J. OPERATOR THEORY ight by INCREST, 1979
1(1979), 55— 108 © Copyright by

HOMOGENEOUS C*EXTENSIONS OF C(X)®K(H).
PART I.

M. PIMSNER, S. POPA and D.VOICULESCU

The remarkable work of L. G. Brown, R. G. Douglas and P. A. Fillmore
([10], [12}) on extensions of the ideal of compact operators by commutative C*-
algebras has stimulated further research concerning more general extensions ([1],
[3], [4], [9], [13], [16], [20], [26}, [34—39], [41-—47]). This is motivated in part by
the desire to extend the Brown-Douglas-Fillmore theory so as to provide a tool
for analysing the structure of C*-algebras.

In particular, such a development might lead to a better understanding of
the structure of type I C*-algebras.

Also we should mention the general program for the study of extensions
sketched by L. G. Brown in ref. [9].

A class of extensions to be studied, as suggested in ref. [26], are those of
C(X) ® K(H). Among these, the homogeneous extensions, considered here, seem
to be more tractable. Let us explain what the homogeneity requirement means.
Roughly speaking, an extension of C(X) ® K(H) by a C*-algebra A4 (separable and
with unit) gives rise, for each xe X, to an extension of K(H) by some quotient
AjJ, of A. The map which associates to x € X the ideal J, will be called the ideal
symbol of the extension. The extension is called homogeneous if J, = 0 for all
x e X. Under a suitable equivalence relation and with some additional conditions
on X and A4 (X finite-dimensional and A nuclear), the homogeneous extensions
yield a group Ext(X, A), which will be the main object of our study. For X reduced
to a point, this is just the Brown-Douglas-Fillmore group, but the consideration
of the more general Ext (X, 4) will be seen (in Part IT) to be also of some interest
for the study of the usual extensions by K(H).

Passing now to the results of Part I of this paper, we should mention a Weyl-
von Neumann type theorem for rather general (not only homogeneous) extensions
of C(X) ® K(H), a short exact sequence for Ext (X, 4) in the A-*“variable’” for general
nuclear C*-algebras (this is new also for the usual Ext-groups) and the use of this
exact sequence in extending the homotopy-invariance result of Salinas ([42]) from
nuclear quasi-diagonal C*-algebras to the class of nuclear C*-algebras admitting
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composition series with quasi-diagonal quotients (this includes the type I C*-
algebras).

In more detail, the content of the six sections of Part I is as follows.

§ 1 contains general definitions and some preliminaries.

In § 2, assuming that the ideal symbol of the extension satisfies some lower
semicontinuity requirement and X is finite-dimensional, we prove the existence
of trivial extensions and a generalization of the Weyl-von Neumann type theorem
of {45].

Beginning with § 3 we consider only homogeneous extensions. We use the
Choi-Effros theorem [16] to show that Ext (X, 4) is a group when X is finite-dimen-
sional and A4 nuclear. Also in § 3, we prove, under the same requirements, that in
each equivalence class of Ext (X, 4) there is an extension which can be realized
using the norm-continuous L(H)-valued functions on X.

In § 4 the short exact sequence in the A4-‘“variable” (4-nuclear) for Ext (X, 4)
is proved. This generalizes the exact sequence in [10] as well as the subsequent
generalization in [9].

In § 5 we deal with homotopy-invariance for Ext (X, A) both in the X-““variable”
and in the A-‘“variable”. Both homotopy-invariance properties are proved for
nuclear quasi-diagonal C*-algebras via an adaption of the argument of Salinas [42]
and then using § 4 extended to more general C*-algebras. Let us also mention a
brief discussion of quasi-diagonality in C*-algebras, an adaption of the notion
due to P. R. Halmos [27].

In § 6 we prove a short exact sequence for Ext (X, 4) in the X-*“variable”,

Finally we should mention that Part II of this paper is concerned with topo-
logical properties of homogeneous extensions of C(X) ® K(H).

The authors gratefully acknowledge helpful advice from S. Stritild and
A. Verona.

§ L

Let H be a complex, separable Hilbert space of infinite dimension. Let L(H)
denote the bounded operators on H, K(H) the ideal of compact operators and

n: L(H) — LIK(H) = L(H)/K(H)

the canonical homomorphism of L(H) onto the Calkin algebra.

For X a compact metrizable space, C,(X, K(H)) denotes the C*-algebra of
K(H)-valued continuous functions on X, where K(H) is endowed with the norm
topology. Similarly, C, (X, L(H)) is the C*-algebra of L(H)-valued continuous
functions on X, where the continuity is with respect to the =-strong operator-topology
on L(H) (of course, the C*-norm is the sup-norm). Clearly, C,(X, K(H)) is a closed
two-sided ideal of C. (X, L(H)). By p we shall denote the canonical homomorphism

p: Col(X, L(H)) - Cu (X, L(H))/C(X, K(H)).
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For A a separable C*-algebra with unit, an extension of C, (X, K(H)) by A,
is a short exact sequence

(%) 0> C(X,KH)L B3 450

where B is a C*-algebra with unit, p and o are *-homomorphisms, ¢ being unit-

preserving.
For D a C*-algebra and M < D let us denote

Ann (M; D)= {ye D; My = 0}.

In order not to complicate our study of extensions it is natural to eliminate
a certain trivial part of B, by considering only the extensions satisfying the requi-
rements of the following.

1.1. DEFINITION. An X-extension by A is an exact sequence () satisfying
the additional requirement:

Ann (p(C(X, K(H))); B) = 0.

The following folklore-type proposition, in fact about multipliers of C,(X, K(H)),
gives a more concrete realization of X-extensions by A.

1.2. PROPOSITION. Let (x) be an X-extension by A. Then there is a unique
*-homomorphism

¢: B - Cy (X, L(H))
such that @ o p = i, where i denotes the inclusion
C.(X, K(H)) — C, (X, L(H)).

Moreover @ is injective and unit-preserving.

Proof. The closed two-sided ideal p(C,(X, K(H))) of B, being isomorphic
with C (X, K(H)), has a natural faithful non-degenerate s-representation on the
Hilbert space:

[2(X9 H) == {(hx)xex; hx EH, 2 ”th2 < + OO}

Moreover this representation is in the commutant of the natural representation
of £°(X) on £*(X; H). By [21, Prop. 2.10.4] the representation of p(C,(X, K(H)))
has a unique extension to a representation of B (which is unit-preserving), still in
the commutant of the representation of £°(X). This yields unit-preserving *-homo-
morphisms ¢, : B — L(H) such that for be B and fe C,(X, K(H)) we have

bp(f) = p(g)



58 M. PIMSNER, S. POPA and D. VOICULESCU

where g € C (X, K(H)) is given by g(x) = ¢,(b)f(x). Moreover,
?p(f)) = f(x).

Clearly, we may define ¢(b) by (¢(d))(x) = ¢.(b) provided we prove that
Xsx— ¢ (b)e L(H)

is strongly continuous (for *-strong continuity consider b* € B). For £ € H, ||&]| = 1,
let P denote the projection of H onto C¢ and fe C,(X, K(H)) the constant function
equal to P. Then

8(x) = o:(B)f(x) = @(b)P

is an element g e C,(X, K(H)) and this is equivalent to the continuity of the map
X3 x> ¢ (b) € H, i.e. the desired conclusion.
The uniqueness of ¢ follows from

Ann ({(C,(X, K(H))); Cyo(X, L(H))) = 0.

Indeed, if ¢’ is another *-homomorphism with ¢’ o p =i, then for be B
we have

@(b) — ¢'(b) € Ann ({C(X, K(H))); Cy (X, L(H))) = 0.

Also, if @(b) =0, then ¢(bp(f)) =0 and since bp(f) € p(C,(X, K(H))) we infer
bp(f) = 0. Thus

Ker ¢ = Ann (p(Cy(X, K(H))); B) =0,

which gives the desired result about injectivity. Q.E.D.

1.3. REMARK. In view of the preceding proposition it is clear that, from
now on, we may and shall assume, for an X-extension (x) by A, that

C(X, K(H)) = B = Cy (X, L(H)).
1.4. DERINITION. Two X-extensions by A given by exact sequences
0 C X, K(H))—>B, 340
0 CyX, K(Hy)) = B, 340
are said to be equivalent, if there is a unitary

UeCy (X, L(H,, Hy))
such that
U*B,U = B, and o4(b) = 6,(U*bU) for be B,.
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1.5. PROPOSITION. There is a one-to-one correspondence between X-extensions
by A

0-C, X, KH)>B>5> 40
and unital x-monomorphisms
T. A - C*S(X’ L(H))/Cn(X5 K(H))

In this correspondence B = p~(1(A)) and o is obtained from the obvious isomorphisms
between B|C, (X, K(H)), ©(A) and A.

Proof. How 7 yields an X-extension by A is quite clear from above, for the
converse also, remark that ¢ gives an isomorphism between

BIC(X, K(H)) = Cy (X, L(H))/C,(X, K(H))

and A, the inverse of which will give the *-monomorphism .
Since B < C, (X, L(H)), it is obvious that

Ann (C,(X, K(H)); B) = 0. Q.E.D.

1.6. REMARK. Proposition 1.5 gives an alternative way of defining X-extensions
by A. This will be frequently used in what follows referring to an X-extension as
defined by some %-monomorphism t. For a unitary Ue C, (X, L(Hy, H,)) let a(U)
denote the isomorphism

Cys(X; L(Hy) 3 f > Uf U* € Cy (X, L(H,))

and let a(U) denote the isomorphism between C, (X, L(H.))/C(X, K(H,)) and
Co (X, L(H,))/C(X, K(H,)) induced by a(U). Then the X-extensions defined by

70 A - Co (X, L(HY)/IC(X, K(H)), (=12
are equivalent, iff ©, = o(U) o 7, for some unitary U e Cy (X, L(Hy, Hy)). We shall

use the notation 1, ~ T, for the equivalence of the X-extensions defined by ©, and t,.
Let now for x e X, p, denote the *-homomorphism

P Co (X, L(H))/C,(X, K(H)) > L/K(H)
which associates to p(f) the element n(f(x)) of L/K(H). We shall also denote
by I(A) the set of closed two-sided ideals of 4, 4.

1.7. DEFINITION. Let t1: A — C, (X, L(H))/C(X, K(H)) be a x-monomor-
phism. Then the map

X3 xw— Ker(p, o 1) e I(4)

is called the ideal symbol of the X-extension by A defined by t. The X-extension
defined by 1 is called exact if

M Ker(p,o17)=0.
r€X
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In case Ker(p,ot)=0 for all xeX, the X-extension defined by t is called
homogeneous.

It is easily seen that the equivalence of X-extensions preserves the ideal symbol
and hence also exactness and homogeneity.

Given a map

Xsxw I el(4)

satisfying the exactness condition

we shall denote by
Ext (X, A: (Ix)xex)

the set of equivalence classes of X-extensions by A with ideal symbol X 3 x
> I e I(A).

Clearly, the X-extensions considered are exact.

In case I, = 0 for all x € X, we shall denote by

Ext (X, A)

the set Ext (X; 4, (I);ex)

We do not know what conditions the ideal symbol must satisfy in order that
Ext (X; A4, (I,)cex) #0, although in §2 a certain lower semicontinuity for the
ideal symbol will be considered which is necessary for the existence of trivial exten-
sions with the given ideal symbol and which will be shown also to be sufficient
provided X is finite dimensional.

If © defines an X-extension by 4 with ideal symbol (/,),cy then
[r1e Ext(X; A, (I.),ex) denotes its equivalence class. Consider also

7,0 A = Cyu (X, L(H)))/C(X, K(H))), (i=12)

two #-monomorphisms with Ker(p.ot) =1, (i=1,2; xe X). This yields a
natural x-monomorphism

T @ 120 A > Cu (X, L(H, @ Hy)/C(X, K(H, ® H,))

with Ker (p, o (1, @ 1)) = I, for x € X. Moreover, it is easily seen that [t; @ 7,]
depends only on [ty], [t,]. Thus,

[t + [72] = [11 © 1.]

is a well-defined operation on Ext (X; 4, (I,),cx) and it is easily seen that
Ext (X; 4, (I);ex) endowed with this operation is a commutative semigroup.
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Let X, Y be compact metrizable spaces and let g: X — Y be a continuous
map. This yields a *-homomorphism

G: Cy (Y, L(H)) = C, (X, L(H))
defined by G(f) = fog for fe C,(X, L(H)). Clearly,
G(CAY, K(H))) = C,(X, K(H))
and we have and induced *-homomorphism
G: Cy (Y, LIH)/CL(Y, K(H)) ~ Cy X, L(H))/C,(X, K(H)).

Let 1: A—>C. (Y, L(H))/C,(Y, K(H)) define an Y-extension by 4 with ideal sym-~

bol (1)),ey; then Got=g*(7)is a x-homomorphism of 4 into C, (X, L(H))/C,(X, K(H))

and Ker (p, o (g%())) = Ly SO, in case () Iy, =0, there is a well-defined
reX

map, still denoted by g*, [t]=> [g*(1)] = g*[z],
g*: Ext (Y; 4, (I),ey) = Ext (X; 4, (Ix))eex)s

which is a homomorphism. In particular, for 4 fixed, Ext (X, A) becomes a contra-
variant functor from nonvoid compact metrizable spaces to commutative semigroups.

§ 2.

This section is devoted to the study of trivial X-extensions with given ideal
symbol. In case X is finite-dimensional and the ideal symbol lower semicontinuous
in an appropriate sense, we shall prove the existence of trivial extensions and also
a generalization of the Weyl-von Neumann type theorem of [45] (see also ref. [4]),
which will show that Ext (X; 4, ({,).ex) IS a semigroup with unit in this case.

We recall that the compact metrizable space X is of dimension < n if for
every covering by open sets of X there is a finite open covering refining it, that
has order < n (Ch. V of [29]).

The appearance of finite-dimensionality requirements in the study of X-
extensions should be traced back to a continuous selection theorem of E. Michael
[33], which is also used in the related subject of continuous fields of Hilbert spaces
(see 10.1.2, 10.8.6, 10.8.7 and 10.10.9 in ref. [21]).

From now on, throughout the rest of this paper it will be assumed that the
compact metrizable space X has finite dimension.

If K = R™ is a compact subset, then given a covering by open subsets of R™
there is ¢ > 0 and a refinement consisting of cubes with edges, parallel to the coor-
dinate axes, of length 2¢ and centers in ¢Z”. This, together with the fact that a
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compact metrizable space of dimension < » can be imbedded in R2"+1{Thm. V. 3
in ref. 29], easily yields the following useful fact, we shall record as:

2.1. ReMARK. If X has dimension < n, then every open covering of X has
a refinement each open set of which intersects no more than 3** — 1 other open
sets of it.

2.2. DEFINITION. For X a compact metrizable space, a map
Xaxw— I el(4)

is called lower semicontinuous (abbreviated ls.c) if for every conmvergent sequence

x)2 < X, lim x, = x, we have
7->00

(o]
N I, < L,
n=1

Denoting for ae 4 and Je I(4) by a/J the image of a in A}J, it is easily
seen that the l.s.c. condition 2.2 is equivalent to the following: whenever x, — x,
and ae 4, we have
lim inf |la/L., | > ||/l

=00

(use the fact that |la/ (M) I, || = sup,lla/I,, || and consider subsequences).

2.3. DEFINITION. An X-extension by A defined by the x-monomorphism <,
with exact ideal symbol (1), ey is called trivial if there is a unital =-homoemorphism

p: A - Cy (X, L(H))

such that popu =t and Ker (d, o p)=1, for all xe X, where d.: C, (X, L(H)) —
— L(H) is the map d.(f) = f(x).
It is easily seen that p o u = 7 implies

Ker(d,ou) =« Ker(p, o1) =1,

so, for homogeneous X-extensions by A, the condition Ker (d, o 1) = 0 follows
from the first condition.

Also, for the existence of trivial X-extensions it is necessary that the ideal
symbol be l.s.c. Indeed, we have for x, — x,, that (d,, o p)a) is strongly convergent
to (d,, ° w)a), so that

lim inf ||, o W)@ = [(d, © w)(@)]]

n—->00

which is equivalent to
lim inf|a/I.|| = a/I,, 1,

n—oo

establishing our assertion.
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To prove that for X of finite dimension and ls.c. ideal symbol there exist
trivial extensions we need some preparations.

For the next Lemma A4 is unital and separable (as always), E(4) is the
state space of 4 and for Je I(4), E(4/J) will be considered as a subset of E(4).

2.4. LEMMA. Suppose X has finite dimension and let X > x > I € I(A) be
Ls.c. Then given a state ¢ of A such that ¢| I, =0, there is a map X3 x >
> w, € E(A), continuous for the weak topology on E(A), such that o, |I, =0
for all xe X and w,, = .

Proof. The idea is to use the selection theorem of E. Michael [33] for the
set-valued map

X3 xw— E(A/L) = E(A).
To this end we give E(4) the metric

af,0) = 3, 271 fla) — ¢(a)

where ||a,|l <1 and (@,)3; is total in 4. Clearly 4 induces the weak topology

on E(A) and E(A4) is a complete metric space since E(A) is compact for the
weak topology. Moreover the balls with respect to d are convex, so that their
intersections with the E(A/I,) are convex and hence contractible.

Thus, the only thing still to be checked is the lower semicontinuity (in the
sense of Michael) for X s x> E(A/I,) = E(4A). The lower semicontinuity con-
dition is

given ¢ > 0, ye X and fe E(A/L) there is
a neighborhood ¥V < X of y such that

E(A/L)n {ge E(4); d(f,g) < e} #9

for all xe V.
This is easily seen to be equivalent for metrizable X with
whenever x, —» y and fe E(A/IL), there are

f.€ E(4/L) such that f, — f weakly.

Now, for this reformulation it is easily seen that it will be sufficient to prove it
only for f in some subset of E(A/L). Thus we may assume f= k(g 4+ ... + gi)
where g; € E(A/L), (j=1,..., k), and pure. But this makes a second reduction
possible, namely we may assume f is pure. Then, considering =, any represen-
tations of 4 with Kern,=1I,, we have f| () Kern, =0, since f|I, =0 and

I, > M I, =M Kermn,.

Now f being pure, our assertion follows from (3.4.2.(ii) in [21]).
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Thus the Lemma follows by applying the theorem of Michael. Q.E.D.

Let C(X, E(A4)) denote the set of continuous maps from X to E(A4), E(A)
being endowed with the weak topology. We consider on C(X, E(A)) the topology
given by the metric

8(F, G) = sug d(F(x), G(x)),

where d is the metric on E(A) considered in the proof of Lemma 2.4. Further
consider the closed subset Q2 = C(X, E(A4)) defined by

Q = {Fe C(X, E(4)); Fx)|I,=0, (¥)xeX}.

2.5. LEMMA. Suppose X has finite dimension and X3 x w> I, € I(A4) is ls.c.
Then there is a sequence {w;}2., of continuous maps w;: X — E(A) such that

M Ker w;(x) = I, for every xe X.
j=1

Proof. In view of Lemma 2.4, {w;}72; may be any dense sequence in Q.
Thus all we have to prove is that @ is separable when the metric § is given.
But since @ is a closed subset of C(X, E(4)) it is clearly sufficient to prove that
C(X, E(A)) is separable. This can be easily seen as follows. The space X being
compact and metrizable, fix a metric on X and consider {V{'}7) open coverings
(jeN), by open balls of radius 1/j. Let further {¢p{'};'%) be a partition of unit
subordinated to {V{}7¥), and @ < E(4) a countable dense subset of E(4). Then
it is easily seen that the maps Fe C(X, E(4)) of the form

#{7)

F(x) =k§ @ (%) by,

(with jeN, 8, € @), form a countable dense subset of Q. Q.E.D.

2.6. THEOREM. For X of finite dimension and X3 x v I, € I(4) ls.c.,
(M I, = 0, there exists a trivial X-extension by A, with ideal symbol X € x +>
x€X
> I e I(A).

Proof. Consider {w;}j2, a sequence of E(A)-valued functions satisfying the
conditions in Lemma 2.5, and where each term appears an infinite number of
times. Let then ni) denote the representation of 4 on HY with cyclic vector
&) associated with w,(x) by the Gelfand-Naimark-Segal construction. Consider

further

®s

oo
HY , n,=@& ¥
j=1

H, =
e j

7

I

and let
I, c H H,

yEX
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be the set of those (/,),ex such that
o) [ee]
hy = @1 (21 §0ij(x)7f,(r”(ai)) 3%
I= J=

for some neN, ¢;€ C(X), a;e 4, (1 <i<n,jeN), and where ¢,; # 0 only for
a finite number of j. Clearly, I'y is a vector subspace and since

Ihle =¥ % 00y (@ 0)aka)

=1 1<p, 9<n

we infer that X3 x> ||A,| € R is continuous for (A,),ex € Iy Define now

rc<qi H,

xeX

as the set of those (h,).ex such that for every e>0 there is (h}),ex € I'y satisfying
sup [|h, — hil| < e
1eX

It is easy to check that ((H,).ecx, I') is a continuous field of Hilbert spaces
([21], 10.1.2) which is also separable ([21],10.2.1). Moreoverifae 4 and (h),ex €l
then also (z(a)h,)ecx € I

By (10.8.7 in ref. [21]) the continuous field of Hilbert spaces (H,) ex, I') is
trivial ([21], 10.1.4). Thus there are unitary maps U, of H, onto H such that
the set of maps X2 x — U,h, € H, where (h,),ex Tuns over I', coincides with the
set of all continuous H-valued functions on X. Moreover, for a € 4 the function
pa@): X - L(H), (u(@)(x) = U,n(a) U}, has the property that u(a)f e C(X, H) for
every fe C(X, H). Taking also u(a*) into account, this gives u(a) € C, (X, L{H)).
Then 7 = pou is a trivial X-extension by 4 with ideal symbol (), ex as can be
easily seen since Ker n, = I, and =, is of infinite multiplicity for every x € X. Q.E.D.

Our next aim is to prove the Weyl-von Neumann type theorem. This will
also require several steps.

2.7. PROPOSITION. Suppose X has finite dimension, let
0- C(X,K(H)>B>> 40

be an exact X-extension by A with ideal symbol X x> I, e I(A) and let
we C(X, E(A)) be such that o(x)| I, =0 for all xe X. Then given ¢ > 0 and V< H,
1 € W < B finite dimensional subspaces, there is he C(X, H) such that

A =1, h(x) LV, (V)xeX,
[(@(x))(t(B)) — (B()h(x), h(x)>| < e|lbll, (V) xeX, (MbeW

and the linear span of {h(x)},ex is finite dimensional.

5 — c. 1941
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Proof. By N we shall denote an integer N = 32"+ where n is > than the
dimension of X. Let

be the s-monomorphism which defines cur X-extension. Since 1o ¢ = p| B and
nod, = p,op, we have
PxeTo 0 =p,°(p| B)=mo(d]B).
It follows that
(m o d)B) = (p, o T)(4).

Also since’
Ker(py o) =1,
there is
o'(x) € E((p, o 1)(4)) = E((n © d,)(B))
such that

@'(x) e peot = w(x).

Considering now the state w'(x)on on d(B) < L(H) and using (11.2.1 in [21]),
it is easily seen that we can find a subspace R, « H, dim R, = N dim W 4 1

such that R, _I_ V and ‘
Kd(B)¢, & — (@' () » d)B))] < —;— 161l

for every b e Wand £ e R, ||£]] = 1. This can be also written:
KBWE & — @NEOY < — 5]

for be W, £e R, ||¢]| = 1.
Consider also an open neighborhood G, of x, such that

16()E — b(x)E| < = ||B]

()Xo (B)) — (@) (e B < i— 151l

whenever ye G, be W, £e R,, ||&l|= L.
Since X has topological dimension < n, there is a refinement (Gf.,,
G, <= G}, of the open covering (G}),cx such that each G, meets at most N other G;’s.
We shall now prove the existence of &, eka, k=1,...,¢q, such that

dxj(W)éj L & whenever G;n G, # O, and |[§ |l = 1.

Remark that this implies ¢; L & for G;n G, # O, since 1e W.
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The ¢&,’s will be chosen by induction. For &, we may take any vector £, e R, ,
I¢:ll=1. Suppose &,,. . ., &; have been chosen, then consider 1<i, <i, <...< i, </
those indices for which G, n G;;; # 9. Clearly m < N by Remark 2.1. Itfollows
that

Y dim (dxis(W)f,.S) < NdimW <dim Rxm
s=1
so we canfind &, € R"'-H’ |€;41]l = 1 and such that
dxis(W) fis L& Iss<m).

Consider now {@,}{_; a partition of unity subordinated to the covering
(G){_1. Then we define

h(x) = }] PR (x)E,

Since &; L &, whenever @}/*(x)@;j*(x) # 0, it follows that 1A(x)|| = 1 forall xe X.
It is also obvious that A(x) L. V for all x € X and that the linear span of {A(x)},cx
is finite-dimensional.

We have

[Kb()A(x), h(x)y — (X)) B)] <
< Y o9} () —b(x))w 3] +

G NG, +6

£ Y I B £ — @O +

+ Y 0 @) — o) e®)] <

=1

=

012 (x)p}2 ellbll
< P (x)p; = (x )4(N+ D

PIFNCRILIESS e

+

ellbll _
4

_ 3 ellbll (% e Y
e ol + 4*(]‘\,*_{:*1") (kgl ox (x)) <

< 11+ 2 04 B e =l

This ends the proof. Q.E.D.

For the next Proposition, let M, = L(C") be the C*-algebra of nx n matrices
with the system of matrix units (e; ,)1<,, j<n
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Let also Cp(4, M,) denote the set of completely positive unital maps from 4
to M, endowed with the point-norm topology.

2.8. PROPOSITION. Suppose X has finite dimension, let
0> C(X,KH)>B5> A0

be an exact X-extension by A with ideal symbol X3 x v+ I, e I(A) and let ¥: X ~
— Cp(X, M,) be a continuous map such that ¥(x)| I, = 0 for all xe X. Then given
¢ >0and V < H,1e W < Bfinite-dimensional subspaces, there is U: X — L(C", H)
a norm-continuous map such that

U (x)U) = Ien, Ux) (C) LV, (V) xeX,
[TF)b)UE) — (PO < eflbl, (V) xeX, (¥) beWw,

and the linear span of {U(X)(C")},ex is finite-dimensional.
Proof. There is a natural isomorphism ([17, 4])
A: Cp(4, M) = Cp(d ® M,,C) = E(4A ® M,)

given by

AP 0 ® e) = % ¥yy(a)

7 1,7

where ¥;; are the components of ¥; ie. ¥(a) = ¥, ¥, (@e;;
]

Consider the exact sequence

cede

05 CX,KH)QM,>BOIM,— s AQ M, - 0.

Identifying C, (X, K(H)) ® M, and C,(X, K(H")), this sequence can be viewed
as an exact X-extension by A ® M, with ideal symbol X3 x > I, ® M, e (4 ® M,).
Consider then o = A(¥)e E(4 ® M,) and apply Proposition 2.7. This gives a
continuous function sz = (hy,..., Ah,): X — H" such that

k@) =1, Ax) LV® M, () xeX,

Ho(x)((6 ® idu,) (b)) — {b(x)h(x), h(x)}l MxeX,be WR® M,

and the linear span of {A(x)}.cx is finite-dimensional.
Let us define

S: X - L(C", H) by S(x)e; = n'*hy(x)
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where {e,,. .., ¢,} is the canonical orthonormal basis of C". Then we have

S*(x)S(x) =n Z <hj(x)= hi(x) > €y =n 2 (A eij)h(x): h(x)> €;j

so that

{

15%)SEI—Lan, < 1 B[ <1 © eq)h(x), Hy— 28

=n Z ({1 ® e;h(x), h(x)y — (@)1 ® e;)] <

. g2 g2
< n-nc = —
16n3 16

Supposing ¢ < 1 (which means no loss of generality), we have

[(S*(x)S(x))s™2 —1ar, || <

2 — 172 2 — 172
<mu(L—@+ﬁd ,(O—i» -—q <L,
16 16 4
so that

[1SG) — SEHS*()SEN2] < IS [ 14y, — (S*(X)SEN) V| <

2\ 1/2
sip+i <.
4 16 3
Finally, if
U(x) = Sx)(S*(x)S(x) 72,
then U(x) is an isometry and clearly depends continuously on x € X. We have

T*(x)b()Ux) — (PN @) <

< UG — SEIBI A +SGD + 1] S*(x)b(x)S(x) — (F))e®B)I<

<(+5)Lmien g wnew nwy — L=

- (23—8 + %) 151+ 1 5 1< GI@enh(a), hx) Y @D idhe b €,)] <

2 2
< (5 + 2 4. —) 1li< s 11].
3 12 16n2
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Also, since U(x)(C") = S(x)(C®), it is obvious that U(x)(C") i ¥ and the linear
span of {U(x)(C")} ey is finite-dimensional. Q.E.D.
Let X5 x + I,  I(4) be an ls.c. map with () 7, = 0 and let
zeX

0 — C,(X, K(H))—>B, > 40

be a trivial X-extension by 4 with ideal symbol X3 x> I €I(4). Let also
M A - B, < C,(X, L(H)) be the %-monomorphism implementing the triviality
of this X-extension by 4 (ie. o,0pu, =id, and Ker (d.op) = I,, (¥) xe X).
Consider also

0 C(X,K(H)>B5A—0

an arbitrary X-extension by 4 with ideal symbol X 2 x — I € I(A).
With these notations, we have

2.9. PROPOSITION. There is S e Cy(X, L(H,, H)) such that
S*(x)S(x) = 1, ) xe X,
Sui(o(d)) — bSe C(X, K(Hy, H)), (V) beB.

Proof. There is an increasing sequence 0 = 4y < A, < 4, <..., |40 < 1,
of elements of C,(X, K(H,)) which are constant on X and of finite rank such that

lim |4k — k|| =0, (V) ke C(X, K(H)))

J—00
lim |4;b — bA4;|| =0, (¥) be B,.
]‘«)00
Since C,(X, K(H,;)) has an approximate unit which is an increasing sequence of
constant finite rank elements, this follows from [4, remarks after the proof of
Thm. 1]. Consider also {b;}52:, b; = b¥, a total sequence in B. Then replacing
{4,}7>, by some subsequence, we may suppose that

(o (b)), (4; — A < 27 for 1 <k <.

Consider further P; e C (X, K(H,)) constant projections such that
A;P; = PjA; = A;.

Using Proposition 2.8 several times one can easily construct norm-continuous
maps X 3 x — Uj(x) € L(H,, H) and finite rank projections R; € L(H), R, < R,< . . .,
...,such that

(i) UFU; = Py, (jeN)

(i) Uj(x)(Hl) < (Rj+1 - Rj)(H)a V) xeX

@iy | — Ry bRl <27, (V) xeX and 1 €k <

(iv) || Pilo(b)P; — UFb Ul < 27 for 1 <k <.
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The sum

j‘: Ux)(A; — 4;_)* = S(x)
j=1

is easily seen to be strongly convergent and S*(x)S(x) = I,. Also since the A4;'s
are constant and because of (i) it is easily checked that the sum defining S(x) is
uniformly *-strongly convergent on X, thus defining an element S € C, (X, L(H,, H)).

Using (i), (iii) and b, = b* we have

; 1UF T =2 Y, U] <

17

1>

<2 Y NUBUI+2Y 270y

1<, /< 1>721
& .
<2 % U +2 Y, 270D < + oo
1<i,7<k s |
Also using (iv) we have

~21 1(4; — A DV3(UFbU; — m(o(b)))(A; — A;_)Y2|| < + oo

and using the inequalities for ||[(4; — 4; )2, u,(a(by))]|| we have

21 Hﬂl(o'(bk))(Aj — Aj_l) —(4; — Ajg1)1/2,u1(0'(bk))(Aj . Aj—1)1/2” < 4 oo.
Thus we have

Y04 — 4 )EURDU(A; — 4; )V — i(o(B))(4; — A, +

j=1

+ Z (4; — Ai—1)1/2Ui*kaj(Aj — A; DM < + oo.
1%
This proves that
S*b,.S — 1(a(by)) € C(X, K(H,)) for all ke N.

Since {b,}f°., is total in B we infer

S*bS — u(a(b)) e C(X, K(Hy)) for all be B.
It follows that:
(bS — Su(a(B))*(bS — Su,(a(b))) =

= (S$*6*bS — m(o(b*b))) +
T (o (B*N(u (o)) — S*bS) +

+ (0 (6™)) — S*bS)ui(a(b)) € C(X, K(HY)).
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But this is equivalent with
bS — Su(e(b)) e C(X, K(Hy, H)). Q.E.D.

2.10. THEOREM. Suppose X has finite dimension and let X 3 x — I, € I(4) be
an exact l.s.c. ideal symbol. Then the trivial X-extension by A with ideal symbol

X o x <= I, € I{A) are all equivalent and their class is a neutral element in the semi-
group EXt(X: Aa (Ix)xeX)'

Proof. Let t,7,: A = Cyof(X,L(H))/C,(X, K(H)) be w=-monomorphisms de-
fining X-extensions by A with ideal symbol X 5 x — I, € I(4). Then assuming that
T, defines a trivial X-extension by A with the given ideal symbol, we shall prove
that [t @ t,] = [z]. This will show that [t,] is a neutral element for Ext(X; 4,(L).ex)
and since two neutral elements must coincide, also the other assertion of the theorem
will follow.

Consider the exact sequences
0-C(X,K(H)y~>B—->A->0
0> C(X,K(H)) > B, = A0

corresponding to the X-extensions by A, defined via t and 7,. Denoting by H, the
Hilbert space H® H® ...,by p,: A » C. (X, L(H,)) the x-monomorphism

(1(@)(x) = ((@)(x)) ® ((@)(x)) @ ...,
and by B, the C*-algebra
By = py(4) + CX, L(HY)) = Cy (X, L(H)),
we obtain an exact sequence
0- C,(X,K(H,))) > B, - A0

defining a trivial X-extension by 4 with ideal symbol X 5 x — I, € I(A4).
By Proposition 2.9 there is Se C, (X, L(H,, H)) such that

Sus(c(b)) — bSe C(X, K(H,, H)) for all beB.
Denote by Ve C,J(X,L(H,) the constant isometry
VX)) @h ®..)=00h dh @ ...

and by Pe C.(X, L(Hy, H)) the constant co-isometry
POk, @ hy @ ...) = hy.
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Clearly ¥V commutes with p,(A4) and hence with B, modulo C,(X, K(H,)). Similarly,
P intertwines y, and u,. Consider then U(x): H - H @ H defined by

Ux)(H) = (I — SE)S*xDh -+ Sx)V*(x)S*(x)h) ® P(x)S*(x)h.

Then U is unitary, Ue Co (X, L(H, H ® H)) and &(U)et =1 @ 17;. Q.E.D.

§ 3.

Beginning with this section we shall consider only homogeneous X-extensions
by A. Assuming that A is nuclear, we shall apply the Choi-Effros completely posi-
tive lifting theorem ([16], see also [4, 46]) to prove that Ext(X, A) for finite-dimen-
sional X is a group. Using this fact we shall also prove that every homogeneous
X-extension by A is equivalent to the one for which

C(X, K(H)) = B = C(X, L(H)).

3.1. LEMMA. Let ¥: A — Cyu(X, L(H)) be a completely positive map. Then
there exists a separable Hilbert space H, > H and a unital =-monomorphism u:
A — C. (X, L(Hy)) such that

(Y (@)(x) = P(u(a))(x)| H for every ac A, xe X
(P denotes the orthogonal projection of H,; onto H).
Proof. For each xe X let ¥,: A » L(H) denote the completely positive map

¥i(a) = (Y(@)(x).
Let u,: A - L(H,), H, o H, be the Stinespring minimal dilation of ¥,. Let further
W't A — L(H,) be a unital *-monomorphism, where H, is separable and infinite-
dimensional. Consider H; = H, ® H,, P, the orthogonal projection of H; onto
H=H®0c H. ® H, and let i, = u, @ n”’. Obviously

¥i(a) = Piji(a)|H.

Let I' < [T (H. © H) be the uniform closure of the linear span of the elements
zxeX
of the form ((I — Pyi.(a)h(x))cex Where ae A, he C(X, H ® H,). Then if
hi=hi @ h' e C(X, H® Hy),

we have

2

+ Y (Wlatadhi(x), Bi(x)—

Igi-jgn

Y (—PIi@h® | = % wahy

— .. ,“:< ) (Pxlahi(x), Pxlaphi(x) ),
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which is clearly a continuous function of xe X. It is easy to check now that
((H,© H),cx, I') is a continuous field of Hilbert spaces (10.1.1 in [21]). Since X is

finite-dimensional and this field is separable and each H, © H is separable infinite-
dimensional, it follows by ([21], 10.8.7) that we have a trivial field. Hence there are

unitary operators U, : Hy, & H — Hsuch that the set of functions X 3 x —UheH,

where (h,),ex runs over C(X, H, © H), is just the set of all continuous Hj-valued

functions C(X, H,). Defining Hy =H®H,, V..H®H, S H) > H® H,,
=I; ® U,, and (ua))(x) = V.l (a)V¥, we shall see that

X 5 x > (p(a))(x) € L(H,)

has the desired properties. Indeed, since ji(@) maps C(X, H) @ I' into itself, it fol-
lows that u(a) maps C(X, H,) into itself which entails the strong continuity of X € x
> (u(@))(x). Also the dilation property of p is quite obvious. Q.E.D.

3.2. THEOREM. Suppose A is nuclear and X finite-dimensional. Then Ext(X, A)
is a group.

Proof. The proof is the same as that outlined in ([3]), only one must use Lemma
3.1 instead of the Stinespring dilation theorem.

Indeed, let

1: 4 > Cy (X, L(H))/C(X, K(H))
define a homogenous X-extension by 4. By the Choi-Effros theorem there is a com-
pletely positive map
V.4 - C, (X, L(H))

such that po¥ = 1. Using Lemma 3.1 for ¥ we get
u: A g C*s(X’ L(Hl))5 Hl = H:

dilating ¥. Let & denote the completely positive map
¢:4 - Cys (X, L(H;, © H))

which is the compression of u to H; & H. Then [(p o &) @ 1], where 1, is any
trivial homogeneous X-extension by 4, will be an inverse for [t]. Q.E.D.

Since Ext(X, 4) is a group, it is time to mention that keeping X fixed we get
a contravariant functor from the category of separable nuclear C*-algebras with

unit, the morphisms being the unit-preserving s#-homomorphisms to the category
of abelian groups. This depends in fact on Thm. 2.10. For {: 4 — B a unit-pre-

serving s-homomorphism, {,:Ext(X, B) — Ext(X, 4) is defined by
Gl =t 0) ® 7]
where 7, is any trivial homogeneous X-extension by 4.
3.3. THEOREM. Suppose X is finite-dimensional and A nuclear, and let
1: 4 - C.{X, L(H))/C, (X, K(H))
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define a homogeneous X-extension by A. Then there is

70 A = Co (X, L(H))/C(X, K(H))
such that [t] = [r,] and

1(4) = C(X, L(H))/C(X, K(H)) = C, (X, L(H))[C(X, K(H)).
Proof. Consider a completely positive lifting
D: A4 - Cy (X, L(H))

for © and consider also

Wi A - CoiX, L(H"))

a completely positive lifting for some inverse of [t] so that there is a unital«-homo-
morphism p: 4 - C, (X, L(H @ H")) such that

pla) — (@) @ ¥(a) e C\(X, K(H @ H'))

for every ae 4. Let P and P’ be the projections of H ¢ H’ onto H and respec-
tively H'. Consider

34> Co X, LHOHDH)®HDH') D...)
defined by
B(a) = €(a) ® p(a) ® p(@) ® ... .

By Thm. 2.10. we have [t] = [p o ®].
Consider also

pA-> CX, L(HOH) @ (HOH) @ ..)
defined by ;;2 PoDp @..., and let
GeC (X, L HOPHYD(HOH)®...HOHDH)YPHDH)®..)
be the constant unitary operator such that
GCON @) @ Dh) @ ..)=h @ (h, @ ) ® (hy ® z) D...
The map

A - CouX, LHOH)® (HOH) @ ..)
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defined by
M@)(x) = (p@)(x) — (P(p(@)(x) P' -+ P'(p(@))x) P) @
® (P(p(@)) ()P" + P'(p(@))(x)P) ® ... +
+ G*(0)[0 ® (P(p(@)x)P’ + P'(p(a))(x)P) ©
® (P(p@)X)P’' + P'(p(@)(x)P & ...} G(x)
is such that [po#n] = [1]. Indeed,
((@)(x) — G*(x) (B@)X)G(x) =
= (p@))(x) — [(P(p(@)(x) P' + P'(p(@))(x)P) & ...] +
+ G*(0[0 & (P(p(@))x)P’ + P'(p(@))(x)P) @ ...] G(x) —
— G*(x) [(2(@)(x) ® (P(p(@)x)P + P'(p(@)(x)P") @ ...] G(x) —
— G*(x) [0 @ (P(p(@)(X)P’ + P'(p(@))(x)P) @ ...] G(x) =
= (P(p(@)x)P + P'(p(a))(x)P’) @ (P(p(@))(x)P + P'(p(@)(x)P) ® ... —

— &(x) + P'(p(@)(x)P") @ (P(p(a)(x)P + P'(p(a))x)P' @ ...) =

= (P(p@)x)P —2x)) @ 00 ...,
so that clearly

n(a) —G*$(@)G e C,(X, KH @ H)® (H ® H) @ ..).
Consider a *-monomorphism
po: A — Cyd(X, L(H)
which is constant (py(a) is constant for each a € A) and such that
po(A) N C,(X, K(H)) = 0.
Clearly, [po po]l = 0 and py(4) = C,(X, L(H)). By Thm. 2.10, there is a unitary
Ue Cu (X, L(H ® H', H)) such that
Up(@U* — pyla) e C,(X, K(H)) for every ace A.

Consider also

UeCo , (HOH)DHOH)D...,.HOH®..))
defined by

U@ =Ux)®UX)® ...
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To prove the theorem it will be sufficient to show that

Un(@)U* e C,(X, LH® H @ ...)).
We have

U(x)n(@) (OU*(x) = U) (pl@))(x) U*(x) —
— U) [(P(p(@)(x) (P") + P'(p(@)(x)P) @ ...] U*(x) +
+ UE)GH0 ® (P(p(a)(x)P’ + P (p(@)x)P) ® ...] G U*(x) =
= Ux)(p(@)(x)U*(x) @ Ux)p(@)(x)U*(x) @ ... —
— [U)(P(p(@)(x) P' + P'(p(a))(x) PYU*(x) @ ...] +
+ UXGH0 @ (P(p@)(x)P’ + P'(p@)(x)P @ ..] G U*(x).
Since
Up()U* e C(X, L(H)),
it is clear that the first term is a norm-continuous function of x. Also,
p(a) — 9(a) ® Y(a) e C(X, K(H & H'))
implies that
Pp(a)P’ + P'p(a)P e C(X, K(H @ H")).
Since U is =-strongly continuous it follows also

U(Pp(a)P’ + P'p(a)P)U* e C(X, K(H))

so that also the second term in the expression of I}n(a)(} * is norm continuous.
For the third term, let us first make some computations:

UXG*0 ® (P(p(@) (P’ + P (p@)(x)P) @ ...] GU*X)(hy ® by ®...) =
= UXG*[0 ® (P(p@)X)P’ + P'(p(@)X)P) @ ...] x
X (PUx)hy, @ (PU*(x)hy+P'U*(x)h) @(PU*(x)hy+ P U*()hp) @ ...) =
= U(x)G*[0 ® (P(p(@)(x)P'U*(x)hy + P'(p(@)x)PU*(x)hs) ©
® (P((@)()P' U*(X)hy + P'(p@)X)PU*(x)hs) @ ...] =
= U)P'(p(@))(X)PU*(x)h, @ (U(X)P(p(@)X)P' U*(x)hy +
+ UXP (p(@)X)PU*hs) @...,
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hence

Ux)G*[0 @ (P(p@)(X)P’ + P'(p@)(X)P)® ...] GU*(x) =
= (UX)P (p(@)(x)PU*(x) @ UX)P'(p(@)()PU*(x) @ ...)o S* +
+ (UX)Pp@))P'U*(x) @ UX)P(p@)x)P'U*(x) @ ...) e S

where Se L(H ® H ®...) is the shift S, @ h d...) =00 D h @ ....
Since we have seen that U(x)P'(p(a)x)PU*(x) and U(x)P(p(a))(x)P'U*(x)
are norm-continuous functions of x e X, this ends the proof. Q.E.D.
Note that for 7 defining a homogeneous X-extension by 4 each p, o defines.
an extension of K(H) by 4 and denoting by Ext(4) the Brown-Douglas-Fillmore
Ext for A, the preceding theorem implies the following corollary:

3.4. COROLLARY. Suppose X is finite-dimensional, A nuclear and
11 A Co (X, L(H)) | C(X, K(H)) defines a homogeneous X-extension by A.
Then the map X 5 x — [p, o 1} € Ext(A4) is continuous.

For what follows we shall also define Ext(X, x,; A) where (X, x,) is a pointed
compact metrizable space, as the set of those [1] e Ext(X, A) for which [p,, o 1] =0.
Clearly this is a semigroup and, if X is finite-dimensional and 4 nuclear, it is a
group.

§4.

This section is devoted to the proof of the following theorem.

4.1. THEOREM. Let A be a nuclear C*-algebra with unit, J= A a proper (1 ¢ J)
closed two-sided ideal and (X, x,) a poznted finite-dimensional metrizable compact
space. Consider J=J+C-1 4 and i: J— A, q: A— A]J the canonical *-homomor-
phisms. Then the sequence

Ext (X, xq; A/J)q—'> Ext (X, xq; A) 3 Ext (X, x93 J) is exact.

The proof is quite long and will be carried out through a sequence of
lemmas.

First some remarks.

Since A is nuclear, 4/J and J are nuclear [48] so that the considered Ext’s
are groups.

Remark also that the non-pointed version of Thm. 4.1, trivially implied by
Thm. 4.1, implies in fact Thm. 4.1. Than can be seen as follows. Since i, o g.= 0
is quite obvious in both cases, we have only to prove that Ker /., = Im g, in the
pointed case follows from the non-pointed case. Let a: {x,} —X be inclusion, f:X —
— {x,} the constant map and [r] € Ext (X, 4) such that «*[t] = 0 and i.[t] = 0.
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Assuming the non-pointed version of Thm. 4.1 holds, there is [¢] € Ext (X, 4/J)
such that g¢.[o] = [t]. But then
[o]— (B* o «*) [ € Ext (X, xo5 A/J)
and
g:(lo] — (B* o a®)[o]) = [1] — g, ((B* - o*) [o]) =
= [t]—(B* c «*) g, 0] =
= [f—(*ca®) [ =[]

which is the desired result.
Thus let

11 A = Cy(X, L(H))/C(X, K(H))

be a *-monomorphism defining a homogeneous X-extension by A, such that i,[+] =
= 0. All we must prove is the existence of 6] € Ext (X, A/J) such that q.[o] = [7],
and this will be achieved in the remaining part of this section.

Since A is nuclear there is a unital completely positive map ¥': A— C, (X, L(H))
such that p o ¥ = 1 ([16]). Moreover, since i is injective, i,[tr]= [r°/] so that using
Thm. 2.10 and replacing [z] by some equivalent homogeneous X-extension we may
assume there is a constant x-homomorphism implementing the triviality of [t o f],
i.e. there is a constant x-monomorphism

po: J = Cy (X, L(H))
such that 3
po(@) — ¥{(a)e C(X, K(H)) for all aeJ < A.

Consider also p: A — Cy (X, L(H)) the constant, possibly non-unital, *-homo-
morphism generated by (po]J) with the same null-space as (p, |J) ([21], 2.10.3).

Let
O<wuy <u, <., |yl <1,

be an approximate unit of J such that

U U = Uj, (jeN).
Consider E; € C, (X, L(H)) the constant element which is the spectral projection of
p(u)) for the set {1}. Since p(u;.,) p(u;) = p(u;) we infer E;,; p(u;) = p(u;). Also
clearly p(u)E; = E; and E; < p(u) < E;,.

Let now {a;};en = J, {b;};enc A be total sequences of hermitian elements
of J and respectively A.

Since

lo(a) I — EDIl < lplal — u;- DIl < [la(l — u; 1)
and
I — EppBIE| < |1 — E)) pbunll < i1 —uj—y) (b))
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we may replace {u;};en by some subsequence so that

°

6y lp(a) —p@) Ejl <27 for 1<k<j,
@ (I —E;+ 1) pGIENI <27 for 1<k<]
Also it is clear that if E is the strong limit of the constant projections E;, then
(I— E) is the orthogonal projection onto the null-space of p, in particular
(I—E)p(4) = 0.

Let also

P_] - Ej _Ej—l! (EO = O),
and consider

Y, = pb) — Z I—E;)p by P — glpjp(bk)(l_ E; .

4.2. LemMA. Let 0 < Q; < P;, Q;e€ C(X, K(H)). Then for
0 =¥, 0; ¢ C KLU
we have (ke N): "
p(a)Q e C(X, K(H)) and (p(b) — Y)Q € C,(X, K(H))

Proof. Since
Z lp(@)g;ll <

J>1 =1

Ma‘

lp(@)Q;ll + Zk (@) — E;-)Il <

<
J

L= 5

”p(ak)Qj” + Z 27 < + o0,

>k
it follows that Y] p(a)Q; is norm convergent and hence
j>1
p(a)Q =,Z p(a)Q; € C(X, K(H)).
21

A similar argument gives also
(p(by) — Y1) Q € C(X, K(H))

since:
T o) — Y00,1 <
<YIY (I—E)) p0 POl + Y, 1Y Pip(by) I — Eiy ) Ol =
izl i»1 izl izl

ji—2
= ; I — Ejyq) p(0Q;51 + glu ;1 Pip(b)Q;] <

<Y 1 T—Ejy) p(GIE | + Z}lllEj-z pb) I — E;_)| < +oo0.

jiz1

Q.E.D.
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4.3. LEMMA. There are constant finite rank projections Q; < P; such that

(#(b) — pBINE — 3, @))€ CX, K(H))

jz1
for all keN.
Proof. Since

(P(b) — p(O)P; = (¥ (b) — p(b)p(w))P; =
= [PG)(p(u;) — YD) + (F(BI¥ () — ¥(by) +
+ (¥(by) — p(biu)IP; € C(X, K(H)),
there are finite rank constant projections Q; < P; such that
1P — p(B(P; — Q) < 27 for 1 <k <.
It follows that the series

Z (b)) — P(bk))(Pj — Q,)

izt

is norm-convergent to
(P(b) — p(BINE —Y, Q))
izt

and so

(¥(bi) — p(bINE — Sl Q)) € C,(X, K(H)). Q.E.D.

i»

We now construct recurrently a set of constant finite-rank self-adjoint pro-
jections {R;;}; ;1. Let R, ; be the projection Q; provided by Lemma 4.3. Since
Y, and P; are constant, once R; ; are constructed for fixed / and all je N, we can
find R;;,,; a constant finite-rank selfadjoint projection such that R;., ; is the con-
stant finite-rank selfadjoint projection onto the linear span of the ranges of the
PY,R;,, 1 <k <i+j+4,/s—j/ <1),and of R;; (with convention R;, = 0).
Note that R;; < P;, R;; < Ry41; and, since Y, P; = (P;_; + P; 4+ P; )Y,P

we also have
YiR; ;= (Riy1j-1 + Rit1,j + Rigr j+) ViR ; for 1 <k <i+j+2.

Consider also:

9=YRy,; Q=YR, 0Q0'= Zl Rji2,;
iz

izl izl

6 — o, 1941
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which are constant elements of C, (X, L(H)). Then 0 < B< @' € 0” < E, and
(I—0"VY.Q e C(X, K(H)) for all ke N. Also clearly Q, Q', 0" are projections.

4.4. LemMA. [Y,, Ble C, (X, K(H)) for all ke N.

Proof. Consider

S Ri,j - Ri~1,ja (Ro,j = 0)-

ij=

Then the S, ; form a family of pairwise orthogonal selfadjoint constant finite-
rank projections. Also B can be written as:

B = § (,ﬁj~ii_lsi,j)-

=1\i= J
Note that
S5 YiSi ;= S P Y P;S; ;s
so that
S;..YiS;; =0 whenever |t—j| > 2.
Also, if
max ((+j5s+¢)>k+2 and |i—s > 2.

then

Si.j YkSs.t =0.
Indeed, since
(Ss,tYkSi.j)* = Si.ijSs,n

it will be sufficient to prove this only in case i —s > 2. Now, if i+ < s+,
then t—j > 2 and the assertion follows from the preceding discussion. Thus we
are left with the case when i—s > 2, i+j>s-+ ¢ and |t—j] < 1. But then

(—D+t+22i+j—1>k
and hence

Si.ijSs,t = Si.ijRi—2.tSs,! =

= Si,j(Ri—1,1+1 + Ri_q: -+ Ri—l‘r—l)YkRi—ltSs.t = 0.
Moreover,
YkSi.j = chRk+i.jSi.j =

= (Rk+i+l.j+1 + Rk+i+1,j + Rk+i+1.j—1)YkRk+i,jSi,j

which can be expressed as a finite sum of S,V S, ;.
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Thus it follows that for i +j = k -+ 2 we have:

YkSi,j - Z Si+a,1'+ﬁYkSi.j9
e <1, 1B <1

Si,j Y, = Si_ijSi+a,j+p,
o<1, 18j<t

(with the convention S;; = 0 whenever i < 0 or j < 0).

We have
Y, Bl =Y. (zf ., s,-.,-l) _

j=1\i=1 J

(Sita, j4+5YuSi; — Si,ijSi+z,j+ﬁ))) =
i=1 J la<1, if]<1

j=1\i=1

X (Si+a,j+/3YkSi,j_ Si,ijSi—a,j—ﬁ)))‘
=1 J lal<1, i8<1

k42 Jof—7
. (z’——;ﬂm, Si,,-l)+

Thus, to prove that [Y;, Ble C,(X, K(H)), it will be sufficient to prove that for
la) <1, 18] <1, we have

] Joj—i+1
Ca, p= Z ( Z / N S (Si+az,j+BYkSi,j - Si,ijSi—a, j—ﬁ))e C.(X, K(H)).
j=k+3\i=1 J

But we can write

o i+8 ; — —
JH+B—i—a+41
Cop=— ( 5 Sita, '+ﬂYkSi,') +
g j=k¥3—ﬂ i:;—az Jj+ B ’ !
0 ioj—i4+1
+ Y ( Y ! : i-f-a,j+ﬂYkSi.i)’
J=k+3 \i=1—qa J

Using the notations

j —i—o+1
Ti,j = SH‘a,j-HiYkSi,j: ri’j S J + B - and Si,j
Jj+ B
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we have

ol i J+8
Cp= Y, ( lsi.jTi,j_ Yy ri,jTi,j)+Da,ﬁ

j=k+5 i=l—a

i=
where D, ; is a finite sum of constant finite-rank elements and hence clearly D,z

€ C,(XK(H)).
Now remarking that T; ;=0 unless i > 1 —« and i > 1, it follows that

o i-2
Cop—Dop= Y, ( Y (si.j_"i,j)Ti,j)—l-

j=k+5 \i=max(l,1—a)

oo j i+8
+ ) Z ( ' 2 si,jTi,j— Z r,-,jTi,i).

=j-1 i=j—1

The first sum defines an element of C,(XK(H)) since (s;, j— 1, )T;; are constant

finite-rank,  (5,5) # (m,n) = T}, = T;; T, =0 and |(s,;—ri)Tisll =0

whenever 1 < i <jand i+ j— +oco. The same kind of argument shows also that

the second sum is in C,(X(K(H)). Q.E.D.
We introduce now the following notations:

0=(U—E)+Q, O0=(1—E+¢Q, Q'=I—E-+¢",

B=(U—E)+ B.

The properties of these elements are summarized in the following lemma.

4.5. LEMMa. We have :

(i) p()Q" € Cy(X, K(H));

i) I—E < Q <B< Q' < Q” and Q~, Q~’, Q~” are selfadjoint projections
@iy I — Q") P(4)Q' € C(X(K(H));

(V) (P(a) — p(@)I — O) e C(X, K(H)) for every ac A;

0) [p(4), Bl = C,(X, K(H));

i) [¥(4), B] = C,(X, K(H)).

Proof. (i) By the first part of Lemma 4.2, we have p(J)Q" € C(X, K(H)).

Moreover, p(J)(I— E) =0, which makes our assertion obvious.

(ii) follows immediately from the fact that Q, Q’, Q"' are selfadjoint projec-
tions and

0<Q<B<Q<Q'<E
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(iv) is a transcription of Lemma 4.3, since

I—0)=I—(1—E)—Q=E—0Q.
(#ii) By the second part of Lemma 4.2 we have (p(b,) — Y,)Q' € C,(XK(H)).
Also we know that (I — Q") Y,Q’ € C,(X, K(H)) so that I—Q')p(b,)Q’ € C,(X,K(H).
Since (I — E)p(4) = p(A)I— E) =0, we infer (I— Q")p(b)0’ e C(X, K(H))
and since {bren is total in 4 it follows that (I— O")p(4A)0' = C,(X, K(H)).

Since 0 K I— Q" < I—0, it follows by (iv) that (I — 0")p(a) — ¥(a)) €
€ C(X, K(H)) for all ae A. Hence we have

I— Q") ¥(AQ' <= CiX, K(H)).
(v) We have

[p(b), Bl = [p(by), Bl = [p(b) — Y;, B} + [Y,, B] =
= [P(bk) — Y, QIBQ’] -+ [Yks B]

so [p(by), Ble C(X, K(H)) by the second part of Lemma 4.2 and by Lemma 4.4.
(vi) We have

[%(a), Bl = [¥(a) — p(a), B) -+ [p(a), B) = [p(a) — P(a), I — B] + [p(a), B),

where ae A. Since I—B=(I—Q)(I— E) — Q), assertion (vi) follows from
(iv) and (v). Q. E. D.

Using now the Choi-Effros theorem, there is a unital completely positive
map ¢: AfJ - A such that g ¢ = id,;. Consider also the completely positive map

& =¥ ogp:AlJ - Cyu(X, LH).
Since ¢(g(a)) —a eJ for every ae A, using Lemma 4.5. (i) we have
) B(g(a)@" — ¥@Q" € C,(X, K(H))

(recall also that p(a) — ¥(a) e C,(X, K(H)) when aelJ).
Since é" is a constant projection we may use Lemma 3.1. for the compres-

sion of @ to the range of Q”. This yields a Hilbert space H,, a unital *-homo-
morphism
p: AlJ - Cyu X, L(HY)

and a constant partial isometry

W € C*s(X3 L(H9 Hl))
such that

WrW = §" and W*u(g(@)W = 0" ®(g(a))Q".
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Consider EI,QI, Q~’1, é{’ € Cyu (X, L(H,)) the constant elements defined as
follows:

B, = WBW*, Q,=WOW*, Q)= WO'W Q' = WQ'W*=WW*.
Note that Ql, é’l, é"1 are projections, Q; < 1§1 < Q’l < @”1 and that:
(x%) B,W = WB, W*B, = BW*,

4,6. LEMMA. We have
(I — Q"W(AINQ; = CX, K(HY),

[1(A/D), By) = C(X, K(Hy)).
Proof. We have:
(T — 01 ulg(@) O)* (I — OF) u(g(a)) 0 =

= Qiu(g(a*a)) Of — Oiu(g(a*)) 0 'n(g(@) Of =

= WQ'd(gla*a)) O'W* — WQ'B(g(a*)) Q"' P(q(a)) Q' W*.
Since d(g(a)) 0" — ¥(a) 0"’ € C(X, K(H)) and O’ < Q", we infer that

(U — 07) n(g(@) O)* (U — OF) u(g(@) Qf) — WQ'¥(a*a) Q'W* +
+ WQ'¥(a*) Q" ¥(a) Q' W* e C(X, K(HY).
But ¥(a*a) — Y(a*)¥(a) € C(X, K(H)), and so
WO'P(a*a) O'W* — WQ'¥(a*) Q' ¥(a) Q' W* =
= WQ'(¥(a*a) — ¥(a*) ¥(a)) Q' W* +

W(I— Q") Y(a) @)* (I — Q') ¥(a) 0') e C,(X, K(H))

by Lemma 4.5. (iii).
Thus

(I — 0} w(g(@) 0))* (I — Q1) w(a(@) O7) € C(X, K(H,))
and hence also

(I — 01" u(g(@) 0; € C(X, K(H,)),

thus proving the first assertion of the lemma.
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Since (I — 01') u(q(@) 0; € C,(X, K(Hy), we get
1(q(@) 07 — W¥(a) W*Q; =
= (I— 01" m(9(@) 01 + 01'n(9(@) Oi — W¥(a) W*Q; =
= (I — 0}) pla(@)) O} + WO (gla)) Q' W* — WQ"¥(a) O'W* —

— W(I— Q") ¥(a) Q' W* e C,(X, K(H,))

by (*) and Lemma 4.5. (iii).
Since 1§1= QlB:QI, it follows that

[1(g(a)), Bi] — [W¥(a) W*, Bl e C,(X, K(H,)),

and using (*#) the second assertion follows from Lemma 4.5.(vi). Q.E.D.
Let Ge C. (X, L(H, Hy)) be the constant element

G = B/"W({I—B)"
In view of (%) we get

G = Bl’(I— B)*W = wB(I— B)'"* = (I — B)"*wB"",

so that

B G*
Q - € C*S(X! L(H @ Hl))
G I—B

is a constant selfadjoint projection. Note also that

0®0, <Q<Q"® Iy,
4.7. LEMMA. We have

O (Y @uoq) (4),Ql = CX, K(H @ Hy));

(@) (Y Dueoqn)(@—(p®pucq)(a)(I—QeCuX, K(H D H,))
for all ae A;

(i) (¥ @ pneq)(J)Q = C(X, K(H @ Hy)).

Proof. Sincel —Q < (I — O@I 1, assertion (i) follows from Lemma 4.5.(iv).

Also since Q < Q” @ Iy, assertion (jii) follows from Lemma 4.5.(/)) and
the fact that

(p —¥) (V) = C(X, K(H)).
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In view of Lemma 4.6 and of Lemma 4.5.(vi), in order to prove assertion (i)
it will be sufficient to show that

G¥(a)—(u-q)(a) Ge C(X, K(H, H,)) for all ae A.
But
G¥(a) — (o q) (@) G = WB'"(I—B)'*¥(a) — (noq) (@ WB"* U — B)'" =

= WIB(I— By, ¥(a)l+ WP @B (I — B)'? — (1o q) (a) WB (I-— B)"”,
so that in view of Lemma 4.5.(vi) and Q’B"? = B it will be sufficient to
prove that
W) Q' — (1 o q) (a) WO’ e C(X, K(H, Hy).
But this can be seen as follows:
WP@) Q' —(nog) (@ Q' = WI— Q") ¥@ 0 —I—0i) (uoq) (@ WO +
+ WQ"¥(a) O — 0} (o q) (@) WQ' =
=WI— Q") ¥@) @ —T—01") (no9) (@ O}W +

+ WQ'(¥(a) — D(¢(a))) Q' € C,(X, K(H, Hy))

by Lemma 4.5.(iii)), Lemma 4.6, and (x). Q.E.D.
The next lemma will be the final point in the proof of Thm. 4.1.

4.8. LEMMA.  There is [o] € Ext (X, A/J) such that
g.lo] = [).

Proof. Denote by H, the Hilbert space H, = H@®H, and, since E, Q, Q,
o', 9", Q, Q‘, Q" are constant operator-valued functions on X, let £y, €2, O,

0., 0, 0o 0f O3 denote the corresponding operators. Consider also the pro-
jection Dy = E, @ I,. Note that

I1—Qy < (U—00) @ I, < Ey @ Iy, = Dy,
and that the compression of p @ (uoq) to Dy(H,) is a unital s-homomorphism

5: A hd C*S(X, L(D03 (HZ)))'
Denote by
X1t A = Co (X, L(Q0(H,)))

Xzt A = Coo (X, LI — Qo)(H)))
6,1 4 > Coo (X, L(Do — (I — Qo))(Hy))
O2: A — Cy (X, LT — Q) (H)) )
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the unital completely positive maps defined by:
(1:(@) (x) = 2(¥(@ @ (1o q) (@) (x) | o(Hy)

(x2(@) (x) = (I — Qo) (Y(@) @ (1 9) (@) ()] (I — Qo) (Hp)
(0.(@) (x) = (Do — (I — Q) (6(@)) (X)| (Do — (I — L)) (Hy)
(0x(@)) (x) = (I — Qo) (B(a)) (x)] (I — Qo) (Hy).

By Lemma 4.7.(i) it follows that p o y; and p o y, are #-homomorphisms and
by Lemma 4.7. (ii) p o 6, and hence also p o 8; are also *-homomorphisms.
Moreover by Lemma 4.7. (iii), (p o y,) (J) = 0. Since

Dy—(I—Q) < Dy—1+ Qi @Iy, = Q¢ DO,
it follows by Lemma 4.2 that

P(I) (Dy — (I — Q) € C,(X, K(Dy(Hy)))
and hence
(po0)(J))=0.

Let y, 65, 05, 71, 7, be the homogeneous X-extensions by A determined by
Pop,pox, PoXs Pobh, pob,, ie the homogeneous X-extensions by 4 obtained
by adding to each of the above x-homomorphisms a trivial homogeneous X-exten-
sion by A.

We have then in Ext (X, 4):

] = [y + [va),
[c] = [6:] + [8.],
[vI=0.

Moreover, there are [o,], [0;] € Ext (X, A/J) such that
giloi] = In1l,
g4loe] = [64].

Also by Lemma 4.7. (ii) we have

[72] = [62].
It follows that
[T] = [6,] + [3,] =

= [6,] + [ya]l =

= [0, —[n] =

= g4los] — guloy] =

= gy([o2] —lo1]). Q.E.D.
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§5

This section deals with the homotopy invariance properties of Ext (X, A)
both in the X and in the A-*“variabile”. In fact these two homotopy-invariance
properties are related and their proof reduces in the case of guasidiagonal C*-
algebras to an adaption of the argument of N. Salinas ([42]) for the usual Ext-groups.

The short exact sequence for Ext (X, 4) in § 4 enables us to improve the result
of Salinas: A may be any C*-algebra having a composition series with quasidiagonal
quotients. In particular, A may be any GCR-C*-algebra.

First we need a few facts about quasidiagonality in C, (X, L(H)), but since
this seems a rather awkward intermediate degree of generality, we prefer to digress
a bit, considering a more general situation.

Let L be a unital C*-algebra (not necessarily separable), K < L a closed two-
sided ideal and p: L - L/K the canonical homomorphism (These notations will
not cause any confusion since in our applications L = C, (X, L(H)) and K=
= C(X, K(H))). We will make the following assumption about K:

there is an increasing sequence P, < P, < ...
of selfadjoint projections in K,
which is an approximate unit of K.

The set P(K) of selfadjoint projections of K is not filtering in general, but

has a weaker property. For ¢ > 0 and P, Q € P(K) we shall write

P<Q iff |P—OQP|<e.

Then our special assumption on K implies that
for any Q;, Q. P(K) and ¢ > 0
we can find Q; € P(K) such that

0, < Qs Q: < Qs

For a bounded function f: P(K) - R we define
lim inf f(P)

PeP(K)

as the greatest lower bound of those r € R, such that for every Pe P(K) and &£ > 0
there is Q € P(K) such that f(Q) < r and P < Q. Also we define

lim sup f(P) = — lim inf (— f(P)).
PeP(K) PeP(K)
For a finite set ¥ < L the modulus of quasitriangularity q(X) is defined as
q(2) = lim inf (max (I — P) aP})
PecP(K) acx
and the modulus of quasidiagonality qd(Y) is defined as
qd(Z) = q(Z U Z¥).
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Remark that
¢d(2) = lim inf (max ||[P, 4l||).
PEP(K) acy
also since for k€ K we have
lim sup |({ — P)kP|| =0
PeP(k)
we easily infer that
lg((a)i-1) — q((ap)i~)| < max [ p(a; — a)ll,

1<ign

|qd((a)- ) — qd((@)){-1)| < max ||p(a; — a;)].

Igign
5.1. LemMA.  Let {Q;};en © P(K) be such that Q; < Q;.,, then there are
10—J
{Qj}jen=(P(K) such that
Qj < Qjsr, (jEN), and lim |Q; — Qjl| = 0.
J—00

Proof. Consider first two projections P, Qe P(K), P < Q, ¢ < 1/2. Then

{l —¢) P < POQP < P so that we have the polar decomposition QP = wa where
a= (PQP}? and w= QP((I— P)-+ PQP) V2, Then w*w = P and ww* e P(K),
ww* < Q. Also |w— P|| < 3¢ and hence |lww* — Pj < 6¢. Denoting by E(P, Q)
the projection ww*, we thus have

E(P, Q) < Q and |E(P, Q) — P| < 6e.

Using this we define recurrently {Q; ;};<;<; = P(K) so that

Qj.j = Qj and Qi,j = E(Q[,j—la Qi+1,j)9 I<igj—10.

Clearly then @, ; < Q;4,; and it is easily seen that

”Qi.j - Qi.j+ Wl < 67+1-1.10-,
It follows that

(o]

Y 101 — 01l <Y (6/10)7 = (5/2) (3/5)7".
j=1 j=1
Hence for j » + o, Q,; converges to some projection Q;. Clearly Q; < Q/4,
and lim |Q; — @/ = 0. Q.E.D.

5.2. LeMMA.  Consider a subset Q < L, such that p(Q) is separable. Then
the following assertions are equivalent:

(i) For every finite subset ¥ = Q we have qd(X) = 0;

(ity There is an approximate unit {Q;};en = P(K) such that Q; < Qji1,
(jeN), and lim [[Q;,a] | = O for all ac Q + K.

Jro0
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Proof. That (ii) = (i) is immediate.

For the converse it is clear, assuming (i), that for {a,},en = Q@ a sequence
with {p(a)}.en dense in p(Q), there is a sequence {Qj};en = P(K) which is an
approximate unit of K, such that lim ||[Q},4]] =0, for all keN, and

joo

Or < Or+1- Then (i) follows using Lemma 5.1 and the fact that lim || [Q), B] | =0
10—h jroo

for every be K. Q.E.D.

A subset Q < L, with p(Q) separable will be called almost diagonal if it satisfies
the equivalent conditions of Lemma 5.2.

5.3. DEFINITION. A homogeneous X-extension by A, defined by 1: 4 —
- C. X, L(H))/C,(X, K(H)) is called quasidiagonal, if p~\(1(A4)) is almost diagonal
with respect to the ideal C, (X, K(H)).

It is easily seen that if t,, 7, define equivalent homogeneous X-extensions
by A, then 7; is quasidiagonal if and only if 7, is. Thus we can speak about
quasidiagonal elements of Ext (X, A).

Also, as for the usual extensions by K(H), it is obvious that the quasidiagonal
elements of Ext (X, 4) form a semigroup.

Recall from ([42]) that a unital separable C*-algebra A is called quasidiagonal
if there is a *-monomorphism p: A —» L(H), p(A) N K(H) = 0 such that p(4) is
almost diagonal with respect to the ideal K(H) (i.e., in the usual sense).

In view of Thm. 2.10, if A is quasidiagonal and X finite-dimensicnal, then
any trivial homogeneous X-extension by A is quasidiagonal. Moreover it is also
clear that the existence of a trivial homogeneous X-extension by 4 which is quasi-
diagonal, insures the quasidiagonality of A.

5.4. PROPOSITION. Let A be a nuclear quasidiagonal C*-algebra and X a
JSinite-dimensional metrizable compact space. Let [t} € Ext (X x [0, 1), A) be such
that if([z]) = 0, where

i X x {0} - X x [0,1]
is the natural inclusion. Then it follows that [7} is quasidiagonal.

Proof. In view of Thm. 3.3, we may assume

©(4) = C,(X x [0, 1], L(H))/C(X X [0, 1], K(H)).
Let also
¢: A - C(X X [0,1), L(H))

be a completely positive lifting for 7. Denote further by
i X X {t} - X x[0,1]

the natural inclusion and by
Je X x[0,1] - X x {1}

the natural projection.
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Fix a,...,a,e A and ¢ > 0. Since ¢(a;)e C,(X x [0, 1], L(H)), there is
a natural number » such that :

I(@@)) (x, ) — (@) (x, ) <&, (1 <i<m),

whenever [t —¢'| < 2/n.
Using Thm. 3.2, Thm. 3.3 and the Choi-Effros theorem, there is a completely
positive map

n:A - C(X x[0,1], L(H))

such that p o5 defines a homogeneous (X X [0, 1])-extension by 4 and

[peo(e ®@m]=0.
The completely positive map

0:4->C, (XX[O,I],L (H(_B(H@H')@@(H@Hr)))

n-times

pefined by

0@) (x, N=(0(@)) (x, 1) ® @ (0@) (x -—) ® (1(a)) (x ’—))

=1

determines an extension, and

oo 01 =1+ Y, (o i) @+ [pon]) = [

Consider also the completely positive map

lp:A—)Cn(XX [0’1];L(H@(H@HI)®"-~@(H(‘BH’)))

n-times -

defined by

W@) (x, 1) = (9(@) (x,0) ® @((qa(a)) (x, )@<”(“”( :))

Clearly p oy defines a homogeneous (X % [0, 1])-extension by 4 and [poy] = 0.

For (k—1)/n <t < k/n, (1 £ k < n), define the unitary operator
(4 . HI
U,eL(H (HOH)®...®H® ))
n-times

by
UHh @(hofMe.. (L ®f) =80 @ ®g)®... D(g, Dg)
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where
gi=rf, (A<j<n;

g =lit1y O<j<k—2);

81 = (k—n)2fy 4 (nt — k + 1)12f;
&= —(t—k + 1)2f, + (k — nt)V2f,;
g=—f *k+1<j<n),

It is easy to see that U, depends continuous]y on tel0,1].
Consider also the unitary

Vec,,(Xx[o,l],L( .
n-times

H®(H®H')®---®(H®H’)))

defined by
Vx,t) = U,.

With these definitions it is now easy to see that
WVO(a) V*—Y(a)] <5¢ for 1<i<m.

Since p o y defines a homogeneous (X X [0, 1])-extensionby Aand [poyy] =0,
it follows because A is quasidiagonal that

qd(Y(ay),. . ., ¥(a,)) = 0

and hence
qd(6(ay),. . . , 6(a,)) Slrzjagxmu Vo(a)) V* — y(ay)| < 5e.
But since
[pe0l=1I1=[p-ql
we infer

qd(9(@y),. - - > 9(a,)) = qd(0(a)),. . ., 8(a,)) < Se.
Hence since ¢ > 0 was arbitrary we must have
qd((p(al)>' s q)(am)) = 0:

which is the desired result. Q.E.D.
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5.5. PROPOSITION. Let A be a nuclear quasidiagonal C*-algebra and assume
X is finite-dimensional. Consider also the map

i X > X X[0,1], i(x)=(x21).
Then we have :
i) =0=if{t) =0 for [r]eExt(X x [0,1], A).

Proof. Let [t]eExt (Xx[0, 1], A) be such that i*(z])=0. In view of
Thm. 3.3. we mai assume

o(A) = C,(XX[0,1], L(H))/C(X x [0, 1], K(H)).
Let further

P: A4 - C (X x[0,1], L(H))

be a completely positive lifting for 7. Let also {a4;};en = A4 be a total sequence
in A. Denote further by

P 1 4 - CX, L(H))

the completely positive map
(®(@) (x) = (P(a)) (x, 1)

By Proposition 5.4, [t] is quasidiagonal. Thus we can find an increasing
sequence 0 = Py, < P, < P, < ... of selfadjoint projections in C,(X, K(H)), which
is an approximate unit for C,(X, K(H)) and satisfies the following conditions:

M I[P}, P(a)] || < 27, 1 <k<j;
@ 10— P) (P@) (@) — P@a)) | <27, 1<i, k<)

For j > 0 there is an integer N; > 3 such that |t — ¢'| < 2/N; implies

1Pu(x, 1) — Pi(x, t')] < (10(j + D)3, I<k<j+ 1L
€))
1(@@)) (x, ) — (@) (e, )| < G+ 17 1<k<j+ 1L
Defining
i@ =T — P ) 9@ (I — Pyy) + (Pryy—P) D(a) (Pjuy— P,

for j > 0, we have po ®; = po & = 7 and ®; is completely positive.
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Also we can find V; e Cyu (X X [0, 1], L(H)) such that V}}V; = I and V; V=
= (I— P;), j = 0. Indeed it suffices to use (10.8.7 in [21]) for the continuous field
of Hilbert spaces

(d— P(3)) Hyexnpory (I —Py) C(X X [0, 11, H)).
Consider then the completely positive maps
Tj,k: A - C:’,:s(X7 L(H))

defined by

(P;, (@) (x) = (Vi (@) V) (x, k[N)).
Also consider

Nj—l -
H = @( ® H”‘)

jzo\k=1
where the H/:* are copies of H, and let
V: 4 - Cu. (X, L(H))

be the unital completely positive map

N;—1
W: @( (—B glj,k).

720\ k=1

Remark that p o ¥ defines a homogeneous X-extension by A. This follows
from (1), (2), since

Y; a;a) — ¥; «(a) Wj,k(%) e C(X, K(H))
and
1¥;,k(a;ia) — ¥;,(a) ¥ lal)ll <

< (I — Py (P(aia) — (ay) P(a))l +
+ (P41 — Pj) (P(a,a;) — P(a;) Y(a))ll +
+ (I — Pjyy) ¥(a) Pjpy Ba)l +

-+ ”(PJ+ 1— Pj) D(a;) I — Pj+1 + Pj) D(ayl

which, by (1), (2), is <5-27if 1 <i, s<J.
Let also P; e C(X, K(H)) and V; ;€ C, (X, L(H)) be defined by

P, (%) = Px,k/N) for j>0,0<k<N,

Viux) =V(x,k/N) for j>0,1<k<N— 1.
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Because of (3) there are unitaries U; e C(X, K(H)) +1,j 20,1 <k <N,
such that

Uj,k(Pj+l,k—1 '—Pj,k_l) Ufk = Pj+1,k‘“‘Pj,k,
@
”U},k_1“<(.]+l)-23 ]203 lngN’.

This can be done by standard arguments (compare with the first part of the proof .

of Lemma 5.1) taking for U; , the sum of the partial isometries in the polar decom-

positions of (P41 x—P; i) (Pj+1x1—Fj k1) 804 (=P 1 4+ P; ) (I—Pji 141+ Py i)
We shall now construct

Re C, (X, L(H, H"))

SeC. (X, L(H', H))

TeC,.(X, L(H', H))
which will then be used to construct a certain unitary

Ue C, (X, L(H @ H')).

Since
Nj—-1
H = @( ® H""),
j»o\ k=1

it will be sufficient to describe the components
R; ;€ C, (X, L(H, H/'*))
of R. These are:
Rj, k= 0 if k > Zandell == V}*l (]j;l(Pj-l-l,O o leo).
It is easily seen that R¥*R =1 and
Ny~1
RR* = @ ( @ Qj:k)

Jj20 \ k=1

where

Qj,k = 0 if k > 2 and Qj,l = Vi,‘l (}>j+1,1_Pj.1)V’,1'
Moreover

”Rj, 1 P%a) — ¥;, @) Ryl =
= "Uj.'1(Pj+1;o— Pj;o) P° (a,) — (Piy1,1— P}, D PNi(ay) (Pjy1,1— P; I)U] i<
< [[(Pj41,0—P;, 1) (Uj, 1 9%a) — DN (@) U, 1|+ [N (@), (Piyr, 1 — Py, DI <

< | [P(a), (Pj+1'— Pj)] | + 19° (@) — 2N (@)} + 2l |l Uj,,—1].

7 — ¢, 1841
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Hence in view of (1), (3) and (4), it follows that
RP (@) — Y(a) Re C,(X, K(H, H")).
Since {a;}xen is total in A it follows that
RP° (@) — ¥Y(a) Re C,(X, K(H, H")) for all ae A.
Next Te C,{X, L(H', H)) is defined by its components

I},k € C:.‘\'S(X’ L(Hj’k: H))'
These are

Tia=0if k < N;—2 and Tjn;-1 = (Pjrr,n, — Pin) Upw, Vin-1e

It is easily seen that T* is constructed the same way as R after performing the
symmetry & — 1 — « on the segment [0, 1]. So, the same kind of argument as for R,
gives TT#% = [ and

Nj-—1
T*T = @( ® Q,-,k)

iz0 k=1
where Q;; = 0 for k < N;—2 and
QN 1= Vi1t Pisiny—1— Pin,—1) Vi1

Moreover,

T¥(a) — &\ (a) Te C,(X, K(H', H)) for all ae A.

Finally we construct S as the sum of two operators S,, S,. Here S is

Ny—1
S1= @ ( ® I~V (Piy1,e— Pj1) ij))

iz0\ k=1
Clearly S, is a projection and‘ [S1, P(4] = 0. Next, S, will be such that |
Sy(x} (H?%) « HiF+Y, (1 <k < N;—2) and Sy(x) (H»Ni=1) = 0.

The “matrix-element”” of S, from H/:¥ to H»*+1 is given by

S i = Vi1 U xs1(Pisrx— P V5
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Since
i Sz,j,k'lyj,k(as) - lI’j,k+1(as) Sz,j,kn =

= (P41, k41— i kD) PEHDIN;(g) (Ps1, k+1— Pj xen) Uj g1 —
— Uj,k+1(Pj+1,k—‘ Pj.k) PFINi () (Pj+1,k—”Pj.k)” =
={(Pj41, k41— i k1) (@~ DNy (a,) Uj xs1— Uj xa1 7N (a,)) ¥

X Piar,e— P )l < llagl 1T gay— 11 + [@E+DNi (@) — BHNi(a )],
using (3) and (4) it is easily seen that
[S2, P(A)] = C(X, K(H")).
Also for S = §, + S, it is immediate that
S*S =1I—RR* and SS8%* =] T*T.

The unitary U € Cy (X, L (H @ H')) is now defined by the matrix (U;, ;)i<;, j<2
where :

Uy e CofX, LH) Uy, = 0;
Ve Co(X LWHL H) . Upa=T;
Uy, 1€ CofX, L(H, H) U1 = R;
Uss€ Co X, LIH)) U, = S.

We have ‘ .
U(®° (@) ® P(a)) — (Pa) © ¥(a)) Ue C,(X, K(H @ H'))
for all ae A. ' : o
This gives
il +lpe Pl=ifltd+ [po ]
so that o
i =0=if]=0.. Q.E.D.

For our next purposes, it will be useful to make the following working
definition.

5.6. DEFINITION. A nuclear separable unital C*-algebra A is said to have
the homotopy invariance property if for every finite-dimensional X and [1] € Ext (X X
x [0, 1], A) we have

i§lr) =0 =] =0

(where iy: X — X % [0, 1] is the injection i(x) = (x, t)).
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Thus Proposition 5.5 means that nuclear quasidiagonal C*-algebras have
the homotopy-invariance property.

Endowing the space of s-monomorphisms 7: 4 — C, (X, L(H))/C,. (X, K(H))
defining homogeneous X-extensions by 4 with the topology of point norm conver-
gence, two such *-monomorphisms are called homotopic if they can be joined by
a continuous curve in this space.

5.7. PROPOSITION. Let A be a nuclear C*-algebra which has the homotopy-
invariance property, X, Y finite-dimensional compact metrizable spaces, f,g: X - Y
continuous maps, and [ty), [t,] € Ext (X, A). Then we have:

() if f and g are homotopic, then

f*, g* Ext (Y, A) - Ext(X, 4)
are equal:

(i) if 1o and 1, are homotopic then [to] = [14].

Proof. (i) First let [t] e Ext (X x [0, 11, 4), we shall prove that i§[z] = i¥[r].

Indeed, by the symmetry o + 1 — a of the segment [0, 1] we infer that i§[t] =
= 0 <« if[r] = 0. Moreover, since i} and i} are surjective we infer that i¥[t] ~> i}{7]
defines an automorphism of the group Ext (X, 4). But since for every [o] € Ext (X, A)
there is [tf]e Ext (X x [0,1), A) such that i¥[r] = i}[r) =[s]), we infer that
ig[t] = if[x] always.

Now since f, g are homotopic, there is F: X X [0, 1] = Y such that Fo i, = f,
Foi, =g, so that

f*x] = i (F*[z]) = g*[1]
for all [t] e Ext (Y, 4).
(@ii) Since 7, and 7, are homotopic, there is a *-homomorphism
o: A - C(0, 1}, C,.(X, L(H))/C(X, K(H)))
such that each
43 a > (0(@) (1) € Cyo (X, L(H))/CX, K(H))
defines a homogeneous X-extension by A and
(¢(@) (0) = (@) and (o(a)) (1) = (@)
By the Bartle-Graves theorem ([33]),
G0, 1], C.. (X, L(H))/C(X, K(H)))
is isomorphic with
C(0, 1], C,. (X, L(H))/C((0, 1], C(X, K(H))).
But
C.(10, 1], C,(X, K(H))) =~ C,(X x [0, 1], K(H))
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and
G0, 1], Cy (X, L(H)))
is isomorphic with a C*-subalgebra of
Cis(X > [0, 1], L(H)),
so we get a unital #-monomorphism
o: A > Cu(X x [0, 1], LLH))/C X x [0, 1], K(H)).
It is easily seen that ¢ defines a homogeneous (X x [0, 1])-extension by A and

that i¥[¢] = [1,], i¥[6] = [r,]. Since i, and i are homotopic, [7,] = [1,] follows

by (i). Q.E.D.

Recall that two unital *-homomorphisms pg, p,: A — B are called homotopic
if there is a curve joining them in the space of unital *-homomorphisms endowed
with the topology of point-norm convergence. Then Proposition 5.7. (i) imme-

diately yields the following corollary.
5.8. COROLLARY. Let B be a nuclear unital separable C*-algebra and A a

nuclear C*-algebra which has the homotopy-invariance property. Let further X be
[finite-dimensional and p,, p,: A - B be homotopic unital x-homomorphisms. Then

Poso Prse: Ext (X, B) — Ext (X, A4)

are equal.
Now we shall proceed to widen the class of C*-algebras with the homotopy-

invariance property.
For the next lemmas all ideals are closed two-sided and proper and for every

ideal J < A, J denotes the C*-algebra, J=C-1+J.
5.9. LeMMA. Let A be a unital nuclear separable C*-algebra and J < A

an ideal. Then if A|J and J have the homotopy-invariance property it follows that A
has the homotopy-invariance property.

Proof. Consider the diagram

Ext (X x [0, 1], J) +—— Ext (X x [0, 1], 4) <—— Ext(X x [0, 1], 4/J)

li(’,":i;“ i:l li{" i l

=]
Ext(X,J) «———— Ext(X,d) <——— Ext(X, A/

%
=%

The horizontal rows are exact because of Thm. 4.1, also the wvertical arrows
at both ends are isomorphisms since X x {0} and X x {1} are clearly deformation
retracts of X X [0, 1]. Since the diagram is commutative with any of the two
vertical arrows in the middle, we get that they must be equal. Q.E.D.
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5.10. LEMMA. Let A be a nuclear C*-algebra, J = A an ideal, q: A — A|J
the canonical homomorphism. Assume further that J has the homotopy-invariance
property and let [t} e Ext (X X [0, 1], 4) be such that if[t] = 0. Then there is
[6]e Ext (X X [0, 1], A/J) such that q.[o] = [1] and i}[e] = 0.

Proof. Consider j: X x [0, 1] = X the projection j(x, )= x and let i: T 4
be the natural inclusion. Since 7;: X — X X [0, 1] is a homotopy-equivalence it
follows that

i Ext (X x [0, 1], J) » Ext (X, J)

is an isomorphism. Hence i§(i.[t]) = O implies i.[:] = 0. Thus using Thm. 4.1,
there is [6'] € Ext (X X [0, 1], 4/J) such that g.[6'] = [t]. Then we may take [¢] =
= [¢'] —j*i¢[¢']. Q.E.D.

5.11. LEMMA. Let A be a nuclear C*-algebra and J,c J,cJ,c...an

increasing sequence of ideals, such that \J2.,J, = A. Assume also that .7k+1/Jk
has the homotopy-invariance property for all ke N. Then A has the homotopy-
invariance property.

Proof. Let [t]e Ext (X x [0, 1], 4) be such that j¥[t]=0. We shall first
prove the existence of [o,]e Ext(X x [0, 1], 4/J,) such that g.lo... = [a4],
loo] = 7], ig[ox] = O, where g: A/J, — A/Jis1, (Jo = 0), are the canonical homo-
morphisms,

Indeed, since ?k+1/Jk have the homotopy-invariance property, the existence
of the [o;] with the above properties follows by using Lemma 5.10 recurrently.
We shall now prove that this implies [z] = 0. In view of the above, there
are Hilbert spaces H,, H;, H;', H, = H, ® H;/, (k = 0), »-monomorphisms o,

okt Al > CordX X [0, 11, LAHNC,(X X [0, 11, K(H),
=-homomorphisms p,
pi: Al > Co (X X [0, 1], L(Hp)),
unital completely positive maps
Yt Afrs — Co (X XI[0, 1], L(HY)),
and unitaries

Uk € C:::s(X X [07 1]1 L(Hk+ 1 H;('))
such that

ol =[o1], (k= 0);

oo @ Wog)) =0r,  (k=0);
a(Uy) o O'II<+1 =peo lﬁk, (k = 0).
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Define also completely positive maps
@it Al = Co (X X [0, 1], L(H,_y))
for 0 < j < k, by taking
Qo =Pk ® Wroq) and @ik = pr_j 1 @ (U)o @) 10 G j_y)

Denoting by ¢, the completely positive map ¢, ,, it is easily seen that
po(Pk:O'(;, (v)k>01
Pusal Ji = @il i ¥) k >0,

and ¢, fk is a s-homomorphism.

Since U0 J,:is dense in A, it follows that the completely positive maps ¢, are
point-norm convergent to some unital *-homomorphism ¢: 4—C, (X x [0, 1], L(Hy)).
Since ¢| J, = @,] J, hence (po @) (@) = (po@,) (@) = oi(a) for allaeJ,. Again
by the density of {_J{Z, J.in A, we infer pog = o, Thus [og] =0 and since
[5¢] = [oo] = [z}, the Lemma follows. Q.E.D.

The next theorem involves composition series for C*-algebras, the definition
of which can be found in (4.3.2, [21]).

5.12. THEOREM. Let A be a separable nuclear unital C*-algebra having a

composition series (J,)o< ,<, such that J ,+1/J, are quasidiagonal. Then A has the
homotopy-invariance property.

Proof. We prove by transfinite induction that the J~p have the homotopy-
invariance property.

The step from J:, to J;H follows from Lemma 5.9.

Incase B < ais a limit ordinal and J, have the homotopy-invariance property
for all p < f our assertion follows from Lemma 5.11 and the remark that 4 being
separable, we can find a sequence p; < p, <...of ordinals, p; < f(V) jeN
such that J;, = U2, J,,. QED.

Since GCR-C*-algebras have composition series with CCR quotients (see
[21], 4.3.4) and since CCR-C*-algebras are quasidiagonal ([44]), we have the follow-
ing corollary.

5.13. CoROLLARY. The GCR separable unital C*-algebras have the homotopy-
invariance property.

§ 6

In this section we establish a short exact sequence in the X-“variable” for

Ext (X, xy; A).
For the short exact sequence in the X-variable, some preparation is necessary.
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6.1. LEMMA. Let X be a finite-dimensional compact metrizable space and
Y © X a closed subset. Suppose e,: Y— H are continuous functions with the property
that {e,(y)}neN is an orthonormal basis of H for every y € Y. Then there are continuous
functions é,: X - H, (neN), such that {€,x)}nen is an orthonormal basis of H
for every xe X and é,| Y = e,, (neN).

Proof. Let {h,},en be a dense sequence of non-zero elements in H, each
vector occuring an infinity of times. Let also {F,}.cn, be an increasing sequence
of closed subsets of X, such that

UneN E; = X\\Y

We shall construct recurrently continuous maps ¢,: X — H satisfying:

~

el Y =re, m<n={2,(x),2,(x)) = () xeX

and

hy— Y e 89 2)

k=1

< 1/n for all xe F,.

Clearly the constructed €, will then satisfy the requirements of the lemma.

Suppose ¢; have been constructed for &k < n (if n = 1, the set of k < n is
void). Consider for each x € X, the set S, < H, which is the set of all vectors of
length 1 in H which are orthogonal to {&(x); 1 < k < n}. It is easily seen that
the set-valued function X sx+> S, < H is lower-semicontinuous in the sense
appearing in Michael’s theorem ([33]). Also if ¢ < 1/2, then if

Q= {feH; |f—h| <e}n S, #0O

for some he H and xe X, then Q is contractible, as can be easily seen using
the map

F@.f) = Il(0—0ho + f | (A —1) by + 1f), ho€ Q.

Also by (10.8.2 in [21]) each S, is contractible. Thus the set-valued map
X3x e S, c H satisfies the conditions of Michael’s theorem.
Defining {: X - H by

{(x) = h,,—:;:] (s €(X) enlx)

and considering M < F, the closed subset of F, on which [{(x}| = 1/n, let
g: M U Y > H be the continuous map which is equal to {(x)/|{(x)]] for xe M
and equal to e,(x) for xe Y. Then g(x)e S, for each xe M U Y. Hence by



HOMOGENEQUS C*-EXTENSIONS OF C(X) ® K(H). 1. 105

Michael’s theorem ([33]), there is a continuous map €,: X — H such that z,(x) €S,
for all xe X and ¢,| (M U Y) = g. Clearly

(Eux); &n(x)) = O

for all m < n and xe X. Also since

= [ — {2, &(x)) &,

hn - Zn <hm ék(x)>~ek(x)!
k=1 [

we infer that

h— % (e 8@ 6)
k=1

is < I/non FA\ M and is =0 on M. Q.E.D.

6.2. COROLLARY. Let X be a finite-dimensional compact metrizable space and
Y < X a closed subset. Let further U:Y — L(H) be a %-strongly continuous map
such that U(x) is unitary for each xe Y. Then there is a =-strongly continuous
map U:Y — L(H), such that U(x) is unitary for every xe X and U|Y = U.

Proof. Let {f,}nen © H be an orthonormal basis of H. Let further e,: ¥ — H
be defined by e,(y) = U(») f,. Consider then the ¢,: X — H provided by Lemma 6.1,
and define

U: X - L(H) by Ux)f, = é,(x).

Then X3x U(x)eL(H) is clearly unitary-valued and strongly-continuous.
Since Uis unitary valued and strongly-continuous, it follows that itis also #-strongly-
continuous. Q.E.D.

If Y is a closed subspace of X, then considering X/Y endowed with the base-
point Y/Y, we shall write Ext (X, Y; A) instead of Ext (X/Y, Y/Y; A).

6.3. PROPOSITION. Let Y be a closed subspace of the finite-dimensional metri-

zable compact space X and let i: Y — X and j: X - X/Y be the natural maps.
Then assuming A is nuclear, we have the following exact sequence:

Ext (X, Y; A) 5 Ext (X, A4) - Ext (Y, A).

Proof. Clearly i* o j* = 0, so it will be sufficient to prove that Im j* = Ker i*.
Thus let [7] € Ext (X, A) be such that i*[r] == 0; we shall prove the existence of
[6] € Ext (X, Y; A) such that j*[o] = [z].

Since i*[t] = [i*(r)] = 0, there is a unitary Ue C, (Y, L(H)) implementing
the equivalence of i*(t) and of some constant trivial homogeneous Y-extension by A.
Thus there is a =-monomorphism u,: A — L(H), ue(4A) n K(H) =0, such that
defining

p: A4 - Co (Y, L(H)) by (@) (») = no(a), (V) ye¥,
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we have
wa) — U(f| Y) U* e C(Y, K(H)) for fep™ (1(a)).

By Corollary 6.2, there is a unitary Ue C. (X, L(H)) such that f][ Y = U. Then
using the theorem of Dugundji for

u@) — U(f| Y) U* e C(Y, K(H)),

we obtain that for every aeAd, there is ge C.(X/Y, L(H)) such that
goje Upt(t(a) U* and g(Y/Y)— u(a)e K(H). Also, clearly two such
g’s differ only by an element of C,(X/Y, K(H)). Thus defining

61 A — Co(X/Y, L))/ CX]Y, K(H)

by o(a) = p(g), where g is such that

goje Up™((a) U*,
we have

J*©@) = YU)ot

and [¢] € Ext (X, Y; 4). Q.E.D.
The following consequence of the preceding proposition is immediate:

6.4. COROLLARY. Let X be a finite-dimensional compact metrizable space,
Y < X a closed subset and x4 Y — X. Denoting by i: Y - X and j: X — X|Y the
natural maps, for nuclear A we have the exact sequence:

Ext (X, Y; 4) 5 Ext (X, xo: 4) = Ext (Y, xo; A).

6.5. REMARK. In case A is not nuclear, the proof of Proposition 6.3 still
shows that i* oj* =0 and Keri* < Imj*,
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