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SUPPORT FUNCTIONS FOR MATRIX RANGES:
ANALOGUES OF LUMER’S FORMULA

FRANCIS J. NARCOWICH and JOSEPH D. WARD

1. INTRODUCTION

If o/ and % are C*-algebras and oI, is the set of complex m X m matrices
with identity matrix /,, and identity map /1, : 9, —» M, a linear map ¢ : & — &

is said to be completely positive if the associated maps,
o ® f", A QM, > BRM,, m=1,

are all positive. Stinespring introduced completely positive maps and proved an
elegant, useful representation theorem for them in [17]. Such maps have recently
played a role in classifying C*-algebras [8, 9].

Arveson [2, p. 301] used completely positive maps from a C*-algebra
(with identity I} into 9, to deﬁng generalized state spaces,

(1.1) 8,={p o > N, | is completely positive, op(I) = I,}
and, for 7' e &, the matrix ranges,
(1.2) W)= {ped,:p=qo), pes,}.

He then showed the importance of matrix ranges by proving that if 7 is a
compact, irreducible, linear operator on a separable Hilbert space, then the set
{W(T), n=1,2,...} constitutes a complete set of unitary invariants for T
[2, Section 2.5].

Matrix ranges are generalizations of the numerical range; indeed, W (7)) is
the numerical range of T (i.e. in the Banach algebra sense; it is the closure of the
usual Hilbert space numerical range). Each matrix range W,(T) shares with W (T')
the property of being a compact, convex subset of a finite dimensional vector space
[2, p. 301] which may be viewed as real; R2~ C for W, (T) and R2" =9I, for W, (T).
Such subsets are characterized by their support functions (cf. [13], Chapter 13;
Section 2 of this paper).
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The support function for Wi(7) is defined by
(L.3) Hy(z) = sup{Re(zw) :we Wy(T)}, zeC.
Because - W(T) = Wy(zT), (1.3) can be computed via Lumer’s formula {12]:

(1.4) H(z) = lim {-11—?‘———“” 1 }

2=0" o
The gecmetric interpretation of (1.4) is simply that H(e'%) is the directed distancs
from the origin to the line tangent to W,(T) with outward normal &¥.

The purpose of this paper is to find formulae for the support function of
W(T). including the natural generalization of Lumer’s derivative formula. In
carrying this out, natural correspondences between all completely positive maps
from &7 to 9, and all positive linear functionals on & @ 9, and between all unital
completely positive maps and certain positive linear functionals on & ® &k, are
given. The former correspondence is also found in a work of Lance [11, Lemma 3.11.

In addition, a metric characterization of W,(T) is found. Finally, Choi’'s structural
theorems [7] are generalized.

OUTLINE AND SUMMARY. In Section 2, the support function for W, (T) is defined
and certain preliminary results are given. Section 3 begins by giving the correspon-
dences mentioned above. These are then used to obtain formulae for the support
function of W,(T), a metric characterization of W,(T), and bounds on the support
function. The support functions for normal elements of .« are discussed in Section 4.
Finally, Section 5 starts with a theorem similar to Choi’s structural theorems. This
result is then used to concretely realize certain of the formulae for the support

function obtained in Section 2 in terms of the inner product on a certain tensor
product space.

NoOTATION. &7, &,, T, W,(T), and H,(-) will denote, respectively: a fixed unital
C*-algebra with identity I; the set of all unital completely positive maps from &/
to &K, given in (1.1); a fixed element of <7; the matrix range of T given in (1.2);
and, the support function for W, (T). #* is the dual of a space #; B is the set of
positive elements in 4. The notation [|-!| will be used for norms on all C*-algebras
and for vectors in a complex Hilbert space. The inner product on any complex
Hilbert space will be { , . Other notation will be introduced as needed.

2. PRELIMINARIES

If K is a convex subset of a finite dimensional real vector space ¥, which has

V* as its dual, the support function [13, p. 112) for Kis a mapping H : V* — {R, 400}
defined by

@ H() = sup{’-p | pe K}, Ae V™
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To discuss the support function for W,(T), it is necessary to discuss linear functionals
on &, .

Since M, is finite dimensional, its real dual is isomorphic to L, . The linear
functionals on 9, are well known to have the form

2.2) 2.p = Re(tr(A*p)),

where “tr’’ is the trace and 1* is the adjoint of A. These functionals may also be
viewed in terms of a certain positive linear functional on 3, ® 9N, .

Let &, ..., &, be the canonical basis for C”; that is, £; is a column vector with
one in the j™ entry and zeros elsewhere. If {-,.) denotes the usual complex inner
product on a space — in this case C* ® C" — define

(2.3) ple) = (&, &), ¢=% @&, xed, @I,

jot

It is clear that p(.) is a positive linear functional on dI{, ® 9, . The relationship
between p(-) and the functionals defined by (2.2) is given in the following pro-
position.

PrOPOSITION 2.1. Let p(-) be the positive linear functional defined by (2.3).
Ifp,qe O, , and gt is the transpose of q, then

2.4) tr(g'p) = p(p ® 9).
In particular, the linear functional 2-p is

{2.3) A-p=Re(p(p ® 1)) = p(Re(p ® 7).

Finally, if E; = ;£ is the elementary n X n matrix with one in the (j, k) position
and zeros elsewhere,

(2.6) p(p ® Ep) =pjx -

Proof. Apply (2.3) and use the elementary properties of the tensor product
and inner product.

REMARK 2.1. The dot product defined by (2.2) and the norm defined by

2.7 Iple = (p-p)V2 = (trp*p)V/2

make N, into a real 2n®-dimensional Hilbert space. The norm in (2.7) coincides
with the usual Hilbert-Schmidt norm on 9, .

In the special case of W,(T), the support function, H,(3), is given by

.38) H,(3) = sup{2-p| pe WD)}, LeX,,
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or, in terms of the state space 8, ,

(2.9) H,(}) =sup{d-o(T) | peb,}, Ledli,.

Elementary properties of the support function H,(4£) are given in the following pro-
positions:

ProposiTiON 2.2, H (Z) is a convex function defined on &,. If ceR, ¢ > 0,
then

(2.10) H (c/) = cH (7).

PROPOSITION 2.3. H,(2) == sup{i-@(T) ¢ is an extreme point of 8.} .
PROPOSITION 2.4. pe W(T) if and only if i-p < H, () for all A€ &, .

Propositions 2.2 and 2.4 are proved in [I13, p. 112—114] for general support
functions. Proposition 2.3 is a direct consequence of the definition of H,(4) and the
convexity of 8,. Note that Proposition 2.4 implies that H,(Z) completely deter-
mines W, (T).

There is an important connection between the support function for W, (7}
and certain positive linear functionals related to those defined by (2.3). First of all,

observe that

A+9(T) = Re(p(ep(T) ® 7)) = Rep((p ® I, XT @ 7).
Because ¢ is a completely positive map,
eI ®M, - M, ® N,

is a positive map. The composition of p with ¢ ® f,, thus results in a positive linear
functional on & ® 9, . These remarks prove:

THEOREM 2.1. Let ¢ : &/ — N, be a completely positive map ; define
(2.11) Po(S) = pll¢ ® L,)XS)), Se o @ M,
The map p,(-) is a positive linear functional on & @ I, . In addition,
(2.12) H,(3) = sup{p,(Re(T ® D) |9 €8,) .

In the next section, the linear functionals defined by (2.11) will be completely
characterized; (2.12) and an argument using the Hahn-Banach theorem will then
yield formulae for H,(1).
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3. THE MAIN RESULTS

Essential to obtaining formulae for the support function H,(1) and a metric
characterization for W,(T) are the relationships among positive linear functionals
on &7 ® S, completely positive maps from o to K, , and states in §, . These rela-
tionships are given in the next theorem and its corollary.

THEOREM 3.1. Let @ : o/ — I, be a completely positive map and let p,(-)
be the positive linear functional defined by (2.11). @ may be recovered from p,via

(3|) [¢(T)]jk = prp(T ® Ejk)7 T € d:

where Ej. is the matrix defined in Proposition 2.1. Conversely, if 0:5 ® 9, — C
is a positive linear functional on s7 ® &N, then the map

(3.2) [o(T); = 0T ® E), Test,
defines a completely positive map from sf into M,. 0 may be recovered from ¢ via
3.3) 0(S) = p,(S), Se s ® M,

Proof. Formula (3.1) is a direct consequence of (2.6) and (2.11); similarly,
assuming (3.2) defines a completely positive map, (3.3) is a restatement of (2.11).
Al that need be shown is that (3.2) defines a completely positive map; that is, for
all r21, o ®1,:f ® M, > M, ® M, is positive.

Let G e (&7 ® 9,)*. The map ¢ ® 1, will be positive if (¢ ® 1,)(G) is a posi-
tive matrix in 9, ® M, . To see that this is so, let ve C' @ C" and let {¢;}, {n,}
be canonical bases for C* and C’, respectively. (For the remainder of the proof,
Latin subscripts run from 1 to n, Greek from 1 to r. Repeated indices are summed.)
Expand v in the basis {{; ® & }:

(3.4) 0 =Y 0.5 ® 1,

A straightforward matrix computation then gives

(3.5) (0 ® 1(G)v, v) = ¥ 0,01, (G &) -

The inner product in the sum on the right above is just [¢(-)],;. Use this and (3.2)
to put (3.5) in the form

(36) <(P ® ir(G)U’ I)> = 0(2 vj,v-ak,uGuv ® Ekj) .

By [11, Proposition 2.1], Ge (& @ I, )* if and only if it is a finite sum of terms
having the form 2 XX, ® E,,, X, € s/; because of this and the linearity of the

v
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maps involved, it is sufficient to check the case G,, = X3X,. In this case, (3.6)
becomes

(3.7) {p ® I(G)w, v) == S, VEV, ® ),
where,
(3.8) V==Y v.X,

Again, by {11, Proposition 2.1], the argument of # in (3.7) belongs to (.&f @ M)~
Since 0 is assumed to be a positive linear functional on &7 ® &, the left side of
(3.5) is positive: ¢ ® £,(G) is a positive matrix; ¢ is a completely positive map.

REMARK. This correspondence between positive linear functionals and

completely positive maps was found earlier by Lance [I1, Lemma 3.1].

The association ¢ — 0 == p, gives a one-to-one correspondence between
completely positive maps and positive linear functionals. The corollary which
follows explicitly characterizes those positive linear functionals on & ® M, which
correspond to states (i.e. unital completely positive maps) in §, .

CoOROLLARY 3.1. Let 0 = p, where ¢ : &/ — 3K, is a completely positive map.
© is a state in &, if and only if 0 is a linear functional which satisfies the following
propeities:

() 0 ® L) = 10 = n.

(i) 0 ® q) = trqg for all ge SN,

Proof If ¢ € 5, , then o(I) == I, . From (2.11) and (2.4),

3.9} 0 ® g) == ple() @ q) - = p, ® ¢) = trq .

Hence (ii) holds. In particular
(3.10) I ® 1) = n

By Theorem 2.1, 6 = p,, is a positive linear functional on &/ ® 3i(,. Such functionals
attain their norms on the identity [10, p. 31}:

3.1 0@ 1)="0.

Combining (3.10) and (3.11) gives (i).

Conversely, suppose 6 : o ® i, —» C is a linear functional on &7 ® 3,
and satisfies (i) and (ii). Since @ satisfies (i), it is a positive linear functional {10,
p. 311; hence ¢ defined by (3.2) is a completely positive map. In addition, (3.2)
and (i) imply that

(3.12) [Nl = 0U ® Ey) = trEp = Oj.
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where §;, is the Kronecker delta function. Thus ¢(J) =1, and ¢ e§,. This
completes the proof.

Dermurion 3.1. A functional on o ® 9%, which satisfies conditions (i) and
(i1) of Corollary 3.1 will be termed an associated state functional; the set of all such
functionals will be denoted by X, .

Corollary 3.1 allows replacement of the state space by the space of
associated state functionals, X, :

CoroLLARY 3.2. If X, is the space of associated state functionals and H,(})
is the support function for W, (T), then

(3.13) H,(4) = sup{0Re(T @ 1) {0 e Z,} .

Proof. Apply Theorem 2.1 and Corollary 3.1.

It is now possible to use the Hahn-Banach theorem to obtain a formula for
the support function :

THEOREM 3.2. The support function for W,(T) is given by the formula,
(3.14)  H,() =inf{n|Re(T ® 1) + 1@ m| — trm|meM,, m=m*}.

Proof. Let Re(of ® M) denote the set of all self-adjoint elementsin & ® N,,.
Viewed as a real vector space, Re(«Z ® 9I,,) has the set of all self-adjoint linear func-
tionals in (&f ® M)* for its dual [14, p. 9]. Since the associated state functionals
are all se!f-adjoint, 2, < [Re(s/ ® ,)]*; in addition, on the subspace I @ Re(IW,),
each @ e X, coincides with the functional which assigns the trace to each m e Re(31,).
Finally, note that 6 € X, has ||0)] = n; thus, |8(X)} < n|| X|| for all X. Define the real
sublinear functional p(X) = nj| X|| and mimic the proof of the Hahn-Banach theo-
rem. The result is that for cach X e Re(« ® &N,)

sup{0(X) [0 e Z,} =inf{p(X + I @ m) — I @ m) | me W, , m=m*}.
Using the definition of p(-) and noting that 0(/ ® m) = trm then gives, for
X e Re(o ® 9N,
(3.15) supl0(X)] 0 ez} = inf{n|X + T @ m|| — trm | me I, m=m*}.

The formula (3.14) follows from (3.13) and (3.14), with X = Re(T ® ).

To obtain other formulae for H,(2) and to get the metric characterization
of W,(T), it is necessary to discuss certain semi-norms and norms on C*-algebras
and to prove a technical lemma.
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Let 2 be a C*-algebra with unit 7 and let F be a class of norm-one positive
linear functionals on :4. Given Y € #, define

(3.16) Y= sup{W(YEY)VE e F)L

REMARK 3.1. A routine calculation using the Cauchy-Schwarz inequality
shows that * - [ is a semi-norm on #. In addition, if F consists of all norm 1, posi-
tive linear functionals on 4, then .',=:. [I0, p. 48].

The following is a useful technical result:

LemMmA 3.1, Let A be a unital C#-algebra, F a class of norm-one positive
linear functionals on 4, and let " - "y be as in (3.16). Fix YeA. For every ceR,
(3.17) gleys=i1Y+4dip—c
is a decreasing function of c. In addition,

(3.18) lim g(c) == sup{Y(Re(Y)) | ¥ € F}.

[ =)

Proof. Since every e F is positive and norm-one,

(3.19) Yy ="' =L

From (3.16), it follows that

(3.20) =1

That g(c) is decreasing is a consequence of the triangle inequality for i ., and

(3.20): Let 6 > 0, then
Y e+ —(c+8) <Y oy — -8 p—0=glo)

The last term cancels by virtue of (3.20); the result is that g(¢ + 0) < g(¢).
To obtain (3.18), first note that

YUY & ) (Y 5 ) —c — j YL YEY) 2= Y(ReY).

(.20
2¢ 2¢

Employ (3.16) and the positivity of ¢ to get:

YLt —e 1, .
(3.22)  sup{Y(Re¥) <~ T EET O« Ty Lt suplg(Re )]
weFr 2¢ 2¢ vEF

Letting ¢ — -+ oo results in

= sup{y(ReY)}.

wEF

(3.23) fim (

=00

Y+ elle—c
2¢
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Finally, observe that the term in parentheses on the left in (3.23) has the form

(3.24) () = g(©) (M) ,
2¢

A simple argument using the triangle inequality gives that
WY +cdllp + 021> 1 as ¢c— +oo.

This fact, (3.23) and (3.24) establish (3.18).
The lemma just proved leads to a second formula for the support function.

COROLLARY 3.3. If H,(-) is the support function for W(T), then
(3.25) HA)=inf{n|T@® I+ 1@ m|—trm|medN, and m = m*}.

Proof. In Lemma 3.1, take # = o ® 9, , and set F = P, the set of all

positive norm-one functionals on & ® I, . By Remark 3.1, || . |l = || - ||. Define
(3.26) D(Y,m) = n{Y+1I® m| — trm,

where Yeof ® M, me M,, m = m*. A short computation gives that for every
ceR,

3.27) DY,m-+c)=nl|Y+I®m+cI®Ij—cl—trm.
By Lemma 3.1, D(Y, m + c¢) is a decreasing function of ¢ and satisfies

(3.28) imD(Y, m + ¢) = sup{ny(Re(Y) + I ® m)] — trm .
vepP

C—HO

Given the decreasing nature of D{(Y, m + ¢) as a function of ¢ and (3.28), it is clear
that
inf{D(Y,m) | med,, m=m*} =

(3.29)
= inf{nsup[Yy(Re(Y) - I ® m)] — trm} .
m ver

Formula 3.25 follows on taking ¥ = T ® 1 in (3.29), then choosing ¥ = Re(T ® 1)
in (3.29), comparing the results and applying (3.14).
REMARK 3.2, The proof of the corollary yields the formula,
{3.30) H,() = inf{sup{nyRe(T ® 1) + I ® m) — trm}},
m W

where ¥ runs over all norm-one positive linear functionals and m over all self-adjoint
matrices in 9, .
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REMARK 3.3. A further examination of the proof shows that the infima in
(3.14), (3.25) and (3.30) need only be taken over positive matrices in &t,. Indeed,
these may be required to have arbitrarily large lowest eigenvalue.

As a second application of Lemma 3.1, the natural analogue of Lumer’s
“derivative” formula will now be obtained. Again take Z = & ® M, and put
F={{y | ny e £,}. The semi-norm defined by (3.16), | - il, will be denoted by "\ - !, :
that is, if Ye o/ @ 9N,

(3.31) VY, = supVy(yeY)imp e I}

(The subscript “g" is used to bring out the connection with associated state
functionals.)

ProposiTION 3.1. |- Ji, is @ norm on o ® SN, .

Proof. Let f be a norm-one positive linear functional on « and let
(-) = -,11 tr(-) be the normalized trace on a1, . Define Y, € (& @ I,)* by requiring
that Y (a ® m) = fla)u(m) for all a € o7, 1 € M, . Note that mjy, € Z,,s0if | Z ;=0
for some Z=Y,z; ® Ej € o/ ® N, then (3.31) implies that Y (Z*Z) = 0. In
this equation, eJ;(IE)ress Z and Z* in component-form, use the definition of ¢, and
make a computation to get: fll [;f('zjizjk)] = 0. Since f'and its arguments arc posi-
tive, each term in the equation v;,nishes: since f'is arbitrary, each of the arguments

must also vanish, so %z, = 0. It follows that Z = 0; hence, the semi-norm |- ",
is a norm.

CoROLLAKRY 3.4. If .0, is the norm on &Z ® N, defined by (3.31) and H,(7)

-2

is the support function for W,(T), then

{ .i1® In ';'_'1T® ZJG - lﬂ*} .

(3.32) H,(%) = n- lim

a0+ o

Proof. In Lemma 3.1, take # =4 @ M, F={y |npeZ,}, |- ip=1-1,.
Formula (3.18) then gives

(3.33) sup{(Re(T ® 4)) [ny € Z,} = lm{ eI ® I, + T ® A, — c}.

c

On the other hand, formula (2.12) implies that

(3.34) H(%) = nsup{y(Re(T @ 1)) impe5,}.
The formulae in (3.33) and (3.34) give,
(3.35) H@)y=nim{ldd @I, +T®1, —c}.

Adjusting the limit by scaling then yields (3.32).
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REMARKS. (@).Incasen =1, .| = | - |l, on &. Formula (3.32) then becomes

Hy(e") = lim

a0+

{ (|4 o= 0T || — 1}

o

which is Lumer’s derivative formula. In the present case, this was obtained by an
application of the Hahn-Banach theorem; that such an application was possible
was pointed out to the authors by Professor Effros.

(b). The limit in (3.32) is simply the directional derivative of || - ||, evaluated
at the identity and taken in the direction of T ® A.

The thcorecms and corollaries proved earlier can now be applied to obtain
a metric characterization of the matrix range W, (T).

THEOREM 3.3. Let |-|, be the Hilbert-Schmidt norm on I, given in (2.7)
and let || - ||, be the norm on of @ I, given in (3.31). A necessary and sufficient
condition for p € 3, to belong to W (T) is that p satisfy

(3.36) i+ pal <VniI® I+ T ® g,
for every g e o, .

Proof. Proposition 2.4 implies that p € W(T) if and only if
(3.37) A«p = Re(tr(2%p)) < H,(4),

for every A e 9. Consider formula (3.35). By Lemma 3.1, the term in braces on
the right is a decreasing function of ¢. This formula can be rewritten as

(3.38) H2)=n inf il @I, +T ® A}, — c}.
ceERY

The combination of (3.37) and (3.38) then gives that p € W, (T) if and only if for
every ¢ > Q0 and A€ 9K, '

(3.39) Re(tr(Z*p)) < nllel @ I, + T® |, — nc.

After interchange of matrices within the trace, this inequality can be put in the form
(3.40) Re(tr(pA* + cl) < nllcdd ® I, -+ T ® i, .

Finally, divide both sides by ¢ and put g = ¢~*2% to obtain:

(3.41) Re(te(pg + 1) < nl{ @ £, + T ® ¢'ll, -

Again, p € W,(T) if and only if (3.41) holds for all g 9, .
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Suppose that p satisfies (3.36) for all ge ,. Apply Schwarz inequality to
Re(tr(pg -~ I,)) and use (3.36):
Re(te(pg + 1)) < Vnlgp + 1), < IQ I, - T ® ¢'}, -
Thus, p € W,(T).
On the other hand, if p € W, (T'), there exists ¢ € §, such that p = o(T). Let
geM,, set R=I®I,+T ® q', and consider the associated state functional

corresponding to @, p,(-) = plo ® f,,(-)). (See Theorem 3.1.) Since p, € Z,;, (3.31)
implies that

1 N 1 5 o
(3.42) | RIZ > o Po(RER) = o Pl ® L{R*R)).

It is easy to see that ¢, = ¢ ® fn is a unital [¢,(I ® L) = I, ® I,], completely posi-
tive map from o ® M, to M, ® ,; hence, the generalized Schwarz inequality
(3.43) ¢.(R*R) 2 ¢,(R)y*¢,(R),

holds. Note that p, which is defined by (2.11), is positive so (3.42) and (3.43) yield

(3.4 1RIE> - p(p,(RY*0,(R).

To compute the right side of (3.44), do the following: Substitute ¢, (R) = I, ® I, -+
+p® q' into (3.44); perform the multiplication; apply (2.4); manipulate
the result using properties of the trace; and, finally, use the definition of the Hilbert-
Schmidt norm on 9L, . The result is,

(3.45) p(@u(RY*¢,(R)) = |1, 4 pqi5 .
This and (3.44) imply (3.36).

REMARK. The metric characterization for W, (T) given in Theorem 3.3 is
the natural generalization of the corresponding result for the numerical range
obtained by Stampfli and Williams [14, Theorem 4].

Given the number of formulae for the support function, it seems wise to list
them in one place:

THEOREM 3.4. Let T e &/, L e O, and let H,(2) be the support function for
W (T). All of the following expressions are equal to H,(1):

(i) sup{O(Re(T ® 1)) | 0 € ,}
(i) ilr)If{nffRe(T ® 1) + 1 ® m| — trin}
{iii) i},\lf{nii TR+ 1® m|l—trm}
(iv) iln”f{glég{mﬁ(Re(T ® )+ I ® m) — tem}}

{Jj!@ I+ ol ® 1], — 1 }_n

(v) lim

a0+ a
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The infima in (i), (ili), and (iv) may be taken over all self-adjoint matrices in O, or
over all positive self-adjoint matrices in .. The set P in (v) is that of all norm-one
positive linear functionals on o @ 9, .

Proof. In the order given, these formulae (3.13), (3.14), (3.30) and (3.32).
The comment concerning infima is a reiteration of Remark 3.3.

To conclude the discussion, upper and lower bounds on H,(4) will be given;
these will prove useful in the next section.

PROPOSITION 3.2. Let Test, L€, . If y = y* € &, satisfies

(3.46) R(T®DLI®y,
then
(3.47) H,(2) < try.

Proof. The difference I ® y — Re(T ® 1) is positive. Since § € X, is a positive
linear functional on &/ ® &N, which reduces to the trace on I @ SN, it follows that

0<0I®y—Re(T® D) =try — ORe(T ® 1)) .
The result follows on taking the supremum and using (3.13).
PROPOSITION 3.3. Let T € o, A€ IN,. If {v;}4-, is an orthonormal set of vectors
in C" and w,, ..., w, are arbitrary points in the numerical range of T, then

(3.48) HiD) > Y, (Re(wdy,, v,

Proof. Let Y4, ..., Y, be norm-one positive linear functionals on &7 such that
Y(T) = w;. In addition, define y;(p) = (pv;, v;), j=1,...,n, ped,. These are
ciearly norm-one positive linear functionals on fM,. It is a simple matter to check

n

that 0 = ¥, ¥; ® z; is in Z,. A computation then shows that
j1

ORe(T @ 1) = i (Re(w;A)v;, v;).

Apply (3.13) to get (3:48).

4. SUPPORT FUNCTIONS FOR NORMAL ELEMENTS

The formulae derived in Section 3 will now be used to discuss the support
function for W,(T') when T is normal. In particular, for self-adjoint T and for those
normal elements having disks for their numerical ranges, explicit formulae for their
suport functions will be given. These formulae yield characterizations of the corres-
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ponding matrix ranges as by-products. The characterizations given were also
obtained by Arveson [2, p. 302] as by-products of his work — his methods differ
from those used here.

To use the formulae derived in Section 3, it is necessary to compute norms of
certain elements in &/ ® 9,. The following lemma enables reducing this compu-
tation to one of finding norms in M, .

LemMmA 4.1, Let Ny, ..., N, be mutually commuting normal elements of
& and let @ < C" be the joint spectrum of (N, Na, ..., N,). If m,, my, ..., m, are
matrices in I, then

"2

“.n YN @ myl = sup{. Y zmy (7, ..., 2,)€Q)
i _ = I

J

Proof. Form the commutative C*-subalgebra of &7 generated by I, Ny, ..., N,;
denote this subalgebra by o According to the Gel'fand-Naimark theorem, o
is isometrically isomorphic to the space of continuous complex-valued functions
defined on a compact Hausdorff topological space X. Making the identification
& C(X), itis clear that ot ® ', consists of all continuous matrix-valued functions

op X: If £i(+)., .... /() are the functions corresponding to N,, ..., N,
(4.2) 'Y N ® my = s.gr‘),}:Zf}(.\’)ij .

On the other hand, from the construction given in the Gel'fand-Naimark theorem,
each v corresponds uniquely to a complex =-homomorphism of &. In particular,
X(N;) = fi(x). Thus the set of r~tuples (fy(x), ..., f(x)), x € X, consists of all points
in C" of the form (x(N,), ..., x(V,)) where x is a complex =-homomorphism. This
set is, however, the joint spectrum Q [5, p. 64]. The proof is complete.

Assuming that 7" is normal, the joint spectrum of (T, T*, I) consists of all
triples of the form (z, z, 1), z € sp(T). Lemma 4.1 then implies that for Z, m € M,

(4.3) HRe(T® ) + I ® mi = supliRe(zZ) + m"! z e sp(T)},

which yields the following result:

PrROPOSITION 4.1. Let T € &7 be normal and let 2 = 9N, . The support function
for WAT) is given by

(4.4) H(2) = inf{sup{n"Re(zZ) +m -- trm}},

where z runs over sp(T) and m runs over all self-adjoint matrices in M, .

Proof. Apply (4.3) and Theorem 3.2.
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This proposition has an interesting consequence :

COROLLARY 4.1, Let T and T’ be normal elements of . The closed convex hulls
of the spectra of T and T are the same if and only if W,(T) = W (T’) for all n.

Proof. Define g(z) = |Re(z2) + m]. It is easy to check that g(z) is a convex
function of z. If K < C is a compact subset, the convexity of g implies that

4.5) supig(z) | z € K} = sup{g(z) | z € cohK},
where cohX is the closed convex hull of K. If coh(sp(T)) = coh(sp(T")), then (4.5)

yields
sup{||Re(zd) + m|| z e sp(T)} = sup{jRe(z7) + m| | z € sp(T")}.

The combination of this and (4.4) implies that the support functions for W, (T)
and W, (T’) are identical; Proposition 2.4 then yields W /(T) = W,(T).

The converse follows trivially from the well-known fact that the numerical
range of T, Wy(T), satisfies: W,(T) = coh(sp(T), if T is normal.

REMARKS. (a) The result is certainly false if the assumption of normality is
dropped.

(b) The result is also a consequence of Arveson’s characterization of the ma-
tricial range for normal operators [2, Prop. 2.4.1].

REMARK 4.1. In view of the proof of Corollary 4.1, the supremum in (4.4)
may be taken over

(4.6) coh(sp(T)) = Wy(T),
instead of sp(T). '

At this point, it is possible to obtain explicit formulae for the support functions
of all self-adjoint elements in &/ and every normal element of &/ which has a disk
for its numerical range. Two lemmas will be needed:

LemmAa 4.2, Let T, T' € s/ and suppose T' = oT + BI, where a, fe C and
o == |ale. If 2 e SN, then

(4.7) H,(3, T') = la|H, (e %, T) + Re(B tri®).

Here, H(4,S) is the support function for W,(S), Se «.
Proof. If ¢ e S,, then @(T') = ap(T) + pI,. Hence

2-(T") = |af(e™192)-(T) -+ Re(f tr 1*%).

Take the supremum over all ¢ to get (4.7).

i
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LEMMA 43. Let 1€ O, have a decomposition t = pu, p > 0, u unitary.
If 0 e R, then

i . . ‘
.8) - Wpu + p) — Re(e¥) = ; (w* — €0L,)p(u — ¢~ 1,),
In addition, for all z e C such that |z] < 1,

(4.9) Re(z7) < ;‘ (uFpu + p).

Proof. Compute.

The following proposition gives the support function for a normal element
having a disk for its numerical range.

PROPOSITION 4.2, Let T € &7 be normal. If the numerical range of T is the disk
|z — Bl < ¢, then the support function is

(4.10) H(A) = clil; + Re(B tri®), Ledk,,

where !Aj; = tr 1/77 is the trace norm.
Proof. Assume that T is unitary and that sp(T) is the unit circle. Put 7 = Z ==

= prand y = —; (u*pu + p) inLemma4.3. Formula (4.9) then implies that Re(z7) < y

for all zesp(T). An application of the commutative Gel’fand-Naimark theorem
then implies that Re(T ® i) < I® y. By Proposition 3.2,

(4.11) H, () < try.

Let {e7i%}7 | and {¢;}7. , be the eigenvalues and corresponding orthonormal
set of eigenvectors for the unitary matrix ». From (4.8), the choice of v, 7, and the
fact that (u — e~ ¥0iL)v; =0,j=1,...,n,

4.12) yv; = Re(@%2)v;, j=1,...,n

Since sp(T) is the unit circle, ¢ e sp(T). Proposition 3.3 thus implies that

n

(4.13) H,(7) > Y, (Re(€® 7)1, ;).

j=1

Combine this with 4.12 to get

(4.14) H,(2) =Y, {yv;, 0;) = try,
i
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From (4.11) and (4.14), it follows that H,(A) = tr y. Standard matrix manipulation
then gives H,(%) = |A|;. Apply Lemma 4.2 and Corollary 4.1 to get the general case.

The result for the self-adjoint case is:

PROPOSITION 4.3. Let T € o/ be self-adjoint. If the numerical range of T is the
interval [a, b], then the support function is

@.15) =070 Redly + 4 e

Again, |-\, is the trace norm.

Proof. Assume sp(T) = {1, —1}. Take 7 = Re(Z) and let p = y be the posi-
tive square root of (Re 7)2. The remainder of the proof is roughly the same as that
for Proposition 4.2,

The following corollary is an immediate consequence of the two preceding
propositions and the well-known formula

sup{[tr(Z*p)|: {Al, = 1} = pll, pe N,

COROLLARY 4.2. Let T e & be normal. If the numerical range of T is the disk
lz — Bl < ¢, then

(4'16) ,/Vn(T) = {[) € «9]&" . ”p - ﬁ]n” S C}.
If T is self-adjoint and has [a, b} for its numerical range, then
| "
@iy owm={pemip=py p— 2Tl ]l "~}.

1 ;ST

RemMARK. The characterizations given above are either explicitly given or

implicitly contained in the work of Arveson [2, p. 302]. His methods are different
from those used here.

5. CONCRETE CHARACTERIZATIONS OF THE SUPPORT FUNCTION

Let o2 be a complex Hilbert space and let Z(s#) be the set of bounded linear
operators on 5. A result similar to the elegant structural theorems obtained by
Choi [7] for completely positive maps from i, to M, holds when N, is replaced
by Br):

THEOREM 5.1. If @ : B(H) - I, is a unital completely positive map which
is an extreme point in the convex set of such maps, then there exists a positive integer
r < nand a net of unital completely positive maps ¢, B(AH) - N,

(5.1) o T) =¥ VATV, , T e B(H),
j=1
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where V; .. C" — ', such that
(5.2) lim o (T) = @(T).

The proof will be given later.

Assuming the C*-algebra «7 used earlier is #(2¢), this theorem enables both
the support function H,(2) and the norm ' ., defined by (3.31) to be viewed in
terms of the inner product on # ® C* ® C”. This is also true for the state functional
p,, associated with a unital completely positive map ¢ : 4(#) — I, which has the
form

(5.3) Ty =Y, VFTV;, V;:C" =, r < n, T e H(H).
joet

To be precise, let § € A(#) ® I, If the components of S are S;, € #(H#) and £,
are the elementary matrices given in Proposition 2.1,

(5.4) S= Y, Su®Ej.

k-1

In addition, define S e A(#) ® M, ® 9K, by
(5.5) $=Y $®L®E.
J k=1

Finally, if ¢,, .. ., ¢, is the canonical basis for C* defined in Section 2, and 5;, € #
where | <j <r, 1 €k < n, then let

r

{5.6) Wy == 2 it ® ¢
J=t
(5.7) =Y m®¢ = by zlijk®£j®ék'
k=1 k=1j.=1

The following proposition exhibits the connection between p,, and the inner product
on 4 ® C"® C.

PROPOSITION 5.1. If @ € &, has the form (5.3), if p, is defined by (2.11), end if
i = Vil then

(5.8) P (S) = <§'7- "y

Jor all S e (A ® OX,. In addition, the set {n,} is orthonormal in # ®C, .
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Conversely, if {1} < A is such that the n.’s defined by (5.6) form an orthonor-
mal set, then the maps V; : C* — A’ given by

(5.9) Vick = e,
define a unique @ € 8, given by (5.3).

Proof. (5.8) requires a tedious computation which amounts to showing that
both sides reducc to ¥, {p(S;)é,, &;). The details will be omitted. The connection
between the orthonormality of {,} and the unital nature of ¢ can be seen as follows.

Form the inner product of 5, and n;; use the orthonormality of &,, ..., ¢,
and make a simple manipulation to put this in the form

(5.10) h <'7ka ’11> == ( 3 I/]* Vj) o C1> .
=

J

Whether (5.3) is a given unital completely positive map or it is a completely positive
map defined with ¥ as in (5.9) equation (5.10) takes the form

(5.11) {Mis ’71> = <‘P(-I)fk, 51> =[]y .

Since ¢ is unital if and only if [@()],, = J,, (5.11) implies that ¢ is unital if and only
if the #;’s form an orthonormal set. The proof is complete.

The proposition displays the correspondence between unital completely
positive maps of the form (5.3) and all positive linear functionals of the form
{(In, n) on B(H) ® M, ® M, which satisfy the condition that the 5,’s are ortho-
normal. Combining this with Theorem 5.1 gives a characterization of the extreme
points of 2, , the set of all associated state functionals (cf. Definition 3.1).

CoroOLLARY 5.1. If 0 is an extreme point in the set of associated state functionals

Z,, then there is an integer r, 1 < r < n and a net W= i zr] 1 ® & ® &, such
. k=1 j=1
that v, = 2'_‘ 15, ® &; forms an orthonormal set and such that
Jjol
(5.12) lim{Sn, n*y == 0(S)
v

for every SeH(H) @ M, .

Proof. Because of the correspondence between X, and 8, given by 0 == p, & @,
extreme points of $, correspond one-to-one with the extreme points of X,. In
particular let ¢ be the extreme point of §, which corresponds to 8 = p,,. If ¢, is
the net given by (5.1), and if 6, = Py (5.8) implies that for every S e #(A) ® oK, ,

(5.13) 0.8) = (S", ),
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where nj, = V.. From (2.11)

(5.14) 0(S) = p((, ® 1)) = ¥, p(0(S).) ® E) -

Lm

By Theorem 5.1, lime(S, ,) = ¢(S,,)- Taking limits in (5.14) then gives
(5.15) limg(S) = ple ® I,(S)) = 0(S).

The combination of (5.13) and (3.15) then yields (5.12); the proof is done.

This characterization of the extreme points of X, allows computation of the
suprema given in (3.13) and (3.31) by means of linear functionals of the form {((- )i, )
on A(H) ® M, ® I, . To be exact, let 5, and n by given by (5.6) and (5.7). Define
the set

(5.16) Fr={nex ® C" @ C", the y, are orthonormal}.

The following theorem holds:

THEOREM 5.2. If S = S¥ e #(H) ® N, and if Sis given by (5.5), then
(5.17) sup{0(S) 0 Z,} == sup{<.§’;], Ny lnerl}.

Proof. The set £, of associated state functionals is clearly a weak *-closed
convex subset of the norm-n positive linear functionals on Z(#) ® 9M,. Since the
latter set is weak*-compact, X, is as well. That being the case, the supremum in
(5.17) is attained by one or more associated state functionals whose totality, denoted
by X, , is again weak*-compact and convex. If ), is an extreme point of X, then it
1s aiso an extreme point of X,: Suppose 0, = 280, + B0;’, 8;, 0 € Z,, %, [ = 0,
% — f == 1. By the usual argument. 05(S) = 0;(S) = 0,(S). Thus 8;, 0;’ are both
in X, . Since 0, is an extreme point of X, 0; = 6}’ = 0,; thus, 6, is an extreme point
of Z,. By Corollary 5.2,

(5.18) 0,(S) = lim{Sp’, ),

where 1” € I'. On the other hand, given € I', Proposition 5.1 implies that there exists
o € &, such that p,(S) == (Sy, n), and p, e Z, by Corollary 3.1. Hence,

(5.19) (S, ) < sup{0(S) | Oe Z,} = 0,(S).

Inspection of (5.18) and (5.19) then gives (5.17).
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Concrete formulae for H,(1) and | .|, are immediate consequences of
Theorem 5.2:

COROLLARY 5.2. If T € B(H) and if H(2) is the support function for the matrix
range W, (T) then for every Le O, ,

(5.20) H,(%) = sup{(Re(T ® I, ® Wy, ny inel},
where I is defined by (5.16).
Proof. Apply Theorem 5.2 and Corollary 3.2.

COROLLARY 5.3. If of = B(H) and | -, is defined by (3.31), then for every
Se ’%(’yf) ® @]Ln 3

(5.21) IS, = . sup{|8nll [ne )
Vn

where I is as in (5.16).
. . /\ I jad
Proof. Straightforward computation gives that S*S = S*S. Apply Theorem
5.2 and formula (3.31) to obtain the result.

REMARKS. (a). The formula for || . {j, given in Corollary 5.3 may be used in
conjunction with (3.32) and Theorem 3.3 to give concrete versions of the analogue
to Lumer’s formula and the metric characterization of W,(T).

(b). The formulae given in Corollaries 5.2 and 5.3 are concrete and depend
heavily on the underlying Hilbert space #. Those given in Corollary 3.2 and for-
mula (3.31) are intrinsic; they do not depend on any particular representation of
the C*-algebra ¢, but they are more abstract.

At this point, only the proof of Theorem 5.1 is lacking. To prove this theorem,
it is necessary to prove a technical lemma. The lemma is important in its own right
in that it provides a very natural generalization of Choi’s results to certain unital
completely positive maps.

In what follows, €(#) denotes the set of all compact linear operators on .

LemMA 5.1. Let ¢ : B(H) - I, be completely positive, o(I) = K = 0, and
let @ be an extreme paint in the convex set of all such completely positive maps. If
F, is an approximate identity for €(5#),0 < F, < I, and if

(5.22) limf| p(F,) — o) =0,
then there exist bounded linear maps V; : C"—» 3, j=1,...,r,r < n, such that
Jor every T € B(H),

(5.23) o(T) =y VTV,
j=—1

J
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Proof. The extremality of ¢ is at the heart of the matter. Stinespring’s theorem
i17] implies that @(-) = W¥*n(.)W, where n(-) = @ n(-) is a representation of
J-at

#A(A’) and each =; is an irreducible representation of #(#’) with underlying Hilbert
spacc .#"; . Without the condition of extremality, it is possible for the number of
representations to be infinite; with it, » must be finite. (This is a direct consequence
of Arveson's characterization of extremality [1, Theorem 1.4.6]. See [14, Lemma 6.4].)
Thus, the canonical representation takes the form,

(5.24) o(T) =Y WraiT)W;, r< oo,
jail

where the pairs (7;, W) are assumed minimal (Arveson [1], p. 145); that is, -
{3.25) (A BONWW,C'l = A5, j=1,...,r

At this point, it is necessary to examine each irreducible representation 7;.
If m; does not annihilate ¥(#), then =; is an irreducible representation of %(.#)
i3, Theorem 1.3.4, p. 16] and is therefore equivalent to the identity representation

I3, Corollary 2, p. 20]; hence, there exists a unitary operator U ; such that for every
Te ;ﬁ(e%)’

(5.26) n(T) = UFTU,.

Next, suppose that ny, ..., n, annihilate €(#) and that r,.,, ..., n, do not. Be-
cause F,e C(X), ny(F,) = ... = m(F,) = 0; also the remaining representations

satisfy (5.26), so @(F,) = b WEUFF,UW;. As F, — I, this formula implies that

J=I31

P(F)— Y, Wi*W;. By (5.22), however, o(F,) - o) =Y, W*W;. Comparing

J=i31 i
the two expressions reveals that W¥W,= .. =W#W,;=0; hence, W,=...==W,=0.
This contradicts the minimality of (m, W,), k=1,...,1. As a consequence,
none of the representations can annihilate €(#); each must have the form (5.26).
How large can r be? Since all of the subrepresentations in n are equivalent,
a short computation shows that the dimension of the commutant of 7 is at least s=
On the other hand, from [14, proof of Lemma 6.4], the dimension of the commutant
of © is at most n%. Hence r < .

To conclude the proof, set ¥; = U;W,, then use (5.24) and (5.26).

Proof of Theorem 5.1. Recall that €(#) forms a two-sided ideal in B().
A result of Bunce and Salinas [6, Lemma 2.6] then implies that the completely
positive map ¢ may be written uniquely as ¢ == ¢, + ¢,, where both ¢,
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and ¢, are completely positive maps from #(#) to 9K, and have the following
properties :

(a) (PJ(I):K,>O, j: 1: 21 Kl —{'_ K‘.’:(P(]):lea
(b) @x(()) = 0;
and,

(¢) for an approximate identity £, in €(#), 0 < F, < I,

@

(5.27) lim] ,(F,) — @:(1)!] = 0.

In addition to the properties listed above, it is easy to see that ¢ being an extreme
unital map implies that ¢, is an extreme point among all completely positive maps
from A(#’) to L, which take I to K;. (The ordinary proof applies, although at first
glance the uniqueness of the decomposition given by Bunce and Salinas seems con-
tradicted; it’s not.)

Inspection of the properties above reveals that ¢, satisfies the conditions of
Lemma 5.1. Thus there exist bounded linear maps V; :C"' >, j=1,...,r
such that for each T e 4(#°),

>

G, P

(5.28) pT) =Y, Vi*TV;
j=1
The effect of adding ¢, to ¢, must now be taken account of. From property
(b), 0(C(#)) = 0; a lemma of Arveson [4, p. 335] then implies the existence of a
norm-bounded net of operators R, : €* — # which satisfy

(5.29) moJT) — RFTR,|| =0, TeBH).
v
Define the net of completely positive maps y, : B(H#) —» N, ,

(5.30) 2Ty = (Vy + RY TV -+ RY+ Y, VTV, .

j=2

This net will always converge to @(7) provided the cross-terms R*TV, and V¥TR
vanish in the limit.

A technique of Bunce and Salinas [6, p. 750] will be used to show the vanishing
of the cross-terms. Let xe C* and note that || VFTR x| = (R¥T*V  VFTR,x, x)
converges to {p(T*V, ¥{#T)x, x). Since Vy : C" - #, V, V¥ is afinite rank operator;
it is compact and so is T*V, V¥T. Because @(€(A")) = 0, @o(T*V V*T) = 0; hence,
| VTR x|| — 0. Since the space C” is finite dimensional, this implies

(5.31) lim| VFTR,|| = 0.
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The other cross term can be viewed as (VFT*R,)*. Since " VFT*R, i = | (VFET*R)*",
equation (5.31) with T replaced by T* implies

(5.32) lim! R*TV, ! = 0.

Thus 3 (T) - o).
The maps y,(-) are not necessarily unital, however y (I) - o(I) = I,. Thus

the y,(I) eventually become positive and invertible. Restricting the net to such v,
define

O T) = 7)Yy (T (D)~ V2.

P
These completely positive maps are unital, have the form Y, VATV, and converge
j=1

to @(T). The proof is complete.
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