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OPERATOR EXTREMAL PROBLEMS, EXPECTATION
OPERATORS AND APPLICATIONS TO OPERATORS
ON MULTIPLY CONNECTED DOMAINS

JOSEPH A. BALL

INTRODUCTION

Let R denote a bounded, open, and connected subset of the complex plane
whose boundary consists of # + 1 analytic nointersecting Jordan curves. Abrahamse
and Douglas [4] have shown that bundle shifts on R are models for pure subnormal
operators with spectrum contained in R and with normal spectrum (the spectrum
of the minimal normal dilation) contained in dR. In the case where R is the unit
disk D, such a bundle shift reduces to a unilateral shift of some multiplicity, the
operator of multiplication by z on H*(D) ® A", where H%(D) is the standard Hardy
space associated with the disk D and % is a separable Hilbert space. A bundle
shift S, is uniquely determined up to unitary equivalence by an element o of
Hom(mr(R), %(A")) (homomorphisms from the fundamental group of R into the group
of unitary operators #(") on a separable Hilbert space /). The dimension of
A (dim ") is said to be the rank of S,, and is the multiplicity of the minimal normal
extension of S,. The bundle shift S, associated with « is realized as multiplication by
z on a Hilbert space HZ of analytic cross-sections of an analytic vector bundle over
R associated with «. An analytic cross-section of such a bundle equivalently can
be viewed as a certain type of vector valued multiple-valued analytic function on R
whose norm is single-valued. For two elements « and 8 of Hom (my(R), #(X))
and Hom (ny(R), %(A"")) respectively, the space H*(x, ) consists of those (multiple-
valued) operator-valued multiplication operators which take H?2 into H3. An element
© of H®(u, f) is said to be inner if @ maps Hj isometrically into H.. When this is
the case necessarily dim #” < dim . A generalization of the well-known theorem
of Beurling due to Abrahamse and Douglas is that any subspace 1 contained in
HZ and invariant under Rat(S,), the set of all operators r(S,) where r is any rational
function with poles off of the closure of R, is of the form @HE for some f in

Hom (7y(R), #™"), where @ is an inner element of H%(«, f).
In Section 2 of this paper, assuming dim ¢’ <dim " and that dim " is finite,

we show that inner functions in H%(x, f) arise as solutions of certain extremal
problems. The idea is to adapt techniques of Widom [30], who studied similar extre-
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mal problems but only for scalar-valued functions, to an operator-valued setting.
Other authors [6, 15, 16, 22] have studied such extremal problems for single-valued
scalar-valued functions. An open question suggested by our result is whether the
bundle shift S, is universal in the sense that, if S, is any other bundle shift with rank
less than or equal to that of S,, then, is there is a Rat(S,)-invariant subspace I
such that the restriction S |9 of S, to I is unitarily equivalent to S;? Our result
is that S, contains any such S, of finite rank in this sense. '

Section 3 introduces an expectation operator defined on spaces of operator-
valued functions on the covering space of R which generalizes the expectation operator
of Earle and Marden [13). This is of great utility for deducing a refinement of the
result resting on a theorem of Grauert [17} and Bungart [9] that all bundle shifts of
the same rank are similar [4]. We also use this expectation operator to deduce various
invariant subspace theorems for spaces of operator-valued functions on R directly
from the corresponding results for the disk. In particular we pick up an operator
generalization of a theorem of Voichick [29] characterizing the closed ideals of
A(R), the space of (scalar) functions continuous on the closure of R and analytic
on R. This result is needed to prove a result concerning approximation of a contin-
uous function in H%(x, B), by linear combinations of continuous inner functions
in H*(a, B). Applications of this machinery to commutants of operator models on
multiply connected domains will appear in a forthcoming paper [7].

In Section 1 we give some invariant subspace theorems for spaces of operator
functions on the unit disk which do not seem to appear explicitly in the literature.
These are the results which are then generalized in Section 3 to the setting where R
replaces the unit disk.

1. INVARIANT SUBSPACE THEOREMS ON THE DISK

Let 2 be a separable Hilbert space, C?(") (1 < p < co) the Schatten p-class
of operators on " with Schatten p-class norm [26]. For p = oo, let C*(X') denote
the compact operators on 2 with operator norm. Of course, if " is finite-dimensional,
Cr(A)=2(A) for all p and all norms are topologically equivalent, but the norms
do affect the duality relations which we shall develop. For X any Banach space,
let Hy denote analytic X-valued functions on D uniformly bounded in X-norm,
and for 1 €p< c;o, let Hy denot1e analytic X-valued functions F(z) on D such that
||F||H§ =Osppl{g | F(r e“’)”’}d()} ’ < 0o. When convenient, we will identify an ele-

<r<1) . ‘ A
ment of H% with an element of L} (weakly-measurable X-valued functions on the unit
circle whose norm raised to the p-th power is integrable) via weak boundary values.
It is known that under this correspondence HY% can be identified isometrically as a
closed subspace of L. Finally we note that Heeun-is @ Hzx)-module. We are
interested in characterizing closed one-sided submodules. A function B(z) in Hz(x)
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is said to be rigid if the weak boundary values B(e'®), 0 < 6 < 2=, are partial
isometries a.e. (with respect to Lebesgue measure) having a fixed initial space.

THEOREM 1.1. a) A non-zero closed (for p= oo, weak * closed) right Hgx)-sub-
module I of H¢eox) is of the form BHgoixy where B e Heyxy is rigid. b) A non-zero
closed (for p=oo, weak + closed) left Hzux)-submodule I of Hisoxy is of the form
Heoo\B where Be Hex is rigid.

Proof: The case p =2 is given by Sarason [25, p. 196—197]. The case
1 € p < 2 can be reduced to the p = 2 case by adapting the proof of Helson [18,
Lecture IV] for the scalar case. To do this, one must consider the case dim.#" < oo
first, so that C?(#')=C%(#") and the norms are equivalent, and hence Hg'p(_;()Dngzpr);
the case of dim # = oo can then be obtained froin this case by approximation.

If 2 < p < oo and ¢ is chosen so that — —|—4=1(q—11fp—oo) then

L&) is the dual of L¢sx), and 1<g<2. Thxs enables one to reduce the 2<p<co
case to the 1 < p < 2 case as is done in Helson’s argument.

For X a compact metric space, let chm(X ) be the space of continuous
C®(A")-valued functions on X. We will be particularly interested in the case where
X is the unit circlé, but the natural level of generality for the next theorem is with
a general X. If dim#" =1, Coopr(X) Teduces to C(X), the space of continuous
complex-valued functions on X. It is well-known [20; p. 57] that a closed ideal of
C(X) is precisely the set of all f{x) in C(X) vanishing for-all x in some closed subset
Y of X. Our purpose here is to generalize this result to characterize the closed right
ideals of Ccoo(x)(X ).

We will need a few facts concerning the C*-algebra Ccoo(x,)(X ). For general facts
and definitions concerning C*-algebras, see Sakai [24]. First of all the dual of Ceoo( y[)(X )
can be identified with the space Mcy)(X) of regular Borel trace-class valued measures
on X via the natural pairing [10, p. 337]. Therefore a state (positive linear functional
of norm one) corresponds to a positive trace-class measure of total variation norm
one; a pure state (extreme point of the convex set of states) is necessarily a trace-class
measure of the form < -, e> e d,, where e is a unit vector in ', x is in X and 6,
is the unit point mass at x. By the correspondence between pure states and irreducible
representations [24, Theorem 1.21.10},. it follows that any irreducible representation
of Cro ) (X) is unitarily equivalent to evaluation at some point x in X (F € Ccoo(f) 0.9)
- F(x)e C°°(,}if )); it follows immediately that CC°°(1()(X )is a Type I C*-algebra; since
X is a compact metric space and ¢ is separable, we also have that C, or(X) is sepa-
rable. Therefore the Stone-Weierstrass theorem for C*-a]gebras of Saka1 (24, p. 240]
applies to C coopry(X) and to its C*-subalgebras. o .

We are now ready to state our theorem. For T an operator, [Ran T denotes

the closure of the range of 7 and the symbol v means closed span.
THEOREM 1.2. Let I be a closed right ideal of C oo(x)(X )and for each x in X, let
" Pix) = v{[Ran F(x)]": Fel}.
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Then I is precisely the set of all functions F(x) in Ccco(x,)(X) such that

Ran F(x) c P)(x)
for each x in X.

Proof. Let J be the closed right ideal consisting of all F in Cos ,(X) such that
Ran F(x) < Py(x) for each x in X, and let J, be equal to JNZ and I, equal to
In 2 where 2 consists of all positive elements in Ccoo(x)(X)- By [11, Lemma 2.9.3],
J (respectively I) is the closed right ideal generated by J, (respectively 7,). Hence,
to show that J is equal to 7, it suffices to show that J, = I,. Now let J, (respectively
I)) be the C*-algebra generated by J, (respectively I,); then ;N # = J, and [} N P =
= J, . Therefore, it is sufficient to show that J; = I,. By Sakai’s Stone-Weier-
strass theorem applied to J,, it suffices to show, given any two distinct pure states p;
and p, (one of them possibly zero) on Ji, there exists an F in I, such that p,(F)# p,(F)-
By an argument similar to the discussion preceding the theorem, p; (i = 1, 2) arises
from an element of Mcir(X) of the form (-, e;) e, for some x; in X and unit
vector e; in P(x,) (if p; is zero, take e, to be the zero vector). In any case, p; is of the
form FeJ, » {F(x,)) e;, e. If x; # x,, it is clear that we can choose F in I; so
that p,(F) # po(F). If x; = x, and e, # 0, since I is a right ideal and by the definition
of P(x,), we can choose F in I so that the element G=FF* in I, has G(x)={-, upu,
where |u; — e,| < |lez — &,||. Then G separates p, and p,, and the theorem follows.

By taking adjoints we obtain the closed left ideals. For T an operator, ker T’
denotes the kernel or null space of 7.

THEOREM 1.2’. Let I be a closed left ideal of Ccoo(x,)(X) and for each x in X, let

K (x) = n {Ker F(x): FeI}.

Then I is precisely the set of all functions F(x) in ch(x,)(X ) such that Ker F(x) > Ki(x)
for each x in X.

Let Ccoo(xf) be the space of continuous C*(¢)-valued functions on the unit circle,
and 4 o, the space of (A" )-valued functions continuous on the closure of the unit
disk D, and analytic on D. If dim X is equal to 1, 4 coot) becomes the classical disc
algebra, the ideal structure of which has been characterized by Rudin [23] and
Beurling (unpublished). Our next concern is to generalize this to a characterization
theclosed rightidealsof 4 coot)- First,as wenoted above, the dual of Ccco(x) it Mcaen,
the space of C!(A')-valued measures defined on the unit circle. Ryanhas proved an F.
and M. Riesz theorem in this setting : the annihilator of 4 co ) in My is isometrically

isomorphic to H(I)am (functions in Hél(f) vanishing at the origin). (See [21, p. 205].)
. . . . . i 1 i
The isometric injection of Hzlncxm ito Mcyry is simply F(e b P F(e'%) do.
T
Furthermore, any measure u in Mcyx) has a Lebesgue decomposition p=F (e'®ydo+
+ Hsing Where Fis in Llcux) and g, i in Meyr)andissingular with respect to Lebesgue
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measure. Finally, forany collection {B,: 2 € 4} of rigid functions in H;'im, a greatest
common left divisor always exists. For by the Beurling-Lax theorem[18], the subspace
v {B,H%: x € &} must be of theform BH2 for a rigid B. This Bthen is the greatest
common left divisor of {B,:a € d}. The proof of the next theorem is an operator

adaptation of the discussion in Hoffman’s book [19, p. 85—87].

For each z on 0D, let

THEOREM 1.3. Let I be nonzero closed right ideal in Acoo(xf)-

Pz) = v{[Ran F(z)]": Fel},

and let B be the greatest common left divisor of all rigid functions dividing an F in I
on the left. Then I is precisely the set of all functions of the form BG, where G ranges
over all functions in H;"(J/) such that BG is in A oo ) and Ran B(z) G(z)c P/(z) for
each z on 9D.

Proof. Let J be the right ideal consisting of all elements F in A con such that

F has the form BG where G is in Hgf,om and Ran B(z)G(z)< P,(z) for each z on dD.
First we show that J is closed. For if F, = BG, is in J for each n and converges to F,
then, since ||B*(BG, — BG,)| = |BG, — BG,|, {B*BG,} is a Cauchy sequence in
H ooy and converges to a G in Hiesy, - Since for each n and z, Ran B(2)G,(z) = Py(2),
it is trivial that Ran B(z)G(z) = Pi(z), and hence F = BG is in J as required. By
definition, I < J. To show that J < I, by functional analysis, the problem is to show
that any u in Mciary which annihilates 7 also annihilates J.
Hence let u be any element of M) which annihilates I:

fiw=0, fel
Fixing fin I, since I is a right ideal, we have

S tr(fF) dpt =0, F€ Ageeiy,.

This means that duf annihilates 4 and hence is of the form

Coo(_x/)a

1
duf= 5 H;df where H;e Hbyy, -

Let

1
p=——pdd+ Hsing
2n

pe the Lebesgue decomposition for u, where ¢ is in Llcwr) and W, is in Moy and
is singular with respect to df. From the above,

dlusingf: 0, fE L
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Let K be a set of measure zero carrying the singular measure pg;,.; by regularity
there is an increasing sequence {K,} of closed sets of measure zero whose union is K.
By an easy operator generalization of a theorem of Rudin [19, p. 81], Acw(x,)|K,,:
=Clroopr)(Kp)- Hence (/|X,)~ is a right ideal of Ceoorx)(Kn)- By Theorem 1.2 it follows
that (/1K) is equal to {F & Crooy,(K,): Ran F(z)< P(z) for z € K,}. It follows that
(du;0,QIK,) annihilates C coox)(Kn)s Where Q(z) is the projection onto P(z), and
hence is the zero measure. Since this holds for all X, it follows that dp;,,Q is the
zero measure, and hence annihilates J.

Thus it remains only to show that —21~ @ d@ annihilates J. We will show that
T

. .. 1 o
in fact @B isin Hocwr)’ and so 7— ¢@df actually annihilates all of BHY(,[) Asso-
n

ciated with each f'in I'is a Hj,,, function H, such that ¢f = H. Let 9 be the
weak-*closure in Hﬂ,{) of 1. Since I is a right ideal in A coo . and Acm(xf) is weak-*
dense in H, S it follows that & is a weak-*closed right ideal in HS 20 By
Theorem 1.1 a, N is of the form CHg,m for some inner C. Since the greatest
common left divisor of I is B, it follows that & is equal to BHg,m Now note that
if a net {f,} converges weak-* to f in Hﬁ’m’ then, since ¢ is in chxw {of.}
converges to gf weakly in Lél(ff) Since by the original construction ¢f is in H}, ociet)
for all f in [/, it follows that ¢f is in Hocyny for all fin SN = BHS,M), and in

1 o
particular, for f equal to B. Hence ¢B is in H(‘)C‘m, and hence o ¢ df annihi-
. T

lates BHS , as asserted.

Z(x)

2. OPERATOR EXTREMAL PROBLEMS

2.1 Definitions and notations. Let R be a bounded multiply-connected region in
the complex plane as described in the introduction and let 2#” be a separable Hilbert
space. In this section we define more precisely the spaces of vector- and operator-
valued functions over R alluded to in the introduction. The definitions here will
differ slightly from those of [1, 8] and from the bundle definitions of [4, 5], in order
to bring in the group structure of the fundamental group of R, but all these defini-
tions are equivalent. Let C,, ..., C, be r cuts in R such that, if C is the union of the
cuts C;, R\ C is simply connected. Let 7,(R) be the fundamental group for R, that is,
the set of homotopy equivalence classes of closed curves in R; it is known that
no(R) is a free abelian group with n generators. If 2" is a separable Hilbert space,
let (") be the group of unitary operators on . Then Hom (n,(R), #(X")) is the
group of all group homomorphisms of 7y(R) into %("). If F is an operator or vector
valued function analytic on R\C which has an analytic continuation across any
of the cuts C; (and thus F is a particular function element of a multi-valued function
on R), and if A4 is an element of the fundamental group 7,(R), for any z in R, define
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F o A(z) to be the analytic continuation of F, evaluated at y(1), along any closed
curve {y(f):0 < ¢ < 1} in the equivalence class 4 which begins and ends at the
point z. For 1 <p < oo and « in Hom (ny(R), %(X")), define H(a) to be the space
of all # -valued functions analytic on R\ C but with analytic continuations along any
curve in R, such that | F(z)[|” has a harmonic majorant on R, and for all z in R and
A in my(R),

@1 ) fo A2) = a(A) f(2).

It can be shown that the elements of H’ () have well-defined nontangential boundary
values on the boundary dR of R-almost everywhere with respect to arc length measure
[21]; specifying a measure m boundedly mutually absolutely continuous with
respect to arc length measure on AR enables one to define a norm on HJ,(x) which
makes it a Banach space (for p = 2, a Hilbert space), and isometrically isomorphic
(via f— f* where for a.e. z on dR, f*(z) = lim f(w) where w in R approaches z

w2z

nontangentially) to a closed subspace of L?(m). In this section it is convenient to
choose m equal to (2r)™'|dz|, 2n)™! times arc length measure. For p = oo, Hj'?(oz)
is the space of bounded ¢ -valued functions anpalytic on R\C, having analytic
continuation along any curve in R, and satisfying (2.1).

Finally, for 1<p<oo, CP°(#) and L(X) are the spaces of operators as in
Section 1. For a« and B two elements of Hom (ny(R), #(#")) and 1 < g < oo,
ng(x)(a, B) denotes the space of C?(")-valued functions F analytic on R\C, having
analytic continuation along any curve in R, such that |F(2)|Z,, has a harmonic
majorant, and such that

2.2) Fo A(z) = a(4) F(2) p(4)*

for each 4 in my(R) and z in R. For g=o00, H;(m(oc, B) is the space of C?(#")-valued
functions F analytic on R\C, such that the analytic continuation along any curve
satisfies (2.2), and such that F is uniformly bounded in C”(%')-norm on R. The
spaces Hz,(x}(a, pB) are defined analogously. With the use of an appropriate measure
on the boundary (in this section, (2n)™! times arc length measure |dz|), all these
spaces become Banach spaces, and ng(ff)(“’ p) is a Hilbert space. The theorem of
Grauert and Bungart (see [4]) implies that all these spaces are nontrivial. Finally
for A a trace class operator, we wish to use the notation tr A for the trace of
A (tr A =Y {Ae;, e;) where {e;} is any orthonormal basis for #") and Tr 4 for the

trace-class norm of 4 (Tr 4 = tr(A*A)%)'.

2.2 The extremal problem. With all these definitions and the notation establish-.
ed, we are now ready to set down the extremal problem of interest. Let 4 be a trace
class operator on # with trivial kernel and dense range, and ¢ an arbitrary but fixed
point in R, and « and f two elements of Hom(my(R), %(#")). We wish to consider the
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problem
Maximize: tr O(t) 4
(2.3)
Subject to: O e HZx)(z, B), 1O <1, 0 < tr O(1)A.

A normal families argument, together with weak-* compactness of the unit
ball of £(X'), gives that the supremum of tr @(t)4 is achieved by some O, in
HZx)(«, B), necessarily of norm 1.

In order to analyze this problem, we wish to exploit some duality and set up
a dual extremal problem, as Widom [30] does for a similar class of scalar extremal
problems. Note that if g(z) = (z — )™ f(z) is an element of (z — t)‘lHéx(xq(ﬁ, o),
where f(r) = A, and O(z) satisfies the constraints in (2.3), then tr(Q(z) g(2)) is a
single-valued meromorphic function on R, and by the residue theorem,

tr ()4 — —— S tr (0(2) £(2)) dz.
27 OR

Now HZx)(, B), via nontangential boundary values, can be considered as a closed
subspace of LZx)(|dz|), and inherits a weak-* topology from L%x)(|dz]), with respect
to which the functional @ — tr ©(r)4 is continuous. It is known [21] that LZx)(dz])
is the dual of Léx\m(ldzl). It is convenient to use as the pairing establishing this
duality the following:

(2.4) (F, £y = Qni)? S tr (F(2) f(z0)) dz

for F in LZx)(ldz]) and f in Leyar(|dz]). The annihilator of HE (@, B) in Léwn(ldz])
via this duality is precisely Hé‘l(g()(ﬂ, ). (The inclusion of Hén(,g)(ﬁ, ) in the annihilator
of HZ (2, B) is clear via Cauchy’s theorem. Conversely, by using the Grauert-Bungart
theorem, one can reduce the general case to the case where o and § both equal the
identity element e of Hom(mo(R), %(X")). Then if f(z) annihilates HE (= HZx)(e, e)),
then {f(z)u, upx annihilates H* for every unit vector v in #. By a result in [2],
this implies that {f{z) u, u) is in H". Since u was arbitrary, f(z) is in Hbm.) By a stan-
dard application of the Hahn-Banach theorem, the space Hzx,(%, f) can then be iso-
metrically isomorphically represented as the dual of the quotient Banach space
Leww(jdz])/H (B, ) by use of the pairing (2.2).
If L is the weak-* continuous linear functional

L:O->trO@0)A

on HZx)(a, B), then the norm of L is the extremal value sought in (2.3). By the above
duality analysis, there is a [g] in Léyy/Hewa(B, o) such that

ILI = gl = inf {|lg 4 A|: h € Herx)(B, @)}
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We saw above that one way to obtain such a g is by considering any element g of
(z— t)_lchl(.x’)(ﬂ, o) such that lim (z — t) g(z) = 4. Now we know that any two
zt

such g’s must differ by an element of H'C.m(ﬂ, «). Hence the above construction is
the only way to obtain such a g. All the above motivates the definition of the extre-
mal problem dual to (2.3):

Minimize: |mr:am*5 Tr g(2) |dz|
dR

2.5)
Subject to: ge(z — t)‘lHél(x)(ﬁ, o), lim(z — 1) g(z) =
z-t

A normal families argument (together with the compactness of the unit ball of C¥(X")
in the weak-* topology defined by the duality with C®(")) again implies that the
extremal value is achieved by some g, satisfying the constraints in (2.5).

In a standard way, information can be obtained concerning a solution O,
of (2.3) and a solution g, of (2.5) by considering both together. By multiplying
O, by a scalar, we can assume that tr @y (¢)4 is positive. By the discussion above,
L = tr ©4(1)4 = ||g,|. But also, .

(2.6) tr O()4d = (2mi) 7\ tr (Og(2) g4(2)) dz <

< Qn)- S Itr ©4(2) go(2)] 1d2] <
< @n)- S Tr @y(2) go(2) |dz| <

< (2n)-ISTr 20(z) ldz| = g,

and hence there is equality throughout. As we shall see, this will give us much infor-
mation concerning @, and g,.
First, from the second equality in the chain of equalities (2.6), we deduce

2.7 Cri) ™ tr (Oy(z2) g4(2)) ~|le >0 ae. ondR
z

where

] is the Radon-Nikodym derivative of dz with respect to |dz| on OR.
z

The next equality in (2.6) gives

Itr (Oo(2) 8o(2))| = Tr (Og(2) g0(2)) a.e. on IR.
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This, combined with (2.7) gives

28)  @ni) tr (0u() £() _Igj—l = (27) Tr(O4(z) go(z)) a.e. on OR.

Finally, the next to last equality in the chain (2.6) gives

2.9) Tr Oy(2) go(z) = Trgo(z) a.e. on OR.

Most of our detailed analysis of (2.3) and (2.5) will depend on the assumption
that i is finite dimensional. In particular, we shall show that, if & is finite dimen-
sional, the solution @, of (2.3) is analytic on R\.C and is inner, that is @(z) is unitary
for each z on dR. First we need some easy lemmas.

LEMMA 2.1. If 0 < A < B are trace-class operators such that tt A = tr B,
then A = B.

Proof. From tr A=tr B we have, for any orthonormal basis {e,}, ¥ (4e,, e,>=
k

= Y, (Be,, ¢,>- But from 0 < 4 < B we have
%
0 < (Ae, ) < {Be, e

for each k. It follows that {Au, u> = {Bu, u) for any unit vector i, and hence 4 = B.

LemMmA 2.2, If A is a trace-class operator such that tr A = Tr A, then A is
positive.

Proof. Let A have polar decomposition 4 = U|A|, and let {¢,} be a complete
orthonormal set of eigenvectors for 4| with corresponding eigenvalues {s,}. Then

tr 4 = 2 (UlAle, e < 2 [KlAdle, U*el < Z siley, U*e| < Z s, =Tr A,

and hence there is equality throughout. This forces, for 5, # 0, {e,, U*e,> = {e.e,>.
Equality in the Schwarz inequality forces Ue, = ¢, for all such k, or U is the identity
on Ran |A4|. Hence A = |4| and A is positive.

THEOREM 2.3. If O, and g, are the solutions of (2.3) and (2.5) respectively,
then ©.g, and g, have analytic continuations across ORN\(OR N C). If dimX < oo,
then O, is inner, has analytic continuation across ORN\(OR N C), and is the unique
solution of (2.3) satisfying tr Gy(t)A = 0.

Proof. The following analytic continuation argument is an adaptation of
that of Gamelin [15, Section 8] used for the scalar case. It suffices to show that the
analytic continuation occurs across any arc of dR\(JR n'C). By a conformal
mapping, since R consists of analytic Jordan curves, we may assume that the arc

is an interval J on the real line (so =1onJ ), and that @,g,, @, and g, are

|dz|
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analytic on an open set W, in the upper half plane whose boundary includes J.
Define H, on W, by

H,(2) = Qmi)'0¢(2) go(2), z€ Wi,
and H. on W_=/{z:zeW,} by
H(z) = H,(?)*, zeW_.

Now by equétions (2.8) and Lemma 2.2, (2ni)1Oy(z)g(z) = 0 on J, and hence
H, (z) and H_(z) both approach this function on J as z approaches a point in J
from W, or W_ respectively. Applying Morera’s theorem to the scalar function
{H(2)u, vy where u is any unit vector and the Lebesgue dominated convergence
theorem, one can conclude that ( H_(z)u, u) is an analytic continuation of {(H, (z)u, u)>
across J. Since u was arbitrary, we conclude that O(z)gy(z) continues analytically
across J.
Now from equation (2.9) together with Lemma 2.1, we have

20(2)*¥0o(2)*Oy(2)80(2) = go(2)*go(z) for a.e. z on OR.

It follows that ©,(z) is isometric on Ran gy(z) and also Oy (2)*Oy(2)g,(z) = go(2)
for a.e. z on OR. Therefore Oy(z)*(Oy(2)go(2)) is an analytic continuation of gy(z)
to W_, such that the boundary values along J from W, match up with those from
W_. Since {gy(2)e, ¢) is integrable along J for each unit vector e, it follows as above
that g has an analytic continuation across J.

Now assume that dim # < oo. Then det g is a function meromorphic on R
such that the only pole on R\C is a pole at ¢ with principal part equal to
(z —1)9m¥ det 4 # 0. Hence detg cannot be identically zero, and therefore is
nonzero on ARN\(OR N C) except for isolated points. Hence Ran g(z) is equal to
the whole space " except at isolated points for z on dR. By a previous remark,
©,(2) is isometric on Ran g(z) for a.e. z on dR, and so in fact O, is inner.

It remains to verify that @, has an analytic continuation across J if dim 2" < co.
Since O,(2)g,(z) and g¢(z) have such analytic continuations, the formula

0(2) = (Oy(2) g0(2)) go(2)*

gives a meromoprhic continuation of @(z) into W, UJUW_. Since Oyz) is
unitary for a.e. z on R, no poles can occur on J nor can poles accumulate on J.
Thus 6, is actually analytic on a neighborhood of J.
dz
|dz]|
be a positive operator for each z on R uniquely determines @y(z) for all such z,
and hence @, is uniquely determined.

Finally the condition that @,(z) be unitary and that (27/)™ ©(2) go(2)

THEOREM 2.4. Suppose dim A~ .< oo, and Ay is the solution of (2.3). Then
dim Hf,[(oz) S, GOH;(/})‘S n (dim ") where n + 1 is the number of components of OR.
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Proof. By Theorem 2.3, 6, ii an inner element of Hzx)(2, f) extends to be
analytic on a neighborhood of R\C. For any such @,, an inductive argument gives
that

dim [H2(x) © OHZ(B)] = Ny(det @)

where Ny(det O) is the number of zeroes (counted according to multiplicity) of det @
on R. Let lx denote the identity operator on 2#. As noted once before, equation
(2.8) and Lemma 2.2 imply that

@) Ou(2) go(2) ( Ijzl u)

z

is a positive operator for each z on dR, and hence also

det ( Q1) O4(2) gol2) ( —j—z—l u)) >0,

|dz
But then

Ay det (04(2)) + A, det (20(2)) + Ay, det ( ljz

19() =0
z|

d
where 4,,, means the change in argument along 4R. By definition, Aurg det( I—d—zl 19«] =
Z /

dim # e
= Ay (l%zl) = (1—n)dim". Also det O(z) has no poles in R and det g4(2)
z

has a pole at ¢ of order dim.%#", and no other poles in R. Hence, by the argument
principle,
Ny(det O4(z)) + Ny(det go(z)) = ndim . -

(If det io(z) has zeroes on 9R, these are counted with one-half their multiplicities.
Then the above formula is still correct.) Hence

0 < Ny(det Oy(2)) € ndim A

and the theorem follows.

The above result, for the case that dim 2" =1, has been obtained by Tumarkin
and Havinson [28].

The next result says that, in some sense, there are sufficiently many inner
functions in HZ (x, B).

THEOREM 2.5. Assume dim A <co. For any point t in R,

v {Ran O(): @ € Hex)(a, f), O inner,

dim Hx(2) © OHx(f) < n(dim #)} = o .
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Proof. Let O, be the extremal function for the extremal problem (2.3) at the
point ¢ in R. For any A4 in ny(R), @, ¢ A4 is also an inner element of HZ xy(a, B), and
satisfies the dimension condition in the statement of the theorem since @, does by
Theorem 2.4. Since O, ° A = a(A4) @,B(A)*, it follows that

v{Ran @y 0 A(t): Ae ny(R)} = &

where ¢ is the smallest subspace of " invariant for all a(4), 4 in ,(R), and contain-
ing Ran @(t): It follows that the projection P¢ onto . commutes with all a(Ad), A
in 7y(R), and hence P¢®, is in Hgux)(x, B). Since Ran Oy(t) = £, we have that
PO, is an extremal function for (2.3). By uniqueness of the extremal function
(Theorem 2.3), it follows that & = 2 and the theorem follows.

2.3 Existence of inner functions: general case. In Section 2.2 we considered the
space HZx)(a, B) for a fixed Hilbert space #". We now wish to generalize this to two
Hilbert spaces #” and %™ as follows: Let o be an element of Hom (o(R), %(A" )), and
B of Hom (mo(R), %(A"')), and let (A, ") be the space of bounded linear operators
mapping ' into . Then HZx, »)(, B) is the space of those functions analytic on
R\C taking values in .#("’, o) such that, for any 4 in no(R), Fo A = a(A4) FB(A)*.
Of course this generalization of HZx(«, B) only has significance if 2" and %" are of
different dimensions. An element © of Hzx',x)(a, B) is said to be inner if O(z) is
isometric for a.e. z on dR. (If such a @ exists, of course dim %' <dim ") Subspaces
of Hx(a) invariant under multiplication by rational functions with poles off of R
have been characterized by Abrahamse and Douglas [4] as being of the form OHx(ﬁ)
for some inner O in HZx, x)(a B). For such a 0, the restriction of the operator S,
(multiplication by z on H y/(a)) to OHj is unitarily equivalent to Sy. Thus the
following general theorem implies that the bundle shift S, contains a copy of any
‘bundle shift S; whose rank is finite and is less than or equal to that of S,.

THEOREM 2.6. Let A" and A" be separable Hilbert spaces with dim %' <dim A ,
and dim X" < oo. Then, for any elements o in Hom (no(R), #) and B
Hom (n,(R), ) there exist an inner function in HEx+, x)(a, ).

Proof. The case where dim #” = dim# < oo is contained in Theorem 2.3.
Let A be an operator from " into 2#”’ having range equal to all of 2#. We consider
the problem

Maximize: tr ©(r) A4
(2.3)

Subject to: O € H¥w, )% B), 0] < 1, 0 < tr O@) A.

We note that since dim %"’ < oo, the functional @ — tr ©(r) 4 is a weak-* continuous
linear functional on HZ %, x)(x, B). The dual problem associated with (2.3)1is

Minimize: |g| = Lg Tr g(z) [dz]
@.5) 2 “or

Subject to: ge (z— ) Hevr, (B, @), lim (z — t) g(2) = A.
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We note that the theorem of Grauert implies that the space Hz(x, x)(a,B) is nontrivial,
and that the class of g satisfying the constraints in (2.5’) is nonempty. For, by Gra-
uert’s theorem, there exists a boundedly invertible E; in Hg(x)(x, ex) and boundedly
invertible E, in Hgx(ex ), where ex and ex- are the identity elements of
Hom(mo(R,) %(#')) and Hom (ny(R), %(#")), respectively. Then (z—1)1E,(z) 1E,(t)A
E\(t)Ey(z)™ is an element of (z— )" Hgx, »(B, ) satisfying the constraints of
(2.5"). If @, is a solution of (2.3') and g, a solution of (2.5'), the proof that @,g,
and g, have analytic continuations and that O(z) is isometric on Ran gy(z) for z
on JR is exactly as in the proof of Theorem 2.3. Since the residue of g, at ¢ has
full range and ¢’ is finite-dimensional, we claim that go(z) has full range for every
z in R with the exception of some isolated points. To see this, let {e;}9'™*" be a basis
for #”', and {4x;}9i™* be a basis for Ran 4 (=4""). Then g(2) has full range at any
z where the determmant of the analytic matrix [{(z—#)g(z)x;, ¢; >]‘f“;‘”‘ is non-zero.
Since the determinant is non-zero at z equal to ¢, this analytic funiction is nonzero
and hence has only isolated zeros. Hence @, is an inner element of Hz ", x(, f)
as asserted.

Theorems 2.3 and 2.6 of course leave open the following natural question.

QUESTION 1: Given two elements o and f in Hom (ny(R), %) where 4" is an
infinite-dimensional separable Hilbert space, does there exist an inner function
0, in HZx)(a, B)?

It can be shown that the answer is yes if R is an annulus.

REMARK. Most of the results of this section are true with a measure on dR
more general than |dz] to define ||g|l, in (2.5) and with a relaxation of the assumption
that the components of OR be analytic Jordan curves, by a simple adaptation of
Widom’s techniques [31]. Also Widom shows how to derive more specific infor-
mation concerning the location of the zeroes of det @y(z) and of det Oy(z)gy(2).
These refinements however are not central to the point of view of this paper.

3. EXPECTATION OPERATORS

3.1 The universal covering surface. The universal covering surface for a region' R
is conformally equivalent to the open unit disk D; a sketch of the construction of the
universal covering surface and of the basic facts concerning this construction needed
here may be found in [4, Section 2.1]. In summary, the construction produces the
following:

1. A group G of linear fractional transformations that map the disk onto
the disk. ' ‘

2. An open G-invariant subset Q of 0D with (@D\Q) = 0 (u is normalized
linear Lebesgue smeasure).

3. A simply connected open G-invariant subset D' containing D U €.

4. An open set R’ containing the closure of R.



OPERATOR EXTREMAL PROBLEMS 167

5. A holomorphic covering map = from D’ onto R’ such that n(D) = R
and n(Q) = OR, and G is the group of all linear fractional transformations A having
the property that mo 4 = n.

The set dD\Q is the limit set of the Fuchsian group G, and is the set of accu-
mulations points of orbits of G, that is sets of the form {Az: A e G} for z in D.
Let us choose a fundamental polygon £ for G in D, that is, a connected subset of D
such that every orbit of G contains precisely one point of 2. The closure Z of B
in the plane meets 0D in a set of n 4+ 1 arcs each of which corresponds to a boundary
contour of R via the covering map n. We note n induces a bijection between 2
and R.

An element 4 of the fundamental group my(R) of R lifts via 7 to an element A
of G in a canonical way: for z in D, define 4(z) to be ="' o y(1) where 771 o y(0) = z
and 77!y is the analytic continuation of n~! along any closed curve y = {y(z):
0 <t < 1} whose equivalence class in my(R) is 4 and which has (0) = y(1) = z.
Conversely, any 4 in G induces an 4 in 7y(R) in a similar way. This correspondence
between 7y(R) and G induces a correspondence & — a between Hom (mo(R), %(A"))
and Hom(G, %(X")), the group of group homomorphisms from G into the group
of unitary operators on a Hilbert space J¢".

To establish some conformal invariance for our spaces of functions over the
region R, let us choose a fixed but arbitrary point ¢ in R, and let m be the uniquely
determined measure on dR such that

S A2) dm(z) = fr)
OR

for every function f continuous on R and harmonic on R. The covering map «
can be chosen to that n(0) = t. When this is done, n lifts the measure m on 9R to
normalized linear Lebesgue measure on dD: pon! = m ([2, p 124]). In the sequel
let it be understood that the measure m (rather than (2n)™1 |dz}) is to be used to
define the norms on the spaces Herx (&, B) for 1 <p < oo, and & and f elements
of Hom (my(R), H).

Now let « and § be any two elements of Hom (G, % (X)), and define
Heoya, B) (I < p < oo) to be the space of all Héry, functions F on D (see
Section 1) such that

Fo A(z) = a(A) F(z) p(4)* for all 4 in G.

A similar condition defines H(x) as a subspace of HY. If & and B are the elements
of Hom (ny(R), %(¢")) corresponding to a and f respectively via the correspondence
mentioned above, we assert that Hee(x)(d, ﬁ) and Hé(x\(a, B) are isomorphic in the
following canonical way: any F in Herw)(4, B) can be thought of, via 7, as being
defined on £, and then extends, via analytic continuation, to D to produce an element
of F in Héewy(, B). Conversely, any F in Heex\(, B), Testricted to 2, induces via

2 ¢, 1056
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na Fin Hfsu(3, f). The fact that the correspondence is isometric is due to the
correspondence between m and p mentioned above.

We will need another space of operator functions over R which has not yet
been formally defined. For & and 5 in Hom (mo(R), %(A")) let Acooxy(&, /f) be those
functions in H‘:w( J,[)(oc B) which are continuous on R\(9R n C). When viewed via 7
as functions on £, and then via analytic continuation as functions on D, a function
Fin Acopn(&, ﬁ) induces a function Fin Hcoo (@, B) which is continuous on R, or
equivalently on DN\(@D\Q), and conversely, any such F arises from an F in
Acory(d, B in this way. Let Aceox)(a, ) denote the space of all such functions
F on the disk. Finally let Acw(x)(G) be the space of functions in H?w(x) on D
continuous on 4.

3.2 Definition and properties of the expectation operators. Earle and Marden
[13]have constructed a projection operator which maps H¢ boundedly onto H¢(e) (Cis
the complex numbers, e the identity homomorphism), and which has certain addition-
al properties associated with expectation operators. Other expectation operators
have appeared in the literature ([12, 14]) in a similar context, but that discussed in
[13] seems to have the best properties and is the basis for our extension to spaces
of operator-valued functions. The construction is based on the facts that

i) Y 14’(2)|? converges uniformly for z in a compact subset of D', (in particular,
4€G

on #) and
ii) there is a polynomial p(z) such that the Poincaré series

Op2) =Y po A AP =2m* >0 for ze A

A€G

We will use these two facts to construct 2 bounded prOJectlon of HZy onto
HZx)(«, B) with expectation-like properties.

THEOREM 3.1. Let o and f3 be any two elements of Hom (G, U(X)). There is a
bounded projection mapping E, , of Hg ) onto HZx\(a, B) (respectively, of Aceoxy(G)
onto Acox(a, B)), with bound independent of « and B, such that: if Fe HZx), we D
and y € Hom (G, %(X)) are such that F(Aw) = a(A) F(w) y(A)* for all A € G, then,
for any He Hgy),

(3.1 E,, f(FH) (W) = F(w) E, 4(H) (w).
In particular, if Fe Hgx(2, ), then
(3.2) E, o(FH) = FE, 4(H).

Proof. For a function F in HZx), elements o and B of Hom (G, %(X")), define
E,, o(F) by

3.3) E, ¢(F)(2) :AZGP ° A(z) A'(2)*a(A)*F © A(z) B(A)/0p(2)
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where p and 8p are as in Fact ii). By Fact i), the numerator in (3.3) converges uni-
formly and absolutely on compact subsets of D. By Fact ii), the denominator is an
analytic function bounded above and below on 2, and hence E, ;,(F)(z) is analytic
on A. Since 0,(B(z)) = 0,(z)B'(z)? for Be G, a formal computation, justified by the
absolute convergence of the numerator of (3.3) in operator norm, gives

E, 4(F) (4z) = a(A) E, 4(F) (z) f(4)* for all 4 in G;
hence (3.1) follows and also E, 4(F)(z) is analytic on all of D. To compute norms, set

m™ = inf {|6p(2)|: z€e &} > O,
M =sup {Y|4'(2)|*: ze B} < oo.

AeG
Then
1E,, s(F)lleo = sup {|E, 4F(2)|: z€ D} =

= sup {| E, 4 F(2)l|: z € B} < Mm| Fll||Plloo

or
1B, pll < Mm||ples

©

for all « and B in Hom (G, %(X)).

It remains only to verify that E, , takes Acoor)(G) Into Acoor)(a, f). Since
Y. 4'(2)* converges uniformly and absolutely on A, this is clear.
AeG

3.3 An application to outer functions. It follows from the theorem of Grauert
[17] and Bungart [8] that, for anyzand fin Hom(G, #(>(')), there is a function F, 4
in Hgx)(a, B) 0 (Hepn)(B, o)) ™2. We prove a refinement of this result, at least for
a finite-dimensional auxiliary space 4.

THEOREM 3.2. Suppose that dim A" is finite. Then for each pair (o, f) in
Hom(G, #%(A))? (the Cartesian product of Hom (G, %(X)) with itself), there is
associated a F, g in

HZx)(o, B) N (HZn (B, )Y, such that
(3.4 sup {||F, 4ll, IF3ll: (2, B) € Hom (G, %(A))?} < oo.

First we need some lemmas.

LemMA 3.3, Suppose dim A is finite. If U(K") is given the topology induced by
the operator norm of £ (A), and Hom (G, %(X)) is given the topology of uniform
convergence on finite subsets of G, then Hom (G, %(X")) is compact.

Proof. The group G is the free group on n generators, say A, A, ..., 4,.
Hence, if o is an element of Hom (G, %(X")), « is completely determined by the n
unitary operators a(4,), ..., a(4,). Conversely, any ordered n-tuple of unitary
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operators arises in this way. Hence the correspondence « — (x(4,), ..., 2(4,))
induces a bijection between Hom (G, (%)) and ()" (the Cartesian product of
(A") with itself n times). Since multiplication is jointly continuous in the norm
topology on #(X), one can see that the topology of uniform convergence on finite
subsets on Hom (G, #(X')) is carried over to the Cartesian product topology on
%(A)" induced by the operator norm topology on #(2¢). Since dim ¢ is finite,
this latter topology is compact.

LemMa 3.4. Let F be an element of He x. Then the mapping from Hom(G, %(A))?
into HZ 4\ given by («, B) = E, 4(F) is continuous. (The topology on Hom (G, %(A'))?
is the product topology induced by the topology of uniform convergence on finite subsets
onHom (G, %(A))).

Proof. Choose ¢ > 0. By Fact i), there is a finite subset % of G such that

Y, (42 < ¢/4|Fllpllm for ze R.
AeCNF

Then, for z in &, («, f) and (, B) in Hom (G, %(X"))3,
I Es, pF(2) — E, sF)| <

<EY A'@Yp o A@) {a(A)*F o A(z) f(A) — ¥(A)* F ° A(z) 8(4)}/0p(2)]| +

AeF

+ /2 < M|p| m|| F| jl;l;{lla(A) — (Al + 18(4) — (DI} + &/2.

Since & is a finite set, it follows that, for all (y, §) in a sufficiently small neighborhood
n Hom (G, %(X))? of («, ),

jgg[{lla(A) — (DI + 1B(A) — (DI} < &/2M |p[m] F].

The lemma follows.

Proof of Theorem 3.2. By Grauert’s theorem [17]), for each (x, f) in
Hom (G, %())? there is a G, , in H_?}’(y)(a, B) N (Hz (B, 2))™2. By Lemma 3.4,
there is a neighbourhood U(g, B) of (x, B) in Hom (G, #(2¢))* such that, for all (y, 9)
in U(x, B),

sup {||E, 3G, s(2) — G, ()| :z€ R} < %inf{[]G;},(z)]l‘lz z€ &}.

By Theorem 3.1, E, ;G, ; is in Hzu)(y, 6) and ||E, G, gll SMm||pli|G,,4ll. By the
Neumann series expansion, the above estimate implies that E, ;G, 4(z)is invertible
for all (y, 8) in U(a, f) and

sup {|IE,,sG., () 'Il: z€ B} < 2|G3ll-
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Since E, ,G, 4 is in Hgx\(7, 6), this estimate holds for z in D as well. Hence we have
shown that for each (z, f) in Hom (G, #(X))?, there is a neighborhood U(x, §) of
{(x, B) for which the conclusion of the theorem holds. By Lemma 3.3, if dim 2 is
finite, then Hom(G, %("))? is compact, and hence finitely many of the neighbourhoods
U(2, B) cover Hom (G, %(X)). The theorem follows.

As in Section 2, the case where ¢ is infinite-dimensional remains mysterious,
unless R is an annulus.

QUESTION 2. Does the conclusion of Theorem 2.2 hold if dim# = oo?

In particular, is the supremum expression bounded uniformly with respect to
dim A" < co?

3.4 Anapplication to invariant subspace theorems. We now use the expectation ope-
rators E, ,toreplace the underlying region D with the region Rin the invariant subspace
theorems arrived at in Section 1. Foraand BinHom (G, %(#))and Fonin Hzx)(2, B,
if Bis a rigid functionin Hgx) (not necessarily of full range) which divides F on the left,
then necessarily there is a y in Hom (G, %(")) such that B is in Hzx)(2, ). Also the
greatest common left rigid divisor of F is in He(xr(, y) for some y in Hom (G, %(X"))
(See [4, Section 3]). The expectation operator approach to the proof of the following
theorem is similar to that of Theorem 12 of Abrahamse and Douglas [4]. The scalar

case of this result (with « and § equal to the identity) is due to Voichick [29] who used
different techniques.

THEOREM 3.5. Let o and B be elements of Hom (G, %(A")) and let I be anon zero
closed A € J‘,)(B, B)-right submodule of A cww)(“’ B). Let Bin H::( J()(oc, y) ( for some y in
Hom (G, %(X)) be the greatest common left rigid divisor of elements of I, and, for
z on 0R nOD, let Pi(z) = v {[Ran F(z)]": FelI}. Then I is precisely the right sub-
module of all functions of the form BG where G runs through all functions in Hg’w(f)(?, B)
such that BG is in A a (% B) and Ran B(z) G(z) < Py(z) for all z on 0 N OD.

Proof. By a theorem of Fatou [19, p. 80], there exists a (scalar-valued) function
f analytic on D and continuous on D such that f vanishes precisely on 9D\ Q. Then
f 1 is contained in Acw(xf)' Let 7 be the smallest closed right ideal of Ac°°(xf)
containing f-I. Clearly,

(3.5) £+ 1€ 10 fA oot B)-

We claim that the containment is actually equality, as follows. Any element H of

~ m L.

I is a uniform limit of functions of the form f| ¥} FiG;| where F;is in I and G;
i=1

is in 4 coopry Let us assume that H is also in fA cm(x)(“’ B). If we restrict z to #,

then, since f is bounded away from zero on %,

O HE) = lim Y, Fi2) Gi2)
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uniformly for z in . Since H is in fAceo 0%, B), STHHIR is in Aoy (2, PR
Hence, for all z in £,

J@OTH(2) = E, J(fTHI|%) (2) =

= lim i E, o(FG)(2) =
i=1

= lim )3 Fi(2) E;, 4G(2)
i=1

by properties catalogued in Theorem 3.1. Since G; is in Aoy Ep,pGi is in
Ac°°( J‘,)(;3, B); since I is a closed Acw(x)(ﬁ, B)-right submodule of Ac“(r)(“’ B), it
follows that H is in f - I, as claimed.

Now by Theorem 1.3, 7 consists of all functions of the form BG for some rigid
function B, where G ranges over all functions in H:;o(m such that BG is in Acw(f)
and Ran B(z) G(z) < P;(z) for each z on 0D. The theorem follows from this
representation for I upon using the equality (3.2) and restricting z to #.

A similar characterization holds for A?w(x)(a, o)-left submodules of
A?w(x)(a, B), and for closed submodules of Hgsxy(a, B) (the generalization of
Theorem 1.1), the statements of which we leave to the reader.

We now have all the pieces needed for an approximation result.

THEOREM 3.6. Assume that dim K is finite, and « and § are in Hom(G, %(X")).
Then any element of A coo(x)(“’ B) can be approximated uniformly by a finite linear
combination of inner functions By, ..., B,, in Acm(x)(“’ B).

LEMMA 3.7. Assume dim X" < oo and o and B are as above. Then
ged {0:0¢€ Acmm(“’ B), O inner} = 1y

(g.c.d. = greatest common (left rigid) divisor).

Sketch of the Proof. Let B be the greatest common divisor of the indicated
set. Then necessarily B is in Acw(x)(“’ y) for some y. Also the inner functions in
Theorem 2.5 are in Acm(“,)(a, B), and hence B(z) is invertible for every z in &. This
forces B(z) to equal 1.

Proof of Theorem 3.6. We organize the proof into three cases of increasing
generality.

Case 1: dim#" = 1 and « = B = ¢ (the identity homomorphism). It follows
by a result of Stout [27, Theorem II.1 and IV.1] and an argument in [3, p. 325] that
there are three inner functions ¢, y and y analytic on R such that the uniform closure
of all polynomials p(¢, ¥, x) in ¢, ¥, and y is precisely A(R), the algebra of all
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functions analytic on R and continuous on R. Case 1 follows via a use of the corres-
pondence between A(R) and Ac(e, €).

Let J denote the uniform closure of all finite linear combinations of inner
functions in Acww)(“’ B).

Case 2: a = f = e, dimA# <oo. Case 1 implies that J contains any element
of Acw(x)(e, e) of the form

fPuy+ (lr — Py)

where f is any function in Ac(e, €), x is any unit vector, and P, is the projection
onto the span of the vector x. Since elements of this form span A4 Cm(x)(e, e), Case 2
follows.

Case 3: a and B arbitrary. If @, X and ¥ are inner functions in Acoo(j,)(a, e),
Acw(x,)(e, e) and Acu,(x)(e, p) respectively, then OXY is an inner function in
Acm(x)(oc, B). Hence, by Case 2, J contains OAcm(x)(e, e)¥ for any such @ and V.
Now if J, is the closed span of {@A4 C°°(X')(e’ e): O inner, @ ¢ Acm(x)(“’ e)}, then J;
is a closed Acm(x)(e’ e)-right submodule of Aco,,(x)(a, e). Since any inner @ in
A cw(x)(a’ e) is unitary on d2 N dD, and by Lemma 3.7, the g.c.d. of such @ is 1,
Theorem 3.5 implies that J, is all of Acw(x)(a, e). It now follows that J contains

{Acwm(a, e) ¥ : ¥ inner in A oo (€5 B}

By a similar argument, applying Theorem 3.5 stated for A coo (@, a)-left sub-
modules of Acwm("" B), we conclude that J must be all of Acw(r)(“’ B). The
Theorem follows.

4. CONCLUDING REMARKS

As mentioned in the introduction, the machinery developed in this paper
(particularly Section 3) is used in {7] to prove results for operator models on finitely
connected domains (see [5]). Specifically, the “‘uniform similarity’” result (Theorem
3.2)is used to prove the Sz~ Nagy-Foias lifting theorem for models of finite rank
in this setting, and this together with the approximation result (Theorem 3.6) are the
key ingredients to get an analogue of Muhly’s characterization [21] of the compact
operators in the commutant of a contraction. Removing the finite dimension res-
trictions in the result of this paper (Questions 1 and 2) would enabie one to prove
the above results for models not necessarily of finite rank. To accomplish this, how-
ever, new techniques appear to be needed.
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