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I. INTRODUCTION

Let N be a normal operator on a separable Hilbert space /. An operator is
pure if it has no reducing subspace on which it is normal. The set #(N) will denote
the collection of subnormal operators that have N as their minimal normal extension
(m.n.e.); &,(N) denotes the pure operators in &(N). (See [3] for the basic results
concerning subnormal operators. )

An operator T is semi-Fredholm if the range of T is closed and either ker T
or ker T* is finite dimensional. If T is semi-Fredholm then the index of T, denoted
i(T), is defined to be the integer (possibly -+ co) dim ker T — dim ker T*.

If S belongs to & (N) then o(S) (the spectrum of S) contains o(N). In fact,
a(S)\a(N) is either empty or equals the union of some of the bounded components
of the complement of g(N). We refer to these latter components as the holes of
o(N). There has been considerable investigation of problems related to “‘hole filling™.
(See [8] and [13] for a history and some results concerning this subject.) The major
purpose of this paper is to describe an intrinsic relationship between each normal
operator N in a certain class and the index theory for the collection & ,(N).

Before we discuss this matter further, we present a result that is well-known.
Suppose Se€ F(N) and let Q be a component of ¢(S)N\a(N). Then for «, feQ
it follows that

(a) dim (# © (S — «)oF) # 0, and

(b) dim (# © (S — W)H#) = dim(# © (S — pF).

(Here 5 is the space on which S is defined.) To see this, observe that «, § € Q implies
that § — « and S — f are bounded below but not invertible. Therefore, (S — a)s#
and (S — B)## are proper closed subspaces of 5. That establishes (a). It also follows
that S — a« and S — f are semi-Fredholm operators, because ker(S — o) and
ker(S — B) are trivial. Hence, to obtain (b) it suffices to show that i(S — a) =
= i(S — B). The latter now follows from the fact that the index is a continuous
function from the semi-Fredholm operators to Z U {4 oo, —oo} and the fact that
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{S—A:2€Q} is a connected collection of semi-Fredholm operators. In other
words, § — 4 is semi-Fredholm and i(.S — 1) is negative-valued and constant for
Ain Q.

It seems reasonable to guess that i(S — 2) for 1 in one of these holes is directly
related to the multiplicity of the normal operator and “the number of times the
spectrum of N surrounds the hole”. The major part of this paper is to give some
instances where the last statement can be rigorously defined and this relationship
is valid.

Due to the technical arguments involved, the authors feel that the reader will
be better equipped to read the rest of the paper if a particular example is discussed
in some detail.

Let m, and m, denote normalized Lebesgue measure on the circles {|z| =1}
and {|z — 1/2| = 1/4}, respectively. Let u = m, + m, and let N be M, (multipli-
cation by z) on L(u). Let D denote the open unit disc and let Q denote the outer
component of D\spt u.

PRrOPOSITION 1. If S'€ & (N), theni(S — 2) = —1 for all A in Q.

REeMARks. The assumption that S is pure is only needed to guarantee that
6(S) o Q. That the normal operator has multiplicity one is crucial to our arguments.
The authors do not know what happens in any other case.

Even this special case of Theorem 1 is a new result. The Sarason theory [16]
for the annulus and the Abrahamse-Douglas theory [1] give the result only for the
case where o(S) = Q.

Suppose that o(S) = D. It is an open question as to whether the only possi-
bilities for i(S — 4) are —1 and —2 for Ain D\Q. That these numbers are possible
follows from looking at H?(u) (the closure of the polynomials in L)) and H?@n,) @
@ Him,).

It is crucial that Lebesgue measure on {|z — 1/2| = 1/4} be absolutely con-
tinuous with respect to m, in the last question. If not, but still keeping the assumption
spt my = {|z — 1/2| = 1/4}, we shall see later that i(S — i) = —1 for all 1 in
D\ (spt u).

We shall use the notation and results from section II in the following proof of
Proposition 1.

Proof. Since Se F(N), it follows that ¢(S) o> g(N). A theorem of Clancey
and Putnam [7] shows that the spectrum of a pure subnormal operator cannot be
the union of {|z| =1} and a subset of {|z — 1/2] < 1/4}. Thus ¢(S) > Q and
i(S—2) < —1 for all 4in Q.

Because i(S — 1) is a constant function of 4 in €, it now suffices to show that
i(S) > —1. Suppose not. Then there exist K, K in ker S* such that (X;, K,) = 0
and ||K;| = [|K,|]| = 1. A simple computation shows that (z’K;, K;) = 0 for all
n > 1 and i,j == 1, 2. The function (z[K;|2du)" is analytic in © and has an analytic
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continuation across {|z| = 1} by Lemmas 1 and 3. Note that the values of this ana-
lytic function on {|z| = 1} are equal to |K}|? a.e. with respect to m;,. Since (Re Ki]?j) du
and (Im X, i]?j)du are annihilating measures for i # J, it also follows from the lJemmas.
that (zK;K;dp)" has an analytic continuation across {|z| = 1} and its values on

{|z| = 1} are equal to K,-K_j a.e. (my). Thus the analytic continuations of (z| K;|*du) " -

(2| K3|?dp)” and (zK Kydp)” (zK,K,dp)" are equal on {|z] = 1} and hence in Q. But
this is a contradiction, for the first product equals one at zero and the second vanishes
at zero.

Before we state the main theorems, we need some notation. The word measure
will always denote a finite, positive, regular Borel measure with compact support.
If p is a measure in the plane then P>(u) will denote the weak-star closure of the
polynomials in L*(u). (Recall the dual of L'(u) is L>~(u).) We will draw heavily
on the facts set forth about P*°(y) in [8] and [17].

Let N be a normal operator with a cyclic vector. Then there exists a measure
it in the plane such that N is unitarily equivalent to M, multiplication by z, on L*(u).
A necessary and sufficient condition that & (M) is nonempty is that P*(u) has
no L* direct summand ([8], Prop. 9.6). (If the assumption N has a cyclic vector is
left out this last result is not longer true. We will provide an example of this in the
last part of the paper, where we will go into this problem in further detail.)

If one wants to study the index theory for S € & ,(M,), there are certain assump-
tions that can be made. By using the decomposition techniques set forth in [8],
we can assume P(u) is antisymmetric. Furthermore, by using a conformal map,
we can assume P>(u) is isometrically isomorphic to the Hardy space H*(D), where
D is the open unit disc and H>(D) is the algebra of bounded analytic functions
on the disc. (We give a function fe H*(D) its standard boundary values on 9D,
the boundary of the disc.)

Our results lead to a necessary and sufficient condition that there exists a
hole Q of ¢(N) such that for every Se & ,(N) we have ¢(S) > © and the index of
S — Ais —1 forevery Ae Q. If 4 is a measure and f'e L= then ||f]|, will denote the

essential supremum of £. If F < spt u then u|r will denote the restriction of u to F.
Our first result is the following:

THeOREM 1. Let N = M, on L*(u) and assume P®(u) = H><(D). If there exist
A€ D and fe P(u) for which

*) N> 1

then i(S — A) = —1 for each S € & (N).

REmARKS a. If Q is a component of D\spt u for which there exist a point
A € and a function f; € P>(u) satisfying (*), we say that Q is an outer component
(hole) of the support of u. Theorem 1 says every S € & (N) fills in the outer holes
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and i(S — 1) = —1 in these components. (These last two remarks have some rele-
vance to the recent work of S. Brown [5], Lemma 3.1.)

b. The example done in the first part of the introduction satisfies the hypothesis
of the theorem. To see this let fo(2) == z for all z € D. Then || fy||, = 1 while ||fyl,. =

= % < 1. However, what the authors believe is the canonical exampleis the follow-

ing example due to D. Sarason [17]. (It also shows why much more work is needed
for the proof of the theorem than that for the example given in the first part of the
introduction.)

Let C be a perfect, nowhere dense set of positive Lebesgue measure on 9.D.
Join each of the endpoints of a component of D\ C by a straight line, denoted J,.

(o)
Then J=CU (U J,,) is a rectifiable Jordan curve, and C has positive arc length
1

measure on J. By a theorem of F. and M. Riesz, C has positive harmonic measure
with respect to int J.

Let 4 = m|¢ 4 dA|p;,; where m denotes normalized Lebesgue measure on
dD and dA denotes planar Lebesgue measure. It is easy to see that Po(u) = H>(D).
Our next task is to show that int J is an outer component of the support of u.

Let u be the solution of the Dirichlet problem in int J with boundary values 1
on C and 0 on J\C. Let v be the harmonic conjugate of u and set f, = e**+**. Clearly
|fo(z}{> 1 for all z in int J. Using the Schwarz reflection principle, we extend f, to
a function (still called f;) belonging to H>(D). The extended f, has modulus 1

everywhere on {_J J, and modulus less than 1 everywhere on D\.int J. Hence || fy||,=¢
1
while || foll,; ) = 1. Recalling that for any 1 € J, we have | fo(4)|>1; we see that int J

is an outer component of spt .

c. We wish to note that each point A in an outer component Q of the support
of u is “surrounded only once by u” in the following technical sense: If y = y; +
and u, | p, (i.e., u, is singular to p,), then a point A €  can be in at most one Sarason
hull for y;, i = 1, 2. That is, if X, is the set used by Sarason [17] to describe P>(u,),
i=1,2 then

Q n I'Iltzl ﬂ intk'ezg.

The proof of this will come later in the paper.

THEOREM 2. Let N = M, on L%(u) and assume P>(u) = H>(D). Assume
Sfurther that for every f'e P*(u) we have

1 = 1l
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Then if Q is any component of D\spt i and n€ Z+ U {oo}, there exists an operator
Se &L ,(N) such that

(S—A)=—n
forall A e Q.

d. If we combine Theorems 1 and 2, we see that a necessary and sufficient
condition that there exists a hole Q of o(N) such that every Se & (N) has index
— 1 there, is that ¢(N) contains an outer hole.

e. The key to the proof of Theorem 2 will be that given any integer n (or oo),

n —~
we can write u = ¥ ou where the u;’s are pairwise singular and @ < int X,
i=1
i=1,...,n where I?E is the Sarason hull for y;. Intuitively, we can surround Q
as many times as we please by u.

II. INDEX THEOREMS FOR ¥ ,(N}

We now begin the proof of Theorem 1 by developing some measure theoretic

machinery. The Cauchy transform of a complex measure, v, denoted by v, is defined
by
dv(w)

w—2

3(2) :S

for all z such that S lw — z[7Ad]v|(w) < oo. ({v] is the total variation measure of v.)

We refer the reader to [4] for an excellent account of the basic facts about the
Cauchy transform of a measure.

A complex measure v annihilates a continuous function f if S fdv = 0. We

now prove our fundamental lemma on complex measures that annihilate the disc
algebra, those continuous functions on D that are analytic in D. Recall that m
denotes normalized Lebesgue measure on d.D.

LemMA 1. Let fe L\(m) and let v be a complex measure supported by D.
Suppose zfdm + v annihilates the disc algebra. If T’ is an open subarc of 0D such
that (spt v) N I’ = @ then for almost every 0 withe® in T,

lim_ (zfdm + v)"* (rei®) = f(e).

Proof. For each A € C\D the function (z — A)~1is in the disc algebra and thus
is annihilated by fdz -+ v. Hence (fdz + v)* vanishes identically outside D. Let
F(2) = (fdz)*(4). Then F(%) + v(2) vanishes outside D and in particular

@ lim (F(re%)) + V(re?)) = 0

r—+1+
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for each ¢ in I'. Since v is analytic off spt v and hence in a neighborhood of I,
it follows that

?) lim ¥ (re®?) = V(')
r—1
for each ¢ € I'. Combining this last fact with (1), we obtain

3) lim F(re'’) = — %(c) for each e®eT.

r-1+

We now employ an argument from Duren [10], p. 39. For r € (0,1)

z — rel z — rlei®

F(rew)—p(i ew)=g ofdm - Zfdm =iSZ"P(r,e—t)f(e")dt,
¥ 27‘C 0

where P(r, 0) = (1 — r¥/(1 — 2r cos 6 + r?) is the Poisson Kernel. Letting r — 1~
we obtain

(€] lim (F(reio) — F (i e“’)) = f(")
r

r—1"

for almost all 6. Applying (2), (3) and (4), we obtain
lim (F(re®) + V(re?) = f(c")
r-1-

for almost all 6 with ¢ in I".

We now introduce a couple of more concepts from measure theory. Let W
be a Dirichlet region, that is, a region for which the Dirichlet problem is solvable.
For each complex measure v with spt v < W, there exists a unique complex measure,
vy on W, called the sweep of v to W, such that

Sudvs = S udv

for each function u that is continuous on W and harmonic in W. The existence and
uniqueness of v, are guaranteed by the Riesz representation theorem, considering
v as a linear functional on the continuous functions on 0W. Observe that if 7 < v,
then 7; < v,. (Here v < v means ©(B) < v(B) for every Borel set B.) For a complex
measure v, the inequality |v,| < |v|, holds. Also observe if v>>0 then [v] = |v].
Furthermore, sweeping a measure does not change its boundary values, i.e.,

Vs = (le)s + leW'

Finally, if v on W represents evaluation of the polynomials at a point in W, then
so does v,.



SOME INDEX THEOREMS 121
A measure t carried by D is a Carleson measure if there exists a constant
M> 0 such that ©(R) < Mh for every set R of the form

R={re®:1—h<r<1;0,<0<6,+ h}.

We shall refer to sets of the form of R as Carleson rectangles and to M as a Carleson
constant. (See Duren [10], pp. 156—158.)

LeEMMA 2. If a measure v with spt v < D represents evaluation at zero for the
polynomials, then v|p is a Carleson measure and the Carleson constant can be chosen
to be five.

Proof. For each polynomial p, the function |p|® is subharmonic and hence

(5) Slde'le < S bl d(vlp)s + S pI2d vl = S |p[2 drm.

The equality follows from the uniqueness of representing measures on 0D for
evaluation at zero and the fact that (v|p), + vlsp also represents evaluation at zero.
It is well-known that (5) implies that v|p, is a Carleson measure and the proof in
[10], pp. 157—158 shows that the Carleson constant can be chosen to be five.

REMARK. The conclusion of the lemma also holds for a measure carried by D
such that its sweep to 0.D is less than or equal to m.

A preprint version of this paper contained a proof of the following lemma.
The authors wish to thank their colleague J. Ball for pointing out the fact that this
lemma is a special case (by applying the reflection principle to the function f+g)
of Lemma 6.6 in [19], p. 223.

LEMMA 3. Let I' be an open subarc of 0D. Let f€ H2(m) and let g be analytic
in a neighborhood of I'. If lim (f+g)(re®) is real for almost every e® e I', then f-+g
r-1-

can be extended analytically across I'.

Let K be a compact subset of D. Let U be acomponent of DN\K. ThenacdU n
0 0D is called a strong boundary point of U if for each « € (0, x), there exists an isos-
celes triangle T, such that

(1) a is a vertex of T,,;

(i) int7,, =« U;

(iit) the interior angle of T, at @ has measure «;

(iv) the radial line segment from zero to a bisects the interior angle at a.

Referring back to Remark ¢ of the introduction, we note that almost every (m)
point of C is a strong boundary point of int J.

LEMMA 4. The set of strong boundary points of a component U of D\K is a Borel
set.
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Proof. Let B,, be the set of points a in dUn 0D for which there exists a
triangle T, ., satisfying (i) through (iv) above such that the two sides meeting at
a can be chosen to be of length n~1. First observe that B,,, is compact. The conclusion
then follows from the fact that the strong boundary equals (M) \UB

mn*

Let N be the normal operator M, on L*u) for some measure . We assume
Po(u) = H*(D). Since H*(D) is antisymmetric, the measure ulsp is absolutely
continuous with respect to m. Noting that u is determined only up to mutual absolute
continuity, we assume that there exists a measurable set E < 0D such that p|; =
= m|, and u(6D\E) = 0.

We are ready to prove Theorem 1. The reader should note that the statement
of this theorem differs (in appearance) from that stated in the introduction. The
difference is reconciled by Lemma 5, which shows that the concepts of a component
of D\spt u that is outer and one that has a strong boundary of positive m measure

are equivalent. The reason for proceeding in this way will become apparent in
the proof.

THEOREM 1. (The notation here is the same as that of the two preceding para-
graphs.) Let U be a component of D\spt u. If the strong boundary of U has positive
Lebesgue measure. then i(S — X) = —1 for each S € & ,(N) and each 1 in U.

Proof. We can assume O ¢ U. [If notlet A€ U and let f(z) = (z — A)(1 — Az)™.
Observing that f'is analytic and one-to-one on a neighborhood of the unit disc and
maps the disc onto the disc, we see that the index theorems for N and &(N) are
identical with those for f{N) and & ,(f(N)). This requires some straightforward
calculations. For example, strong boundary goes to strong boundary, f(N) has a
cyclic vector, etc., but all are easy computations.]

Our first step is the construction of some Jordan regions contained in U.
Let B denote the strong boundary of U. For each b € B let T, denote the boundary
of the triangle given by the definition, where the angle « is © — (/10). For each
ne Z*, let B, be the set of those points b in B such that the length of each of the
sides of T, is at least n™. Since B = U B,, the set B, has positive measure if n is
sufficiently large. Fixing such an n, choose a perfect subset 4 of B, with m(4) > 0.
By shortening the sides of each T',, b € 4, we may assume that they are all congruent.
Let B be the distance from the vertex b to the opposite side of T,. Let I" be the subarc
of 3D with endpointsin 4 such that (3D\I') n 4 = @. We assume that I' has length
less than the minimum of #/100 and #/10. We further assume that I is so short that
the corresponding sides of T',’s (under the natural congruence) do not intersect.

Let G = U intT,. The set G is clearly open and connected. Looking at
beA

only the triangles corresponding to the endpoints of I', we see that

Golre®:eerl, 1——‘8_<r<1__£ .
2 20
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We shall be interested in the part of 0G near I'. Let ¥, = 0G n W where

W= lre®: lerl, 1———& <r< 1y,
20

Observe that ¥V, = U T,. This follows because the set 4 is closed and the T')’s are
bea

congruent.

Let R, and S, denote the sides of T, meeting at b. Fix b e A. Either b is an
endpoint of a component of 3D\ A4 or there exists a sequence of points in A converg--
ing to b from both sides of b.In the latter case, Wn R, =« G U {b} and W n S,c
< GU {b}. Ifbis an endpoint of I', then W R, = Vyand W n S, c GU {b},
or vice versa. If b is an endpoint of a component of '\ 4, let a denote the other end-
point. Suppose R, and S, are the sides that meet and let p,, denote the point of
intersection. By the geometry WnS,< GU{a} and WnR, = GU {b}. The
line segments [a, p,,] and [b, p,,] are clearly contained in V; and the remaining points
of Wn R, and W n S, are contained in int T}, and int T,, respectively. For each
e in the shorter arc of D joining a and b, it now follows that

Vl n [07 eiﬂ] < [aa pab] v [b’ pab]'

(Here [0, €] denotes the straight line segment from O to €'.) Thus V; is the uniom
of A and a countable collection of line segments whose lengths sum up to less than
2m(I'\A). Using this observation and the geometry, we see that V; is a rectifiable
Jordan arc of length less than 2m(I").

We now construct an additional rectifiable Jordan arc joining the endpoints
of I'. Let M; denote the i** component of '\ 4. Let N, denote the union of the two.
line segments of ¥V, that connect the endpoints of M;. Let P(Q;) denote the union
of the two line segments in G that connect the endpoints of M; and that each make
an angle of ©/10 (n/5) with the corresponding line segment of N;. Let V, = A U (U P)).
(The reason for constructing the Qs will be seen later.) By construction V; is a
rectifiable Jordan arc of length less than 2m(I).

For A on P;, we shall be interested in estimating the distances to N; and Q,.
By the geometry there exist constants 8, and 8,, independent of i, such that for A
on P;,

(6) d(A, N)=6,(1 — |A]) and
Q) d(4, 0)= (1 — |A).

We shall now construct a Jordan curve containing V,. Let @ and b denote the
endpoints of I'. Since U is open and connected and contains int 7, U int T, there
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exists a polygonal Jordan path J, joining a and b such that

(®) Jo\{a,b} =« U

) Jon Ve = {a, b}

(10 JonQ; =0 for all i
an JoU V, is a Jordan curve
(12) OcintJyu V,.

Furthermore we may assume that the line segments of J, that contain ¢ and b are
contained in [0, @) U [0, b]. Let J = JoU V, and let H = int J.
We shall be interested in approximating H by a simpler regions. Let

Jy= U AU(.UMi)U(L"JP,-)

and let H, denote the interior of the rectifiable Jordan curve J,. This finishes our
topological constructions.

Fix S € & (M), and denote the space on which S acts by . Hence M, # < .
(Recall that we have normalized the component U that has a strong boundary of
positive Lebesgue measure so that 0 € U.) We shall first establish that i(S) > —1,
by contradiction.

Suppose i(S) € —2. Then dim ker $*>2. Thus there exist K; and K, in
H © SH such that || Kq|| = || Kzll = 1 and K; _L_ K,. It follows that

SZ”KII_(;duzo forn=0,1,2, ...
Sz"E1K2du =0 forn=0,1,2, ...
Sz"|K1|2d,¢ =0 forn=1,2, ...

Sz”lKgl?du=0 forn=1,2,....

With these equalities one sees that for i = 1, 2, the measure | K;|2dy represents eva-
luation at zero for the polynomials. Thus, by Lemma 2, the measure |K;|2dy|p is a
Carleson measure with Carleson constant five. Since

KKyl = KoKl < 1/2(1K2 + |Kal?),
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the Carleson constant of five also works for K,K,dpu|, and K,K,du|,. Our next goal
is to construct one bounded analytic function in H such that its product with each
member of a natural collection of Cauchy transforms is bounded in H. Let v be a
complex measure supported on D such that |v|(H) = 0. Let {G,} be any decreasing
sequence of open sets such that v(G,) < n™* and each G, contains some tail end of
the open arcs M, on the unit circle. Define v, to be the complex measure obtained
by adding VIB\(G,.UH,,) and the sweep of v|g,ym, to dD. Note that ||v,— v|—> 0
as 11 — Co.

We now proceed to estimating Cauchy transforms on J. Let R; be the region
bounded by M; and Q;, and let |M,] equal the arc length of M,. Note that R; is
contained in the Carleson rectangle that has M; as one of its sides. For each i,
sweep (|Ki{*dw),|pr, to 0(D/R)) and add on (|Ki|*dy),|r,usp, calling the sum
(| K1|2dp)g,,. This last measure represents evaluation at zero, so Lemma 2 applies
to it. Thus

13) S (1K, |*dp)g,, < 51M).
R;UQ;

The sweep of (|K,|3dp)g,, to 9D is m. Thus dm — (|K,[*dp)g,,, and hence zdm —
— z(|K,|?d)g,,, has a total variation on 9D of less than or equal to 5|M;|. For
A on P,, the function z(z — A)7! is analytic in D\ R,; and hence

([z(1Kqldp),] " ()| =

z 2
SB - (Ki2dn),

=!S_ (Kl
z— . 15

z— A

_ H._.Z_ dm _S z —dm + g z - (KiPdyg,, +

z— A z — oD Z —

¥4

+

Yo 2 —

|
(|K1|2du>m"+§ — (KA,
A R, Z — A

Using Cauchy’s formula on the first term, our previous estimate on the norm of
zdm — z(|Ky|*dp)g,, on 8D for the second and third terms, and inequalities (6),
(7) and (13) on the fourth and fifth terms, we have for A on P; the following estimate:

S|Mi S\Mi S\Mi
1 —1a &(1 —14) &1 — 1A

(KA, ] ()] < 1+

(Note: for the fifth term the only measure in R; is supported between N, and M;.)
Letting 6, = min {4, 6,} and noting |M;|>1 — |J|, we see the last sum is bounded
by 16| M |[35(1 — |A|)]™. By similar methods one obtains the same estimate for the

Cauchy transforms of z(|K,|2du),, (K,Kxdp),, and (K. Kzdy), on P,.



126 R. F OLIN and J. E. THOMSON

Let m, denote harmonic measure on J and define a function # on J by

o | M|
u(l) = (1 — 1D

0 AeJ\(UP).

We shall show that u € L(m,).

Let £ denote arc length measure on J and let P;; and P, be the two line segments
making up P;. Since m,|p is a Carleson measure with Carleson constant five, my(a) <
< 5/(a) for each line segment o contained in P;; with one endpoint on dD. Because
1 — || is monotonically decreasing on P;;, it now follows that

S |uldm, < 5 S lul d¢ = SS [logiM;| — log(1 — |A]))d¢.
Piy

Piy Py

If ¢ = £(P,,), then there exist § and y with [B| = |y] = 1, such that r(¢) = B + 71,
0 <t < o, is a parametrization of P;;. Since P; makes an angle of 3n/20 with 0D,

there exists a constant §,> 1 (independent of i) such that ¢ < §,(1 — |r(¢)]) for
0 <1 <o Using
0 <log[l — [r(DII < log dg72,
we obtain
[ Hoglatd — logt — 14Dlar < o log 101l + {'log 2 ar <
Pi1 0 t
< ologlM;| + |M;|logd, + 0 —ocloge < |M;] (1 + logéy).

For the last inequality, note that the inequality x>1 + log x for x> 1 is used.
A similar computation works for P;,, 50

S luldms, < 10(1 + 8,)| M.
P,

Thus

giuidmﬁzs

Py

(uldmy + S uldm, < 101 + 8,) TIM, |< 100 + 8,)m(T).

IN\(UP)

Hence u € L(m,).

Let f'be the Riemann map of D onto H. It is well known that since J is a Jordan
curve, f has a homeomorphic extension to D. Moreover, because J is also rectifiable,
fis conformal at almost every point of D ([10], p. 45).
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The function u o fe L(m), [9), and hence has a harmonic extension to D.
The last function is the real part of an analytic function g in D such that g(0) is
real. Let i, = efof~1, Then A, is a bounded analytic functionin H and [4,(z)| = e®
for almost all z € J. (Here we use the results from [9] again.)

We shall now modify 4, slightly to ensure uniform bounds on suitable Cauchy
transforms near the endpoints a and b of the path J,. Recall that J, is a polygonal
path joining a and b, such that the line segments of J, that contain a and b are contain-
ed in [0, a] U [0, b]. There exists a constant ;> 0 such that for A on the line segment
of J, containing a, we have d(4, a) < d;d(4, spt #) and for 1 on the line segment
of J, containing b, we have d(4, b) < 6,d(4, spt ).

Let h = (z — a)(z — b)h,. For A on the line segment of J, containing a, we
now have

4 — al A — b] |1 S (1K [2dp),

(M z(| Kyl*dp)a] " (D] < TR < 265,

The same estimates hold for A on the line segment of J, containing b. The sequence
of function {[z(|K;|?dy),]*} is uniformly bounded on the remaining segments of J,,
since these segments comprise a compact subset of U and our measures are each
of total variation norm less than or equal to one.

We now look at A[z(|K;|2du),]” on S\ J, (which equals ¥,). By the construction
of /1 and the estimates of the Cauchy transforms indicated, we see that the sequence
of functions {A[z(|Ky|2dy),]" } is uniformly bounded on the P;’s.

We consider [z(|K;|*du),]”. Let f, denote the Radon-Nikodym derivative of
(IK.|*dp),lop with respect to Lebesgue measure. Since the sweep of (|K;|2du), to
0D is m, it follows that ||f,]|w < 1. In particular, f, € L2(m) and there exists a function
in H2(m) whose Cauchy transform equals (zf,dm)" in D. By Lemma 1,

(14) rlil?— [2(1 K 1*du),) "~ (re?) = f,(e")

for almost every e in AU ( U M,). Since f, is real-valued we can apply Lemma 3
i>n

to obtain an extension of [z(|K;|2dy),] " |, that is analytic across 4 U ( U M,). Since

[z(1K;|2dp),] " |p is analytic across the P’s, it follows that [z(|K;|*dp),]" |, has an

extension g, that is analytic across dH. In particular, it is continuous on H. Hence

&, °fis in the disc algebra. (Remember f: D — H is the extended Riemann map.)
Note that g,(e”) = f,(¢'®) for almost every € € A. Hence, by our previous estimates,
{hg} is a uniformly bounded sequence of analytic functions in H. Thus {(% o f)
(g, °f)} is a uniformly bounded sequence of functions in H*. By construction of
(|Ky|2dp),, it follows that f,|, — |K;|? |, in L'(m|,). By passing to a subsequence, if
need be, we may assume the convergence is almost everywhere on 4. By passing
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to a subsubsequence, we may also assume that (/1 o f)(g, o f) converges weak-star
to a function G, in the Hardy space H*. Observe by our construction G, o f(e")
equals A(e')|K;|%(c) for almost every e € A.

Furthermore, for { in H we have

G, °f7HD = CIK PP ™ (D).

We construct a function G, in H* in a similar manner corresponding to the measure
| Kel2dp.

We can (and do) construct G, € H*® from the measure K,K,dp because of the
following observations. Since K,K,du and K,K,du are annihilating measures of the
disc algebra, it follows that zRe(K;K;)du and zIm(K, K.)du are annihilating measures.
Secondly,

2|Re K11?2] < K12+ K
and

2/Im K, Ky| < K2 + 1Ky

imply the total variations of all sweeps of (Re K,K;)du and (Im K,K;)du are less
than or equal to m on 0D. Constructing G’s for the appropriate real and imaginary

parts of K,K,, we obtain a G, € H® that satisfies
Gyeof () = (Kll—(z)(ew) h(e)
for almost every e € A4 and
Gy o [ = (zK:Ked) " () h(0)
for all { € H. We now construct a G, with the analogous properties for the measure
K. K,du.

Claim: G,G, = G,G,. To see this, note that G,G, and GG, are H* functions
that are equal almost everywhere on f™%(A4), a set of positive Lebesgue measure.
(Here we have used the rectifiability of 0 H and [10], p. 45.) Hence the functions must
be equal almost everywhere on 0D.

This yields the desired contradiction: For G,(f(0)) = Go(f%(0)) = A(0) and
Gy(f(0)) = G4(f~%0)) = 0. Hence, if U is a component of D\spt  and the strong
boundary of U has positive Lebesgue measure, then i(S — 4) = —1 for each
Se #,(N)andeach Ae U.

We still need to show i(S — A) < —1 for A€ U (a component of D\spt y
with strong boundary of positive Lebesgue measure). We will demonstrate this by

showing ¢(S) o U. Before we do, we prove that Theorem 1, as stated in the preli-
minaries, is equivalent to the theorem under consideration.
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LEMMA 5. U is an outer component of D\spt u if and only if the strong boundary
of U has positive (Lebesgue) measure.

Proof of Lemma 5. By definition of an outer component for D\spt u, there
exists a A € U and f'e H* such that |f(D)| > ||/],.,. Let {f,} be a sequence of poly-
nomials converging to fin L%(m). By passing to a subsequence, we may assume they
converge almost everywhere (m).

Let 7, denote the harmonic measure on dU for evaluation at 4. By a simple
modification of Lemma 2, we see that 7,|, is a Carleson measure; therefore, f, - f|,
in L*(t;|p). The fact that the sweep of t; to 0D is P,m (where P;(e") = Re[(1 + Ae™™)
(1 — Ae~*)71]) and the fact that this sweep leaves 1,|5p fixed give rise to the conclusion
that 1,|5p is boundedly absolutely continuous with respect to m|gpnsu. Hence f, — f
in L¥(t;). Therefore fe H3(t,), the L%*(t;) closure of the polynomials, and hence

ﬂ@=§fmk

We may assume f is not a constant (otherwise, U = D and the result is clear) and
therefore

110, > 1fDI-

Now

11l

1o < Iflleo

because the carrier of 7,|, is contained in the support of yu|,. Thus

e, = e, > 1LADI> (1 flluio-

20D

It follows by these inequalities that there exists a set E < 0D ndU of positive 1,
measure (hence of positive m measure) such that

(15) /@] > 1/

for all ze E. We may assume that f has a nontangential limit at each point of E.

It follows from the above that we can find a perfect set P = E of positive m
measure, a positive integer n, and an angle « € (0, #) such that for every ae P, we
have T,, n spt 4 < {a}. (Here, T, is the isosceles triangle with a as a vertex, alti-
tude of length 1/n, such that the radial line segment from zero to a bisects the interior
angle at a.) Hence, we can find a component W of D\spt u such that B (= strong
boundary of W) n P has positive m measure. The first half of the proof will be
finished if we show W n U # ©.
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Pick five distinct points a;, i = 1, 2, 3, 4, 5, of B so close together so that
5
M Ta, o #9.
1

“The boundaries of these triangles and the boundary of the circle determine four
regions, each of which has a vacuous intersection with the triangles. Because each
of the points a; €U, two of these regions must contain points of U. Since U is
polygonally connected it follows that Un W # @. This finishes one-half of the
lemma.

Now assume U is a component of D\ spt g with the property that its strong
boundary has positive Lebesgue measure. We assume the topological construction
found in the first half of the proof of Theorem 1 has been made. We modify this
construction slightly for its application here (and for the other half of the proof o
‘Theorem 1). By shortening I, we may assume that I' n 4 has two isolated points,
the endpoints of I'. (Now 4 = I" 0 4, so A4 is no longer perfect.) Fix an i, and let a
and b be the endpoints of M; and p,, as before. So

(@, Pap] U [Paps B] = N;.

Let C; be the intersection of D and the circle passing through the points a, p,, and b.
Let

E=Auy@D\DNu(uC).
Now FE is a rectifiable Jordan curve and we define a function u on E via

u(z) = {0 ze(@D\I)u(uC)
1 ze A

{This function is well-defined off a countable subset of £). This function « has a har-
monic extension to int E. Let v be the harmonic conjugate of u and consider the
function f=e**, This function extends by the reflection principle to be analytic in D.

Let ¢ and d be the endpoints of I'. Let ¥ be the closed region bounded by
(1 — B[S, cl, [(1 — B/5)d, d], {(1 — B/5)e":e®eT}, and I By the maximum
principle, there exists » < 1 such that u] s < 1. Since u < 0 on (spt ) n (int Y),
it now follows that u|pnspt ,<r. Choose a point z, in D such that u(z,)>r. Then

£l > [l

REMARK. f belongs to H*, in fact ||f}j. = €.

We now proceed to finish the proof of Theorem 1. It suffices to show ¢(S) o U
for every § € & (N). Suppose, to the contrary, there exists a pure subnormal S acting
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on 2 that has M, on L*u) as its minimal normal extension and o(S)n U = @.
(Here we are using the Bram-Halmos result about “‘hole filling”, [3]). We assume
that the topological construction in the last half of Lemma 5 has been made and
that we have obtained the function f that showed U was an outer component. Since
f€ P®(u) = H*(D) and f is not constant, it follows from Corollary 6.4 of [8] that
f(S) is pure. Furthermore, by Theorem 6.1 of the reference cited, f{N) is the minimal
normal extension of f(S).

We now apply the spectral mapping theorem ([8], Theorem 8.11) along with
the properties of f'to see that the spectrum of f(S) is the union of a nonempty closed
subset of the circle of radius e with a compact subset of the unit disc. Clearly this
cannot be the spectrum of a pure subnormal operator, [7], hence a(S): U. This
finishes the proof of Theorem 1. :

REMARK. We now present a direct and shorter proof that a(S) contains every
outer component of D\spt u. This proof depends upon the work of J. Chaumat [6].

Proof. Let K = o(S) and let R°(u, K) denote the weak-star closure in L®(u)
of R(K), the algebra of rational functions with poles off K. Observe that the purity
of S implies that R*(u, K) has no L* summand. Let E(u, K) denote the set of those
z in K for which there exists a measure v, < < y with v,({z}) = 0 such that

\

g(2) = Sfd v,

for each g in R(K). Note that

Let Az, 1y denote area measure on E(u, K).

Now define a map

| T2 R(, K) = R=(Aggu, 19, K)

by V
(T, h)(z) = Shd v, for ze E(u, K).

Since R*(u, K) has no L® summand, a theorem of Chaumat ({6), Thm. 4, Chapt, IX)
says that 7', is an isometric isomorphism and a weak-star homeomorphism. (The
homeomorphlsm property of the map T, follows easily from the Krein-Smulian
theorem.) The map T, sends a polynomial to itself, so T, f = f for each fin P®(u)
by the weak—slar continuity of T,. Thus

1l = [1fllEGa o+

Since E(y, K) c o(S) n D, it now follows from the definition of outer. component
that ¢(S) contains all of them.
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Before we continue with our results on index theory we present an interesting
consequence to the proof of Theorem 1. In order to do this, let us first summarize
the key idea of this proof.

LeEMMA 6. Suppose P®(u) = H®, g € LYu), zgdu annihilates the disc algebra,
and |gldp is a Carleson measure. If U is an outer component of D\spt u, then for
almost every strong boundary point €° of U,

hm 1 (zgdp)” (re¥%) = g(e‘”) (e‘o)

Proof. Let A be a Borel subset of the strong boundary of U with m(4)>0.
Then the proof of Theorem 1 shows that there exist a simply connected open set
V < U with rectifiable boundary and a nonzero function / in H*(¥) such that

(i) The strong boundary B of ¥ has positive m measure

(i1) h(zgdu)” is bounded in V

(m) hm 1 Ai(r €9)(zgdp) " (r %) = h(e“’)g(e“’) R (€ for almost every e in B.
dm

Since l|m h(r ¢'%) = h(e'?) for almost every e in B and A(e*®)#0 for almost every

r—+1"

¢’ in B (see [10], p. 45), the conclusion of the lemma follows easily.

Let H(u) denote the closure of the polynomials in L*(u). The space H2(u)
has a bounded point evaluation at { if there exists a constant C > 0 such that

Ip(O1 < Clipll,

for every polynomial p. In this case there exists K; in H*(u) such that

pQ) =<p, K

for every polynomial p. This extends to a continuous linear functional on H?2 by
letting

' O =<1 k)
for each fin H(p).

COROLLARY. Suppose P®(u) = H® and H*yn) has bounded point evaluations
in an outer component U of D\spt u. If e H¥(u) n L°(y), then

lim f{r €) = f(e¥)

for almost every € in the strong boundary B of U.

Proof. Let fe H¥p) n L*(u). Fix 4 in U and let K; be the unique vector in
H3*) such that
p(A) =<p, K;)
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for every polynomial p. It is easy to see that /K, € H?(y) and that (fK;)" ({) =ﬁ§)k:(€)

for each { in U. Let {p,}, {g,} be sequences of polynomials converging to fK, and
K, respectively, in L2(g) norm. We compute:

(2(z — Dp,K,di)* (§) = (2(z — D(py — PODKAW () +

+ P02z — DK AN (O = pu(O(z(z — DK, )" (D).
Similarly,

(2(z — Ng.K,di)" (£) = q,(O)(z(z — HK;du)" (0).

Noting that (z(z — A)K,du)" is analytic in U and nonzero at A (if 10), we see that

P _ (2 — WpKd)" (0
W@ (= NaKdr) ()

except for at most countably many { in U. Letting n — oo, we see that

~ FOKQ)  (z — DK, )" ()
16 _ s —
1o © Ky(0) (z(z — HIK;Pdp) "~ (£)

except for at most countably many { in U.
Since |K;|>du represents a constant times evaluation at 4, it is a Carleson mea-
sure. Applying Lemma 6 to the numerator and denominator in (16), we obtain

lim f(r €°) = f(e®)

r—1"
. o d . .
for almost every e in B such that K,l(e“’)d—”(e“’) # 0. Thus it now suffices to
m

show that the latter function is nonzero almost everywhere on B.

Suppose not. Then by the proofs of Theorem 1 and Lemma 5, we can construct
a function A in H* such that

(i) A(dy) =1 for some 2, in U

() [Allix e < 1.

(iii) (z(z — DIK;1*dp)" (Ao) # 0.

Then (2) = [z — DI o)l (22— A

— I"|K;|2du for every n <1, an
0

obvious contradiction.

ReEMARK. In the event spt(i|p) does not meet an arc of 9D, it is easy to obtain
boundary values for every function f in H2(u) on the arc by applying Lemma 1.

(Just consider lim (zz — Hf f?id,u)A(r- e’ )
r-1" (Z(Z —_ X)Kl)’\(r el())
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The following lemma does most of the work for the proof of Theorem 2.
The lemma establishes the fact that if 4 is in a component of D\spt u then “we
can surround it as many times as we please”,

LEMMA 7. Let u be a measure with support contained in D and p(0D) == 0.
If P=(u) = H®(D) then there exists a Borel partition {4y, 4;} of D such that
1= pla, + pla, and P¥(u|s) = H®(D) for i =1, 2.

Proof. For each positive integer greater than one, let
B(n)=Dm) = {|lz] <1 —n1}.

First, we claim that there exists an integer n, such that

1
Ifleey < Iflluipemey + 2y

for all f in H* with ||f]],, < 1. (Here, of course, ||fllae = sup{lf(2)l: z € B(2)}.)
To see this, suppose the result is false. Then there exist sequences {f,} and
{z,} contained in the unit ball of H* and B(2), respectively, such that

1
[ fuzd)| > || falluipemy + >

for all n>2. Since the set {f,} is a normal family and B(2) is a compact subset of D,
we may assume that there exists a function fin the unit ball of #* and a point z,
in B(2) such that

“f;, "—fllB(g) -0 and IZn —_ ZOI - 0.

A routine argument, based on Schwarz’s lemma, now shows that

TENET I

a blatant contradiction.
Noting that P®(up\ p(n,)) = P¥(1) by the maximum modulus principle, we
can find n; so that

1
W llaay < [Iflaipegy\Dingy + 3

for all fin H* with ||f]],, < 1. Continuing this process, we obtain a sequence {n;}
such that

1
Iflsciy < [flluipea, ey + n
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for all fin H®(D) with [|f]l, < 1. Let 4; = D(n;,,)\D(n;). Let 4, :jUddAj and
let 4, = U 4.

J even

It is clear now that for all fin the unit ball of H*,

1l = Wt = 1 et -

Using a routine argument involving normal families, we see that H* is weak-star
sequentially closed in L*(ul,,). Therefore, H* is weak-star closed in L®(u|,,) for
i = 1,2. Thus P®(u|s) = H™.

THEOREM 2. Let N = M_ on L*(yt) and assume P>(u) = H* (D). Assume further
that for every fe P(u), we have

1M == 11t e

Then if Q is any component of D\spt u and n€ Z* U {co} there exists an S€ & A(N)
such that

(S —A)=—n
for all Ae Q.

Proof. We will prove the result for n = 2. (The proof for the case of any
finite integer » is handled by induction. For n = oo the proof is handled by modifying
the techniques of Lemma 7 and the following argument. We leave these details to
the reader.)

The hypothesis that

171F= 1AMt
for every fe P*(u) implies that
P=(ulp) = H™(D).

Hence, by Lemma 7, we choose a measurable partition {4,, 4;} of D such that

#lp = pla, + pla, and  Pe(uls) = H*(D)
for i=1,2. Let
= playop and  pp = plga,.
Then p = p; + py with p, L p,, and P¥(u;) = H®(D) for i = 1,2.
Let A€ Q. By using the techniques indicated in [2], Section 3, we can find
measures f; and S, such that

17) B; and p; are mutually absolutely continuous for i = 1,2, and

(18) S pdB; = p(A) for all polynomials p, for i =1,2.
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Let N, = M. on L*,) and let H*(8,) denote the closure of the polynomials in
L¥p;) fori = 1,2. Let S; = N,|ux, yfor these i’s.

First observe S; e &(N;) by using the Stone-Weierstrass theorem. Now notice
that (17) implies A€ a(S;) for i = 1,2. Hence, we have o(S;) > Q. Therefore,
i(S; — ) = —1 for i = 1,2 because each S; has a cyclic vector (namely 1). Now
observe Z — A L. H*(B;) and |z — 1| >0 almost everywhere (B;) for i = 1,2. Conse-
quently, S; € & ,(N;) by Proposition 3.10 of {2].

Hence S; @ S, &,(N, @ N,). Since i((S; @ S;) —4) = —2 and N; @ N,
is unitarily equivalent to N the theorem is established. (N is unitarily equivalent to
N, @ N, because i, __B,, and g and (B, <~ B,) are mutually absolutely continuous).

REMARKS. The proof of Theorem 2 establishes the following fact: If Qis an
outer component of D\spt g and 4 = u; + p,and py | p, then

QnintK, nintK, = O
where I?,- is the set used by Sarason to describe P®(y;) for i = 1,2. (Because if
Qcint I?i for i=1,2 then we would modify the above proof to produce S e L (M)
such that i(S — 1) = —2 for 1 € ©, a contradiction of Theorem 1.)

The following result shows that the concept of surrounding a point 4 in a hole
(in relationship to index theory) must take into account the number of distinct
times A can be put into a Sarason hull.

PROPOSITION 2. Let {I',}4.., be a finite sequence of circles such that int I',>

q
oint I'yyy, for 1 < n < q— 1. Suppose u is a measure such that sptpy =T,

1
and P®(v) = L*(v) where v = pilint r,- Let N = M_ on L¥). If A € (int F1)\(CJ F,,)
2
then for all S € & ,(N), it follows that
(S — )= —1.

Proof. Since we are assuming S € & (), we have P*(u) = H*(int I';). There-
fore, without loss of generality, u|r, is normalized Lebesgue measure on I'). By a
conformal map, we can assume 4 = 0.

We first establish that o(S)=intI,. (Then i(S) < —1). We proceed
by contradiction. If this was not the case, there would exist a j such that
a(S) n (int F\iﬁtT_j;) = 0, but ¢(S) o I'; UT ;.. (Note: If j = g we delete the
terms above concerning I'j.,).

Let f(z) = (z — )™ where fe(int I'))\(int [';,,). By [12], f(S) is a pure
subnormal and using the standard functional calculus of an operator, we see that
o(f(S)) = U, U U, where U, and U, are disjoint closed discs. Furthermore, using
[12] again, f(N) is the minimal normal extension of f{.S). Hence P*(u o f™) has no
L*® summand, a contradiction that P®(v) = L®(v).
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Now suppose 1(S) < —2 and choose two orthogonal unit vectors K; and K,
in 3 © zo# where A is the space for S.

Let © be any of the following measures: z|K;|2du or K,~K—jdu for i = 1,2 and
j = 1,2. Then Tis analyticand ]%]1’ has a harmonic majorant (for p < 1) in the regions
(int I H)\(ﬁTj) for all g>j> 1 and also in int I",, (see[10], pp. 39.). Consequently,
7 has nontangential boundary values almost everywhere (Lebesgue) from within
and without on I'; (j > 1), (see [10], pp. 181 —182).

These exterior and interior limits are equal wherever the Radon derivative of
@ with respect to Lebesgue measure (on the I';’s) is zero, (see [10], pp. 39). But, by
hypothesis, this Radon derivative is zero on a set of positive measure on each I},
j = 2. By Lemma 1, we have

(@K, Pdp) " (2] Kal?dp) ™ = 2%(K, Kydp) " (K Kodp) "

on (int I';))\(int I';)” since an H” function is determined by its boundary values on

a set of positive measure. Proceeding by induction, handling each hole in order,
we see that

(K [2dp) " I KolPdp)® = 22K Kydp) " (Ko Kodp)
on each hole. This is a contradiction because the left hand side of the equality is

one at zero while the right hand side of the equality is zero at zero.

We conclude this section by asking a question. Note that Theorem 1 and Pro-
position 2 are answers to this question under more hypothesis.

QuUEsTION: Let N = M, on L*u) and Se & ,(N). Suppose P=(u) = H®(D)

and A € D\spt u. Suppose further that whenever pu = u, + p, and p,_1 u,, it follows
that

A¢(int K,)n (int K,).

Then is i(S — 2) > —1 for all Se &,(N)?

REMARK. 12;‘. are the sets used by Sarason, [17], to describe P%(u,;), for
i=1,2.

II. THE COLLECTION & ,(N)

If N is a normal operator on a separable space, when is & (N) a nonempty
collection? The answer is unknown. There are some partial results in the literature
and we shall conclude this paper by showing how some of the ideas of the first part
yield additional information concerning this problem.
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Let u be the scalar spectral measure for N. If N has a cyclic vector, then & (N) # O
if and only if P*(x) has no L* summand, (see [8], Prop. 9.6). For an arbitrary
normal operator N, it is well-known that there exists a countable collection of mea-
sures {#;},e such that g, =p and p;+, < << p;forall i € I and Nisunitarily equivalent
to @1 N,;, where N; = M_on L%*(y;). If P®(u;) has no L® summand for all i € I then

ie
& (M)#D by the proposition mentioned above.

We now focus our attention to the case where N = N; @ N, where N, = M,
on L3(u,), i==1, 2, pts << << pt3, and P*¥(y,) has no L™ summand but P=(u,) = L=(u,)-
(Therefore, ‘N, is a reductive normal operator, i.e., every invariant subspace for N,
is also invariant for N}.) Even in this special case we cannot answer the aforemention-
ed question. If N, is an operator on a one dimensional space, we can. Before we
present the result we make the following observation:

OBSERVATION. Let 3# be a Hilbert space, ¢ a nonzero densely defined linear
Junctional on # with a closed graph. Then ¢ € #* (the dual of 3¢ ).

Proof. 1t suffices to show ¢ is continuous on dom ¢. Since ¢ is nonzero and
has a closed graph, ker ¢ is not dense in dom ¢. Hence by Theorem 1.18 of {15],
¢ is continuous on its domain. The following proposition ties together the concepts
of surrounding a point not in the support of a measure and when & ,(N) is non-
trivial.

PROPOSITION 3. Let p be a measure such that P(y) is antisymmetric, A ¢ spt
and Aeint K (where P®(u) = H*™(int K)). Let &, be any point mass measure at A
and
Ny = M_ on L¥u +9,),

N, = M, on L*39,),

N, = M, on L),

and
N=N,® N, on L*u + 6;) & L*3,).

The following two conditions are equivalent'

(@) FH(N) # 9.

(b) There exists T € & (N3) such that (T — 1) <

Proof. (a) implies (b). Let S &, (N) and let# be the space on which S is
defined. Using the observation and the fact that S € & ,(N), we see that there exists a
closed subspace #; contained in L%(u + &,) that is invariant for Ny, and a ¢ € #7
such that

¢)) A = Graph ¢.
Moreover, since # is invariant for N, we have

)] QNx = Nypx
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for all x € #,. Because ¢ is bounded, we get that Ny|», is similar to N|». Hence,
by [18], Ny|#, is pure. Furthermore, N,|», € &(N;); otherwise, S would not belong
to L(N).

Since N,|#, is pure, the function glspe , determines g(4) for every g € #;. As
above, we see that there exists a closed subspace #, contained in L3(x) that is inva-
riant under N, and a € #°¥ such that

3) H#y = Graph .

Arguing as before, we get that Nyjr, € & ,(N,) and

) YN3x = Nox

for all x € #;. Combining equations (3) and (1), we see there exists 0 € #¥ such that
®) H# = Graph of y @ 0.

Claim: 0 # py for any f e C. To see this, suppose there exists a e C such
that & = By. Then (5) would imply the m.n.e. of N|x equals {(fs r, Br): fe Lxu)
r € C}, a contradiction.

Let T = N;l#,. To finish the proof, all we have left to show is that
i(T' — 2)<—2. To do this, all we need to show is that there are two nonzero
linearly independent vectors in #; © [(N; — A)s#5).

Let K;, K, be nonzero vectors in #’; such that ¥(x) = (x, K;) and
0(x) = {x, K,) for all xe€#5. The vectors K, and K, are linearly independent
because 8 # Sy for any p € C. Now for any x € 3¢, we have

Lz — W%, Ki) = (N3 — x) = (Ny — DY(x) = 0. (via (4))

Hence K, 1 (z — A)#’5. A similar argument, using (2), establishes K, 1_(z — 1)#,.

To see that (b) implies (a), one needs only to reverse the above argument.
That is, let T € & (N,), say T acts on &, and i(T — 1) < —2. Let K; and K, be
orthogonal unit vectors in # S[(N; — )H]. Let Y(x) = {x, K,) and O(x) = (x, K,)
for all x € #°. One can directly verify (using the methods above) that N|g e & (N)
where .# equals the graph of 0 @ .

REMARKS: a. Let m; denote Lebesgue measure on the circle {|z| = 1/i} for
i = 1,2. Let , denote the point mass measure at 0. Observe by the last proposition
_that & (N) = @, where N is the direct sum of M, on L¥(m, + &,) with M, on L2(5,),
even through P®(m; + d,) is antisymmetric. This shows that the assumption N has
multiplicity one in [8], Proposition 9.6 is crucial. However, if we change the above
example by replacing m, everywhere by m; <+ m,, we see that & ,(N)#£@.
b. The proof of the above theorem shows that there exist two pure subnormal
operators S; and S, that are similar but whose minimal normal extensions don’t
have the same multiplicity. (Consult [11], Problem 156). In fact, we could construct

Sy and S, such that the m.n.e. of S; has multiplicity one while the m.n.e. of S, has
infinite multiplicity.
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The following theorem gives a sufficient condition that & (N) # @ in terms
of the structure of P*(y) where N = N; @ N,, N, is reductive and p is the scalar
spectral measure for N.

THEOREM 3. Let u be a measure such that P=(y) = H®(G), i.e., P®(y) is anti-

symmetric and G = int K. Let B be a measure such that f << << pand P*(f) = L=(p).

Let N = N, @ N, where Ny, = M, on L*u) and Ny = M_ on L¥f3). If there
exists a (nontrivial) Borel measurable partition {A,, A5} of G satisfying

() P=(uls, + B) is antisymmetric, and

(b) P®(uls,) is antisymmetric with B << pla,
then & (N) # O.

Proof. Since P™(u|s, + B) is antisymmetric, we see that & (4) # O, where
A = M_on L¥uly, + p). Let S € &, (A), say S acts on #,. Observe that if f, g e#,;
and f1s, = gla,, then flsoe s=glspe s because Sis pure. Hence, 5#,=Graph B, where
B is a closed operator from L2%(u|ls) to L*f). Since P*(B) = L*(B), it follows
that B has dense range. (Recall S e #(4)).

Using the first part of hypothesis (b), we can choose Q € & ,(C) where C= M,
on L*(ul,,). Let 5, be the space on which Q acts. Let 4" = #, ® Graph B. It is easy
to see that & < L*u) @ L*B), o is a closed invariant subspace for N and N|x
is pure.

Observe that the m.n.e. of N|y clearly contains L%(u|4,). Since 4, and 4, are
disjoint, there exists a sequence of continuous functions which converge boundedly
pointwise almost everywhere (1) to X4,. Since f.1 pls, and S € F(4), we see that the
m.n.e. of N|x>L*uls). Hence the m.n.e. of N|x is N because B has dense range
in L¥B).

ExaMpLES. A. Let y, denote planar Lebesgue measure on the open unit disc and
B denote Lebesgue measure on the unit circle restricted to the set {Re z >0}. Let
u = u; -+ B. Choose any infinite increasing sequence {a;}2, of nonnegative real
numbers (with @, = 0) converging to 1, and set
and 4, ={zeD:ay,; <zl <ayy;, i=0,1,...}

dy={z:)zl =1 and Rez>0}U{zeD:ay , <|z| <ay i=12, ...}
Using the notation of the last theorem, we see that & ,(N) # @.

B. The following gives an example of a normal operator N such that & ,(N) # O
but N does not satisfy the hypothesis of either Theorem 3 or Theorem 4 (to follow).
This example, intuitively speaking, shows that the answer to the question “when is
& (N) # @7 will depend on information other than P*(x) and how u surrounds
its holes.

Let G, be the open unit disc slit along the negative real axis from —1 to 0.
Let z1/2 denote the principal branch of z1/2 and let G, denote the image of G; under
712, Let v denote normalized Lebesgue measure on G, and let

m(E) = v(ZV*(E))

o
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for all Borel subsets E < {|z| = 1} and

B(E) = v(z'"*(E) n [0, 1])

for all Borel subsets E < [—1, 0]. Let u = p, -+ B. Let N be defined on L%(u) ® L3(f)
by
Nf®g) =2/ ® zg.

For convenience we shall write an element f@ g € L*(u) @ L2(f) as an ordered triple
(fliz1=1> fli=1, 01, &), suppressing the restriction signs when the context is clear. Let
be the closure of the linear manifold {(p-+4¢z2, p+qz'/2, p—qz"?): p, ¢ polynomials}.
We shall show that N|» € & ,(N). Let £ denote the closed reducing subspace for N
such that N|e is the minimal normal extension of N|x. By the Stone-Weierstrass
theorem (gp, gp, gp) belongs to & for any continuous function g and any polynomial
p. It follows easily that (1,0, 0)e.¥ and, hence, (f,0,0)c.¥ for any fe L%(y,).

Using the Stone-Weierstrass theorem again we see that (gp+-fqz/2, gp-+ fqz'/?,
gp— fqz1'2) belongs to % for any continuous functions f and g and any polynomials
p and q. Approximating z/2 by a sequence of continuous functions f, and letting
p=gq=g=1, we see that (1 + 2z, 14+ z, 1 — z) belongs to #. Since (z, z, z)
and (1, 0, 0) belong to . so does (0, z, 0). Clearly then (0, X{_,x 2, 0) € & for all
x < 0. Hence (0,%_, ., 0)€ ¥ and therefore (0,1,0)e #. It is now obvious
that &% = L¥u) @ L¥f).

We still need to show N|x is a pure operator. In this light define the map I
from (p 4+ gz, p + qz/2, p — qzV'?) into H*(v) by

I(p + qz*%, p + qz"%, p — qz'%)(w) = p(W?) + q(w?)w

for all w € 0G,. We want to show [ is an isometry. First note that for all Borel subsets
E < [0, i] that v(E) = v(—E). Hence

I(p + gz'%, p + qz'%, p — qz'*)|P = S lp(W?) + g(wiw|*dy +

9G:N{jz|=1}

+ S Ip(w?) -+ q(wRw|2dv + S Ip(w?) — g(w¥w|2d .
10, i}

[0,il
But the last integral equals S Ip(w?) + gwHw|*dv
[-i,0]
s0
I(p + qzV2, p + g2z'2, p — gz"))|* = |lp + qwliixy)

for all polynomials p and g. We extend I to an isometry of # onto H%(v). Clearly 1
intertwines multiplication by z on 2 and multiplication by w? on HZ%(v). Since
multiplication by w on H2(v) is obviously pure, it follows from [8], Corollary 6.4,
that multiplication by w? on H?(v) is pure. Since purity is preserved under unitary
equivalence, Nlx € & ,(N).
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If one combines the methods and ideas of Lemma 7 and the last theorem,
.one can verify the following:

THEOREM 4. Let N be any normal operator with scalar spectral measure .
If P=(u) = H*(G) and P*(ulg) = H*(G) then &, (N)+ O. (Here G = int K.)

This research was supported in part by the National Science Foundation under Grant
No. MCS77—00966.
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