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COMPARING FUNCTORS CLASSIFYING EXTENSIONS
OF C*ALGEBRAS

JONATHAN ROSENBERG and CLAUDE SCHOCHET

1. INTRODUCTION AND STATEMENT OF RESULTS

Suppose that 4 and B are separable C*-algebras. We are concerned with the
classification of extensions of C*-algebras ot the form
(b 0-BRA >E->A4-0,

where A = X () is the C*-algebra of compact operators on a complex separable
infinite-dimensional Hilbert space 5. Of special interest is the case where B == Cy(Y),
the continuous functions vanishing at infinity on a (second countable) locally com-
pact space Y. When B = C, the complex numbers (equivalently, Y = pt, the one-
point space), then (I.1) reduces to

(1.2) 0 A > E->4-0.

“*Essential” extensions of the form (1.2), modulo a suitable equivalence relation,
form a group Ext(A), provided that A is nuclear, by results of Brown, Douglas, and
Fillmore [6] (abbreviated hereafter BDF), Choi-Effros [8], Voiculescu [21], and
Arveson {2]. This group has been calculated in terms of topological K-theory when 4
is commutative by Kahn, Kaminker, and Schochet [13], generalizing results of BDFE.

When Bis non-trivial, there is a great variety of complicated classification prob-
lems associated with extensions (1.1) (see [7], [9], and [10] for an idea of the comple-
xity of the subject). Nevertheless, there are two approaches, which we now describe,
which identify extensions (1.1) with elements of commutative semigroups or groups
having nice functorial propertics. Both approaches begin with the observation
of Busby [7, Theorem 4.3] that every diagram (1.1) defines canonically a commuta-
tive diagram
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where .#(B) denotes the algebra M(8 ® A ') of two-sided multipliers of B @ 4,
Q(B) =AM (B)/(B® H), and the map 7 is the “pull-back’ of 7 and the quotient map =.
When B = Cy(Y), we write «Z(Y) and Q(Y) for .#Z(B) and Q(B); by [1, Theorem 3.3
and its Corollaries], .#(¥) may be identified with C2(Y, %), the algebra of norm-
bounded, strong- continuous functions from ¥ to # = #(#), the bounded opera-
tors on #. Thus when Y = pt, /Z(Y) = # and Q(Y) == B[A = (, the Calkin
algebra.

The #-homomorphism 7: 4 — Q(B) is called the Busby imvarianst of (1.1), and
determines (1.1) up to a very strong notion of equivalence [7, Definition 4.1]. There-
fore one often identifies an extension with its Busby invariant. However, it is most
convenient to work with a much weaker equivalence relation on extensions. There-
fore, if U is a unitary in #(B) with

(mUy(rnU)* = ',

we say t' is (unitarily) equivalent to t. The set of equivalence classes of extensions
is given a natural associative, commutative addition operator defined as follows:
given 1,, 7,0 A = Q(B), we define 7, @ 1, to be the equivalence class of the com-
posite

(z1, 72) o

4 —— Q(B) ® QB) ——— AUB) @ M, —— (B),

where M, denotes the n by n complex matrices and we identify # @ 5# with ¢
via any unitary. (This definition is due to Kasparov [14] but agrees with that pre-
viously given by BDF when B = C.) An extension 7: A — Q(B) splits if there is
a x-homomorphism ¢: 4 —» .#(B) with 7 =r ¢ g. (The other reasonable definitions
of a split extension coincide with this one, see [7, Proposition 5.3].) To this point
the two approaches agree.

Pimsner, Popa, and Voiculescu {16], [17] (hereafter abbreviated PPV) continue
as follows. First, they insist that B = C(¥), where Y is a finite-dimensional com-
pact metric space (or equivalently, ¥ is a closed subset of S" for some n). Second,
they require that 4 be unital and that t: 4 — Q(Y) be unital (so that F is also unital
and 7 : E-> 4 is unital). Third, they insist that all extensions be homogeneous. (For
any ye Y, the evaluation map p,: .#(Y) — # induces p,: Q(Y) » Q. An extension
T: A - Q(Y) is homogeneous if p, o T is injective for all y € ¥.) Under these restric-
tions, unitary equivalence classes of homogeneous extensions form a semigroup
with unit, denoted Ext(Y; 4). If one assumes in addition that A4 is nuclear, then
essentially the same argument as for the BDF theory shows that Ext(Y; A4) is a
group. If yoe ¥ is a basepoint, then

. Ext(Y, yo; A) = {{t] € Ext(¥; A): Py, ot is split}

is a natural subgroup.
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Kasparov [14], on the other hand, puts no restrictions on the algebra B. He
does not insist that 4 be unital, nor does he insist that extensions be ‘‘essential”
or “homogeneous’ in any way (tr need not be injective). Instead, he takes the semi-
group of unitary equivalence classes of extensions, divides out the unitary equiva-
lence classes of split. extensions, and studies the resulting semigroup with unit.
He denotes it Ext(4, B), but for purposes of comparison with the PPV groups we
shall denote it by Kas(B; 4) (or Kas(Y; A) when B == Cy(Y)). Asin the PPV theory
(again because of the Choi-Effros lifting theorem), Kas(B; A) is a group if A4 is
nuclear. Kasparov also defines other functors KK* by quite a different construction;
his main result is that Kas(B; 4) = KK* (4, B) for nuclear A.

To emphasize the difference between the Kasparov and PPV approaches,
note that for PPV, if 1] = [1.] and 7; splits then 1, splits. For Kasparov, however,
if [7,]={[7,) and =, splits then 7, need not split. The most that can be said is that there
exists a split extension 74 such that 7, @ 74 splits. In analogy with vector bundles,
we say 1, is stably split. (For a precise justification of the analogy and the termino-
logy, see [18, §5].) In Section 2 we consider some examples of this phenomenon.

The PPV groups have been calculated when A4 is commutative by Schochet
{19]. The Kasparov groups are not calculated explicitly in [14] unless A4 = Cy(X),
B = Cy(Y), and the one-point compactifications of ¥ and X are of the homotopy
type of finite CW-complexes, although presumably they could be obtained from
the KK* functors in certain other cases. Since many cases of practical interest
involve commutative 4 and B with spectra whose one-point compactifications are
not finite complexes, we have been led (o try to compute the Kasparov groups in
some new cases. At the same time, we were tempted to determine the precise rela-
tionship between the Kasparov and PPV functors.

We now state our principal results. In Section 2 these are applied to study
the C*-algebra of the Heisenberg group and related matters. In Section 3 the proofs
of the main theorems are given. In Section 4 we examine the relationship between
the Kasparov and PPV functors and certain other invariants using the more fami-
liar K-groups of a Banach algebra, and discuss the perhaps unexpected effectiveness
of K-theory techniques in proving non-splitting theorems about naturally occur-
ring extensions.

If A is a C*-algebra, A" denotes the algebra obtained by adjoining an iden-
tity to 4. If Y is a locally compact space, ¥+ denotes its one-point compactification
and + denotes the point adjoined at infinity. These notations are consistent in that
C(Y*) = Cy(Y)™ .

THEOREM 1.4, Let Y be a finite-dimensional compact metric space and let A
be a separable nuclear C*-algebra (not necessarily unital). Then there is a natural
isomorphism of groups

Ext(Y; A1) = Kas(Y; 4).
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Note that if 4 is unital then 4™ = 4 @ C # A, and (usually) Ext(¥; 4%) #
# Ext(Y; A). The difference stems from the fact that PPV insist upon equivalence
of extensions via unitaries from .#(Y) (strong equivalence, in the BDF terminology).
If ¥ = pt then Ext(pt; 4) is the strong BDF group, whereas Kas(pt; 4) is the
weak BDF group. In the Kasparov theory one can always add a non-unital split
extension to any unital extension so that one may assume ab initio that all maps
are non-unital.

Theorem 1.4 was established by Schochet [19] in the case that 4 is commuta-~
tive, and hence is perhaps not a surprising resalt. What is more interesting is the
following theorem relating the Kasparov groups for non-compact Y, which classify
primarily “‘singular’ extensions (in the sense of [22]), to the PPV groups for the one-
point compactification.

THEOREM 1.5. Let Y be a locally compact subset of R” and let A be a separable
nuclear C*-algebra (not necessarily unital). Then there is a natural isomorphism
of groups

Ext(Y*, +; A7) = Kas(Y; A).

Note that Y is a locally compact subset of R" for some » if and only if Y*
is a finite-dimensional compact metric space [12], so that the PPV group is defined.

COROLLARY 1.6. Let X and Y be locally compact subsets of R*. Then
Kas(Y; Co(X)) = KNV A F(X™))

where F(X7) is the function spectrum of X+ and KO(—) is (reduced) representable
topological X-theory [13].

Proof. Combine 1.5 and [19]. &4

Corollary 1.6 implies most of Theorem 5 of Kasparov [I4]. Theorem 1.5
allows us to show that Kas(Y; 4) is periodic of period two in each variable, satisfies
appropriate homotopy invariance and exactness properties, etc., without appealing
to the Kasparov KK* machine. There is, however, a great deal more in Kasparov’s
announcement which the PPV work does not imply.

Corollary 1.6 and the standard identification of F(S”) with the sphere spec-

trum yields the following corollary.
COROLLARY 1.7. Let Y be a locally compact subset of Euclidean space. Then
VY iF R iy en
Kas(Y: Cy(R") = [f ’(Y ) tf/z is even
Ko(y"y ifmis odd.

Corollary 1.7 contains many cases of interest, as will be shown in Sections
2 and 4.
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2. THE HEISENBERG GROUP EXTENSION

Let Gy be the Heisenberg group of real dimension 3 and let C*(G;) be ifs
group C*-algebra. Then C*(G;) can be written in a canonical manner as an exten-
. sion of C*-algebras

(2.1) 0 - Cy(R—{0}) ® 4 — C*(Gy) - Cy(RY) - 0.

In answer to a problem posed by J.M.G. Fell a number of years ago, Voiculescu
[22) and Kasparov [14] have both shown that the extension (2.1) is not a split exten-
sion. (The extension (2.1) defines an element in the group

Kas(R — {0}; Co(RY) 2 KR — {0})+) = KN(S'v §) = Z & Z;

Kasparov shows that it corresponds to a non-zero element of this group.)
Voiculescu actually proves something stronger. Let Y be a sequence of points
in R — {0} which converges to zero. Then ¥ together with R? defines a closed subset

of 63 and hence a quotient C*-algebra £ of C*(G,), yielding an extension of the form
(2.2) 0->CY)® A — E— Cy(R%) - 0.

Voiculescu, using delicate analytic techniques, proves that (2.2) does not split.
Note that (2.2) defines an element of Kas(¥Y; Co(R?); this group is = K7} (¥+),
by Corollary 1.7. If Y is infinite discrete then K™(Y") = 0. Hence (2.2) is stably
split; it is possible to add a split extension to (2.2) in such a manner that the result-
ing extension splits. This makes precise Voiculescu’s remark that his non-splitting
result for (2.2) ““seems not to be obtainable [from Kasparov’s methods]” [22]. This
also gives a proof of the stable splitting of (2.2) which is independent of the hardest
part of Kasparov’s results,

The example (2.2) is instructive since it illustrates so dramatically the diffe-
rence between splitting and stable splitting.

(The analogous behavior for vector bundles is well-known. The tangent
bundle 7(S?%) of the sphere S? is stably trivial, {or the sum of 7(S?) with the normal
bundle N(S?) (relative to the standard embedding of S? in R?) is a three-dimensional
trivial bundle, and N(S?) is a trivial line bundle. However, T(S?) is not trivial. If
it were trivial then S% would have a nowhere-zero vector field and it would be pos-
sible to comb the hair of a coconut.)

3. PROOFS OF THE MAIN THEOREMS

In this section we prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. Suppose that 7: 47 — Q(V) represents [t] € Ext(Y; 47).
Let @(t) be the restriction of v to 4. Then &(r): 4 — Q(¥) is a Kasparov ex-
tension. It is immediate that
(3.1) @ ExU(Y: AT - Kas(Y; A)
is a well defined homomorphism.
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Suppose that ®(z) = 0. Then there exists a split extension 7,: 4 — Q(Y) such
that &(1) @ 7, = ng, for some representation o: 4 — .#(Y). Without loss of gene-
rality we may assume that 7, is homogeneous. Extend 1, and 6 to A*; then

0=[ro] = [t @ ] = [1]

in Ext(¥; A™) and thus & is an injection.

It remains to show that & is a surjection. Suppose that 7: A - Q(Y) repre-
sents [7] € Kas(Y; 4). Choose a homogeneous split extension u: AT — Q(Y) and
form © @ u, where 7 is extended unitally to A4*. This is a homogeneous extension,
and

P @ p) = [t @ pld=1[1.
Thus @ is an isomorphism. #
Proof of Theorem 1.5. If Y is a compact subset of Euclidean space then it is
a finite-dimensional compact metric space, and Y™ is the disjoint union of Y and +.

Thus
Ext(Y", +; A7) = Ext(Y; 4™) =

~ Kas(Y; A) by (1.4).
Thus attention may be restricted to the case where Y is dense but not closed in Y.

Let [t} e Ext(Y*, +; A"). By adding on a non-unital split extension 7 and
then restricting to A4, one obtains from z a non-unital extension t; of the form

0 — C(Y*, #) E 4 0
f f
(3.2) = l 4

0 s C(YY, H) s C(Y*, B)—s Q(Y) —— 0,

where we have made the identifications 4 = E/C(Y™, &), C(Y", A)=C(YT)® A,
and A (Y™) = C,(Y", B) (the last of these courtesy of [1, 3.3]). The composite

p.TiiA—>Q
splits, since [p, 7] = 0, so the extension
(3.3) 0> A = E/C(Y, ) 40
which is obtained from (3.2) also splits. Choose a splitting o for (3.3); it is given by

a C*-injection 6: A — EJ/Cy(Y, ") with no = id. (Note that & is not unique.) The
inclusion

3.4) A S E[C(Y, Xy~ CR(Y, B)/Co(Y, X)
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is then a candidate for ®[r]€ Kas(¥; 4). (Note that in 3.4 we have indentified
A(Y) == CA(Y, B) using [1,3.3] again.) We must show that & is well defined.

First consider the case when [t] =0 in Ext(Y", -+;A4"). Then 7, in (3.2)
is trivial, so let o, : 4 — E be some splitting of 7,. The composite

ABE - E/C(Y, A

is a possible splitting of (3.3), and this leads to a choice for @{r] which is obviously
split, hence represents 0 in Kas(Y; A). The problem is to show that any other choice
of a splitting of (3.3) also yields a split extension. This may be assured by choosing t
initially to be a ““constant” trivial extension, as follows. Take some trivial exten-
sion ¢: AY — B(A) and define o,: AT - Cu(Y', 8) by ay(a) (¥) (£) = a(a) (%)
for ae A", ye Y*, € ; then let 1 = m o 6,. (Any trivial PPV extension is equi-
valent to an extension of this form, by [16, Theorem 2.10].) Then the resulting ex-
fension (3.3) becomes

0= A = CH{C(Y*, A), 6u( AV Co Y, H )= CH{C(Y ¥, Ay, 0o )} C(Y*, #)=0
(3.5) =

IR
2

Y

0nH  ——s CHA, o(A)) A 0,

for which any splitting can obviously be extended to a “‘constant™ splitting of (3.2).
Thus, if [t] = 0 in Ext(¥Y*, +; 4%) then &[t] = 0 in Kas(Y; A).

It is now easy to show in general that @ is well defined. Let [ 7] € Ext(Y™, --; 4™).
Choose representatives 7: A" — Q(Y*") and p: A" - Q(Y") for [:] and for —[7]
respectively, and let 7y, and py:4 — Q(¥™") be their restrictions as in (3.2). As p_p
is split, there is a split extension (as in 3.3)

(3.6) 0 — A — E(u)/Co(Y, )5 A~ 0.
Fix some splitting v for (3.6). Similarly, since p, 7 is trivial, there is a split extension
(3.7)' 0 A - E(1)/Cy(Y, )5 A4 -0,
Let oy, 041 4 = E(1)/Cy(Y, A") be two splittings of (3.7). To show that @ is well

defined, we must show that [o,] = [0,] in the group Kas(Y; A). But consider the
extensions

6; @ viA = L1, @ u)/Co(Y, ), j=1,2.

These are split extensions by the above, since each corresponds to the split exten-
sion 7y, @ py. Thus

oy ® v]==[o, ® v] =

9 - 2843
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in Kas(Y; 4), which implies that

[o,] = [o,]

in Kas(Y; 4).
Thus @: Ext(Y™, +4; 4")—>Kas(Y; A4)is a well defined function. It is clear from
the construction that @ is a homomorphism which is natural in the obvious senses.
Next we show that & is surjective. Let [t] € Kas(Y; 4) be an extension repre-
sented by

11 A - QY) = CUY, B)/CLY, X).

Suppose there is a unitary Ue CA(Y, %) such that (nU)t(zU)* has image in
C5(Y,B)]Cy(Y, X'), where C5'(Y, %) denotes the subalgebra of functions in C3(Y, %)
which converge =-strongly to zero at +e Y*. Then it is clear that [t] = ®([¢]),
where ¢ is the composite of (zU) t (wU)* with the injection

SQ(Y: ‘@)/CO(YB '%/) - Cs'-’(Y"Lﬂ ‘@)/C(Y: ‘){)

(modified by adding a constant split extension to make it homogeneous). It remains
to produce U.

For convenience in this part of the proof, take 2# to be the concrete Hilbert
space L*([0, 1]) and let p,(0 < t < 1) denote multiplication by the characteristic
function of [0, 1] on s#. Note that p, is a strong-» continuous function of f. Define
unitary operators i, on J# by

1712g(171s) 0<

s /2
Q@ —0g((s +1 —0/2 — 1) 112 <

<t
s<1

ulg) (s) = {

for0 < t < 1, ges#. Note that u,pyjpu™ = pys.
Returning to 7: 4 » C{(Y, B)/Cy(Y, X)), we may assume by adding on a
suitable trivial extension that the associated algebra F in the extension

0-C(Y,#)>E->A-0
has the property that for fixed fe £,

SO = PSPy € A for all ye Y
(3.8) and

1) — Py f()Pyel — © as y — -+ in Y.



EXTENSIONS OF C*ALGEBRAS 275

Let m: ¥Y* — [0, 1] be a continuous function with m1{0} = {-} (e.g., take m to
be the distance to -+ in a suitable metric). Define a unitary Ue CA(Y, %) by
U(») = 11y, Then

(Up112U%) () = ey Pujatimen™ =

= pm(y)/z
and hence

3.9) (UpyU*(3) = 0 x-strongly as y — +.

Combining (3.8) and (3.9), we see that UEU* € C$(Y, &) and hence 7 is equivalent
to an extension of the form

A~ CS(Y, BCY, X)

which is in the image of ¢. Hence @ is surjective.
It remains to demonstrate that ¢ is injective. Suppose that [1] is in the kernel
of &. Then the extension

o1 4> E/C, (Y, )

in (3.4) is trivial in Kas(Y; A4). If ¢ were a split extension via 0: 4 — E, then 6
would also split 7 and hence [t] = 0. In general we only know that ¢ @ o, is a split
extension, where o, is some split extension. Since & is surjective, we may represent

o, as an extension
o1 A= Cu(Y™, B)C(Y, H).

Then 7 @ o, splits, and
fl=[t ® 6] =0 in Ext(Y*, +; 47).

Hence & is an isomorphism.

4. THE UNEXPECTED EFFECTIVENESS OF K-THEORY

It is well-known that to every complex Banach algebra with unit (not neces-
sarily commutative), one may associate abelian groups Kq(4) and K;(4). (The defi-
nitions are given in [20, § 5 and 6] for abelian 4 but apply just as well in the non-
commutative case. Ky(A4) is the usual Ky-group of algebraic K-theory; K;(4) is a
modification of the algebraic K,-group that takes the topology of GL(n, 4) into
account.) For compact spaces X, one has K (C(X)) = K~(X), the latter as usually
defined in algebraic topology using vector bundles. For a Banach algebra B not
necessarily with unit, we define

K(B) = K(B") = ker(K(B*) - K(C));
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this definition agrees with the previous one when 2 is unital. The K-groups of Banach
algebras satisfy Bott periodicity; this implies

K{(B), nmeven

Kl @ GRY) = {K (B), n odd
R 3 3

and any extension of C*-algebras of the form (1.1) defines a repeating six-term
long exact sequence of K-groups. (See [20, Theorem 10.1]; once again, the commu-
tativity is unnecessary.) Furthermore, K-groups are “stable” invariants, so that
KB ® o) and K,(B) may be identified.

Consider the connecting homomorphisms

00(0): Ko(A) = Ko(B @ &) = Ky(B)

@.1)
51(0): Ky(4) = Ko(B ® #) = Ky(B)

in the long exact K-theory sequence associated with an extension (1.1) with Busby
invariant 7. It is easy to check that:

(a) d, and 9, depend only on the unitary equivalence class of =,

(b) &, and 6, vanish when 7 is split, and

(©) 34ty @ 12) = (1) + 5i(r).

Thus dy and J; combine to yield a homomorphism

y:Kas(B; A) O Hom,(Ko(4), Ky(B)) ® Homy(Ky(4), Ko(B)).
In particular, y(z) # 0 implies that 7 is not split, and this provides an easy way
to check non-splitting of many C*-algebra extensions (see [18]). The converse is
obviously false, since y(t) == 0 whenever 7 is stably split but not split.

In fact, it is known from the BDF theory that y(zr) = O doesn’t necessarily
imply that [t} =0 in Kas(B; 4). It is true, however, that when y(¢) = 0, the long
exact K-theory sequence coming from (1.1) breaks up into two short exact sequences
of abelian groups

@.2) Si0):0 > K (B @ #) = K(B) » K(E) » K (4) >0,

i==0, 1. These will split when 7 does and once again depend additively on the
unitary equivalence class of 7, so

T (S [5: (D)

defines a group homomorphism

u: ker 7 — Exty(K(4), Ko(B)) @ Exth(K,(4), K,(B)).
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Here “Ext” has its usual meaning {rom homological algebra. The definition of
is due to L. G. Brown [4], who also, along with R. G. Douglas and P. A. Fillmore,
used the maps y; and y., which are special cases of 7.

Rosenberg [18] has shown how various invariants of extensions of particular
classes of C*-algebras turn out to be special cases of y. In the case of AF algebras
(for which K,, and hence also y, always vaunishes), a similarly important role is
played by x (see for instance [15], {11], and [5]). Is it just good fortune that the
y- and x-invariants turn out to be so effective? The answer seems to be that this is
not just a matter of Iuck; we are led to the following definitions.

DerFNgTION 4.3. The group Kas(B; A) is said to be determined by K-theory
if % is an injection, or equivalently if y(t) = x(7) = 0 implies 7 is stably split.

A somewhat stronger condition frequently holds in practice.

DeriNiTION 4.4, The group Kas(B; 4) is said to satisfy the Universal Coeffi-
cient Theorem (UCT) if y is surjective and if x is an isomorphism.

There are analogous definitions for the PPV extension groups. For certain
purposes it is sometimes convenient to insist that the UCT hold both for 4 and for
its (non-unital) suspension 4 ® Cy(R).

We shall now review a number of cases where the UCT holds.

ExampLE 4.5. Cases where B = C.

The “strong” BDF Ext-groups of compact metric spaces (i.e., abelian sepa-
rable unital C*-algebras) were shown by Brown ([3]; cf. [13]) to satisfy the UCT.
Since Kas(pt; Co(X)) = Ext(X™), this means the UCT holds for the Kasparov
groups Kas(pt; 4) when A is abelian. It is also interesting to note in this connection
the observation of Brown that when Kas(pt; Co{ X)) is finitely generated, then the
kernel of y is precisely its torsion subgroup. (This follows from the UCT since if
Ext(K%X), Z) is finitely generated, it must be finite, by standard abelian group
theory.) There are also extensive results of Brown (largely unpublished) showing
that for certain classes of non-commutative C*-algebras 4, Kas(pt; 4) satisfies
the UCT; it is possible, for instance, that this holds for all separable nuclear A.

The following results are to some extent improvements on [17, Proposition
7.6 and Corollary 9.11] and on part of [14, Theorem 5].

U After this paper was typed, we received a copy of a preprint by J. Cuntz entitled ““A class
of C*-algebras and topological Markov chains. II: Reducible Markov chains and the Ext-functor
for C*-algebras™, in which the same results are proved by a slightly different method. See in
particular Cuntz’s Lemma 3.2 and the following Remark. In his Theorem 3.11, Cuntz proves
a version of the UCT for the Kasparov groups Kas(B; ¢ ).
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LEmMA 4.6. Let B be any unital C*-algebra, and as before let 4 (B) be the
multiplier algebra of B ® # and let Q(B) be .#(B)/B ® . Then the connecting maps
0 of the K-theory sequence associated to

0B A - H(B)>QB)—~0

map Ky(Q(B)) onto K (B) and K,(Q(B)) onto Ky(B). (Equivalently, the natural maps
Ki(B) —» K(#(B)), i=0,1, are zero.)

Proof. Note that the spatial C*-tensor product B ®,,,,%(#) may be embedded
naturally in .#(B). First consider the map d;: Ky (Q(B)) — K¢(B). The group Ky(B)
is generated by classes of projections in B ® M, = B ® A for various n, and it
is enough to show that any such class is in the image of K,(Q(B)). If we absorb
the M,-factor with the B, we are reduced to considering a projection e € B and show-
ing that [e] is in the image of d,. The following argument is not the shortest pos-
sible, but exhibits an explicit class in K,(2(B)) mapping under §, to [e]. Let S
be the unilateral shift on #, so that S$*S =1 and SS* =1 — p, where p is a
projection in A (#) of rank one. Then v =rnle ® S + (1 —e) ® 1) is a unitary
element of Q(B) and

(rolo )+ 0=00f 1))=(0 v

in Q(B) ® M, = Q(B). Thus from the description of §, in {20, 8.1}, we see

8,([0]) = [e®((~)9 z)((l) g)(j 2)+(1—6)®((1) g)]—[(é g)]z

= — X P 0 ’
=—[¢(5 o)]
which shows &; (—[v]) = [e].

To deal with J,, first identify K,(B) with Ko(B ® Co(R)) = Ky(B ® C(SY).
The argument above shows that K, (Q(B) ® (C(SY)) maps onto K,(B ® C(SY)),
hence 6o(Ko(Q(B))) = K((B).

THEOREM 4.7. Let B be any unital C*-algebra. Then Kas(B;C) satisfies the
UCT and is naturally isomorphic to K,(B).

Proof. Since Ko(C) = Z and K,(C) = 0, any extension

(4.8) 0B®A >E-Co0



EXTENSIONS OF C*-ALGEBRAS 279

with Busby invariant 7: C — Q(B) has 6,(1) =0 and J,(1) e Hom (Z, K, (B)) =
=~ K,(B). Thus we must show 8,: Kas(B; C) - K (B) is an isomorphism. To prove
surjectivity, note that by 4.6, any class in K,(B) is in the image of K (Q(B)). This
group is generated by classes of projections p € Q(B), and we can define a *-homo-
morphism 1: C — Q(B) with Ss-invariant &,([p]) by setting 7(1) = p. Thus J, is
surjective.

Next suppose d4(1) = 0. We must show (4.8) is stably split. Now by assump-
tion, So(7(1)) = 0, so (1) is stably liftable to .#(B), ie., 1(1)® 1, ® 0, in
M, ,1(Q(B)) = Q(B) can be lifted to a projection in .#(B) for some r and g. This
means exactly that the Kasparov sum of (4.8) and of some trivial extension splits.

THEOREM 4.9. Let B be any unital C*-algebra. Then Kas(B; Cy(R)) satisfies
the UCT and is naturally isomorphic to Ky(B).

Proof. Since K (Cy(R)) = Z and K (Co(R)) = 0, any extension
4.10) OB A »E- Cy(R)y—-0

with Busby invariant 7: Co(R) — Q(B) has J,(r) = 0 and §,(r) € Hom(Z, Ky(B)) =
= K,(B). Thus we must show J;: Kas(B; Cy(R)) » Ky(B) is an isomorphism.
Observe that any unitary u € Q(B) with non-zero class in K ((8)) must have spec-
trum the whole unit circle, hence gives rise to a *-monomorphism C(S*) = C*(u) <
< Q(B) mapping the generator of K*(R) = K(S?) to the class of u. Surjectivity of
0, therefore follows from 4.6 as in the proof of the last theorem.

Next suppose 6,(r) = 0. Adding a split extension to (4.10) if necessary, we
may assume 1 extends to a unital map C,(R)* = C(S") — Q(B) mapping the iden-
tity function on S? to a unitary u € (J(B) with spectrum the whole unit circle. By
assumption, 6,({u]) = 0 and so u is stably liftable to a unitary in .#(B),i.e.,u @ 1, &
€M, (Q(B)) = Q(B) is liftable for some n. This then says that (4.10) is stably
split. 2

REMARK 4.11. Theorems 4.7 and 4.9 (which essentially identify Xo(B) and
K,(B) with ways of choosing a unitary element or a projection, respectively, in
Q(B)) are closely related to the usual realizations of K-theory for a compact space X.
Indeed, we have K°(X) = [X, GL(Q)] and KY(X)=[X, #'], where #*' denotes
the nontrivial connected component of the self-adjoint Fredholm operators on
and [,] denotes homotopy classes of maps. But a homotopy class of maps X — GL(Q)
represents a class of unitaries in Q(X), and a homotopy class of maps X — #*
represents a class of projections in Q(X).

REMARK 4.12. Theorems 4.7 and 4.9 immediately extend to the case of
nonunital algebras B. Thus for any C*-algebra B, Kas(B;C) = K (B) and
Kas(B; Co(R)) = Ky(B).
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Proof. Everything goes through as before once one has the analogue of Lemma
4.6 for a non-unital algebra B. To show that the K-groups of 3(8) map onto those
of B, note that from the proof of 4.6, we really only need to use the image in Q(B)
of B ® ... Z(H#). Suppose, say, that B is nuclear. Then from the exact sequence

0B Bt C—-0

we obtain the commutative diagram with exact rows and columns

0 0 0

1 i \J
0B @A B RE-B QIO

1 ! ¢

0->B"Q X >B"@%B—B"®(D—0

0 >0

e
O §
[l T

Given any class b in K,(B)=K;(B ® «), choose a class in K; (B* ® Q) map-
ping onto its image in K;(B* ® &) (by 4.6); by diagram chasing, this comes from
a class in K;(B ® @), represented by a unitary u or projection e in Q(B). Then
01([ul) or do([e]) = b. If B is not nuclear, this doesn’t exactly work (because of pos-
sible non-exactness of ®,; ), but note that in the proof of 4.6, we didn’t really
need all of 4, only the subalgebra C*(8), which is even type 1. Thus the same idea
goes through with % replaced by a suitable nuclear subalgebra. 7

If we are willing to niake use of periodicity of the Kasparov groups in the
A-variable [14, Theorem 3], Remark 4.12 above immediately implies

THEOREM 4.13. Let B be any C*-algebra with countuble approximate unit. Then

Kas(B: Cy(R")) = {KL(B), n oeven,
Ko(B), n odd.

Note that 4,7 and 4.9 are special cases of 4.13, and that Corollary 1.7 already
establishes 4.13 for B = C\(Y), Y a locally compact subset of Euclidean space,
without our needing to use any of Kasparov's more difficult results. Similarly,
Corollary 1.6 can be used to quickly check the UCT in many other cases of prac-
tical interest.

We shall establish the UCT for Kas(Z; 4) when A4 and B are separable C*-al-
gebras with 4 in a certain large subclass of the nuclear algebras in a future paper.
However, the techniques required are considerably more sophisticated than those
discussed here, and require the full power of Kasparov’s machinery plus some homo-
logical algebra,
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