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FINITELY CONNECTED DOMAINS G, REPRESENTATIONS
OF H=(G), AND INVARIANT SUBSPACES

B. CHEVREAU, C. M. PEARCY, and A.L. SHIELDS

1. INTRODUCTION

Let s# be a separable, infinite dimensional, complex Hilbert space, and let
L) denote the algebra of all bounded linear operators on #. Recall that if &/
is a subalgebra of L(s#) and .# is a subspace of # such that (0) # # # # and
B4 < . Tor every B in &7, then .# is a nontrivial invariant subspace for of. If o
is the algebra of all polynomials in a fixed operator A, then .4 is a nontrivial invar-
iant subspace for A, and if &7 is the commutant of 4, then .# is a nontrivial hyperin-
variant subspace for A.

The question whether every operator in Z(#) has a (nontrivial) invariant
subspace is, of course, one of the most important unsolved problems in operator
theory. As a result there is considerable interest in whether all operators of a given
sort in £ (o) have invariant subspaces. o

A big: breakthrough in this area was made about three years ago by Scott
Brown, who showed in [12] that every subnormal operator in Z(5#) has invariant
subspaces and simultaneously originated a technique for constructing invariant
subspaces that could be applied to a much wider class of operators. Brown’s pio-
neering work was rapidly followed by a sequence of papers exploiting this break-
through (see the attached biblibgraphy). The present paper is another in that sequence,
although herein we take a somewhat different point of view. In any case, this paper
should be regarded as a sequel to [13]. In that paper it was shown that if 4 is a
contraction in £ () with the property that the intersection of the spectrum (A
of 4 and the open unit disc D in C is a dominating subset of D (see §2 for defini-
tions), then A has invariant subspaces. One of the purposes of this paper is to
generalize that theorem. We replace D by an arbitrary bounded domain G in C
and we study operators 4-for which G is an M-spectral set for 4 and o(4) NG
is a dominating subset of G (see §§2 and 4 for definitions). Eventually we show
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(Theorem 5.2) that if G is a finitely connected Jordan domain, then a certain algebra
of rational functions of 4 has an invariant subspace, thereby generalizing consi-
derably the main theorem of [13] mentioned above.

Anyone familiar with [12] or [13] (or any of the other papers exploiting the
Scott Brown technique listed in the bibliography) knows that the two main compo-
nents of this technique are 1) the construction of a suitable representation ¢ of
some H*(G) into £ () and 2) the demonstration that the image algebra ®(H™(G))
has an invariant subspace. Thus, after dealing with some preliminaries in §2, we
turn our attention immediately in §3 to the question of when representations of
H%(G) (for G an arbitrary bounded domain in C) have nontrivial invariant subspaces,
and in Theorem 3.2 we give sufficient conditions on @ for this to happen. In §4
we show that in the important special case in which G is finitely connected, one
of the continuity hypotheses on @ in Theorem 3.2 may be omitted, thus yielding a
better resuit (Theorem 4.1). In §5 we apply Theorem 4.1 to obtain the invariant
subspace theorem for single operators mentioned above (Theorem 5.2). Then in §6
we apply Theorem 5.2 to conclude that many invertible bilateral weighted shift
operators have hyperinvariant subspaces (Theorem 6.2). Section 7, which is inde-
pendent of the preceding sections, is devoted to the construction of an H*(G) function-
al calculus with certain properties that is needed in §§ 4 and 5. Finaily, § 8 consists
of some remarks concerning the existence of norm-discontinuous representations
of H*®(G) and the non-uniqueness of norm-continuous representations. These
remarks also shed some light on the interplay between components 1) and 2) of
the Scott Brown technique that is an essential feature of the present paper.

2. PRELIMINARIES

In this section we set forth some preliminaries that we shall need later. As far
as possible, the notation and terminology used herein will agree with that of [13).
Throughout the paper G will denote a (nonempty) bounded domain in C, and H*(G)
will denote, as usual, the Banach algebra of all bounded holomorphic functions on
G in the supremum norm:

[ fllo =sup | f(DI, [f€H?G).
1€G
A subset I” of G is said to be a dominating subset of G (or a dominating set for
H>(G)) if
I fllo = sup [f(A)}, f€ HG).
ierl

In case G is the open disc D, the dominating sets were characterized in [11, Theorem 3]
as follows: a subset I of D is a dominating set in D if and only if almost every
boundary point { of D is a non-tangential limit point of I' (that is, { is the limit of
a sequence in I’ that lies inside some proper angular opening with vertex at ().
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The space H*(G) may be regarded as a subspace of L®(G) (where the measure
in question is Lebesgue area measure on G). The space L™(G) has a weak™* topology
since it is the dual space of LY(G), and it is known that H®(G) is a weak* closed sub-
space of L®(G). (See, for example, the proof of Theorem 4.5 in [25].) Furthermore
a sequence { f,} in H®(G) is weak* convergent to zero if and only if it is bounded
and converges pointwise to zero on G; cf. [25, 3.11 and 4.6]. Of course the unit ball
in H*(G) is compact and metrizable in the weak* topology (since LY(G) is separable).

The following elementary proposition is an analog of [13, Proposition 3.1].

ProrosITiON 2.1, If A€ G and E,, is the bounded linear functional on H*®(G)
obtained by setting E, (f) = f(4y), f € H®(G), then E,_  is weak* continuous. Moreover,
every h in H*(G) can be decomposed as

hQ) = k(o) + (L — A) ), (EG,

where g € H®(G) and satisfies ||gllo < 2||hlleo/dist(Ag, 0G).

Recall next that a set S in a complex vector space X is said to be balanced
if a8 < § for all complex numbers « such that |«| < 1. The absolutely convex hull
of a set S is the smallest convex and balanced set containing S. Alternatively it
is the collection of all linear combinations a,x; -+ ... + a,x, of vectors x;, . .., x,
in § such that loy| -+ ... 4 lo,| < 1. We shall need the following analog of [13,
Proposition 2.8].

PROPOSITION 2.2. Let X be a complex Banach space, let M be a positive number,
and let E be a subset of X such that for all ¢ in X*,

lell € M sup |p(x)|.
xXEE

Then the closure of the absolutely convex hull of E contains the closed ball By, of
radius 1/M about the origin in X.

Proof. Let € be the closed absolutely convex hull of E (that is, the closure of
the absolutely convex hull of E). Suppose %, is not contained in %, and let x, belong
to By \¥. By a standard consequence of the Hahn-Banach theorem (cf. [10, Pro-
position 14.15]), there exists a linear functional ¢ in X* and a real number r such
that Re(p(x)) < r for all x in %, while Re(¢(x;)) > r. Since 0 € ¢, the number r
is nonnegative. For any x in %, write [o(x)] = pp(x) with |y| = 1. We have |o(x)] =
= Re(yp(x)) = Re(e(yx)) < r. Thus |p(x)] < r for all x in 4. But then, by the
bypothesis on E, we have ||@|| < Mr, contradicting the fact that

lell = e/l X% D] = M Re(p(xy)) > Mr.

Therefore € contains 4,,,.



378 B. CHEVREAU, C. M. PEARCY, and A. L. SHIELDS

We shall also need the following basic fact from the general theory of Banach
spaces. For a proof, see [13, Theorems 2.3 and 2.7). We write (X*,w*) for the topo-
logical linear space consisting of the dual of a Banach space X with its weak®

topology.

PROPOSITION 2.3. Let X and Y be complex Banach spaces.

(i) If S is a continuous linear map from (X*, w¥) into (Y*, w*) with trivial
kernel and norm-closed range, then S(X*) is weak™ closed and S is a weak® homeo-
morphism of X* onto S(X*).

() If X is separable, to show that a linear mapping S:(X*, w¥) — (Y*, w¥)
is continuous, it suffices to show that whenever a sequence {@,}2., converges to zero in
(X*, w¥), then so does the sequence {S¢@,}3., in (Y*, w¥). :

We now turn our attention to some preparatory material from the theory of
operators on Hilbert space that we shall need. Throughout the paper, we will denote
the Banach space of trace-class operators in &£ () under the trace norm || ||, by
{(z¢). Recall from [16, Theorem 8, p. 105] that setting

(A, T) =tr(AT), AeL(H#), Te (1)

induces a bilinear functional on £ (5#) X (rc) that allows us to identify £ () with (1¢)™.
This identification, which we use hereafter without additional comment, has the
further property that the weak™* topology defined on Z(#) = (1¢)* coincides with
the uitraweak topology on Z (). (For more information about the ultraweak and
ultrastrong operator topologies, see [16, p. 35]. In particular, recall that a sequence
{4,} in £(#) converges ultraweakly [ultrastrongly] to zero if and only if it converges
to zero in the weak [strong] operator topology.) It results easily from this that if
&/ is any ultraweakly closed subspace of £ () and 27 denotes the preannihilator
of o in (z¢), then &/ becomes the dual space of the quotient space Q = (z¢)/*ef
(see [13, Proposition 2.1 and Corollary 2.2]). Furthermore it is easy to see (cf.
[13, Corollary 2.4]) that the relative ultraweak topology induced on & by Z(#)
coincides with the weak™® topology that accrues to & by virtue of its being the dual
space of (. This topology will be called interchangeably the ultraweak or weak*
topology on /. Moreover, elements of = (z¢)/*&/ will be written as equivalence
classes [77], where T € (zc), and the quotient norm on (Q will be denoted by || |la.
Of course the duality between & and Q is implemented by the bilinear functional

(A, [T]) =t(AT), Aded, [TleQ

If x and y are nonzero elements of 5#, we denote by x ® y the rank-one operator
u — (u, y)x in L(H). It is well-known that ||x ® yil =[x ® »ll. = {xii-||¥ll. More-
over, easy computations show that tr(x ® ») = (x, y) and that if Be .Z’(,%’), then

Bx®y)=Bx® y.
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Finally we recall that the left essential spectrum o1.(A) of an operator A in
F () can be characterized as the set of all those complex numbers A for which there
exists an orthonormal family {x;}{2; in # satisfying ||(4 — A)x;|| = 0. If 4 has
the property that o(4)\o1(4) # D, then it is easy to see (cf. [24, p. 47]) that either
A or A* has an eigenvalue, and since 4 cannot be a scalar, the corresponding eigen-
space gives rise to a (nontrivial) hyperinvariant subspace for 4. Thus in what follows,
we will frequently be able to assume of a given operator A that o(4) = 6(A).

3. REPRESENTATIONS OF H*®(G)

Let G be an arbitrary nonempty bounded domain in C. By a representation
of H®(G) we mean any algebra homomorphism of H®(G) into ZL(s#). (Thus repre-
sentations are not necessarily unital, and, in fact, need not even be norm-continuous;
see §8.) If @ is a representation of H*(G), and .# is a nontrivial subspace of #
that is invariant under the algebra @(H*(G)), we shall say that.#is an invariant
subspace of @. In this section we study the following problem: under what conditions
on a representation @ will it be true that & has an invariant subspace ? This problem
is fundamental, because the techniques introduced by Scott Brown in [12] and exploit-
ed in the sequence of papers listed in the references (for proving the existence of
invariant subspaces for certain classes of operators) involve 1) the construction of
a sunitable representation ¢ of some H®(G), and 2) the demonstration that ¢ has
an invariant subspace. Thus any theorem along the lines of 2) reduces an invariant
subspace problem to that of constructing a suitable representation as in 1).

Our program begins with an elementary spectral mapping lemma.

LeEMMA 3.1. Let G be a (nonempty) bounded domain in C, and let ® be a repre-
sentation of H(G) such that ®(1) = 1. Suppose that f, is the position function
FolO) = Cin H*(G) and ¥(f,) = A. Suppose also that 1 € 6(A) N G. Then f(4) € o(P(f))
for every fin H(G).

Proof. Fix f in H*®(G) and let f = f(4). Then f(§) — B = ({ — A)g({) where
g€ H®(G). Thus &(f)— Pl = &(f — p) = (4 — AD)P(g) = (g4 — Al). Since
A — I is not invertible, either it is not surjective ot it is not one-to-one. In either
case we see that ¢(f) — B is not invertible, as was to be shown.

The following is the central result of this section, and mlght be said to be what
the proof of [13, Theorem 4.1] really proves.

THEOREM 3.2. Let G be a (nonempty) bounded domain in C, and let ¢ be a
representation of H®(G) with the following properties:
(@) @ is norm-continuous; i.e., there exists a positive number M such that

12NN < M|\ fllo for every f in H™(G),
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() Iffo(0) = { is the position function in H(G) and ®(f,) = A, then a(4) N G
is a dominating subset of G,

(©) If {f.}2, is any sequence in H*(G) that converges weak* to zero, then
{D(f)I converges to zero in the strong (equivalently, ultrastrong) operator topology
on ZL(#).

Then ® has a nontrivial invariant subspace; i.e., there is a nontrivial subspace
of H# that is invariant under the algebra P(H>(G)).

Proof. We note first that it follows from (b) that @ is not the zero represen-
tation. Since H®(G) is commutative, it is clear that the operator @(1) is a nonzero
idempotent that commutes with the range o7 of the representation @, and thus if
®(1) # 1, the range of @(1) is the desired subspace invariant under /. Hence we
may assume that (1) = 1. From Lemma 3.1 and (b) we deduce that

M Ifleo = sup |f(D] < p(P(N) < NONl,  [e HG),
A€o()NG

where as usual, p(®(f)) denotes the spectral radius of @(f). Thus we see that @ is
bounded below by 1 and that & is norm-closed.

If the operator A in (b) has a (nontrivial) hyperinvariant subspace, then since
& is commutative, this subspace will be the desired invariant subspace for @. Since
A cannot be a scalar by (b), we may thus suppose that neither 4 nor 4* has an eigen-
value. In particular, according to what was said in Section 2, we may suppose
throughout the remainder of the proof that ¢y(4) = ¢(A4).

We note that by virtue of (c), Proposition 2.3, and the fact that the ultrastrong
topology on £ () is stronger than the ultraweak topology, @ is continuous if both
H*(G) and & are given their weak* topologies. Thus, by virtuz of Proposition 2.
again, </ is not only a norm-closed subalgebra of #(s#) but is ultraweakly (weak*)
closed as well, and @ is a weak* homeomorphism. Hence, as noted earlier, & = Q%
where  is the Banach space (tc)/2%/. Furthermore if A is any fixed point in G, the
mapping /' — f(4) is a weak® continuous linear functional on H*(G) (Proposition
2.1), and since @' is a weak®™ homeomorphism of & onto H*(G), the map B —
— ¢7Y(B) (1) is a weak™ continuous linear functional on /. But, according to
{10, Problem 15J], such linear functionals must arise from the dual action of Q
on &, and hence there exists an element [C,] in @ such that

P YBY4A) = (B,[C;)) = t(BC;), Bed.
If we write ®71(B) = f, this equation becomes

@ ) = D)), [C3]) = t(P(f)C}), f€ H(G).
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Qur goal (following the remarkable idea [12] of S. Brown) will be to show that the
coset [C,] contains a representative that is a rank-one operator x @ y. (In fact we
will show more—namely, that every element of Q is of the form [x ® y] for appro-
priate vectors x and y and that every [C,] is of the form [z ® z].) Suppose, for the

moment, that we have shown that [C,] = [x ® y] for some vectors x and y. Then
(2) becomes

(3) JQ) = tw(@(f)(x @ ¥)) = (B(f)x, ), feH*G).

Taking f = 1 we see that x # 0 and y # 0. Also if we set g({) = { — A and consider
the product fg, then (3) becomes

0 = (2(fg)x, ) = (DS )A — Ax,y), [f€ HZG).

Since the possibility of x" = (4 — A)x being 0 was ruled out earlier, it follows that
the linear manifold «7x’ is invariant under & and is orthogonal to y. Since this linear
manifold contains @(1)x" = x’ and thus is nonzero, the subspace 4 = {/x'}"
is the desired invariant subspace of @. (To see that [C,] actually has the form [z ® z],
note that since (x, y) = 1, we know that x ¢ .#, and thus we may write x = x; + x,
where x;, € A, x,€ A+, and x, # 0. Set z = x,/|| x,|. To conclude that [C;] = [z ® z]
it suffices to show that (@(f)z, z) = f(A) for all functions fin H*(G). This is obvious

if f= 1, so we may suppose that f has the form f({) = g({)({ — 1) and show that
B(f)z € 4. But this follows from the equation

D(f)xy = P(g)A — D(x — x1) = P(@x" — P(g)(A4 — N)x,

and the fact that ./ is invariant under 7.

Thus the remainder of the proof of the theorem is devoted to establishing
that every element of ( is of the form [x & y]. This will be accomplished by proving
a sequence of lemmas that closely resembles the sequences in [12] and [13]. The first

lemma shows that for any A in 6(4) N G, [C,] is at least the limit (in || ||2) of cosets
of the form [x ® y].

LeMMA 3.3, Let e oa(A4)n G. Then there exists an orthonormal sequence

{x, 521 in # such that (A — Mx,|| = 0, and for any such sequence, ||[x, ® x,] —
—[C}lile — 0.

Proof. Since A€ g1{4), there exists an orthonormal sequence {x,}3., in #
such that {[(4 — A)x,[| — O (cf. [24, Proposition 2.15]). Since of is the conjugate

space of the Banach space Q, there exists a sequence {&(f,)} in & such that for each
n, |®(f) =1 and

xy ® x,] — [Cillla = {P(f), [xy ® x,] — [C}]) =
= tr(¢(fn)(xn ® Xy ~— CA))'

4
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Let B, = f,(4) and write f,({) = B, + ({ — A) g,({). Then, by Proposition 2.1, g, €
€ H®(G) and ||g,ll < 2|/f,lle/dist (4, 6G). By virtue of (1), IIf,ll < 1 for all n, so
the sequence {g,} is bounded. Thus from (4) we obtain

Xy ® x,] — [Cillle = tr({B, + D(g )4 — D} {x, ® x, — C;}) =
= Btr(x, ® x, — C;) + tr(P(g, )4 — )(x, ® x,)) — tr(P(g )4 — ) C)) =
= 0+ tr({P(g)(A — DX} @ x,) — 0 = (g, WA — W)Xy, X,) <
< N PEM A — Dx, | < Mgyl (4 — Dx, || ~ 0.
We have here used the facts that
tr(x, ® x,) = (X Xp) = 1,

tr(C,) = {1, [C;]) = <D(1), [C}]) = 1,
and
tr(P(g, (4 — 2)C;) = (P(g,( — ), [C;]) = () — 2) = 0.

LEMMA 3.4. Let A€ 6(A)N G and let {x,}3, be any orthonormal sequence
such that ||(4 — A)x,|| = 0. Then for any fixed s in #, ||[x, ® s]lla — O.

Proof. Just as in the previous lemma there exists a sequence {/,}32, in H®(G)
:such that |@(/,)|| = 1 and such that

Xy @ sllle = te(P(h,)(x, ® 5)) = (P(h,)x,, 5), n > 1.
As before we write 1,({) = B, + (( — Vg, (). Then
Xy @ slllz = Bulxn, $) + (D(g)(A — 2) x,, 5).

The first term on the right tends to zero since the sequence {8, = /,(})} is bounded
and {x,} is an orthonormal sequence, and the second term tends to zero as in the

previous lemma.

The next lemma is almost a symmetrical version of Lemma 3.4, but the proof
is more difficult. It is principally here that condition (c) in the statement of Theorem

3.2 is used.

Lemma 3.5. Let {x,}32., be any orthonormal sequence in . Then for every
Sixedsin A, s ® x,]ll2 — 0.

Proof. As before, let {h,}32, be a sequence in H®(G) such that for all n > 1,
8¢, =1 and

s ® Xnllle = {P(hy), [s @ x,]) = tr(P(h,)s ® x,)) = (B(h,) s, x,).
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If this sequence did not tend to zero then there would exist § > 0 and an increasing
sequence {n;} of positive integers such that ||[s ® x, ]/l > 0 for all j. Since {i,}
is a bounded sequence in H®(G), we may assume, by passing to a further subse-
quence if necessary, that the sequence {h,,j} is weak* convergent—say to g. Let
8n; = h,; — g. Then the sequence {g,,} converges weak* to zero, and we have

&) 0 < (P(hy)s, Xn) = (D(g,)8, X)) + (P(8)s, X,)-

But the first term on the right side of (5) tends to zero since the sequence {di(g,,j)}
converges strongly to zero by condition (c), and the second term on the right side
tends to zero since the sequence {x, } is orthonormal. This contradiction completes
the proof.

LeEMMA 3.6. Let /4, ..., 2, be any finite sequence of (not necessarily distinct)
numbers from o(A) 0 G. Then there exists a corresponding family {x}}, ..., {xI'}

of mutually orthogonal, orthonormal sequenees such that lim| (4 — lj)x,-jll =0
i

for1 <j < nand lim||[x} @ xfllle = O forall 1 < j,k < nwithj # k. Furthermore,

ify1, -+ 5 Vo-is any sequence of n scalars and u; = E ij’,:, v; = 2 x,, then
lim |[w; @ vi] 5_‘, iCy e = 0.
i-»00 =
Proof. Consider the operator 4; ® ... @ 4,, where each 4; acts on an infinite
dimensional space. Since the set {4, ..., ,} = 61(4), one can apply [9, Theorem
Al with 4, @ ... @ 4, = N, in the notation of that theorem, and it follows easily
that there exists a family {x}}, ..., {x7} of mutually orthogonal, orthonormal se-

uences (i.e., (x/, x¥) = 6,.9,) such that
q kO

lim|[(4 — 2)x{|=0 for all 1 <j < n

=00

Suppose now that 1 < j,k < n with j # k. For clarity of notation we set A = 4,

H=7r,z,=x and y; = xF. As in prev1ous lemmas, there exists a sequence.
{h;}2, in H®(G) such that || h;]] < ||@(h)]] < 1 and

Hzi ® yillla = {P(h), [z; ® y.i]> = (P(h) z;, y1)
for each i. Using the decomposition h,({) = h () + ({ — A) g,({) as before, we obtain:
iz ® yilll e = h(A)(z, ) + (P(gNA — A) z;, ¥)) = (P(g )4 — D) z;, ),

and since the sequence {g;} is bounded (by Proposition 2.1), the right hand side
tends to zero.
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To prove the last assertion in the statement of the lemma, we write

[, ® v]] = Z 7_,2[)(:] ® xﬂ + Z ?j?k[xxj ® xf].
=1 1<i#ks<n

J

By what has already been proved, the second summand on the right converges to

zero (in || [l2), and by Lemma 3.3, the first summand converges to Z y}’[Ch].
j=1

Lemma 3.7. Let S < Q be the closed absolutely convex hull of the set {[C,]:
A€ a(A)n G}. Then S contains the closed ball %, in Q of radius 1|/M about the
origin.

Proof. For each f in H®(G) we have

IO < Mifllo=M sup [fiD)i=M sup K&(f),[C])|
A€a(ANG 1€a(4)NG

by virtue of (2) and the fact that 6(4) N G is given to be a dominating set for H*(G).
The result follows from Proposition 2.2.

Lemma 3.8. Let [L] € Q and suppose that there exist vectors s and s' in 3¢ such
that |[s ® s') — [L)lla < & << 1. Then there exist vectors t and t' in 3 such that

s — 1] < (Me)''?,

Is" = v'll < (Me)''2,

and
it ® t'] —[L]lle < ¢/4.

Proof. Let {K] = [L] — [s ® s']. The result is trivial if [K] = 0, so we assume
that d = ||[K]|l2 > 0. By Lemma 3.7 there eéxist points 4;, ..., 4, in ¢(4)nG
and scalars a;, . .., o, such that

NKIdM] — 3, @C, s < &/8dM, ¥ |ajl < 1.
j=1

j=1 j=

For each j choose y; so that y7 = a;dM. Then we have

J

©) KT — ¥ 9C, s < ¢fS.
=1
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By Lemma 3.6 there exist m mutually orthogonal, orthonormal sequences (X1,
1 < j < m, such that lim || (4 — J)x,’H = 0 for 1 € j < m and such that, if we set

m m
u; =Y, vx/ and v; =} 7ix{, then
j=1 J=1

m

hmHu@v] 27’1 = 0.

Thus, by virtue of (6), we know that for all i sufficiently large,
1[K]— [u; ® v]lle < /8.

Define s; = s -+ u; and s; =" + v;, We shall show that we can choose ¢ = s;
and ¢’ = ¢}, for any integer i, sufficiently large. Note first that for each i we have

w2 = vl = Y [v;i* < dM = M||K||ls < Me.
j=1

Thus for any choice of iy, if ¢ and ¢’ are chosen as indicated, we have [|s — t] <
< (Me)Y? and ||s’ — t'|| < (Mg)V/2. On the other hand,

@51 — L= ® v] + [u; ® 51+ [u; ® vi] — [K],
so for sufficiently large i,

) Ils: ® 51— [Lllle < |I[s ® vllle + I[u; ® slle + /8.

Since [s ® v;] = Y yils ® x{] and similarly for [u; ® s'], the first two summands
j=1

on the right side of (7) tend to zero by Lemmas 3.4 and 3.5, so that we may choose

i, as desired.

The final lemma shows that each nonzero ¢lement in Q has a rank-one repre-
sentative. In particular, this will apply to the functionals [C,], and thereby complete
the proof of Theorem 3.2.

LemMmA 3.9. If [L) is an arbitrary element of Q, then there exist vectors X
and y in # such that [L] =[x ® »].

Proof. 1t obviously suffices to prove the lemma for all [L] in Q with |[[L][j2 <
< 1/M. If [L] = 0, we set x = y = 0, so we may suppose that [L] # 0. Applying
Lemma 3.7 to such an [L], we obtain the existence of afinite set 4, ..., 4,,ina(4) N G

and a finite set o, ..., a, of scalars such that ||[L] — Y %;[C; 12 <1/8. Moreover,
i=1

13--1529
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if y7 = a; for each j, then by Lemma 3.6 there exist vectors # and v such thag

e ® v] — Y, &{Cillle < 1/8. Thus [[L] —[u ® o]l < 1/4, and we set u, =
j=1

=y, = u, vy = v; = v. Suppose now, by induction, that v, and v, have been chosen

for 1 < k € n so as to satisfy

1[L] — [, ® vllle << 1722, flup — wp_y|l < MY2[2K1
|0y — vl < 1‘\/[1/2/2k—1_

Applying Lemma 3.8 with ¢ = 1/2*, s = u,, and s’ = v,, we obtain u,,, = ¢ and
v,,1 = t’ satisfying the above inequalities for k = n + 1. We have thus constructed
by induction two sequences {u,} and {v,} which are obviously Cauchy and satisfy
1w, ® v,] — [L]lle —» 0. Let x =limu, and y = lim v,. Since

[[n @ v5] — [x @ ¥llle < flu, @ v, — x @ ¥l <
< “un ® (Un _y)Ht + H(un - x) ® J’H: =
= fuli oy — yIl + llu, — x|yl = O,

we have [x ® y] = [L], and the proofs of the lemma and of Theorem 3.2 are complete.

The authors conjecture that the version of Theorem 3.2 obtained by dropping
hypothesis (c) on @ is true. In the next section, we prove this in a special case.

4. FINITELY CONNECTED DOMAINS

We consider now the case in which the bounded domain G of Theorem 3.2
is finitely connected (meaning that its boundary has finitely many components),
We prove that for such G the hypothesis (¢) in Theorem 3.2 can be deleted, thus
yielding the following result.

THEOREM 4.1. Let G be any (nonempty) bounded, finitely connected, domain
in C, and let & be a representation of H®(G) into L(#) having properties (a) and (b)
in the statement of Theorem 3.2. Then ® has a nontrivial invariant subspace.

Proof. We shall call a circular domain any domain that is obtained by remov-
ing a finite number of disjoint closed discs (some perhaps of radius zero) from the
open unit disc D. Recall from [20, Theorem 2, p. 237] that there exists a conformal
mapping 0 of G onto some circular domain Q. The map O: f'— f- 0 is easily seen
to implement an isometric Banach algébra isomorphism between H®(2) and H*(G).
The mapping &, = ¢- O is a representation of H*(Q) into £ () having the same
range as P, and thus @, has exactly the same invariant subspaces as @. We next
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show that @, satisfies hypotheses (a) and (b) in the statement of Theorem 3.2, and
therefore that it suffices to prove the present theorem in the special case in which G
is a circular domain. As shown at the beginning of the proof of Theorem 3.2, we
may assume that &(lg) = lr and thus that @,(15) = le. Let 4 = &(f, ¢) and
B = @\(f; o), Where f; ¢ and f, o are the position functions in H*(G) and H®(Q),
respectively. Since B = &(8), we derive from Lemma 3.1 the inclusion 0(a(4) N G) <=
< o(B), and since @ must carry dominating sets in G onto dominating sets in Q,
we conclude that ¢(B) n 2 is dominating in 2. Furthermore it is clear that &, is
norm-continuous. In other words, @, satisfies hypotheses (a) and (b) of Theorem 3.2
as was to be shown.

Thus we may now suppose that G is the circular domain DN\(D{ U ... U D;)
where n is some nonnegative integer, and, in case n > 0, the D = {{:[{ — {,[< 1),
k=1, ...,n, are disjoint closed subdiscs of D. Furthermore we may suppose,
without loss of generality, that each r,, 1 < k < n, is a positive number, because
if r, = 0 for some k, then {, is a removable singularity for all functions in H®(G),
and G may be replaced by G U {{,}. Of course we may again assume that &(l;) =
= lw». Next set G* = {{ : {€ G}, and observe that naturally associated with @
is an “‘adjoint” representation @~ of H*®(G*) defined as follows. For fin H®(G)
let /* be defined on G* by f*(A) =7(Z—). Then f* belongs to H*(G*), and the map
f— f*sets up an isometric Banach algebra anti-isomorphism between H*(G) and
H®(G*). Now set @7(f*) = [P(f)]*. Then &~ is a representation of H*®(G*) which
has a nontrivial invariant subspace if and only if @ does. (More precisely, the ortho-
complement of an invariant subspace for @~ is invariant for @, and vice-versa.)
Observe also that ¢~ satisfies hypotheses (a) and (b) of Theorem 3.2 (with G replaced
by G*). Therefore if either @ or &~ satisfies hypothesis (¢) of Theorem 3.2, the proof
is complete. Suppose then that neither @& nor @™ satisfies that hypothesis.
Let A, = A(=9(f))) and for 1 < k < n, set A, = r(d — ()1 (=®(f,) where
Si(A) = (A — {)™). To conclude the proof we will show that one of A4, ..., 4,
has a nontrivial hyperinvariant subspace (such a subspace is clearly invariant for @).
By Theorem 7.2 the fact that @ does not satisfy hypothesis (¢) means that there exists
some i,0 < i < n, such that the sequence {4/"}%_, does not tend strongly to O.
Similarly there exists some j, 0 < j < n, such that {4#™}5_, does not tend strongly
to 0. Thus the subspaces # = {x e # : || A"x]| >0} and & = {x e # :| 4F"x| -0}
are both different from 5. (Note that .# and ¥ are closed because the operators
A, k=0, ...,n, are all power bounded, which in turn happens because @ is
norm-continuous and the f, are bounded by 1.) It is well-known and easy to prove
that the subspaces .# and 4" are hyperinvariant for 4; and AF, respectively; thus
we may assume that 4 = 4" = (0) (otherwise .4 or 4L is the desired nontrivial
hyperinvariant subspace). For similar reasons we may assume that all of the opera-
tors A, k=0, ...,n, and their adjoints have trivial kernels. Therefore (see Pro-
position 5.3 and especially Equation 5.13, p. 80, of [30]), there exist operators X
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and Y with trivial kernels and dense ranges and there exist unitary operators U
and V'such that X4,—=UX and YA} = VY. We now show by elimination that i = j.
Suppose first that i = 0 and j > 1. From the equation YA4*= V'Y we obtain succes-
sively

rY(A* — [)=VvY,
rVEY = Y(A* — [)),
G+ r¥HY = var,
YHC + V) = AY™.
This last equality combined with X4 = UX gives
XY*); + V) = UXY™).

Since XY* is nonzero (and in fact is a quasiaffinity), the spectra of U and {; + r;V
must overlap [23]. But o(U) < 0D, o({; + r;V) = 0D;, and these two circles are
disjoint. Thus we cannot have i = 0 and j # 0. By an entirely analogous argument,
we eliminate the possibility that j = 0 and i # 0. Suppose now that i and j are
distinct and nonzero. As before, YA = VY leads to

Y*(; + V) = AY*
and XA; = UX yields successively
rX(4— ()= UKX,
rU*X = X(4 — ¢,
{; + rUHX = XA.
Combining the first and last equations, we obtain
XY + V) = € + rUHEY™

and a contradiction results from the disjointness of the spectra of {; 4 r;} and
{; + r;U*, which are contained in 0D; and dD,, respectively. Therefore we have,
necessarily, i = j. But in this case, we obtain, again by [30, Proposition 5.3, p. 79],
that A; is quasisimilar to a unitary operator. Since 4; cannot be scalar because of
the richness of its spectrum, 4; must have a nontrivial hyperinvariant subspace,
and the proof is complete.
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5. INVARIANT SUBSPACES FOR SINGLE OPERATORS

In this section we will apply Theorem 4.1 to obtain the existence of invariant
subspaces for a class of operators that is much larger than the class treated in [13].
We begin by recalling some notation and terminology. If X is a nonempty compact
subset of C, we denote as usual by C(X) the Banach algebra of all continuous,
complex-valued functions on X under the supremum norm. Moreover, we denote
by R(X) the closure in C(X) of the subalgebra of all rational functions with poles
off X. If A is an operator in Z(H#), 6(A) = X, and r is any rational function with
poles off X, then, of course, r(A) is well-defined as the quotient of polynomials.
(It is well-known that this definition of r(4) coincides with the definition of r(A)
given by the Riesz-Dunford functional calculus; cf. Example Q, p. 393, of [10].)
We shall say of an operator A4 satisfying g(A) < X that X is an M-spectral set for 4
if M is a positive number such that

®) 1 r(A)l < M sup r(d)|
ieX

for all rational functions r with poles off X. If X is an M-spectral set for A4, then
the rational functional calculus r — r(4) has a unique continuous extension to
R(X) which comes about as follows: if f'e R(X), then there exists a sequence {r,}7>,
of rational functions with poles off X converging to f uniformly on X. It follows
from (8) that the sequence {r,(4)} is Cauchy in the uniform topology on Z(#)
and that its limit is independent of the particular sequence {r,}. Thus f(A4) may be
defined to be this uniform limit, and it is an easy exercise using (8) to show that the
mapping f — f(A) is a Banach algebra homomorphism of R(X) into #(#°) of norm
no greater than M (in other words, (8) remains valid for all the functions in R(X)).
It will be convenient to denote the range of this homomorphism by % _(4). Note
that a function fin R(X) need not be analytic on a neighborhood of ¢(A4), and thus
that the R(X)-functional calculus is not subsumed by the Riesz-Dunford functional
calculus. The following proposition shows that, nevertheless, the R(X)-functional
calculus enjoys some of the properties of the more familiar Riesz-Dunford calculus.

PROPOSITION 5.1. Let A be an operator in ¥ () and suppose that X is an M-spec-
tral set for A. Then for any f in R(X) we have

a) f(a(4)) = o(f(A) = f(X),

b) f(X) is an M-spectral set for f(A),

) (g/)A) = g(f(A) for all g in R(f(X)),
and

d) Ry f(A) = 2, (A).

Proof. If fe R(X) and if { does not belong to f{X), then the function f(1) —{
is invertible in R(X). (This follows, for example, from the fact that the maximal
ideal space of R(X) can be identified with X; cf. [29, p. 136].) Therefore the operator
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J(4) — { is invertible in #(s#). This proves the second inclusion in a). Let now r,

be a sequence of rational functions with poles off X converging uniformly to f and

let { be in ¢(4). It follows from the spectral mapping theorem for rational functions

that, for each n, r,(4) — r,({) is not invertible. Since f{4) — f({) = hm (r,(4) — r,(0)),
n—e0

the operator f{4) — f({) is not invertible; thus f({) € a(f(4)). This proves the first
inclusion and completes the proof of a).

Next suppose that s is a rational function with poles off f{X), and let J be a
neighborhood of f{X) such that J~ does not contain any poles of s. There exists a
sequence {r,} of rational functions with poles off X that converges uniformly to f
on X. For n large enough the sets r,{(X) are contained in J, and therefore without loss
of generality we may assume that r,(X) < J for all . Since s is uniformly continuous
on J-, the sequence {s°r,} converges uniformly to s°f on X. Hence s°f belongs to
R(X) and {[(sef)4) — (ser, X A)|| = 0. But (s-r,}4) = s(r,(4)) by a well-known
property of the Riesz-Dunford functional calculus, cf. [10, Proposition 17.28, p. 394].
Furthermore the continuity of this functional calculus ([10, Proposition 17.26,
p. 393]), together with the fact that |[r,(4) — f(4)|| = O, implies that || s(r(4)) —
— s(f(A))|| — 0. Thus we have (s=f)(A4) = s(f(4)) and

(PN = [l (s> YA < M sup [(sef W) = M sup |s(A)].
tex AEfC)

Therefore f(X) is an M-spectral set for f(4), and b) is proved.

The equality to be proved in c) was established in b) in case g is a rational
function with poles off f(X). Suppose now that g is an arbitrary function in R(f(X)),
and let s, be a sequence of rational functions in R(f(X)) converging uniformly to g
on f(X). Clearly {s,°f} converges uniformly to go f on X; thus gof e R(X) and

(gof)(4) = lim (s, 1)(4) = lim s,(f(4)) = g(f(4)),

where the last equality follows from the fact (proved in b)) that f(X) is an M-spectral
set for f(4) and the definition of g(f(4)). This completes the proof of c).
Finally, d) is an immediate consequence of ¢), and thus the proof is complete.

The following is our main result concerning invariant subspaces of single
operators. Recall that a finitely connected Jordan domain is a finitely connected do-
main whose (entire) boundary consists of the union of a finite number of pairwise
disjoint Jordan loops.

THEOREM 5.2. Let A be an operator in L(#) for which there exist a finitely
connected Jordan domain G in C and a positive number M such that G~ is an M-spectral
set for A and such that 6(4) n G is dominating in G. Then there is a nontrivial sub-
space 4 of # that is invariant under the algebra %g- (A) (consisting of all operators
S (A) where f runs over R(G")).
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Proof. Let 0 be a conformal mapping of G onto a circular domain Q. Since
G is a finitely connected Jordan domain, an argument similar to that in the simply
connected case (cf. [20, p. 44]) shows that 0 extends to a homeomorphism (which
we continue to call §) of G- onto Q~. Therefore 0 belongs to R(G™) [18, Theorem
2.10.4], and we set B = 86(A). Since §7*-0 = f; -, the position function on G-,
it follows from c) of Proposition 5.1 that 4 = 67*(B), from d) of the same propo-
sition that Z¢-(A) = #-(B), and from b) that Q- is an M-spectral set for B. Finally,
an argument entirely similar to that used in the proof of Theorem 4.1 shows that
QN o(B) is dominating in Q. We conclude from these considerations that it suf-
fices to prove Theorem 5.2 in the case in which G is a circular domain. Suppose
then that G = D\(Dy U ... U D;7) where n is a nonnegative integer and where,
ifn>0 D ={:[{—{l<nr} for k=1,...,n. We may suppose, without
loss of generality, that all of the r,, k = 1, ..., n, are positive, because if some D, =
= {{;}, then we may replace G by G U {{;} and all of the hypotheses remain valid
on this larger domain. Set 4, = 4, andifn >0, set 4, =r(4d— ()L k=1, ...

.., n. It is easy to see that all of the A4,,0 < k < n, are power bounded, and the
argument used at the end of the proof of Theorem 4.1 shows that at least one of the
following three statements is true:

(i) {45 -1 tends strongly to 0 for k=:0, ...,n,

(i) {A4Fm}e_, tends strongly to O for k=0, ...,n,

(iii) there exists some 7, O < 7 < n, such that A; has a nontrivial hyperin-
variant subspace.

Of course if (iii) holds, the proof is complete, since the algebra #;-(4) commutes
with A;. On the other hand, (1i) is (i) where 4 has been replaced by 4*, and clearly
the hypotheses of Theorem 5.1 hold for A* (with G replaced by G*). Moreover the
orthocomplement of a subspace invariant under %8 g«,-(4*) is invariant under %;-(4).
Therefore we may assume that (i) holds. By Theorem 7.3 there exists a norm-con-
tinuous representation @ : H(G) —» ZL(#) that satisfies @) = r(4) for all r in
R(G™). Since o(4) n G is dominating in G, @ satisfies the hypotheses of Theorem
4.1 and therefore, by that theorem, @ has a nontrivial subspace which is certainly
invariant under the smaller algebra 2;-(4). Thus the proof is complete.

As a special case of the above theorem we obtain a generalization of the main
result of [13] due to Apostol [5]. Recall that an operator A is said to be polynomially
bounded if there exists a positive number M such that the closed unit disc D~ is
an M-spectral set for A.

COROLLARY 5.3 ([5)). If A4 is any polynomially bounded operator such that ¢(A) N
N D is a dominating subset of D, then A has a nontrivial invariant subspace.

It is worthwhile to compare Theorem 5.2 with the main result of [28], which
says that if 4 € Z(#) and o6(A4) is an M-spectral set for 4, then 4 has a nontrivial
invariant subspace. Neither theorem implies the other, since each covers cases to
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which the other is not applicable. However, in case both results can be applied,
that is, if 6(4) is not only an M-spectral set for 4, but in addition, is so situated
with respect to some finitely connected Jordan domain G that 6(4) n G is a dominat-
ing subset of G, then Theorem 5.2 yields the existence of a subspace .# that is
invariant under all rational functions of 4 with poles off G~.

We also remark that a forthcoming paper [6], which continues the study of
representations of H®(G), contains results, based on Theorem 3.2, that generalize
Theorems 4.1 and 5.2 of the present paper as well as the main theorem of [28] men-
tioned above.

6. BILATERAL WEIGHTED SHIFTS

In this section we apply Theorem 5.2 to obtain invariant subspaces for some
special classes of operators—in particular, we establish the existence of hyperin-
variant subspaces for a large class of invertible bilateral weighted shift operators.

If A is any invertible operator in £(s#), then we may associate with 4 two
annuli (possibly circles): the norm annulus

N) = {{e C: /|47 < [{] < [4]f}
and the spectral annulus
S(A4) = {IC! : 1/p(4™) < {{} < p(A)},

where, as usual, p(B) denotes the spectral radius of an operator B. In general, all
that can be said about the relationship between o{4), S(4), and N(A4) is that

o(4) = S(4) = N(4).

However, if N(4) is a circle, then S(4) = N(A4) and 4 must be a scalar multiple of
a unitary operator, so A is either a scalar itself or 4 has a good supply of nontrivial
hyperinvariant subspaces. Thus, when looking for invariant subspaces for 4, no
generality is lost by assuming that N(4) is an annulus with nonvoid interior. In
this case, it follows from [27, Proposition 23] that there exists a positive number
M such that N(A) is an M-spectral set for 4. These considerations, together with
Theorem 5.2, immediately yield the following result.

THEOREM 6.1. Let A be an invertible operator in L (), and suppose that the
interior N(A4)° of N(A) is nonvoid and that o(A4A) N N(A)° is a dominating subset of
N(A)°. Then the algebra Ry 4\(4) has a nontrivial invariant subspace. In particular,
if A is any invertible operator such that 6(A) = N(A), then there is a nontrivial subspace
A of # invariant under both A and A™.
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Recall next that a bilateral weighted shift is an operator 4 in £ () that maps

each vector in some orthonormal basis {e,}72 _,, of # to a scalar multiple of the
next vector:

‘(9) Aen = WpChi1» h = O; :{:17 j:2, ces .

There is no loss of generality in assuming that the weight sequence {w,} consists of
nonnegative numbers [27, p. 51], and if this sequence is not bounded away from
zero (i.e., if A is not invertible), it is known [27, p. 91] that every invariant subspace
of A4 is hyperinvariant for A. Thus the hyperinvariant subspace problem for bilateral
weighted shift operators is unresolved only for invertible shifts. Recall that if A4
is any invertible bilateral weighted shift, then o(4) = S(4) [27, p. 67].

THEOREM 6.2. Every invertible bilateral weighted shift operator A for which
a(A) is an M-spectral set for A has a nontrivial hyperinvariant subspace. In particular,
every invertible bilateral weighted shift A satisfving o(A) = N(A) has a nontrivial
hyperinvariant subspace.

Proof. If A is any invertible bilateral weighted shift, one knows from [27,
p. 91] that the commutant of A is the strongly closed algebra generated by 4 and
A7l Thus, to show that a subspace .# is hyperinvariant for 4, it suffices to show
that .# is invariant under 4 and 47%, Consider first the case in which ¢(4) is a circle.
Then, upon multiplication of 4 by a scalar, we may suppose that 6(A4) is the unit
circle. In this case, the assumption that 6(A) is an M-spectral set for 4 (for some
M > 0) tells us that both 4 and A7 are power bounded, and hence by a theorem
of Sz.-Nagy (or, alternatively, by Theorem 6.3), A is similar to a unitary operator.
Thus we may suppose that o(A4) has nonvoid interior. We may now apply Theorem
5.2 with G = d(A4)° to conclude that there is a nontrivial subspace .4 of S that is
invariant under the algebra 2,.,,(4), and therefore invariant under 4 and A7,
as was to be shown. The final assertion now follows from the fact, noted above,
that N(4) is always an M-spectral set for 4.

We remark that it is easy to give examples of invertible bilateral weighted
shifts A for which o(4) is an M-spectral set for 4 but o(4) # N(A). Perhaps the
easiest way to see this is to begin with a shift A satisfying 6(4) = N(4) and increase
one weight dramatically, thereby obtaining a shift A4’ satisfying N(4") # N(4).
One knows from the criterion for similarity of such shifts [25, p. 54] that A4’ is
similar to 4, and thus 6(4") = 6(4) = N(4) # N(A4’). Furthermore, ¢(4’) is easily
seen to be an M’-spectral set for 4’ (for some M’ > 0) because of this similarity.

The following result shows that the above construction exemplifies the only
way such a situation can occur. In other words, more precisely: Up to similarity,
the class of invertible bilateral weighted shifts 4 for which there exists an M >0
such that ¢(A) is an M-spectral set for A coincides exactly with the class of invertible
bilateral shifts 4 for which o{A4) = N(A).
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THEOREM 6.3. Let A be a bilateral weighted shift such that o(A) = {{ : 0 <
< r € || € R} and suppose that there exists an M > O such that

4" < MR, n=1,2,...,

and

JA™ < M(L) , n=1,2,....
r

Then A is similar to a bilateral weighted shift B whose weight sequence {v,} satisfies
r < v, < R for all integers n.
The argument is based on the following proposition, which is what the proof

of [27, Corollary, p. 75] actually proves.
. PrOPOSITION 6.4. Let T be a power bounded bilateral weighted shift with positive

weight sequence {w,}. Then there is a bilateral weighted shift S which is similar to T
and whose weight sequence {v,} satisfies inf w, < v, < 1 for all n.

keZ

Proof of Theorem 6.3. As usual, we may suppose that the weight sequence

{w,} of A consists of positive numbers. We apply Proposition 6.4 to the power

bounded shift 4/R and conclude that 4/R is similar to a bilateral weighted shift

whose weight sequence {u,} satisfies gm; w)/R < u, < 1. In other words, 4 is
1

similar to a shift B whose weight sequence {v,} satisfies inf w, < v, < R. Note that
neZ

. 1y»
the shift Bt (whose weight sequence is 1/v,_,) satisfies || B™"|| < M’ (-«) for some
r

M' > 0 since B! is similar to A™1. Applying Proposition 6.4 again (to rB71), we
see that B! is similar to a bilateral weighted shift C whose weights lie between 1/R
and 1/r. Hence A is similar to C™%, whose weight sequence satisfies the desired ine-
qualities.

We now give an example to show that there are shifts A that satisfy the hypo-
theses of Theorem 6.2 and also have the property that neither 4 nor 4* has point
spectrum (so Theorem 6.2 is not trivial). We arrange the example to show also that
Theorem 6.2 is not covered by Atzmon’s result [7, Theorem 5.1] on hyperinvariant
subspaces for bilateral weighted shifts.

ExAMPLE 6.5. Let A4 be a bilateral weighted shift with weight sequence {w,}
defined as follows:

WOZ ls
w,=1 for 22 < n<2¥" {=0,1,2, ...

n

w, =2 for 28" £ n < 2% i=0,12,...

wW,=w,, n=12,...
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Clearly N(4) = {¢ : 1 < || < 2}, and since there are arbitrarily long strings
of 1°s and arbitrarily long strings of 2’s in the weight sequence, || 47| = 2"and || A™ ||=
=1 for all positive integers n. Thus g(4) = N(4) and Theorem 6.2 is applicable,
To show that the point spectra of 4 and A* are empty, we must show, in the notation
of [27, p. 71], that ry <rf and rj <<rj. Because of the symmetry of the weight se-
quence (w_, == w,_,), we have rj = r; and ry =rf. Furthermore, a straightforward
calculation, which we omit, shows that rj = 22/3 and r; = 2V3, Thus the desired
inequalities hold and the point spectra of both 4 and 4™ are empty. Next set «, =
= Wy Wy ... W, for all positive integers n. Then, since 2Y/3 = r} = liminf o}/"

(by definition), we see that if ¢ is any small positive number, there are only a finite
number of positive integers n such that ol << 21/3 — ¢. Thus eventually we have
* loga,
=0 1° + 1
operator A does not satisfy the hypotheses of {7, Theorem 5.1], and therefore that
Theorem 6.2 is not a consequence of Atzmon’s result. (On the other hand, his
result applies to certain bilateral weighted shifts 4 such that ¢(4) = D and such
that A4”is not power bounded, and such operators clearly do not satisfy the hypothe-
ses of Theorem 6.2.)

We remark, finally, that Herrero’s result {21, Theorem 3] that obtains the
existence of hyperinvariant subspaces for certain invertible bilateral weighted shifts
is an immediate corollary of Theorem 6.2.

o, = (Y3 — g)", and hence the series diverges. This shows that the

7. AN H*() FUNCTIONAL CALCULUS

This section, which is independent of Sections 4, 5, and 6, contains material
on the construction and continuity properties of certain representations that is
needed in the proofs of Theorems 4.1 and 5.2. The reason for presenting this material
separately was precisely to facilitate the exposition of those proofs.

We begin by establishing a decomposition theorem for spaces of the form
H>(Q) where Q is a circular domain (as defined in §4). If U is any unbounded domain
in C whose complement is bounded, we denote by H*(U) the Banach algebra of all
bounded analytic functions on U under the supremum norm and by H(U) the
closed subalgebra of H*(U) consisting of those functions that vanish at co. Itis
easily verified that H*(U) is a weak* closed subspace of L*(U) (where the measure
on U is planar Lebesgue measure) and that a sequence in H®(U) is weak* convergent
to zero if and only if it is bounded and converges pointwise to zero on U.

Suppose now that Q=D\(Dy ... D;) is a circular domain in C, where  is
a positive integer and for i=1, ...,n, D, = {{: |{ — (I <r}(r; > 0). We set
Q,=D, 2, =C\D;, i=1,...,n and observe that there is a natural isometric
embedding of each of the spaces H*(Q,), i = 0, ..., n, into H®(Q) obtained simply
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by restricting a function f in H*(Q,) to the domain Q. The isometric character of
these embeddings follows immediately from the maximum modulus principle.
Moreover, a sequence {g,} converges pointwise boundedly to 0 in H®(Q,) for some
i=0,...,n, if and only if the restricted sequence {g,|©2} converges pointwise
boundedly to 0 in H*(Q); see [20, Theorem 2, p. 18]. Thus the embeddings are
weak® homeomorphisms (Proposition 2.3). Henceforth in this section we shall
frequently regard H®(Q,), i=0, ..., n, as subspaces of H*®() without further
comment.

THEOREM 7.1. Let Q = D\(Di U ... U Dy ) be a circular domain in C, where n
is a positive integer and for i =1, ...,n, D; = {{:|{ — ;| <r;}(r; >0). Then
there exist norm-continuous and weak™ continuous projections (that is, idempotents)
P, : H°(Q) > H®(Q), i =0, ...,n, such that

)Y P =1,
i=0

i) the range of Py is H™(D) (regarded as a subspace of H*()),
and

iti) for i=1, ..., n, the range of P; is HY(Q,) (where Q;=C\D;” and H*(Q))
is regarded as a subspace of H*(Q)).

Proof. Let ¢ be a positive number chosen sufficiently small that ¢ < inf{dist
@D, 0D) : 0 < i,j<m; i # j}, where we set D, = D. Also let I, denote the circle

{C =1 —;—} parameterized so as to be positively oriented, and for i=1, ..., n,

let I'; denote the circle{C =0l =r+ —g—}parameterized so as to be negatively

oriented. Furthermore let Int(I";) and Ext(I';) denote the bounded and unbounded
components of C\ I'; respectively. Finally, for any & in H®(Q), set

1 h()
, N — () 4 Int(T
(10) o) 27 SFOC—A G A IntTy),
and
1 h) )
[ B = —— ‘-——-—-—“—d A E ; == ]1 ooy fie
(11) W) = Sr,.c—i ¢, ACExt(T), i=1,...,n

It is any easy consequence of the definition of the /; and the Cauchy integral
formula that A, is analytic in Int(I"y) and can be extended to be analytic on D, = D,
while for i =1, ...,n, h; is analytic on Ext(I';), satisfies %,(co) = 0, and can be
extended to be analytic on Q,. Moreover it follows from the Cauchy integral formula
for A computed on I'y + I, ... 4 I', that

12) B = ho() + « - + (A, AeQ, he HQ).
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Since each h;, i =1, ..., n, is obviously bounded near dD and / is bounded on Q,
it follows from (12) and the maximum modulus principle that /i, € H®(D). Using
this fact and (12) again, one sees easily that each #; e H(Q)),i = 1, ..., n. Further-
more the Cauchy integral theorem shows that if & € H®(D)[respectively, h € HP(Q))
for somei =1, ..., n], then i = h, [respectively, i = h;]. This proves that the maps
P; : H®(Q) - H*™(Q) defined by P;i = h; (where /1 and the /; are as in (10) and (11)),
i=0, ...,n,areidempotents satisfying i), ii), and iii) in the statement of the theorem.

To see that P, is norm-continuous we must show that there exists M, >0
such that (A (1) € M,lkl, A€ D, for all £ in H®(Q). By the maximum modulus
principle it suffices to prove this for 4 close to ¢D. For such 4, and for ¢ sufficiently
small, we have 1 eInt(ly) n Ext(I')) n ... n Ext(l',) and

(13) (P)(2) = ho(2) = h(D) — 3 %‘1-‘8 LI

i=1 4Tl Jr; C — A

The desired constant M, (depending only on the geometry of Q) is now obtained
easily from standard integral estimates upon letting ¢ tend to 0. Thus P, is norm-
continuous, and similar considerations show that all of the P, i=1, ..., n, are
also norm-continuous. To prove the weak* continuity of the P,, it suffices to prove
sequential weak™ continuity since H®(Q) is the dual of a separable Banach space
(Proposition 2.3). Thus suppose that {g,}?, is a bounded sequence of functions in
H*(£2) that converges pointwise to zero on Q (and therefore uniformly to zero
on every compact subset of €, since the family {g,} is normal). Considering the case
i =0 and writing g, , = P,(g,), we see that the sequence {g, o} is bounded in H*(D)
since P, is norm-continuous. To prove that g, ((4) — 0 for all 4 in D, it is enough
to prove this for A near éD [20, Theorem 2, p. 18]. For such A, and for all sufficiently
small &, we have AleInt(ly) NExt(l'})) n ... n Ext(I',), and we may represent
8k o(4) by (13). The result now follows from the fact that g, — O uniformly on
each I'(i = 1, ..., n). Thus P, is weak* continuous, and similar considerations show
the same is true of the other P, i = 1, ..., n. Thus the proof is complete.

We observe that the above theorem essentially proves that there is a norm-
-bicontinuous linear isomorphism between H*(2) and the direct sum

H*(D) ® HF(Q) ® ... @ H(2,)

(given the (/,) norm) that is also a weak* homeomorphism.

We turn now to applications of Theorem 7.1 to the theory of representations.
The first result gives a necessary and sufficient condition for a norm-continuous
representation of H®(Q) (where Q is either D or as in Theorem 7.1) to map sequences
converging weak® to zero in H®() to sequences converging strongly to zero in
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L(). This result was used in the proof of Theorem 4.1. We state and prove it
in a slightly more general form that will enable us to avoid repeating a nearly identi-
cal argument later.

THEOREM 7.2. Let Q be either D or the circular domain DN(Dy" U ... U D)
in the statement of Theorem 7.1, and let L be a subalgebra of H®(Q) which is either
H>®(Q) or the algebra R of all rational functions whose poles belong to the set {oo,
(i v ovs $} (= {00} in case Q= D). Furthermore, let ® be a norm-continuous
algebra homomorphism of L into () such that (1y) = 1w, andlet fy, f1y « - -, fo
be the functions in L defined by fo({) = { and (in case Q # D) f;({) = r,((— ()7,
J=1, ..., n. Then the following conditions are equivalent:

i) Each of the sequences {®(f€)}, (and in case Q # D) {&(fF)}, ..., {®(f5)}
converges strongly to 0 in L(#),

ii) If {g} is any sequence in L converging weak* to 0, then the sequence {9(g,)}
converges strongly to 0 in ().

Proof. Since each of the sequences {f¥}_,, j=0, ..., n, is bounded and con-
verges pointwise to 0 on €, it is clear that ii) implies i).

To show that i) implies ii), suppose first that 2 = D, and note that R is the
algebra of polynomials in this case. Let {g,} be a bounded sequence in L converging
pointwise to 0 on D, and let ¢ > 0 and x # 0 in 5 be given. By hypothesis we may
choose N large enough so that [|®(fM)x| < ¢/4MC where M=|®| and C >
> sgp”g,‘ll. We write

(14) &) = p() + s(HAY,  AeD,

where p, is a polynomial of degree at most N — 1 and s; € L. More precisely,

N=1g(D((
) =y, O

A,
= J!

and since {g, } converges weak* to 0, each sequence of Taylor coefficients {g’(0)/j!} 2.0
tends to zero also. (This can be seen by using the Cauchy integral formula for deri-
vatives.) Thus ||p.ll = 0, and for k large enough we have |p,| < inf{e/2M |ix||, C}.
For these values of k we obtain from (14) that ||s;]] < 2C and consequently

IP(gxl < 12PN X1+ RGP x ] <
< M(e[2M || x])) ||x ]| + M2C(e/4MC) = &.

Thus lim || ®(g,)x!| = 0, as was to be proved.
k

We turn now to the case in which Q=D\ (D7 u ... U D;), and we will show
that, roughly speaking, the argument can be reduced to the case already treated.
To this end, we will associate with @ n - 1 representations ®;,j =0, ..., n, of L,
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into Z(#) where L, is the subalgebra of H*(D) equal to H®(D) if L=H*(G) and
equal to the algebra of polynomials if L = R. This is done as follows. Set Q, = D
and Q;=C\Dj for j=1, ..., n, and recall that we are regarding the spaces H*(()),
J =0, ..., n, as subspaces of H*(®). Since for each j =0, ..., n, f; is a conformal
mapping of Q; onto D, the map 4 — h+f;is an isometric Banach algebra isomorphism
of H®(D) onto H*(Q;) that is also a weak* homeomorphism. We define &;, j =
=0, ...,n, by ®;(h) = &(hf;) for all & in L,. (Observe that if L = R, then A°f;
belongs to L for every & in L,, and thus ®(/<f;) is defined.) It is easily seen that each
®; is an algebra homomorphism of L, into £ () such that @;(1,)= 1», and we
have

[P = @G <@ ASlle = (@Ml =0, ..com,

so all of the @; are norm-continuous. Observe also that @,(f;) = ¢(f}), j=0, ..., n.

Let now {g,} be a sequence in L converging weak* to 0, and let #, ; =
=(Pig)fi* 0<j<n 1< k< -+oo, where the P; are the projections given by
Theorem 7.1. 1t is easily checked, using the partial fraction decomposition of a ra-
tional function and the definition of the P;, that P;(R)is the set of rational functions
of the form p of;, where p is a polynomial vanishing at 0. Thus, whether L is H®(R)
or R, it is still the case that the functions 4, ; all belong to L,. Since the P; as well
as the maps & — hofi* (from H®(Q;) onto H®(D)) are weak* continuous, each
sequence {/y ;}%.1, 0 < j < n, converges weak* to 0 in H®(D). Moreover, by defi-

n

nition of the @;, we have @ik, ;) = &(P;g,) and therefore d(g) = Y, (i ).

Jj=0

Thus it suffices to show that each sequence {®;(%; )}%.1, 0 < j<n, converges strong-
ly to 0in Z(s¢). But this follows from what was already proved in the case Q =D
treated earlier, since the sequence {®;(f5)(=®(f¥))} converges strongly to 0. Thus
the proof is complete.

We are now ready to construct the functional calculus promised by the title
of this section and used in Theorem 5.2.

THEOREM 7.3. Let Q be either D or the circular domain Q==D\ (D U ... U D)
in the statement of Theor<m 7.1. Furthermore, let A be an operator in L () such that
Q™ is an M-spectral set for A for some positive number M. Suppose, finally, that
the sequence of powers {A7'}%_, of each operator A, = A, (and in case Q # D)
A; =ri(4 — )Y, 1 <j< n, converges strongly to 0 in L(H). Then there exists
a unique norm-continuous representation @ of H®(Q) such that &(1) = 1, and () =
= A. Moreover ® has the property that whenever a sequence {g.} converges weak*
to 0 in H®(Q), then {®(g,)} converges strongly to 0 in L ().

Proof. Let R denote the subalgebra of H®(Q) consisting of those rational
functions whose poles belong to {co, {, ..., {;} (= {o0} in case @ = D). The map
®, : R— L() defined by P;(s) = s(A) is a norm-continuous algebra homomorphism
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of norm at most M, since Q- is an M-spectral set for 4. Moreover, &,(1) = 1,
@y(fo) = 4, and, for j =1, ..., n, ®,(f;) = A; where the f; are defined as in Theo-
rem 7.2. We now apply Theorem 7.2 with L = R to conclude that @, satisfies condi-
tion ii) in the statement of that theorem.

Note that by Runge’s theorem (cf. [10, p. 421]), R is norm-dense in R(£7),
and by [19], for any g in H*(Q), there exists a sequence {s;} in R(Q") such that
{si} converges pointwise to g on 2 and |is|| < |\g| for all k. Thus the weak*
closure of the unit ball in R is the unit ball in H*(Q).

We shall now use these facts to extend &, to a representation & defined on
all of H*(Q). To this end, let g e H®(R), and let {r,} be a bounded sequence of
functions from R that converges pointwise to g on . Since r, — r,, = 0 pointwise
on £ as m,n — oo, it follows easily from the continuity property of @ mentioned
above (property ii) in Theorem 7.2) that the sequence {®(r,)} is Cauchy in the strong
operator topology on L (). Since £ (5#) is sequentially complete in this topology,
the sequence {®(r,)} is strongly convergent to some operator Bin £ (), and we define
&(g) = B. If {s,} is any other bounded sequence of functions in R that converges
pointwise to g on £, then {r, — s,} converges weak* to 0 in H®(Q), so {®(s,)} also
converges to B in the strong operator topology. Thus the definition of @(g) is inde-
pendent of which bounded sequence of rational functions in R converging pointwise
to g is used. In particular this shows that @ extends @, i.e., ®(s) = P,(s) for every
rational function s in R, since s can be approached by the constant sequence
{s,8,8, ...}

That @ is linear now follows trivially from its definition and the linearity of
&,, and that @ is multiplicative follows from a similar argument and the well-known
fact that if {B,} and {C,} are sequences of operators in #(J#) converging strongly
to B, and C,, respectively, then {B,C,} converges strongly to B,C,. Thus & is a
representation of H*(Q) such that @(1) = 1, and &(f,) = A (where f, is the posi-
tion function on ). To see that @ is bounded by M and thus is norm-continuous,
recall from above that if g e H®(R), then there exists a sequence {r,} of functions
from R converging weak® to g and satisfying sup ||r, || = |[g[l. Thus

()l = 1Pyl < M{ir,ll < Mgl

and since closed balls in £ () are also closed in the strong operator topology, we
have [|9(g)ll < Mlgll.

That & maps weak* convergent sequences in H®(Q) to strongly convergent
sequences in & (#) now is an immediate consequence of the hypothesis and Theo-
rem 7.2 (applied in the case in which L = H*(Q)).

Finally, the fact that there is a unique norm-continuous representation @
of H®(Q) mapping 1 to 1# and f; to 4 now follows immediately from the following
facts: & is uniquely determined on R, ¢ must have property ii) of Theorem 7.2, and
R is sequentially weak™* dense in H*(Q). Thus the proof is complete.
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We close this section with three remarks concerning Theorem 7.3,

REMARK 7.4. Note that, in particular, Theorem 7.3 produces an H®(D)
functional calculus for any polynomially bounded operator A in #(#) whose powers
tend strongly to O.

ReMARK 7.5. There is a composition theorem (whose proof we omit) for
the functional calculus developed in Theorem 7.3 analogous to Proposition 5.1 (¢)
and [30, Chapter III, Theorem 2.1 (e)] that goes as follows. If 1 € H®(Q) and K{(RQ) <
< Q, then Q~ is an M-spectral set for B = h(A4) (=®(h)), and it is easy to see that
all the hypotheses of Theorem 7.3 are satisfied with 4 replaced by B, so that f(B)
is defined for all f'in H*(£2). Furthermore (f+#)(4) = f(B) for all such f.

RemARk 7.6. If in the hypothesis of Theorem 7.3 we replace the assumption
that for each j= 0, ..., n, {A¥}%_, converges strongly to 0 by the weaker assumption
that for each j=0, .. .,n, either {45}, tends strongly to O or {4**}2 | tends strongly
to 0, one can prove the existence of a unique norm-continuous representation ¢
of H®(2) such that (1) = 1, and ®(f,) = A, but the last conclusion is weakened
as follows: If {g,} converges weak* to 0 in H({), then {®(g,)} converges to 0 in
the weak operator topology.

8. CONCLUDING REMARKS

We would like to thank Professor Garth Dales for pointing out to us that
there exist norm-discontinuous representations of H®(D) (into Z(#)). Such repre-
sentations may even be taken to be one-to-one. Indeed Corollary 2 on page 339
of [2] remains valid when the disc algebra is replaced by H*(D) and the convolution
algebra L[0, 1] is replaced by the algebra L?[0,1] with the same convolution multi-
plication. Thus there exists a norm-discontinuous one-to-one homomorphism
of H*(D) into the algebra obtained by adjoining a unit to the convolution algebra
12[0,1]. Thus, considering the elements of L?[0,1] as operators (acting by convolution)
on the Hilbert space L*[0,1], we obtain a discontinuous one-to-one representation
of H®(D) into #£(L?[0,1]). For further details on discontinuous homomorphisms
and on situations where continuity is automatic, see, for example, [14] and [I5].

In a different direction, it is interesting to inquire whether another variant
of Theorem 7.3 analogous to that mentioned in Remark 7.6 is valid. More precisely,
if one assumes of a polynomially bounded operator A that the sequence {4*} con-
verges to 0 in the weak operator topology, can one hope to construct a represen-
tation ¢ of H®(D) that maps 1 to 1, and f, to A4 and has the additional property
that @ maps weak* convergent sequences in H®(Q) to sequences in Z () converging
in the weak operator topology? The following example shows that this is not always
possible.
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ExaMPLE 8.1. We will establish the existence of a unitary operator 4 and a
sequence of polynomials {p,} such that 4* — 0 in the weak operator topology,
Py = 0 weak* in H®(D), but p,(4) — 1 in the weak operator topology. Since every
unitary operator is polynomially bounded, and all representations & of H®(D)
that map 1 to 1, and f; to 4 must take the same value at any polynomial, this will
provide the desired counterexample. 1t is a result of MenSov (see [32, Theorem
IX.6.14]) that there exists a probability measure p supported on a subset of 4D
that is singular with respect to arclength measure on D and has the further property

that SC"d;A — 0. It follows at once that SC"t({)d,u—»O for all trigonometric polyno-

mials ¢, and since these functions are dense in L'(u), it follows easily thatSC kh(O)du—0

for every function 4 in L'(u). If A = M,, multiplication by the position function
on L*(u), then A is obviously unitary and that 4% — 0 in the weak operator topology
follows from what was shown above. On the other hand, a result of Sarason [26]
shows that there exists a bounded sequence of polynomials {p,} in H®(D) that con-
verges pointwise to 0 on D but also converges weak™ to 1in L*(u). Thus p(A)— 112,
in the weak operator topology, and the argument is complete.

Another, related question, to which we do not know the answer, is the follow-
ing: If B is a polynomially bounded operator such that B¥ — 0 in the weak opera-
tor topology, can there exist two different norm-continuous representations of

H*(D) each of which sends 1 to 1, and the position function f;, to B ?
D. Sarason has pointed out to the authors that if one drops the requirement

that {B*} converges weakly to 0, then the answer is affirmative. Indeed, let p be a
nontrivial representing measure for H*(D), supported in the fiber over the point
{ =1 in the maximal ideal space .# of H®(D). (See the last chapter of [22] for a
discussion of the maximal ideal space of H*(D).) Let s# = L%*(u). To construct the
first representation, we let the functions in H*®(D) act on L%*(u) by multiplication.
‘Then the range of this representation is an infinite dimensional subalgebra of £ (5#).
However the functions in the disc algebra are constant on each fiber, and so each
such function f corresponds to a scalar muitiple /(1)1 of the identity operator. In
pparticular, the operator B corresponding to f, is the identity operator, which is
polynomially bounded but whose powers do not tend weakly to 0.

To construct the second representation, we let each fin H*(D) correspond to

a scalar multiple of the identity operator: f— (S f d,u)l s (The multiplicativity of

:this map follows from the fact that g is a representing measure.) This representation
iis different from the previous one but agrees with it on the polynomials.

One might think that another way to produce two different representations
of H®(D) that agree on the polynomials would be to start with one representation
and compose it with an algebra endomorphism of H*(D) that leaves each polyno-
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mial fixed. However, it will be a consequence of the following result that any such
endomorphism is the identity. We regard the open unit disc as being embedded
in the maximal ideal space .# of H*(D).

PROPOSITION 8.2. Let ¥ be a nonzero algebra endomorphism of H®(D). Then
there exists a continuous map F of M into itself such that

A~ A
(14) Y(f)=fF, f€H=D),

where © denotes the Gelfand transform. Furthermore ¥ is norm-continuous. Finally,
we have the following dichotomy : Either

a) F(D) < D, in which case F|D belongs to H*(D), and ¥ is weak* sequentially
continuous,
or

b) F(A#) is contained in the fiber over some boundary point. In this case ¥(f)
is a constant function for each f in the disc algebra, and ¥ is not weak* sequentially
continuous.

Proof. First observe that ¥(1) = 1. (Indeed, ¥(1) must be an idempotent;
hence it must be either zero or the identity, and if it were zero then ¥ would be
identically zero.) Since ¥(1) =1 and A(1) = 1 for any A€ .#, A- ¥ is a nonzero
multiplicative linear functional on H®(D), and thus belongs to .#. We'define F: .4 —

— M by F(A) = A= ¥. In terms of the Gelfand transform, this means that f?F(/l)) =

S
= P(f)(4); in other words, (14) is valid. That I7 is continuous is an immediate con-
sequence of the definition of the topology on .#. {Recall that a net A, in .# converges

to 4 if and only iff(la) converges to f"\(}.) for all fin H*(D)). We have

P A A
IO =1¥Dlle =111 Floe < Iflle=l_1,

so ¥ is norm-continuous and ||¥|| < 1. In fact, ||¥] = 1 since ¥(1) = 1. Thus the
first part of the theorem is proved.

Observe next that for any g in H®(D), g|D = g. Since ¥(f) belongs to H®(D)
we obtain from (14) that (fc F)|D belongs to (D) for any f in H*(D). Suppose
first that F(D) < D. Then, since _'f\;)|D = f,, W& obtain (?o ° F)ID = (?0|D)0(F;D) =
= F|D and hence F|D € H®(D). Let now {g,} be a sequence (in H*(D)) converging
weak* to 0. Since ¥ is norm-continuous, the sequence {¥(g,)} is bounded, and
‘from the equalities

¥(g) = (2,° F)|D = g, (FID)

we conclude that {¥(g,)} converges pointwise to zero. This proves a).
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If F(D) ¢ D, then there exnsts Ay € D such that F(lo) belongs to the fiber over
some boundary point w,, i.e., ( fo  F)(4¢) = w,. Since ( f0 F)|Dis analytlc and bound-

ed by I, we must have (by the maximum modulus principle) (f0 F)2) =w,
for all A in .D. In other words, F(D) is contained in the fiber over w,. The Carleson
corona theorem says that D is dense in .#; therefore F(.#) lies in the ﬁber over wg.

For anyfm the disc algebra, j is constant on each fiber, and so ¥(f)(= Y’(f)lD =
= ( j F)|D) is a constant function. It follows from this that ¥ cannot be sequen-
tially weak® continuous, and the proposition is proved.

Suppose now that ¥ is an endomorphism of H%(D) such that ¥(p) =
whenever p is a polynomial. Let F:.# — .# be the continuous map given by Pro-

position 8.1 such that 17(\f) =}’° F. Since ¥(p) is not a constant function when
p is a polynomial we are in case a) of Proposition 8.1. Therefore ¥ is weak* se-
quentially continuous and we have ¥(#) = i for any 4 in H®(D) because the poly-
nomials are weak® sequentially dense in H®(D). Thus we have proved the following
result.

COROLLARY 8.3. If ¥ is an algebra endomorphism of H®(D) that leaves each
polynomial fixed, then ¥ is the identity.
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