use of maximal and square area functions and other objects
from harmonic analysis [10]. The recent studies [14, 15] show that tent spaces
have natural analogues for Bergman spaces, and they may play an important
role in the theory of weighted Bergman spaces, similar to that of the original tent
spaces in the Hardy space case. The results in [24] also show that the tent space
Tq

s,α(ν, ω) is independent of the aperture α of the lens appearing in the definition,
and the quasi-norms obtained are equivalent. In view of that, we drop the param-
eter α from the notations, and simply write Tq

s (ν, ω) to indicate the case α = 1/2.
Also we use the notation Γ(ζ) := Γ1/2(ζ) and T(z) := T1/2(z).

Let 0 < p, q < ∞. A positive Borel measure µ on D is a q-Carleson measure
for Ap

ω, if there exists a constant C > 0 such that ∥ f ∥Lq
µ
⩽ C∥ f ∥Ap

ω
for all f ∈ Ap

ω,

where Lq
µ is the family of all µ-measurable functions f on D such that

∥ f ∥Lq
µ
=

( ∫
D

| f (z)|qdµ(z)
)1/q

< ∞.

In [27], Peláez, Rättyä and Sierra obtained a characterization of the embedding
from Bergman spaces Ap

ω into the tent spaces Tq
s (ν, ω), for weights ω in the class

D̂, under the assumption that 1 + s/p − s/q > 0.

THEOREM A. Let 0 < p, q, s < ∞ such that 1+ s/p− s/q > 0, ω ∈ D̂, and let
ν be a positive Borel measure on D, finite on compact subsets, such that ν({0}) = 0. Let
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νω be the measure given by dνω(z) = ω(T(z))dν(z) for all z ∈ D. Then the following
assertions hold:

(i) Id : Ap
ω → Tq

s (ν, ω) is bounded if and only if νω is a (p + s − (ps/q))-Carleson
measure for Ap

ω. Moreover,

∥Id∥s
Ap

ω→Tq
s (ν,ω)

≍ ∥Id∥p+s−(ps/q)

Ap
ω→Lp+s−(ps/q)

νω

;

(ii) Id : Ap
ω → Tq

s (ν, ω) is compact if and only if Id : Ap
ω → Lp+s−(ps/q)

νω is compact.

Here, ω(T(z)) =
∫

T(z)
ω(ζ)dA(ζ) for z ̸= 0. We also set

ω(T(0)) = lim
r→0+

ω(T(r))

to deal with the origin. Also, the notation A ≍ B means that the two quantities
are comparable. The requirement ν({0}) = 0 in Theorem A, which does not carry
any real restriction, is a technical hypotheses caused by the geometry of the tents
Γ(z). Theorem A can be interpreted as a characterization of Carleson measures,
and it follows from a characterization of the boundedness and compactness of
some type of area operators, that we are going to define next.

For 0 < s < ∞, the generalized area operator induced by positive Borel
measures µ and ν on D, is defined as

Gν
µ,s( f )(ζ) =

( ∫
Γ(ζ)

| f (z)|s dµ(z)
ν(T(z))

)1/s
, ζ ∈ D\{0}.

Area operators acting on Hardy spaces and on standard Bergman spaces have
been studied in [4, 11, 14, 16, 17, 29]. Write µω

ν for the positive measure given by

dµω
ν (z) =

ω(T(z))
ν(T(z))

dµ(z)

for almost every z ∈ D. In [27], a characterization of the boundedness and com-
pactness on Bergman spaces of the generalized area operator Gν

µ,s for 0 < p, q, s <
∞ in the case 1 + s/p − s/q > 0 was obtained. It was proved that, for positive
Borel measures µ, ν on D, satisfying

(1.1) µ({z ∈ D : ν(T(z)) = 0}) = 0 = µ({0}),

and ω ∈ D̂, one has that Gν
µ,s : Ap

ω → Lq
ω is bounded if and only if µω

ν is a
(p + s − (ps/q))-Carleson measure for Ap

ω; and moreover, one has the estimate
∥Gν

µ,s∥s
Ap

ω→Lq
ω
≍ ∥Id∥p+s−(ps/q)

Ap
ω→Lq

µω
ν

. Also, Gν
µ,s : Ap

ω → Lq
ω is compact if and only if

Id : Ap
ω → Lp+s−(ps/q)

µω
ν

is compact.
It is natural to ask for a characterization in the case 1 + s/p − s/q ⩽ 0. The

purpose of this work is to answer this question and obtain the corresponding
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descriptions for all 0 < p, q, s < ∞. In order to state our main result, for positive
Borel measures µ, ν on D, finite on compact sets, and ζ ∈ D\{0} we define

Bν
µ(ζ) =

∫
Γ(ζ)

dµ(z)
ν(T(z))

and dµν(ζ) =
dµ(ζ)

ν(T(ζ))
.

When 0 < p ⩽ q < ∞ and 0 < s < ∞, it is clear that 1 + s/p − s/q > 0. Thus,
we only need to deal with the case 0 < q < p < ∞. We state our main result as
follows.

THEOREM 1.1. Let 0 < q < p < ∞, 0 < s < ∞, ω ∈ D̂, and let µ, ν be positive
Borel measures on D, with µω

ν finite on compact sets, satisfying (1.1). Then the following
conditions are equivalent:

(i) Gν
µ,s : Ap

ω → Lq
ω is bounded;

(ii) Gν
µ,s : Ap

ω → Lq
ω is compact;

(iii) Id : Ap
ω → Tq

s (µν, ω) is bounded;
(iv) Id : Ap

ω → Tq
s (µν, ω) is compact;

(v) Bν
µ ∈ L(pq)/(s(p−q))

ω .
Moreover, we have

(1.2) ∥Gν
µ,s∥s

Ap
ω→Lq

ω
≍ ∥Id∥s

Ap
ω→Tq

s (µν ,ω)
≍ ∥Bν

µ∥L(pq)/(s(p−q))
ω

.

Note that when 0 < q < p < ∞ with 1 + s/p − s/q > 0, it follows from
[24, Theorem 8] that µω

ν is a (p + s − (ps/q))-Carleson measure for Ap
ω, if and

only if, Bν
µ ∈ L(pq)/(s(p−q))

ω .
Throughout the paper, constants are often given without computing their

exact values, and the value of a constant C may change from one occurrence to
the next. We use the notation a ≲ b to indicate that there is a constant C > 0 with
a ⩽ Cb. Also, we recall that the notation a ≍ b means that the two quantities are
comparable.

2. SOME BACKGROUND

A sequence of points {ak} in the unit disc D is said to be separated (in the
Bergman metric) if there exists δ > 0 such that β(ai, aj) ⩾ δ for all i and j with
i ̸= j, where β(z, w) denotes the Bergman metric on D. We use the notation

D(a, r) = {z ∈ Bn : β(z, a) < r}
for the Bergman metric ball of radius r > 0 centered at a point a ∈ D. For r > 0,
a sequence {ak} in D is said to be an r-lattice if D =

⋃
k

D(ak, r), the sets D(ak, r/4)

are pairwise disjoints, and there exists a positive integer N such that every z ∈ D
belongs to at most N of the sets D(ak, 4r). By [30, Theorem 2.23], there are r-
lattices on D for every r > 0. It is also clear that any r-lattice is separated.
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A particularly important case of tent spaces is given when ν = ∑
k

δak , where

Z = {ak} is a separated sequence and δak are the usual Dirac point masses at
points ak. We say that λ = {λk} ∈ Tp

q (Z, ω) if

∥λ∥p
Tp

q (Z, ω)
:=

∫
D

(
∑

ak∈Γ(ζ)

|λk|q
)p/q

ω(ζ)dA(ζ) < ∞, 0 < p, q < ∞,

and λ = {λk} ∈ Tp
∞(Z, ω) if

∥λ∥p
Tp

∞(Z, ω)
:=

∫
D

(
sup

ak∈Γ(ζ)

|λk|
)p

ω(ζ)dA(ζ) < ∞.

In case that q = p, by Fubini’s theorem, we have

(2.1) ∥λ∥p
Tp

p (Z,ω)
≍ ∑

k
|λk|p ω(T(ak)).

We will need the following duality result for the tent spaces of sequences.
For the proof, see Theorem 4 and Proposition 1 in [24]. Recall that, if 1 < p < ∞,
its conjugate exponent p′ is given by p′ = p/(p − 1).

THEOREM B. Let 1 < p < ∞, ω ∈ D̂, and Z = {ak} be a separated sequence. If
1 < q < ∞, then the dual of Tp

q (Z, ω) is isomorphic to Tp′

q′ (Z, ω) under the pairing

⟨λ, β⟩T2
2 (Z, ω) = ∑

k
λk βk ω(T(ak)),

for λ = {λk} ∈ Tp
q (Z, ω), and β = {βk} ∈ Tp′

q′ (Z, ω). If 0 < q ⩽ 1, then the dual of

Tp
q (Z, ω) is isomorphic to Tp′

∞ (Z, ω) under the same pairing.

We will use the following result concerning factorization of sequence tent
spaces. The proof is similar to the one in [18, Proposition 6]. A factorization
result for tent spaces of functions over the upper half-space was proven in [5] by
Cohn and Verbitsky.

PROPOSITION 2.1. Let 0 < p, q < ∞, ω ∈ D̂, and Z = {ak} be an r-lattice.
Suppose p < p1, p2 < ∞, q < q1, q2 < ∞ and satisfy

1
p
=

1
p1

+
1
p2

,
1
q
=

1
q1

+
1
q2

.

Then
Tp

q (Z, ω) = Tp1
q1 (Z, ω) · Tp2

q2 (Z, ω).

That is, if α ∈ Tp1
q1 (Z, ω) and β ∈ Tp2

q2 (Z, ω), then α · β ∈ Tp
q (Z, ω) with

∥α · β∥Tp
q (Z,ω) ≲ ∥α∥T

p1
q1 (Z,ω)

· ∥β∥Tp2
q2 (Z,ω)

;

and conversely, if λ ∈ Tp
q (Z, ω), then there exist sequences α ∈ Tp1

q1 (Z, ω) and β ∈
Tp2

q2 (Z, ω) such that λ = α · β, and ∥α∥T
p1
q1 (Z,ω)

· ∥β∥Tp2
q2 (Z,ω)

≲ ∥λ∥Tp
q (Z,ω).
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We also need two important inequalities. Consider a sequence of Radema-
cher functions rk(s). For almost every s ∈ [0, 1] the sequence {rk(s)} consists of
signs ±1. We state first the classical Khinchine’s inequality (see [8, Appendix A]
for example).

2.1. KHINCHINE’S INEQUALITY. Let 0 < p < ∞. Then for any sequence {ck} of
complex numbers, we have

(
∑
k
|ck|2

)p/2
≍

1∫
0

∣∣∣∑
k

rk(s) ck

∣∣∣p
ds.

The next result is known as Kahane’s inequality, and it will be usually ap-
plied in connection with Khinchine’s inequality. For a reference, see Lemma 5 in
Luecking’s paper [15] or the paper of Kalton [13].

2.2. KAHANE’S INEQUALITY. Let X be a quasi-Banach space, and 0 < p, q < ∞.
For any sequence {xk} ⊂ X, one has

( 1∫
0

∥∥∥∑
k

rk(s) xk

∥∥∥q

X
ds

)1/q
≍

( 1∫
0

∥∥∥∑
k

rk(s) xk

∥∥∥p

X
ds

)1/p
.

Moreover, the implicit constants can be chosen to depend only on p and q, and
not on the quasi-Banach space X.

3. KEY RESULTS

In this section we are going to obtain the key results for the proof of Theo-
rem 1.1. We start with some lemmas.

LEMMA 3.1. Let µ be a positive Borel measure on D, finite on compact subsets of
D. For t > 0, let {ak} be a t-lattice on D. Then

µ(D) ≲ ∑
ak∈A

µ(D(ak, t))2

µ(D(ak, 2t))
,

where A = {z ∈ D : µ(D(z, t)) > 0}.

Proof. As µ is finite on compact sets, by a standard approximation argu-
ment, it is enough to prove the inequality, assuming that µ(D) < ∞. Being {ak} a
t-lattice, for t ⩽ r ⩽ 4t, we have

µ(D) ≍ ∑
ak∈A

µ(D(ak, r)).
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By Cauchy–Schwarz inequality, we have

µ(D) ≍ ∑
ak∈A

µ(D(ak, t)) ⩽
(

∑
ak∈A

µ(D(ak, 2t))
)1/2(

∑
ak∈A

µ(D(ak, t))2

µ(D(ak, 2t))

)1/2

≲ µ(D)1/2
(

∑
ak∈A

µ(D(ak, t))2

µ(D(ak, 2t))

)1/2
,

and the inequality follows.

We need the following estimate from [24, Lemma 4].

LEMMA A. Let ω ∈ D̂ and 0 < p < ∞. Let ν be a positive Borel measure on D,
finite on compact sets. Then there exists λ0 = λ0(p, ω) ⩾ 1 such that∫

D

( ∫
D

( 1 − |z|2

|1 − ζz|

)λ
dν(z)

)p
ω(ζ)dA(ζ) ≍

∫
D

ν(Γ(ζ))p ω(ζ)dA(ζ) + ν({0})

for each λ > λ0.

If spt(µ) denotes the support of the measure µ, it is then clear that µ(D(z, t))
̸= 0 for z ∈ spt(µ). We need the following inequality, that can be interesting by
itself.

LEMMA 3.2. Let 0 < p < ∞, ω ∈ D̂ and f ∈ Ap
ω. Then, for a positive Borel

measure µ on D finite on compact sets, and t > 0, we have∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2 (1 − |z|2)2

µ(D(z, t))
dµ(z)

)p/2
ω(ζ)dA(ζ) ≲ ∥ f ∥p

Ap
ω

.

Proof. By subharmonicity, we have∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1−|z|2)2

µ(D(z, t))
dµ(z)≲

∫
Γ(ζ)∩spt(µ)

( ∫
D(z,t/2)

| f ′(ξ)|2dA(ξ)
) dµ(z)

µ(D(z, t))
.

For ξ ∈ D(z, t/2), we have D(ξ, t/2) ⊂ D(z, t), and hence

µ(D(z, t)) ⩾ µ(D(ξ, t/2)) > 0.

Also, for z ∈ Γ(ζ) and ξ ∈ D(z, t/2), we have (see [30, estimate (2.20)])

|1 − ζξ| ≍ |1 − ζz| ≲ 1 − |z| ≍ 1 − |ξ|.

Thus∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1−|z|2)2

µ(D(z, t))
dµ(z)≲

∫
Γ(ζ)∩spt(µ)

( ∫
D(z,t/2)

( 1−|z|2

|1−ζz|

)λ | f ′(ξ)|2dA(ξ)

µ(D(ξ, t/2))

)
dµ(z)

for λ > λ0, where λ0 is the number given by Lemma A. Set

A = {ξ ∈ D : µ(D(ξ, t/2)) > 0}.
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Therefore, by Fubini’s theorem, we have∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1 − |z|2)2

µ(D(z, t))
dµ(z)≲

∫
D∩A

( 1 − |z|2

|1 − ζz|

)λ | f ′(ξ)|2
µ(D(ξ, t/2))

( ∫
D(ξ,t/2)

dµ(z)
)

dA(ξ)

⩽
∫
D

( 1 − |z|2

|1 − ζz|

)λ
| f ′(ξ)|2 dA(ξ).

Hence, applying Lemma A with the measure dν = | f ′|2dA, we obtain∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2 (1 − |z|2)2

µ(D(z, t))
dµ(z)

)p/2
ω(ζ)dA(ζ)

≲
∫
D

( ∫
Γ(ζ)

| f ′(ξ)|2 dA(ξ)
)p/2

ω(ζ)dA(ζ) ≲ ∥ f ∥p
Ap

ω
,

after using the area function description of Ap
ω-spaces (see [23, Theorem 4.2] for

example). This finishes the proof.

Recall that

Bν
µ(ζ) =

∫
Γ(ζ)

dµ(z)
ν(T(z))

=
∫

Γ(ζ)

dµω
ν (z)

ω(T(z))
, ζ ∈ D\{0},

with

dµω
ν (z) =

ω(T(z))
ν(T(z))

dµ(z).

Next result together with Proposition 3.5 will be the key for our charac-
terization of the boundedness of generalized area operators acting on weighted
Bergman spaces.

PROPOSITION 3.3. Let 1 ⩽ σ < ∞, ω ∈ D̂, and let µ be a positive Borel mea-
sure on D, finite on compact sets of D, with µ({0}) = 0. The following conditions are
equivalent:

(i) Bω
µ ∈ L1

ω;
(ii) for any t > 0, there exists some C > 0 such that

(3.1)
∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|(1−|z|)dµ(z)
µ(D(z, t))1/2ω(T(z))1/2

)2σ/(2+σ)
ω(ζ)dA(ζ)⩽C∥ f ∥2σ/(2+σ)

Aσ
ω

for all f ∈ Aσ
ω. Moreover, one has

∥Bω
µ ∥

σ/(2+σ)

L1
ω

≍ Cµ,

where Cµ denotes the infimum over all constants C satisfying (3.1).
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Proof. First, we show the statement (i) implies (ii). By Cauchy–Schwarz in-
equality, the left quantity in (3.1) is no more than constant times

∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2 (1 − |z|)2 dµ(z)
µ(D(z, t))

)σ/(2+σ)
(Bω

µ (ζ))
σ/(2+σ)ω(ζ)dA(ζ)

≲ ∥ f ∥2σ/(2+σ)
Aσ

ω
· ∥Bω

µ ∥
σ/(2+σ)

L1
ω

,

after the use of Hölder’s inequality (as the conjugate exponent of (2 + σ)/2 is
(2 + σ)/σ) together with Lemma 3.2.

Conversely, let Z = {ak} be a t-lattice on D, and for s ∈ [0, 1], we take the
test function

(3.2) Fs(z) = ∑
k

rk(s) λk

(1 − |ak|
1 − akz

)γ
,

where rk(s) are Rademacher functions, γ > λ0 (with λ0 being given by Lemma A)
and λ = {λk} ∈ Tσ

2 (Z, ω). Then we have Fs ∈ Aσ
ω with ∥Fs∥Aσ

ω
≲ ∥λ∥Tσ

2 (Z, ω)

which follows from [24, Lemma 6]. For every s ∈ [0, 1], statement (ii) implies∫
D

( ∫
Γ(ζ)∩spt(µ)

∣∣∣∑
k

rk(s)λk(1−|ak|)γ(1−|z|)ak

(1 − akz)γ+1µ(D(z, t))1/2ω(T(z))1/2

∣∣∣dµ(z)
)2σ/(2+σ)

ω(ζ)dA(ζ)

⩽ C ∥Fs∥2σ/(2+σ)
Aσ

ω
.

By Kahane’s inequality, we have that

1∫
0

( ∫
Γ(ζ)∩spt(µ)

∣∣∣∑
k

rk(s) λk (1 − |ak|)γ (1 − |z|) ak

(1 − akz)γ+1µ(D(z, t))1/2ω(T(z))1/2

∣∣∣dµ(z)
)2σ/(2+σ)

ds

is comparable to

( ∫
Γ(ζ)∩spt(µ)

1∫
0

∣∣∣∑
k

rk(s) λk(1 − |ak|)γ (1 − |z|) ak

(1 − akz)γ+1µ(D(z, t))1/2ω(T(z))1/2

∣∣∣ds dµ(z)
)2σ/(2+σ)

,

and, by Khinchine’s inequality, this is comparable to( ∫
Γ(ζ)∩spt(µ)

(
∑
k

|λk|2(1 − |ak|)2γ(1 − |z|)2|ak|2

|1 − akz|2(γ+1)µ(D(z, t))ω(T(z))

)1/2
dµ(z)

)2σ/(2+σ)
.

Hence, integrating with respect to s our inequality, using Fubini’s theorem and
the previous obtained estimates, and taking into account that ∥Fs∥Aσ

ω
≲∥λ∥Tσ

2 (Z, ω),
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we get∫
D

( ∫
Γ(ζ)∩spt(µ)

(
∑
k

|λk|2(1−|ak|)2γ(1−|z|)2|ak|2

|1−akz|2(γ+1)µ(D(z, t))ω(T(z))

)1/2
dµ(z)

)2σ/(2+σ)
ω(ζ)dA(ζ)

≲ C ∥λ∥2σ/(2+σ)
Tσ

2 (Z, ω)
.

For η > λ0, using Lemma A we obtain∫
D

( ∫
D∩spt(µ)

(1−|z|2

|1−ζz|

)η(
∑
k

|λk|2(1 − |ak|)2γ(1 − |z|)2|ak|2

|1−akz|2(γ+1)µ(D(z, t))ω(T(z))

)1/2
dµ(z)

)2σ/(2+σ)
ω(ζ)dA(ζ)

≲ C ∥λ∥2σ/(2+σ)
Tσ

2 (Z, ω)
.

Set Dk = D(ak, t). Since {ak} is a t-lattice, for any z ∈ D we have

∑
k

χDk (z) ⩽ N,

as any z ∈ D belongs to at most N of the sets Dk. Then, by Cauchy–Schwarz
inequality, it follows that

∑
k

∫
Dk∩spt(µ)

( 1 − |ak|2

|1 − ζak|

)η |λk|(1 − |ak|)γ(1 − |z|)|ak|
|1 − akz|γ+1µ(D(z, t))1/2ω(T(z))1/2 dµ(z)

≍ ∑
k

∫
Dk∩spt(µ)

( 1 − |z|2

|1 − ζz|

)η |λk|(1 − |ak|)γ(1 − |z|)|ak|
|1 − akz|γ+1µ(D(z, t))1/2ω(T(z))1/2 dµ(z)

=
∫

D∩spt(µ)

( 1 − |z|2

|1 − ζz|

)η(
∑
k

|λk|(1 − |ak|)γ(1 − |z|)|ak|
|1 − akz|γ+1µ(D(z, t))1/2ω(T(z))1/2 χDk (z)

)
dµ(z)

⩽ N1/2
∫

D∩spt(µ)

( 1 − |z|2

|1 − ζz|

)η(
∑
k

|λk|2(1 − |ak|)2γ(1 − |z|)2|ak|2

|1 − akz|2(γ+1)µ(D(z, t))ω(T(z))

)1/2
dµ(z).

Putting this in our previous estimate, and taking into account that |1 − ζak| ≲
1 − |ak| for ak ∈ Γ(ζ), we arrive at the inequality∫

D

(
∑

ak∈Γ(ζ)∩A

∫
Dk

|λk|(1 − |ak|)γ(1 − |z|)|ak|
|1−akz|γ+1µ(D(z, t))1/2ω(T(z))1/2 dµ(z)

)2σ/(2+σ)
ω(ζ)dA(ζ)

≲ C ∥λ∥2σ/(2+σ)
Tσ

2 (Z, ω)
,

where A = {z ∈ D : µ(D(z, t)) > 0}. Now, notice that, for z ∈ Dk, we have
|1 − akz| ≍ 1 − |ak|, and µ(D(z, t)) ⩽ µ(D(ak, 2t)). Also, since ω ∈ D̂, we have
ω(T(z)) ≍ ω(T(ak)) for z ∈ Dk (see [27] for example). Therefore, we obtain the
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estimate∫
D

(
∑

ak∈Γ(ζ)∩A
|λk|

µ(Dk)

µ(D(ak, 2t))1/2ω(T(ak))1/2

)2σ/(2+σ)
ω(ζ)dA(ζ)

≲ C∥λ∥2σ/(2+σ)
Tσ

2 (Z, ω)
.(3.3)

It is clear that Bω
µ ∈ L1

ω if and only if µ is a finite measure with ∥Bω
µ ∥L1

ω
≍ µ(D).

By Lemma 3.1, we have

∥Bω
µ ∥L1

ω
≍ µ(D) ≲ ∑

ak∈A

µ(Dk)
2

µ(D(ak, 2t))
.

Thus, bearing in mind (2.1), in order to prove that Bω
µ ∈ L1

ω with ∥Bω
µ ∥L1

ω
≲

C(2+σ)/σ, it suffices to show that{
γk

}
k:ak∈A

:=
{ µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4

}
k:ak∈A

∈ T4
4 (Z, ω)

with ∥γ∥4
T4

4 (Z,ω)
≲ C(2+σ)/σ. By the duality of tent sequence spaces given in

Theorem B, we only need to prove that

(3.4) ∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4 ω(T(ak)) ≲ C(2+σ)/4σ ∥α∥T4/3
4/3 (Z, ω)

for each α = {αk} ∈ T4/3
4/3 (Z, ω). By Fubini’s theorem, we have

∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4 ω(T(ak))

≍
∫
D

(
∑

k: ak∈A∩Γ(ζ)

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4

)
ω(ζ)dA(ζ).(3.5)

Using the factorization of tent sequence spaces given in Proposition 2.1, we can
factorize αk = βk · λ1/2

k , with λ ∈ Tσ
2 (Z, ω), and β ∈ T4σ/(3σ−2)

2 (Z, ω). Moreover,
we have

(3.6) ∥β∥
T4σ/(3σ−2)

2 (Z, ω)
· ∥λ∥1/2

Tσ
2 (Z, ω)

≲ ∥α∥T4/3
4/3 (Z, ω)

.

Then

∑
k: ak∈A∩Γ(ζ)

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4

⩽
(

∑
k: ak∈A∩Γ(ζ)

|βk|2
)1/2(

∑
k: ak∈A∩Γ(ζ)

|λk|µ(Dk)

µ(D(ak, 2t))1/2ω(T(ak))1/2

)1/2
.
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Putting this estimate into (3.5), and using Hölder’s inequality with exponent
4σ/(2 + σ) (that has conjugate exponent 4σ/(3σ − 2)), we get

∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))1/4ω(T(ak))1/4 ω(T(ak))

≲ ∥β∥
T4σ/(3σ−2)

2 (Z,ω)

( ∫
D

(
∑

k: ak∈A∩Γ(ζ)

|λk| µ(Dk))

µ(D(ak, 2t))1/2ω(T(ak))1/2

)2σ/(2+σ)

· ω(ζ)dA(ζ)
)(2+σ)/4σ

≲ C(2+σ)/4σ ∥β∥
T4σ/(3σ−2)

2 (Z,ω)
· ∥λ∥1/2

Tσ
2 (Z,ω)

,

where the last estimate follows from (3.3). Finally, by (3.6), we obtain the desired
result (3.4), finishing the proof.

As a consequence, we obtain the following result, that we will use in order
to obtain the case pq = s(p − q) in Theorem 1.1.

COROLLARY 3.4. Let ω ∈ D̂, and let µ be a positive Borel measure on D, finite
on compact sets of D, with µ({0}) = 0. Then Bω

µ ∈ L1
ω if and only if, for p ∈ (0, ∞)

and t > 0, we have

(3.7)
∫
D

∫
Γ(ζ)∩spt(µ)

|g(z)|p/4| f ′(z)|(1 − |z|)dµ(z)
µ(D(z, t))1/2ω(T(z))1/2 ω(ζ)dA(ζ) ⩽ K ∥g∥p/4

Ap
ω

∥ f ∥A4
ω

.

Moreover, one has
∥Bω

µ ∥1/2
L1

ω
≍ Kµ,

where Kµ is the infimum over all constants K satisfying (3.7).

Proof. Consider the measure

dλ f (z) = | f ′(z)| µ(D(z, t))−1/2 ω(T(z))1/2(1 − |z|)χspt(µ)(z)dµ(z).

Then the inequality is∫
D

( ∫
Γ(ζ)

|g(z)|p/4 dλ f (z)
ω(T(z))

)
ω(ζ)dA(ζ) ⩽ K ∥ f ∥A4

ω
∥g∥p/4

Ap
ω

.

By Fubini’s theorem,∫
D

( ∫
Γ(ζ)

|g(z)|p/4 dλ f (z)
ω(T(z))

)
ω(ζ)dA(ζ) ≍

∫
D

|g(z)|p/4 dλ f (z).

Hence the inequality is equivalent to∫
D

|g(z)|p/4 dλ f (z) ≲ K C f ∥g∥p/4
Ap

ω
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with C f ≍ ∥ f ∥A4
ω

. By [27, Theorem 3] (see also [24, Theorem 8]), this is equivalent

to Bω
λ f

being in L4/3
ω with ∥Bω

λ f
∥L4/3

ω
≲ K ∥ f ∥A4

ω
. Then, applying Proposition 3.3

with σ = 4, we obtain the desired result.

The non-tangential maximal operator (in the punctured unit disc) is de-
fined by

N( f )(ζ) = sup
z∈Γ(ζ)

| f (z)|, ζ ∈ D \ {0}.

It is known [23, Lemma 4.4] that, for 0 < p < ∞, the operator N : Ap
ω → Lp

ω is
bounded for each radial weight ω and ∥N( f )∥Lp

ω
≍ ∥ f ∥Ap

ω
. We have the follow-

ing result.

PROPOSITION 3.5. Let 0 < q < p < ∞, ω ∈ D̂, and let µ be a positive Borel
measure on D, finite on compact sets of D with µ({0}) = 0. Suppose s > 0, r/s < 1
with r = pq/(p − q). For any positive integer m with

(3.8) mq > 2 and m(p − q)s > 2q,

set

(3.9) σ =
2m(sp − sq − pq)

ms(p − q)− 2q
.

We have Bω
µ ∈ Lr/s

ω if and only if, there is a constant D > 0 such that∫
D

∫
Γ(ζ)∩spt(µ)

|g(z)|σ| f ′(z)|σ(1−|z|)σdµ(z)
µ(D(z, t))σ/2ω(T(z))(2−σ)/2

ω(ζ)dA(ζ)

⩽ D∥g∥σ

A2mp
ω

· ∥ f ∥σ

A2mp
ω

.(3.10)

Moreover, one has
∥Bω

µ ∥1−σ/2
Lr/s

ω
≍ Dµ,

where Dµ is the infimum over all constants D satisfying (3.10).

Proof. Observe that, s(p − q)− pq > 0 as r/s < 1. This, together with (3.8)
tells us that σ > 0. As mp > 2, we have σ < 2.

First, suppose Bω
µ ∈ Lr/s

ω . By Hölder’s inequality with exponent 2/σ > 1,
we obtain∫
D

∫
Γ(ζ)∩spt(µ)

|g(z)|σ | f ′(z)|σ(1 − |z|)σ dµ(z)
µ(D(z, t))σ/2 ω(T(z))(2−σ)/2

ω(ζ)dA(ζ)

≲
∫
D

( ∫
Γ(ζ)∩spt(µ)

|g(z)|2| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)σ/2
Bω

µ (ζ)
(2−σ)/2ω(ζ)dA(ζ).

Since r < s, it follows that 2r/s(2 − σ) > 1. Also, notice that
2rσ

2r − s(2 − σ)
= mp.
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Hence, an application of Hölder’s inequality with exponent 2r/s(2 − σ) gives∫
D

∫
Γ(ζ)∩spt(µ)

|g(z)|σ | f ′(z)|σ(1 − |z|)σ dµ(z)
µ(D(z, t))σ/2 ω(T(z))(2−σ)/2

ω(ζ)dA(ζ)

≲
(∫
D

( ∫
Γ(ζ)∩spt(µ)

|g(z)|2| f ′(z)|2(1−|z|)2dµ(z)
µ(D(z, t))

)mp/2
ω(ζ)dA(ζ)

)σ/mp

· ∥Bω
µ ∥

(2−σ)/2
Lr/s

ω
.(3.11)

Using Cauchy–Schwarz inequality, the boundedness of the operator N and Lem-
ma 3.2, we have∫

D

( ∫
Γ(ζ)∩spt(µ)

|g(z)|2| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)mp/2
ω(ζ)dA(ζ)

⩽
∫
D

N(g)(ζ)mp
( ∫

Γ(ζ)∩spt(µ)

| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)mp/2
ω(ζ)dA(ζ)

⩽ ∥Ng∥mp

L2mp
ω

( ∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)mp
ω(ζ)dA(ζ)

)1/2

≲ ∥g∥mp

A2mp
ω

∥ f ∥mp

A2mp
ω

.

Thus, putting this inequality into (3.11), we see that (3.10) holds, and moreover

Dµ ≲ ∥Bω
µ ∥

(2−σ)/2
Lr/s

ω
.

Conversely, suppose that (3.10) holds for all functions f , g ∈ A2mp
ω . Consider

the measure λ f given by

dλ f (z) = | f ′(z)|σ µ(D(z, t))−σ/2 ω(T(z))σ/2(1 − |z|)σ χspt(µ)(z)dµ(z).

Then, the inequality (3.10) is∫
D

( ∫
Γ(ζ)

|g(z)|σ
dλ f (z)

ω(T(z))

)
ω(ζ)dA(ζ) ⩽ D ∥ f ∥σ

A2mp
ω

∥g∥σ

A2mp
ω

.

By Fubini’s theorem, this inequality is equivalent to∫
D

|g(z)|σ dλ f (z) ⩽ C f ∥g∥σ

A2mp
ω

with C f ≍ D ∥ f ∥σ

A2mp
ω

. Since 2mp > σ, it follows from [27, Theorem 3] that Bω
λ f

is

in L2mp/(2mp−σ)
ω with

∥Bω
λ f
∥

L2mp/(2mp−σ)
ω

≲ C f ≍ D ∥ f ∥σ

A2mp
ω

.
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That is∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|σ(1 − |z|)σdµ(z)
µ(D(z, t))σ/2ω(T(z))(2−σ)/2

)2mp/(2mp−σ)
ω(ζ)dA(ζ)

≲ D2mp/(2mp−σ)∥ f ∥2mpσ/(2mp−σ)

A2mp
ω

.

From here, we follow the same argument as in the proof of Proposition 3.3. Let
Z = {ak} be a t-lattice on D, and set Dk = D(ak, t). For s ∈ [0, 1], we take the
test function Fs as in (3.2), where λ = {λk} ∈ T2mp

2 (Z, ω). By [24, Lemma 6], we
know that Fs ∈ A2mp

ω with ∥Fs∥A2mp
ω

≲ ∥λ∥
T2mp

2 (Z, ω)
. Using the argument with

Kahane and Khintchine’s inequalities, arguing in a similar way as in the proof of
Proposition 3.3, we obtain∫

D

(
∑

ak∈Γ(ζ)∩A

|λk|σµ(Dk)

µ(D(ak, 2t))σ/2ω(T(ak))(2−σ)/2

)2mp/(2mp−σ)
ω(ζ)dA(ζ)

≲ D2mp/(2mp−σ)∥λ∥2mpσ/(2mp−σ)

T2mp
2 (Z, ω)

,(3.12)

where A = {z ∈ D : µ(D(z, t)) > 0}. Now, we have

∥Bω
µ ∥r/s

Lr/s
ω

≍
∫
D

(
∑

k:ak∈Γ(ζ)∩A

µ(Dk)

ω(T(ak))

)r/s
ω(ζ)dA(ζ).

As µ is finite on compact sets of D and 2/(2 − σ) > 1, arguing as in the proof of
Lemma 3.1, we get

∥Bω
µ ∥r/s

Lr/s
ω

≲
∫
D

(
∑

k:ak∈Γ(ζ)∩A

µ(Dk)
2/(2−σ)

µ(D(ak, 2t))σ/(2−σ) ω(T(ak))

)r/s
ω(ζ)dA(ζ).

Thus, in order to prove that Bω
µ ∈ Lr/s

ω with ∥Bω
µ ∥Lr/s

ω
≲ D2/(2−σ), it suffices to

show that

{γk} :=
{ µ(Dk)

1/2

µ(D(ak, 2t))σ/4 ω(T(ak))(2−σ)/4

}
k:ak∈A

∈ T4r/s(2−σ)
4/(2−σ)

(Z, ω)

with
∥γ∥

T4r/s(2−σ)
4/(2−σ)

(Z,ω)
≲ D1/2.

By the duality of tent sequence spaces, we need to prove that

∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))σ/4ω(T(ak))(2−σ)/4
ω(T(ak))

≲ D1/2∥α∥
T4r/(4r−2s+σs)

4/(2+σ)
(Z, ω)

(3.13)
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for each α = {αk} ∈ T4r/(4r−2s+σs)
4/(2+σ)

(Z, ω). By Fubini’s theorem, we have

∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))σ/4ω(T(ak))(2−σ)/4
ω(T(ak))

≍
∫
D

(
∑

k: ak∈A∩Γ(ζ)

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))σ/4ω(T(ak))(2−σ)/4

)
ω(ζ)dA(ζ).(3.14)

By Proposition 2.1, we have

T4r/(4r−2s+σs)
4/(2+σ)

(Z, ω) = T4mp/(2mp+σ)
2 (Z, ω) · T4mp/σ

4/σ (Z, ω).

Notice that (2mp + σ)/4mp+σ/4mp = (4r − 2s + σs)/4r because of (3.9). Hence,
we can factorize

αk = βk · λσ/2
k , λ ∈ T2mp

2 (Z, ω), β ∈ T4mp/(2mp+σ)
2 (Z, ω),

with

(3.15) ∥β∥
T4mp/(2mp+σ)

2 (Z, ω)
· ∥λ∥σ/2

T2mp
2 (Z, ω)

≲ ∥α∥
T4r/(4r−2s+σs)

4/(2+σ)
(Z, ω)

.

This gives

∑
k: ak∈A∩Γ(ζ)

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))σ/4ω(T(ak))(2−σ)/4

⩽
(

∑
k: ak∈A∩Γ(ζ)

|βk|2
)1/2(

∑
k: ak∈A∩Γ(ζ)

|λk|σµ(Dk)

µ(D(ak, 2t))σ/2ω(T(ak))(2−σ)/2

)1/2
.

Putting this into (3.14), using Hölder’s inequality with exponent 4mp/(2mp + σ)
(that has conjugate exponent 4mp/(2mp − σ)) together with (3.12) and (3.15), we
obtain

∑
k: ak∈A

|αk|
µ(Dk)

1/2

µ(D(ak, 2t))σ/4ω(T(ak))(2−σ)/4
ω(T(ak))

≲ ∥β∥
T4mp/(2mp+σ)

2 (Z, ω)

( ∫
D

(
∑

k: ak∈A∩Γ(ζ)

|λk|σ µ(Dk)

µ(D(ak, 2t))σ/2

· ω(T(ak))
(σ−2)/2

)2mp/(2mp−σ)
ω(ζ)dA(ζ)

)(2mp−σ)/4mp

≲ ∥β∥
T4mp/(2mp+σ)

2 (Z, ω)
D1/2 ∥λ∥σ/2

T2mp
2 (Z, ω)

≲ D1/2 ∥α∥
T4r/(4r−2s+σs)

4/(2+σ)
(Z, ω)

.

This proves (3.13) , finishing the proof of the proposition.
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4. AREA OPERATORS ON BERGMAN SPACES

Recall that the generalized area operator induced by positive measures µ
and ν on D is defined by

Gν
µ,s( f )(ζ) =

( ∫
Γ(ζ)

| f (z)|s dµ(z)
ν(T(z))

)1/s
, ζ ∈ D\{0}.

First, we have the following lemma.

LEMMA 4.1. Let 0 < p, q, s < ∞, ω ∈ D̂, and let µ be a positive Borel measure
on D. If Gω

µ,s : Ap
ω → Lq

ω is bounded, then Gω
µ,ms : Amp

ω → Lmq
ω is bounded for each

positive integer m. Moreover, one has

(4.1) ∥Gω
µ,ms∥Amp

ω →Lmq
ω

⩽ ∥Gω
µ,s∥1/m

Ap
ω→Lq

ω
.

Proof. If f ∈ Amp
ω , then f m ∈ Ap

ω with ∥ f m∥Ap
ω
= ∥ f ∥m

Amp
ω

and

Gω
µ,ms( f )(ζ) = [Gω

µ,s( f m)(ζ)]1/m.

Therefore,

∥Gω
µ,ms( f )∥mq

Lmq
ω

= ∥Gω
µ,s( f m)∥q

Lq
ω
⩽ ∥Gω

µ,s∥
q
Ap

ω→Lq
ω
∥ f m∥q

Ap
ω
= ∥Gω

µ,s∥
q
Ap

ω→Lq
ω
∥ f ∥mq

Amp
ω

,

which proves the estimate (4.1).

PROPOSITION 4.2. Let ω ∈ D̂, 0 < q < p < ∞ and 0 < s < ∞. Let µ be a
positive Borel measure on D. If Bω

µ ∈ L(pq)/(s(p−q))
ω , then the operator Gω

µ,s : Ap
ω → Lq

ω

is compact. Moreover,

∥Gω
µ,s∥Ap

ω→Lq
ω
≲ ∥Bω

µ ∥1/s
L(pq)/(s(p−q))

ω

.

Proof. Assuming that Bω
µ ∈ Lr/s

ω , we first proceed to show that Gω
µ,s : Ap

ω →
Lq

ω is bounded. For every f ∈ Ap
ω, we have

∥Gω
µ,s( f )∥q

Lq
ω
=

∫
D

( ∫
Γ(ζ)

| f (z)|s dµ(z)
ω(T(z))

)q/s
ω(ζ)dA(ζ)

⩽
∫
D

|N( f )(ζ)|q Bω
µ (ζ)

q/s ω(ζ)dA(ζ).

By Hölder’s inequality with exponent p/q and the boundedness of the operator
N, we obtain

∥Gω
µ,s( f )∥q

Lq
ω
⩽ ∥N f ∥q

Lp
ω
∥Bω

µ ∥
q/s

L(pq)/(s(p−q))
ω

≲ ∥ f ∥q
Ap

ω
∥Bω

µ ∥
q/s

L(pq)/(s(p−q))
ω

,
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which shows that Gν
µ,s : Ap

ω →Lq
ω is bounded with ∥Gω

µ,s∥Ap
ω→Lq

ω
≲∥Bω

µ ∥1/s
L(pq)/(s(p−q))

ω

.

Arguing in the same way as in [28, Theorem 8], it follows that Gω
µ,s is compact

from Ap
ω to Lq

ω.

PROPOSITION 4.3. Let 0 < q < p < ∞, s > 0, r/s < 1 with r = pq/(p − q),
and let ω ∈ D̂. Let µ be a positive Borel measure on D, finite on compact sets of D with
µ({0}) = 0. If Gω

µ,s : Ap
ω → Lq

ω is bounded, then Bω
µ ∈ Lr/s

ω . Moreover,

(4.2) ∥Bω
µ ∥1/s

Lr/s
ω

≲ ∥Gω
µ,s∥Ap

ω→Lq
ω

.

Proof. Take a positive integer m big enough so that (3.8) holds. By Lem-
ma 4.1, it follows that the operator Gω

µ,2ms : A2mp
ω → L2mq

ω is bounded with

(4.3) ∥Gω
µ,2ms∥A2mp

ω →L2mq
ω

⩽ ∥Gω
µ,s∥

1/(2m)

Ap
ω→Lq

ω
.

Set σ as in (3.9). We have

mp(2 − σ)

2(mp − σ)
=

r
s
=

pq
s(p − q)

.

Since r/s < 1, mp > 2 and (3.8), we have 0 < σ < 2. Observe that

(4.4) q =
(2 − σ)mps

2mp + ms(2 − σ)− 2σ
.

For f , g ∈ A2mp
ω , let

Dµ( f , g) :=
∫
D

∫
Γ(ζ)∩spt(µ)

|g(z)|σ | f ′(z)|σ(1 − |z|)σdµ(z)
µ(D(z, t))σ/2 ω(T(z))(2−σ)/2

ω(ζ)dA(ζ).

By Hölder’s inequality with exponent 2/σ > 1, we have

Dµ( f , g)

⩽
∫
D

( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)σ/2
(Gω

µ,2σ/(2−σ)(g)(ζ))σω(ζ)dA(ζ).

Applying Hölder’s inequality again, now with exponent 2mp/σ, and then using
Lemma 3.2 we get

(4.5) Dµ( f , g) ≲ ∥ f ∥σ

A2mp
ω

∥Gω
µ,2σ/(2−σ)(g)∥σ

L2mpσ/(2mp−σ)
ω

.

If σ = (2 − σ)ms, then (4.4) yields that 2mpσ/(2mp − σ) = 2mq, and we obtain

Dµ( f , g) ≲ ∥ f ∥σ

A2mp
ω

· ∥Gω
µ,2ms(g)∥σ

L2mq
ω

≲ ∥ f ∥σ

A2mp
ω

· ∥Gω
µ,2ms∥σ

A2mp
ω →L2mq

ω
∥g∥σ

A2mp
ω

≲ ∥Gω
µ,s∥

σ/(2m)

Ap
ω→Lq

ω
∥ f ∥σ

A2mp
ω

∥g∥σ

A2mp
ω

.
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The last inequality is due to (4.3). By Proposition 3.5, we conclude that Bω
µ ∈ Lr/s

ω ,
with

∥Bω
µ ∥1/s

Lr/s
ω

= ∥Bω
µ ∥

m(2−σ)/σ

Lr/s
ω

≲ ∥Gω
µ,s∥Ap

ω→Lq
ω

,

finishing the proof of this case.
If σ > (2 − σ)ms, then

Gν
µ,2σ/(2−σ)(g)(ζ) ⩽ N(g)(ζ)(σ−(2−σ)ms)/σ · Gν

µ,2ms(g)(ζ)ms(2−σ)/σ, ζ ∈ D \ {0}.

Since mp > 2 and 0 < σ < 2, it is easy to check that

2mp − σ

σ − (2 − σ)ms
> 1,

that has conjugate exponent( 2mp − σ

σ − (2 − σ)ms

)′
=

2mp − σ

2mp + (2 − σ)ms − 2σ
=

(2mp − σ)q
(2 − σ)mps

.

Thus, we can use Hölder’s inequality with those exponents in order to obtain

∥Gω
µ,2σ/(2−σ)(g)∥σ

L2mpσ/(2mp−σ)
ω

⩽ ∥Ng∥σ−ms(2−σ)

L2mp
ω

· ∥Gω
µ,2ms(g)∥m(2−σ)s

L2mq
ω

.

Putting this in our previous estimate (4.5), using the boundedness of the operator
N, we have

Dµ( f , g) ≲ ∥ f ∥σ

A2mp
ω

· ∥N(g)∥σ−ms(2−σ)

L2mp
ω

· ∥Gω
µ,2ms(g)∥(2−σ)ms

L2mq
ω

≲ ∥ f ∥σ

A2mp
ω

· ∥g∥σ−ms(2−σ)

A2mp
ω

· ∥Gω
µ,2ms∥

(2−σ)ms

A2mp
ω →L2mq

ω

· ∥g∥(2−σ)ms

A2mp
ω

.

From (4.3) and Proposition 3.5, it follows that Bω
µ is in Lr/s

ω , and the estimate (4.2)
follows again.

Finally, it remains to deal with the case σ < (2 − σ)ms. In this case, we will
start by proving the inequality

∥Bω
µ ∥Lr/s

ω
≲ ∥Gµ,s∥s

Ap
ω→Lq

ω

assuming that Bω
µ is already in Lr/s

ω . An application of Hölder’s inequality with
exponent ms(2 − σ)/σ shows

Gω
µ,(2σ/(2−σ))(g)(ζ) ⩽ Gω

µ,2ms(g)(ζ) Bω
µ (ζ)

(ms(2−σ)−σ)/(2σms).

Also, as σ < 2 and mq > 2, we can see that

q(2mp − σ)

pσ
> 1,

and its conjugate exponent is( q(2mp − σ)

pσ

)′
=

q(2mp − σ)

q(2mp − σ)− pσ
.
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It is possible to check that

pq[ms(2 − σ)− σ]

q(2mp − σ)− pσ
= r.

Hence, using Hölder’s inequality with the previous exponents, we have

∥Gω
µ,2σ/(2−σ)(g)∥2mpσ/(2mp−σ)

L2mpσ/(2mp−σ)
ω

⩽
∫
D

Gω
µ,2ms(g)(ζ)2mpσ/(2mp−σ) Bω

µ (ζ)
p[ms(2−σ)−σ]/[s(2mp−σ)] ω(ζ)dA(ζ)

⩽ ∥Gω
µ,2ms(g)∥2mpσ/(2mp−σ)

L2mq
ω

· ∥Bω
µ ∥

p[ms(2−σ)−σ]/[s(2mp−σ)]

Lr/s
ω

.

Putting this estimate into (4.5), we get

Dµ( f , g) ≲ ∥ f ∥σ

A2mp
ω

· ∥Gω
µ,2ms(g)∥σ

L2mq
ω

· ∥Bω
µ ∥

(ms(2−σ)−σ)/(2ms)
Lr/s

ω

≲ ∥ f ∥σ

A2mp
ω

· ∥Gω
µ,2ms∥σ

A2mp
ω →L2mq

ω
· ∥g∥σ

A2mp
ω

· ∥Bω
µ ∥

(ms(2−σ)−σ)/(2ms)
Lr/s

ω
.

Hence, applying Proposition 3.5 and (4.3), we obtain

∥Bω
µ ∥1−σ/2

Lr/s
ω

≍ sup
∥ f ∥

A2mp
ω

=∥g∥
A2mp

ω
=1

Dµ( f , g) ≲ ∥Gω
µ,s∥

σ/(2m)

Ap
ω→Lq

ω
· ∥Bω

µ ∥
(ms(2−σ)−σ)/(2ms)
Lr/s

ω
.

As we are assuming that Bω
µ is already in Lr/s

ω , this gives

(4.6) ∥Bω
µ ∥Lr/s

ω
≲ ∥Gω

µ,s∥s
Ap

ω→Lq
ω

.

For a general µ, since it is finite on compact sets of D, if we consider the measure
µn := µ|{|z|⩽rn}

, with rn = 1 − (1/n), then Bω
µn is in Lr/s

ω . Hence, (4.6) yields

∥Bω
µn∥Lr/s

ω
≲ ∥Gω

µn ,s∥s
Ap

ω→Lq
ω
⩽ ∥Gω

µ,s∥s
Ap

ω→Lq
ω

.

Finally, this together with Fatou’s lemma gives

∥Bω
µ ∥Lr/s

ω
⩽ lim inf

n
∥Bω

µn∥Lr/s
ω

≲ ∥Gω
µ,s∥s

Ap
ω→Lq

ω
.

This completes the proof of the proposition.

PROPOSITION 4.4. Let ω ∈ D̂, and 0 < q < p < ∞, s > 0, such that r/s = 1
with r = pq/(p − q). Let µ be a positive Borel measure on D, finite on compact sets of
D with µ({0}) = 0. If Gω

µ,s : Ap
ω → Lq

ω is bounded, then Bω
µ ∈ L1

ω. Moreover, we have
the estimate

∥Bω
µ ∥L1

ω
≲ ∥Gω

µ,s∥s
Ap

ω→Lq
ω

.

Proof. For any g ∈ Ap
ω and f ∈ A4

ω, set

Kµ( f , g) =
∫

Γ(ζ)∩spt(µ)

|g(z)|p/4| f ′(z)|(1 − |z|)dµ(z)
µ(D(z, t))1/2ω(T(z))1/2 ω(ζ)dA(ζ).
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Applying first the Cauchy–Schwarz inequality, then Hölder’s inequality and Lem-
ma 3.2, we have

Kµ( f , g) ≲
∫
D

( ∫
Γ(ζ)

|g(z)|p/2 dµ(z)
ω(T(z))

)1/2( ∫
Γ(ζ)∩spt(µ)

| f ′(z)|2(1 − |z|)2dµ(z)
µ(D(z, t))

)1/2

· ω(ζ)dA(ζ)

≲ ∥ f ∥A4
ω

{ ∫
D

( ∫
Γ(ζ)

|g(z)|p/2 dµ(z)
ω(T(z))

)2/3
ω(ζ)dA(ζ)

}3/4
.

Now we need to estimate

K µ, ω(g) :=
∫
D

( ∫
Γ(ζ)

|g(z)|p/2 dµ(z)
ω(T(z))

)2/3
ω(ζ)dA(ζ).

If p = 2s, as r = s, we see that q = 2s/3, so that, in this case, we have

Kµ, ω(g) = ∥Gω
µ,s(g)∥q

Lq
ω

.

Thus,

Kµ( f , g) ≲ ∥ f ∥A4
ω
∥Gω

µ,s(g)∥3q/4
Lq

ω
≲ ∥ f ∥A4

ω
∥Gω

µ,s∥
p/4
Ap

ω→Lq
ω
∥g∥p/4

Ap
ω

.

From Corollary 3.4, the desired result follows.
If p > 2s, as pq/(p − q) = s, we see that ps/(p + s) = q. Then, by Hölder’s

inequality with exponent 3p/(p − 2s), we have

Kµ, ω(g) ⩽
∫
D

|N(g)(ζ)|(p−2s)/3 Gω
µ,s(g)(ζ)2s/3 ω(ζ)dA(ζ)

⩽ ∥N(g)∥(p−2s)/3
Lp

ω
· ∥Gω

µ,s(g)∥2s/3
Lps/(p+s)

ω

≲ ∥Gω
µ,s∥2s/3

Ap
ω→Lq

ω
∥g∥p/3

Ap
ω

.

Hence, we have

Kµ( f , g) ≲ ∥ f ∥A4
ω
∥Gν

µ,s∥s/2
Ap

ω→Lq
ω
∥g∥p/4

Ap
ω

,

which gives the desired result from Corollary 3.4.
Finally, consider the case p < 2s. Arguing as in the last case of Proposi-

tion 4.3, it is enough to prove the estimate ∥Bω
µ ∥L1

ω
≲ ∥Gω

µ,s∥s
Ap

ω→Lq
ω

, assuming

that Bω
µ is already in L1

ω. By Hölder’s inequality with exponent 2s/p > 1, we
have

Kµ, ω(g) ⩽
∫
D

Gω
µ,s(g)(ζ)p/3 Bω

µ (ζ)
(2s−p)/(3s)ω(ζ)dA(ζ)

⩽ ∥Bω
µ ∥

(2s−p)/(3s)
L1

ω
· ∥Gω

µ,s(g)∥p/3

Lps/(p+s)
ω

.
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As ps/(p + s) = q, this together with the boundedness of Gω
µ,s, gives

Kµ( f , g) ≲ ∥Bω
µ ∥

(2s−p)/4s
L1

ω
· ∥Gω

µ,s∥
p/4
Ap

ω→Lq
ω
∥ f ∥A4

ω
∥g∥p/4

Ap
ω

.

Now, applying Corollary 3.4 and the previous estimate, we obtain

∥Bω
µ ∥1/2

L1
ω

≍ sup
∥ f ∥A4

ω
=∥g∥

Ap
ω
=1

Kµ( f , g) ≲ ∥Gω
µ,s∥

p/4
Ap

ω→Lq
ω
· ∥Bω

µ ∥
(2s−p)/4s
L1

ω

and, as we are assuming that Bω
µ is already in L1

ω, this shows that

∥Bω
µ ∥L1

ω
≲ ∥Gω

µ,s∥s
Ap

ω→Lq
ω
< ∞,

finishing the proof of the proposition.

Proof of Theorem 1.1. By the definition of the area operator and tent spaces,
one has the equivalences (i) ⇔ (iii) and (ii) ⇔ (iv). It is also clear that (ii) implies
(i). As Gν

µ,s = Gω
µω

ν ,s and Bν
µ = Bω

µω
ν

, then it follows from Proposition 4.2 that
(v) implies (ii). Also, that (i) implies (v) follows from Propositions 4.3 and 4.4
when pq/(p − q) ⩽ s, and by [27, Theorem 6] when pq/(p − q) > s. Finally, the
estimate (1.2) is a consequence of the corresponding estimates in the mentioned
propositions. This finishes the proof.

5. APPLICATIONS TO INTEGRATION OPERATORS

For an analytic function g in D, define the integration operator

Jg f (z) =
z∫

0

f (ζ)g′(ζ)dζ, z ∈ D,

After the pioneering works of Aleman, Siskakis and Cima [1, 2, 3] describing the
boundedness and compactness of the operator Jg in Hardy and Bergman spaces,
the mentioned operator became extremely popular (see [7, 19, 20] and the refer-
ences therein, for example). As (Jg f )′ = f g′, from the area function description of
weighted Bergman spaces Ap

ω with ω in the class D̂, it follows that Jg : Ap
ω → Aq

ω

is bounded, if and only if∫
D

( ∫
Γ(ζ)

| f (z)|2 |g′(z)|2 dA(z)
)q/2

ω(ζ)dA(ζ) ≲ ∥ f ∥q
Ap

ω
.

That is, Jg : Ap
ω → Aq

ω is bounded, if and only if the operator Gµg ,2 : Ap
ω → Lq

ω

is bounded, where the measure µg is defined as dµg(z) = |g′(z)|2 ω(T(z))dA(z).
Hence, applying our main result together with the area function description of
Ap

ω, the following description follows directly.
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THEOREM 5.1. Let g be analytic on D, ω ∈ D̂, and 0 < q < p < ∞. Then
Jg : Ap

ω → Aq
ω is bounded, if and only if g ∈ Ar

ω with r = pq/(p − q). Moreover,

∥Jg∥Ap
ω→Aq

ω
≍ ∥g∥Ar

ω
.

This result was previously known for a more restricted class of weights [23,
Theorem 4.9], but for the class D̂ was only known [27] when r > 2.
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