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FREDHOLM THEORY OF PIECEWISE CONTINUOUS
FOURIER INTEGRAL OPERATORS ON HILBERT SPACE

S. C. POWER

Duducava has studied the Fredholm theory of certain convolution integral
operators on L”(R) (and L”(R) ® 9,) of a very general kind, and which are deter-

mined by piecewise continuous functions [6], [7]. For example if F denotes the Fou-
rier transform then Fredholm criteria and an index theorem are obtained for the
operators

M A=Y M, DM,
f==1

where ¢;, ¥, 0; are piecewise continuous, where A, denotes multiplication by ¢,
and where D, denotes the Fourier multiplier F~*M,F. It is easily checked that spe-
cial cases of A include convolution integral operators, singular integral operators,
and, when 0; =1 for i = 1, 2, ..., n, the Fourier integral operator

@ Opla) = —~_1:—Sa(x, Ve Ef() dy,
V2n

with symbol function a(x, y) = i @, ().
i=1

In the present paper we concentrate on the Hilbert space case and the operators
Op(e). By restricting to certain (locally simple) symbols, whose operators behave
locally like Hermitian operators, we see that the essential spectrum of Op(a) is a
line segment augmentation of the asymptotic range of a(x, y), and thus a finite
union of closed curves. A natural winding number provides the Fredholm index.
This is an explicit generalization of the continuous case [2}, and, although implicitly
present, it is by no means apparent in [6], [7].

Being on a Hilbert space we can employ C*-techniques and obtain further
information about the generated pseudo-differential C#-algebra. For example
the character space can be determined and the corresponding character spectrum
for Op(a) identified with the asymptotic range of a(x, y). This is also shown to be
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true when ¢; and ¥, i = 1,2, ..., n, are piecewise slowly oscillating. Our main
technique, which replaces the local principle of Gohberg and Krupnik, employed
by Duducava, is to use Douglas’s localization theorem for a C*-algebra with centre,
and to characterize the local algebras as M, (Z[0, 1]), the 2x 2 matrices over conti-
nuous functions on [0, 1]. Some further applications of this identification appear
in [15]. We expect the method to work with little essential change, for Op(a) with
piecewise slowly oscillating symbols. The analysis of the corresponding Toeplitz
and Hankel operators can be seen in [5], [12] and [11].

In order to state and describe the result we first introduce some notation and
definitions. Let 2% denote the space of functions on the real line which are conti-
nuous on the right and posses limits from the left at each point, including infinity.
If @, ; for i=1,2, ..., n, belong to 2% then the asymptotic range of a(x, y),
denoted ran a(x, y) or ran g, is the set of limit points of a(x, y) as 'x! + 'y converges
to -} oo. Itis convenient to think of this as the closure of the range of a(x, v) regarded
as a piecewise continuous function on

Wi (RU{—o00, +00})X(RU {—o00, +co})(RXR).

This set is homeomorphic to, and identified with, the boundary of the unit square
of Figure 1. The asymptotic range, therefore, possesses the natural orientation
induced from the (indicated) orientation of W.

(-C0,0G)) (¢m'om)

(x,+00)

(-00,-00) (x,-00) (+00,-00)

Fig. 1. The space .

DEerFINITION 1. Let ¢, ;, 1 < i < n, be functions in #% possessing only
a finite number of discontinuities, and for fixed x. y in R let % == a(x+-, 4-00),
B=alx +, —00), vy =alx—, +0), § = a(x —, — 00) and a' = a(+oco, r+),
B’ = a(—oc, y+). ' = a(+oc0, y—), & = a(—oo0, y—).

(1) The function a(x, y) is called locally simple if for each x the points «, §, y, &
are colinear and ¥ — f = v — §, and if for each y the points «’, ', 7', ¢’ are colinear
and o' — f' =19y — §".

(ii) The local segments at (x, co) of the locally simple function a(x, y) are the
two non overlapping finite segments determined by the quadruple =, f, 7, 6. The
local segments at (0o, y) for a(x, y) are analogously defined.
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@iii) The curve a* associated with the locally simple function a(x, y) is the
union of ran ¢ and all the local segments. (Actually we could omit ran a here because
it appears as the closure of the union of the degenerate local segments.)

The curve a* is the union of rana and the non degenerate local segments, it
has a unique orientation compatible with that of rana, and appears as the union of

“ W

Fig. 2. Fig. 3.

afinite number of closed curves. Let us illustrate what is happening in the case where
a(x, y) has no discontinuities on W except at (x, -0c0) and (necessarily, by (i) above)
at (x, —oo). If [a, y] and [B, ] are the local segments here then a* will be a closed
curve as in Figure 2, whereas in the alternative case, Figure 3, «* is the union of
two closed curves.

In general a* is the union of |n, — n,} closed curves where n, (resp. n,) is the
number of discontinuities of a(x, y) at (x, co) (resp. (oo, ¥)) of the second kind
(Fig. 3).

THEOREM 1. If a(x, ) is locally simple then Op(a) is a Fredholm operator if
and only if a* does not pass through the origin. In this case the Fredholm index of
Opla) is the winding number of a*.

In general Op(a) is not essentially normal and some specialization of symbol
function seems necessary in order to have a natural index theorem. The class we
have chosen, the locally simple symbols, correspond to those essentially normal
operators Op(a) (with ¢; and y; having a finite number of discontinuities) which
behave locally like hermitian operators. This statement should become clear on
reading Section 3. :

We need some more notation. The space € (resp. %) consists of those conti-
nuous functions on the real line possessing equal (resp. possibly different) limits
at +oo and —oo. If A4 is a subalgebra of L> then M(A) denotes the topological
space of multiplicative linear functionals on 4. This notation is sometimes used
when A is a C*-algebra.
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As in [13], if A and B are subalgebras of L®(R) we define ¥(4, B) to be the

C*-algebra generated by the collection of M, and D, for ¢ in A and ¥ in B, res-
pectively.

Throughout we let " denote the ideal of compact operators acting on L¥R),

and the spectrum and essential spectrum of an operator T are denoted by o(T) and
o (T) respectively.

1. SPECTRAL INCLUSION OF rana

The essential spectrum of the operator Op(a), as given in (2), always contains
the asymptotic range of a{x, ¥). This has been shown to be true in a general setting
{13. Theorem 6.5], but let us just consider piecewise slowly oscillating symbols,
since it seems likely that the result of this paper generalizes to this case.

A function ¢ on R is said to be piecewise slowly oscillating if it is continuous
except at a finite number of points x, x., ..., x, where

osc(q, [x; -+ /2, x; =+ d]) = 0 (as & — 0)
and
osc(g, [x; — d,x;, — 6/2]) = 0 (as 6 —= 0)

for i =1, 2, ..., n, and if, moreover,

osc(g, [x, 2x]) = 0

as x tends to +oco or to — oo. Here we use the notation osc(¢, I) to denote the maxi-
mum of {p(s) — @(@t) for s, tin 1. Let 2¥ € denote the C*-algebra of functions that
they generate. In view of the theorems of [13], [14] the space M(¥Y(2SC, L))
is the subspace of points z = (x, y) of M(2F€) X M(2%0) such that {M,D, | = 1
whenever 0 < ¢. ¢ < 1 with @(x) == Y(y) = 1. This is precisely the subset

M(PLOYX Moo PS O) U Mo PS CYX M(P S ()

where Moo (25 6) denotes those characters which annihilate functions which vanish
at infinity. The identification is implemented by z(M,) = ¢(x), z(D,) = Y(3), and
because of this it becomes clear that the character spectrum {z(Op(a):

:ze M(W(PSL 0, 2#0))} is equal to rana. Since all characters annihilate ¢ it
follows that rana is contained in o.(Op(a)).

2. THE LOCALIZATION OF ¥ Jr

We now apply the localization method to Y(2%, %)/ and identify certain
local C*-algebras. This technique allows us to consider the discontinuities of a(x, y)
separately and thus obtain the essential spectrum of Op(a) as the union of ran a
and all the (non degenerate) local spectra. The local spectra, for locally simple func-
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tions, turn out to be the local line segments, as in Definition 1, and so we obtain
0.(0Op(a)) = a*.

Lemma 1. () Y(¥, €)/ 4 is a commutative C*-algebra whose maximal ideal
space is naturally homeomorphic to M(%) X M(%E)\R XR.

(i) Y(¥,%)|H is contained in the centre of Y(PE, PE)| A .

Proof. (i) We have noted in the introduction that M,D, is a compact operator
if @ and i are continuous functions with compact support. Consequently, by a
trivial approximation argument this is also true if ¢, ¢ belong to € with
¢@(c0) = P{c0) = 0. Plainly then M,D, — D,M, is compact if ¢, § belongto ¥ and so
the quotient algebra of (i) is commutative. That M(Y'(¥, ¥)/#) is homeomorphic
to M(%)x M(E)NR xR is well known and a proof may be found in[14]. The iden-
tification of these spaces is exactly analogous to the identification of the previous
section.

(ii) Let H*R) be the usual Hardy space of L*R) associated with analytic
functions in the upper half plane, and let O be the orthogonal projection onto this
subspace. The Paley-Wiener theorem asserts that Q = D,, where y is the characte-
ristic function of (0, c0), and so D,M, — M, D, = QM, — M,Q is a compact
operator when ¢ belongs to € (e.g. see [3]). It follows from this that D, M, — M,D,
is compact if p is the characteristic function of (g, co) and so it follows that M,
commutes, modulo the compact operators, with D,, for any y in 2%. Now (ii)
follows easily.

THEOREM 2 [3, 7.47). Let A be a commutative C*-algebra which is contained
in the centre of a C*-algebra B, and for z in M(A) let B> = B/B_ where B. is the closed
two sided ideal in B generated by [a in A | z(a) = 0}. Then

(i) The natural mapping from B to @ B® is a star isometric isomorphism.
zZEM(A)

(it) The spectrum of an element b of B is the union of the spectra of the elements
b -+ B, of B® for z in M(A).

We shall henceforth identify M(¥W(¥, €)) with the set Z = M(%) X M(%)>\R xR
as in Lemma 1. Let ¥ = ¥Y(2¢, #%). Theorem 2 can now be used to obtain the
following localization of ¥/ to the points of Z.

For z == (x, y) in Z let I” be the two sided closed ideal in ¥ generated by the
collection of M,, D, such that ¢, y belong to ¥ and x(¢) == y(i) = 0. (Each such
ideal contains %) Let ¥° = ¥/I°.

THEOREM 3. (i) The natural mapping from W|HA to @ ¥° is a star isometric

z€Z
isomorphism.

(ii) If T belongs to ¥ then the essential spectrum of T is the union of the spectra
of T+ I, in W?, the union being taken over all z in Z.

We now proceed to identify all the local algebras ¥? and represent them as
more elementary algebras. A special role is played by ¥ ©) which we now show is
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simply C*. (Here, of course, oo denotes the functional on % of evaluation at infinity
and (oo, co) denotes the corresponding character on ¥(%, €).) In fact the following
lemma also shows that the local spectrum at infinity of Op(a) is not particularly
interesting since it is included in ran a.

LEMMA 2. There is a C*-isomorphism from ¥ (= ) to C* such that
M, + 1) - @(+00) @ p(+00) ® ¢(—00) @ P(—00)
D, + 1) 5 Y(+00) ® Y(—00) ® Y(--00) @ $(—00)

for @, ¥ in P%.

Proof. 1t is a result of Cordes and Herman [2], which has also been proved in
[13], that Y(¥ e, Coo)/# is a commutative C*-algebra. In fact M(¥(Coos Coc) H)
(which also is M(¥Y (%, ©x))) 1s naturally homeomorphic to W (Fig. 1), and the
correspondences

Op(a) + K= alx, y) 'w

extends to a C*-isomorphism. It should be reasonably clear then why the following
analogue of Lemma 2 is true. Let J( =} be the closed two-sided idealin ¥(%oos G oo)
generated by those M, and D, with symbols ¢, Y in € satisfying @(co) == (co0) - - 0
Then Y (%o, Coo)/ S ) is naturally isomorphic to C*by anisomorphism analogous
(exactly) to that of the lemma. Indeed this quotient algebra is, by what we have
aiready said, isomorphic to the continuous functions on W modulo the ideal of
functions vanishing on the corners of W.

It suffices then to show that ¥(=- ) is naturally isomorphic to W{(% e, € oc)/J S ",
(In other, rather vague, words, it makes no difference to the quotient algebra at
infinity whether we include functions with discontinuities at real points.)

Note first that W( =) is naturally isomorphic to Y(@ e, €eo)/I® ). Indeed,
if /1 is a strictly increasing function in %o, then the cosets of M, and D, actually gene-
rate P ) and so Y ®) = ¥ (s, Coo)/[® ). We complete the proof by showing
that J(o ) = J( @) n Y(E . %,). The inclusion of J(=- ) jg clear, so let T belong
to the latter ideal. We now show that 7 belongs to J(%- %),

Let ¢,, belonging to ¥, be a function which vanishes on [—n, n], satisfies
0 € ¢ < 1, and has limit 1 at infinity. The cosets of M, and of D¢ , for each n,
act as the identity in the quotient algebra ¥ (%, (foo)/J(°° ) and so, since T'is in
V(% o0 Coo), it follows that

3) d(T, J= =) = d(M,, D, T, J'= )

where d(-, J© *) signifies distance to J(> «). However T also belongs to ¢ ® and
we claim that this ensures that

) lim d(M, D, T, J©*) = 0.

n—300
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Combining (3) and (4) then gives T e J'* * as desired. To see (4) first note that as
T is in I® ) it may be approximated arbitrarily closely by an operator

T =¥ {H Moiijij}Mol_Dwi + Ky,

i=1{j=1

where 0;, w; belong to ¥ and vanish at oo, where 0;;, w;; are 2% functions with only
a finite number of discontinuities, and where K, is a compact operator. Now we
‘‘absorb’’ the (real) discontinuities of 0,;, w;;. First, consider N large enough so that
these functions have no discontinuities at real points ¢ with |f| > N. Now write
oy = /" with f, positive and vanishing on [—N, N], so that 0;; = f-0,; and
¢i; = [-@;; are € functions. Thus, using Lemma 1 (ii), we obtain

M, D, T'= Y, { II Mof.D,p;j} MyD,, + K,

iz lj=t ¥
where K, is compact. Thus M,,,ND‘,,NT' belongs to J(* ®) and so (4) follows.

To describe the other local algebras we must introduce the C*-algebra which
is generated by two projections p, ¢ such that the spectrum of pgp is [0, 1]. It follows
from [8)], and also from [9, Section 3], that this algebra is independent of the parti-
cular generators. We shall set

1 0 x Vx( — .\')]
p= q = ,
0 0 x(1 — x) 1 —x J
which belong to the C*-algebra of 2 X 2 matrices over %[0,1], the continuous func-
tions on the unit interval. We let ./ denote the unital C*-algebra generated by p

and g. It is the algebra of matrices whose off-diagonal functions vanish at 0 and 1.
Let y denote the characteristic function of (0, co).

LeMMa 3. Ler t be a real number.
{i) There exists a C*-isomorphism from ¥ ) to 4 such that

My, 16 p,

"(#, )
D, + 1% - g,

(i) There exists a C*-isomorphism from ¥(=-9 to M such thar
M, + I & p,

+ 10 g,

1, o0)
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Proof. (i) In view of the already mentioned fact that M does not depend
on the specific realization of the generating projections we need only show that the
spectrum of M. /(, w)D,M/U oy T 1. %) js the unit interval. (A little reflection shows
that the cosets given in (i) generate ¥ *)) It is enough, in view of a trivial trans-
lation argument to show that [0, 1] is the spectrum of M, D, M, - [© ).

Let ¢ be a function in 4 such that ¢(0) = 0, ¢(c0) = 1, @(x) = @(—x) and
Ime(y) > 0 for 0 < » < co. Then S = M,D, M, is equivalent (as an L0, co)
operator, and under the Fourier-Plancherel transform) to a Toeplitz operator with
symbol ¢y and therefore has essential spectrum [0,1]u {@(x) x in R} (see [4]
for exampie). However, by Theorem 3 (iii)

6 lS)= U oS =+ I).
zeZ
By simple arguments, and also by Lemma 2, one can show that if z = (x, ) belongs
to Z but = # (0, 00) then 6(S + 1) is contained in the range of ¢. We must there-
fore have o(S 4 1)) =0, 1]. Since § -~ 1= = M D M, 10> we are
done.
(1) Similar.

3. THE ESSENTIAL SPECTRUM

Let ¢, ¥, 1 <7< n, belong to 2% and determine the operator Op(a) as in
(1). Then it follows from Lemma 3 (i) that, for a fixed x in R, the local operator
Opla) + ') is algebraically equivalent to

Zn (@ix +p — @x—)p WY (=-00)g + Y(—o0)gt) =

=1

= apq -~ Bpq* -~ yptq = dpiqt
where %, 8, y and J are as given in Definition 1. Thus we have

B+ (a— Px (x—B) Vx(1 = %)

S =
G—& Vx(l—x  y+(0@—x
and, with a little computation we find
det(A —H=x(A—a)i =8+ —xXA— B — 7).

LemMA 4. If o, B, 7,0 are collinear and o — =y — 6, then the spectrum
of S is [a, bl U [c, d] where {a, b, c,d} is the quadruple {, B.y, 0} written in an
order determined by their common line.

Proof. Suppose first that «, f, , 0 are real, so that S is hermitian. The spectrum

of S is then the set of real values 4 for which det(Z — S) = 0. However, this is
precisely the real values of r where the polynomials (¢r — «)(r — f) and (t — y)-
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-(t — 0) either both vanish or have differing sign, and this is soon seen to be the set
{a, b} U {c, d). The general case now follows by a simple translation argument which

involves choosing suitable complex numbers p and # so that the local quadruple
for p 4 na(x, y) is real.

LemMA 5. If alx, y) is a locally simple symbol then the essential spectrum of
Op(a) is the set a*.

Proof. By Theorem 3 (ii) the essential spectrum is the union of ¢(Op(a) + %)
for all z in Z. But Lemma 3 and Lemma 4 show that each of these sets is just the
local segments of a(x, y) at z, and so the lemma follows.

REMARKS. In general, and even if «, f5, y, § are colinear, the spectrum of S
does not consist of line segments. The locally simple symbols correspond precisely
to those Op(a) which are locally translates of muitiples of hermitian operators. We
leave open here a natural question: What is the analogue of Theorem 1 for the essen-
tially normal Op(a)?

The Lemmas 2,3 actually lead to much more than Theorem 1 because in
principal, and in practice, one may analyze any operator which can be shown to
belong to W(P¥, #¢) by analyzing it locally. This is indicated in a subsequent
paper [15].

4. PROOF OF THEOREM 1

The following lemma allows a reduction to the case where a(x, y) is continuous
on Wand ¢, 1 < i < n, belong to ¥. The index theorem for this case is well
known (e.g., [2], [13]). Let L be the collection of locally simple functions.

LeMMA 6. If a belongs to L and a* does not pass through the origin then there
exists a homotopy a,, 0 < t < 1, in L such that

(i) 0¢af, 0<t< .

(i) a, = a.

(i) a, is continuous on W.

(iv) a¥ and a* have the same winding number.

Proof. It is clearer here to explain the proof rather than to be totally explicit
with the technicalities. The main idea is to perform a homotopy which shrinks the
local segments to points, so that the function g, has (using obvious notation) o; =
=y, = (¢ -+ y)/2 and B, = 6, = (B + 6)/2 for each quadruple «, B,, ;, &,, and
similarly for the y discontinuities. These conditions ensure that g, is continuous
on W. In order to keep a,in L, 0 < r < 1, the segments [o, y] and [B, 8] are simul-
taneously shrunk to their midpoints.

A slight difficulty occurs in this procedure if we have a discontinuity, at (x, co)
say, of the type illustrated in Figure 3 and where 0 belongs to [«, y]. In this case we
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would get 0 € a¥ for some 7. However, by making a small translation of a(x, y) we
may assume that 0 does not lie on the convex hull of any of the local data.

It is simple enough to perform the homotopy in L. Consider first the case of
a single pair of discontinuities of a(x, y) at (x,~+o00) and (x, —oo). The values of q,
need only differ from the values of a(x, y) on the four sets (x — i, x) X (=-00),
(5, v 1) X {(+00), (x — 1, ¥) X (—00), (x,x 1) X (—oo0) with » small and
fixed. A little induction with this case will give the lemma.

To complete the proof of Theorem 1 we now let w(a*) denote the winding
aumber of a*. It is known, as we have already noted, that the index of Op(a;) ==
== w{a§). Thus, since Op(a,) is a homotopy of Fredholm operators we have

Index Op(a) = Index Op(a,) — w(af) = wia*).
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