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ON M-SPECTRAL SETS AND RATIONALLY INVARIANT
SUBSPACES

C. APOSTOL and B. CHEVREAU

1. INTRODUCTION

Let s be a separable, infinite dimensional, complex Hilbert space and let £ ()
denote the algebra of all bounded linear operators on J#. If o/ is a subalgebra
of £(#) a nontrivial &/-invariant subspace is a subspace .# of # such that
(0) # # # A and such that A# < 4 for each A in &. If o is the algebra
of all polynomials in a fixed operator 4 an &/-invariant subspace is exactly an
invariant subspace for A and if &7 is the commutant of 4 an «7-in variant subspace
is exactly an hyperinvariant subspace for A.

In 1978 S. Brown proved that every subnormal operator has a nontrivial
invariant subspace (see [8]). The method he used was immediately adapted by
various authors to obtain invariant subspaces for other classes of operators (see [1],
[2], [3], [4], [10], [15]). The present paper is another one in the same area and can
be regarded as a sequel to [10]. In that paper the authors first established a theorem
that gives sufficient conditions for a representation of H(G) into #(#) to have
a nontrivial invariant subspace. (If G is a bounded open set in C, H®(G) denotes
the Banach algebra of functions bounded and analytic in G, equipped with the
supremum norm.) This result paved the way for a systematic investigation of the
existence of invariant subspaces for operators 4 for which there exists a bounded
open set G such that

(1) G~ is an M-spectral set for A4 (i.e. ||r(4)]| < M sup_|r(2)| for every rational
e

function r with poles off G~), and
(2) the intersection of the spectrum of A4, g(4), with G is dominating in G
(i.e. ||Alle = sup [h(A)| for any function kA in H%(G)). Eventually it was
A€o(A)NG

proved that if the boundary of G consists of finitely many disjoint Jordan loops
then the operator A has a nontrivial subspace invariant under the rational functions
of A with poles off G—.
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Our main result (Theorem 4.1) says that the same conclusion holds if, in
addition to conditions (1) and (2), G is such that R(G~) is pointwise boundedly
dense in H®(G) and R(¢G) = C(8G). (For a compact set X in C we denote as usual
by C(X) the Banach algebra of complex continuous functions on X equipped with
the supremum norm and by R(X) the closure in C(X) of the algebra of rational
functions with poles off X.) A corollary of this result (Theorem 8.1) takes care of
the case in which G is finitely connected thus generalizing the above result of [10].
Our second application refers to the case when o(A4) is an M-spectral set for A.
We improve Stampfii’s result [15] by showing (Theorem 8.2) that for any finite
set of holes in ¢(A) there is a nontrivial subspace of 5 invariant under any rational
function of A with poles in the union of these holes.

The paper is organized as follows. The first four sections are devoted to the
proof of the basic result (Theorem 4.1). To apply Theorem 3.2 of {10] to our situation
we need first to extend the representation of R(G™) into #(#) (obtained from the
fact that G~ is M-spectral for A) into a representation of A*(G) and next to show
that this extension satisfies the proper hypotheses. These two problems reduce
essentially to establishing the w*-S.0.T. sequential continuity of the corresponding
representations. (We say that a representation is w*-S.0.T. sequential continuous if
it maps a sequence of functions that converges to 0 in the weak™ topology into
a sequence of operators that converges to O in the strong operator topology.) Of
course these continuity difficulties appear more or less explicitly in any application
of the S. Brown technique. So far they have been solved by transfering the problem
to the unit disk where a result of Sz. Nagy-Foias (Theorem II 5.4 of [16]) enables
one to assume that either A" or A% tends to O in the strong operator topology.
This transfer to the unit disk is precisely the basic limitation of most of the previous
applications of the S. Brown technique (especially with regard to the type of invariant
subspace produced). Our main innovation is to deal directly with the continuity
difficulties via a result (Theorem 3.2) which, roughly speaking, generalizes the above
theorem of Sz. Nagy-Foias and enables us to exhibit a nontrivial hyperinvariant
subspace for 4 whenever the w*-S.O.T. sequential continuity property is not
satisfied.

A consequence of this result is that the w*-S.O.T. sequential continuity
of the representation can be removed from the hypotheses of Theorem 3.2 of [10]
without affecting its conclusion, as was conjectured in that paper. The proof
of our Theorem 3.2 is broken into two steps. In §2 we show how
the w*-S.0.T. sequential discontinuity implies the existence of nontrivial
intertwinings between A4 and the operator M. of multiplication by { on
R(0G), on one hand, and between 4% and M, on R(6G*), on the other hand.
In § 3 we show how these intertwinings lead to a nontrivial hyperinvariant subspace
for A. Here the hypothesis R(éG) = C(¢G) plays a crucial role via the characteri-
zation of closed ideals in C(X). The first author was initially lead to Theorem 3.2
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via local spectral theory techniques; we briefly sketch this approach at the end of § 3.
Section 4 completes the proof of Theorem 4.1. The applications of this theorem
that we give rely heavily on the results of {13] on pointwise bounded approximation
and Dirichlet algebras. The basic definitions and results that we need are presented
in § 5 in a form suitable to our purposes; as a tool for generalizing Stampfli’s result
and in connection with Dirichlet algebras, we develop in § 6 a natural (and, we
believe, interesting in its own right) partition of the set of holes of a connected
compact set in the plane. Before concluding the proof of the applications in §8
we need a few additional results on H*(G) which we present in § 7.

2. w*-S.0.T. SEQUENTIAL DISCONTINUITY OF REPRESENTATIONS
AND INTERTWININGS

Throughout this section G is an arbitrary bounded open set in C. Let Q be
a subalgebra of H*(G) which contains R(G™). A representation of Q is a Banach
algebra homomorphism, @, of Q into £(#). We say that @ is unital if @¢(15) = 1.
Naturally associated with @ is an “‘adjoint’ representation @~ defined as follows.
Let G* = {1 : A e G} and, for any function /i defined on G, let /i* be the function
defined on G* by h*()) = h(X). Set 0~ = {h* : h e Q} and define ™ on O~ by
D~ (h) = o(¥)*. It is well-known (see, for example, Proposition 2.1 of [9]) that
for any A in A®(G) and any u in G there exists a unique function /1, in H*(G)
such that () — h() = (A — p) h(2), 2 € G. We will say that Q satisfies condition
(#) if /1, belongs to Q whenever /1 belongs to Q. (Thus H*(G) itself and R(G ) satisfy
(%).) The following is the key result of this section.

THEOREM 2.1. Let Q be a subalgebra of H™(G) which contains R(G™) and
satisfies (%) and let @ be a norm-continuous unital representation of Q with the
Jollowing properties :

(8) If 1, (fo(d) = 2) is the position function and &(f)) = A then A has no
eigenvalues,

(b) the adjoint representation @~ is not w*-S.O0.T. sequentially continuous.

Then there exists a nonzero bounded linear map T from R(0G) into L(H)
such that TMy == AT where M, denotes the operator of multiplication by { on R(0G).

Before proving this theorem we establish two lemmas.

LemMma 22, If &~ is not w*-S.O.T. sequentially continuous then there
exists a sequence of functions f, in Q converging pointwise boundedly to 0 and a
sequence of unit vectors x, in M such that &(f,)x, converges weakly to a nonzero
vector y.
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Proof. If @~ is not w*-S.0.T. sequentially continuous then there exists a
sequence f, in @ converging pointwise boundedly to 0 and a vector x in J# such
that (®(f,))*x does not tend to 0. (We use here the obvious fact that the map f — f*
is an (isometric) weak* homeomorphism of Q onto Q™ ; also recall that for sequences
in H*(G) weak* convergence to O is equivalent to pointwise bounded conver-
gence to 0.)

By selecting a subsequence we may assume that lim ||(®(f,))*x| =:a > 0.
Let x, = ((f)* x| (@(f)*x,l|; the sequence P(f,)x, is bounded and, again by
dropping to a subsequence, we may assume that it is weakly convergent to some
vector y. The equalities

(¥, x) = Hm(D(£,)x,, x) = Him(x,, S(f,)*x) = limj| &(f,)"x

show that (y, x) # 0; consequently v is nonzero as desired. %

The operator T of Theorem 2.1. will represent a sort of R(¢G)-functional
calculus for 4 but localized on y. The following approximation lemma will enable
us to “‘remove” the undesirable poles of rational functions in R(0G) (that is the
poles that are in G).

LemMA 2.3. Let f, be a sequence in Q converging pointwise boundedly
to 0 and let ¢ be a rational function with poles off ¢G. Then there exists a sequence
of polynomials P, such that:

1) |P,\lo tends to O as n tends to oo, and

2) o(f, — P,) belongs to Q and converges pointwise boundedly to 0 as n
tends 1o oo.

Proof. Let A,,..., 4, denote the poles of ¢ which are in G and letx,,..., o
be their multiplicity. (Of course if ¢ has no poles in G we set P, = 0.) By ([14],
Ch.V, §2) we can find a system of polynomials L; ; such that L{}(,) = 6; 6;
for1 £ i,m < kand 0 < [, j < «; (here & is the Kronecker symbol and 4" denotes
the /-th derivative of /). Let P, be the sequence of polynomials defined by

P, =

1

;=1
Y fO0) Ly
1 j=0

ok

For each fixed pair j, i the sequence f/)(4;) tends to 0 as » — oo (Cauchy integral
formula and Lebesgue dominated convergence theorem); this proves that {P,}
satisfies 1). From the definition of the L; /s it is clear that each A;is a zero of order
= a, for f, — P,. Thus we can write

(o — P)A) = II G — 4)ig®.

<igk
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By a repeated application of the property that £, is in Q whenever f is in Q and u
in G we see that g, belongs to Q. From the inequality ||f, |l < 2l|fllo (dist(y, 6G))~*
we see that {g,} is a bounded sequence. If A is none of the A;’s then g,(4) clearly
converges to 0. The convergence to O at the i;’s now follows from the Cauchy

integral formula for g,(1,). We have ¢o(1) = JI (4 — 1) i y(2) where ¥ is
1gigk
a rational -function with poles off G—; therefore o(f, — P,) (= ¥g,) converges

pointwise boundedly to O.

Proof of Theorem 2.1. Since @~ is not w*-S.0.T. sequentially continuous,
by Lemma 2.2 there exist a sequence f, in Q converging weak™® to 0 and a sequence
of unit vectors x, such that @(f,)x, converges weakly to a nonzero vector y. Let
now ¢ = R/S (R, S polynomials) be a rational function with poles off G and
let P, be a sequence of polynomials given by Lemma 2.3 (with respect to ¢ and f,).
Since @ is norm-continuous and ¢(f, — P,) converges weak® to 0, the sequence
P(o(f, — P,))x, is bounded. Let u be the weak limit of any of its weakly convergent
subsequences. We have

S(Ayu = weak-lim &(S) &(@(fu, — Pn))xn, =
= weak-lim &(So(f, — Py))xn =
= weak-lim ®(R(f,, — Py ))xn, =
= R(A) weak-lim &(f, — P )Xn, =
= R(A) weak-limit &(f, ) x, =
= R(A)y.

(The next-to-last equality follows from the fact that || P,|l, converges to O
together with the norm-continuity of ¢. We have also used repeatedly the fact
{easily deduced from the hypothesis that ¢ is a unital representation) that &(r) =
== r(A) for any rational function, r, with poles off G, thus in particular for any
polynomial.)

It follows from the equality S(4)u = R(A)y that all weakly convergent sub-
sequences have the same limit (otherwise by taking differences we would have a
nonzero vector w such that S(A)w = 0, so 4 would have an eigenvalue). This result
together with the metrizability of the weak topology on bounded subsets of #
implies that in fact ®(e(f, — P,))x, is weakly convergent; it also implies that the
limit depends only on ¢. Let then T'(¢) denote the limit. The linearity of 7 is imme-
diate. To extend T to all of R(0G) we need a bound on T(¢). We claim first that

“(p(./n - Pn)”oo < H(PH [)(;Hf;x - Pn”oo
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(where [l@loe == sup '¢(4)). Indeed lete be any positive number; there is an
AEUG

open neighborhood € of ¢G such that the rational function ¢ is defined on @
and such that for 4 in Q |p(4)] < ||@}| ; + & the maximum modulus principle
implies that

lo(fu — Pl = sup_ 93 (f, — P,) (A)i;
re2ngG
therefore we have
lo(fn — Pl < (10 + & 1o — Pallos
and the desired result follows since ¢ is arbitrary. As a consequence we have
IT(@)l < j@ (o limsup!f, — Pyl = Clo!

with C =- @] limsup;f, . Thus T has a unique (linear bounded) extension to
R(£G). We still denote this extension by 7.

To prove that T satisfies TM, == AT let again ¢ = R/S with R, S polyno-
mials, the zeros of S lie off G. By'pre\!ious considerations we have

S(AT (@) = R(A)y.
The same equality with f,¢ instead of ¢ leads to
S(AT(fy) = AR(A)y.
Combining both equalities we obtain
ST M(@) = SINT{ fop) == AS(AT(@) = S(A)AT(p).
Since S(A) is one-to-one (otherwise 4 would have an eigenvalue) we conclude that
TM{e) = AT(p).

By continuity the equality extends to any ¢ in R({G) as was to be proved. Z

3. INTERTWININGS WITH M, AND HYPERINVARIANT SUBSPACES

The basic result of this section is the following theorem.

THEOREM 3.1. Let X be a compact subset of the complex plane sucfi that
R(X) == C(X) and let A be an operator iin L(H) for which there exist nonzero
bounded linear operators T and V froin, respectively, R(X) and R(X*) into #
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such that

(1) TM; = AT and

Q) VM; = A*V
where M, and M; denote the operator of multiplication by { on R(X) and on R(X*),
respectively. Then A has a nontrivial hyperinvariant subspace.

Before proving this theorem we give two corollaries. The first one says that
when R(0G) = C(0G) one may assume that one of the two representations @ and ¢~
(as considered in § 2) is w*-S.0.T. sequentially continuous without loss of generality
with respect to the existence of hyperinvariant subspace for the operator @(f,).

THEOREM 3.2. Let G be a bounded open set in C such that R(6G) = C(0G),
and let Q be a subalgebra of H*®(G) which contains R(G™) and satisfies condition (x).
Let & be anorm-continuous unital representation of Q into L(H) such that (fy) = A.
Then, if neither ® nor @~ is w*-S.0O.T. sequentially continuous, A has a nontrivial
hyperinvariant subspace.

Proof. By Theorem 2.1 applied to ¢ and @~ we obtain non-zero bounded
linear operators T : R(6G) — A and V : R(0G*) — s such that TM, = AT and
VM; = A*V. Since R(6G) = C(2G) the conclusion now follows from Theorem 3.1.

The second corollary shows that the conjecture raised in [10] at the end of § 3
and proved to be true in the special case in which G is a finitely connected domain.
{{10], Theorem 4.1} is true for any domain G.

THEOREM 3.3. Let G be a bounded domain in C and let ® be a representa-
tion of H™(G) into L(H) with the following properties:

(a) @ is norm-continuous;

(b) If f,(0) == { is the position funiction in H®(G) and ®(f,) = A, then o(A) NG
is dominating in G.

Then & has a nontrivial invariant subspace, i.e. there is a nontrivial ®(H>(G))-
invarignt subspace.

Proof. We begin by observing that R(6G) = C(¢G). Indeed the complement
of G in the Riemann sphere S% is a compact set K. By a resvlt recalled at the
beginning of § 6 it follows from the connectedness of G that the algebra R(K) is
Dirichlet (see § 5 for definitions) and therefore R(9K) = C(8K). Since 0K = 0G
the observation is proved.

If neither @ nor @~ is w*-5.0.T. sequentiaily continuous, 4 has a nontriviai
hyperinvariant subspace by Theorem 3.2 and, since the range of @ is contained
in the commutant of A4, ® has a nontrivial invariant subspace. On the other hand
if either @ or ¢~ is w*-S.0.T. sequentially continuous the conciusion follows from
Theorem 3.2 of {10] (applied to either & or ¢~) together with the fact that the
orthocomplement of an invariant subspace of ®™ is invariant for @.
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The proof of Theorem 3.1 will be broken into a few lemmas. Of course there
is no loss of generality in assuming that neither 4 nor A* has eigenvalues and we
do so throughout the remainder of this section. We will denote by & the set of
operators T satisfying (1) and by &~ the set of operators ¥ satisfying (2). It is
clear that any result about &% has a dual version about &~. Though we do not
state these dual versions we will use them freely. The first lemma summarizes some
elementary properties of &. We omit the proof.

LemMMA 3.3. The set & is a submanifold of L (R(X),). Moreover for
any @ in R(X), any B in the commutant of A, and any T in & the operators
TM, and BT belong to &. (M, denotes the operator of wmultiplication by ¢
on R(X).)

The key properties of an intertwining T in & are gathered in the following
lemma.

LemMMA 3.4. Let T belong to &. Then we have the following properties :

a) KerT is a closed ideal of R(X).

b) Let s(T)={Ae X :f(A) =0 for all { in KerT}; then KerT = {fe C(X):
1 fIs(T) = 0}.

c) There exists a bounded linear operator T C(s(T)) = H such that fM§ = AT
where M, is now multiplication by { on C(s(T)).

d) Suppose T # 0 and let ., belong to s(T); then there exists a nonzero
operator T in & such that

S(Ty) e {Ae X 1|2 — 2l <&}

Proof. a) Since KerT is a closed subspace of R(X) we just have to prove
that fo belongs to KerT whenever f is in R(X) and ¢ in KerT. Using the density
of the rational functions with poles off X in R(X) we see that it is enough to prove
this result when f is one of these rational functions, say p/g. From AT = TM, we
obtain p(A)T = T M, for any polynomial p. Thus

g( DT ((p/pe) = TM(plg) ¢) = T(pp) = p(A)T(¢) = 0.

Since g(A) is one-to-one (otherwise 4 would have an eigenvalue) we have
T({(p/q) ¢) = 0 as was to be proved.

b) Since R(X) = C(X) the result follows immediately from the well-known
characterization of the closed ideals of C(X).

c) Let r denote the restriction map from C(X) into C(s(7)). Since » is onto
and Ker » = KerT (in fact Kerr = KerT') there exists a linear map T C(s(T)) - #
such that T = Tr. The verification of the equality _’IA“Mg = AT is straightforward.

To prove that T is bounded let g. be a sequence converging to 0 in C(s(T)). It
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follows from the classical Tietze’s extension theorem that for each n there exists

a function f, in C(X) such that r(f,) = g, and ||g,|| = ||£,|l. Thus |[f’(g,,)[|(=|l It <
< IIT || I, tends to zero and T is bounded.

d) From the definition of s(T') we obtain easily that for any T in & and
any ¢ in C(X) s(TM,) = s(T) n suppe. (Recall that suppp = {1e X : ¢(4) # 0}~.)
Choose ¢ to be nonzero in a neighborhood of 1, but zero for |1 — 4| > &. The
operator T, = TM,, satisfies the desired properties. 7

The next and last lemma expresses the basic idea which we will use to obtain
hyperinvariant subspaces. It ultimately boils down to the well-known result that
if two operators are nontrivially intertwined then their spectra must overlap.

LemMMA 3.5. Let T belong to & and V to &~. Then:
a) s(T) cannot be a singleton, and
b) if sS(T)ns(V)* = O then Ran(T) | Ran(¥V).

Proof. a) If s(T) is a singleton {,} then C(s(T)) is one-dimensional and it
follows from c) of Lemma 3.4 that /, is an eigenvalue for A. This contradicts
the assumption that 4 has empty point spectrum.

b) By ¢) of Lemma 3.4 and its dual version for &~ we may see T and V
as operators defined on C(s(T)) and C(s(V)) respectively. We want to “dualize”
the intertwining 4V =VM{ ; to avoid the difficulty created by the mixture of Banach
space and Hilbert space dualities we proceed directly as follows. For x in 4# we
define a continuous linear functional ¥’(x) on C(s(})*) by

) V@)L =5 V(%)) feCls(P)?).

It is easy to check that V' is a bounded linear map from £ into .#(s(¥)*) (the
Banach space of complex Borel measures on s(¥)*) and that V'A = MV’ where M;
is multiplication by { on #(s(V)*) (i.e. M{(u) = v with dv = {du). Finally the
definition of V' makes it clear that KerV’ = (RanV)+. Thus we have to prove
that V'T = 0.

Let W = V'T; from the intertwinings TM, = AT and V'4 = MV’ we obtain
V'TM, = V'AT = MV'T that is M;W = WM,. But the spectra, s(¥)* and s(T),
of M; and M, are disjoint; therefore by a well-known result we see that W =0,
as was to be shown.

With these tools at hand it is now easy to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let T and V be nonzero operators in & and &~
respectively. Since neither s(7°) nor s(¥) can be a singleton we can find 2 in s(T)
and p in s(¥) such that 1 # u. Applying d) of Lemma 3.4 (and its dual version
for &~) with ¢ < |1 — u]/2 we obtain nonzero operators 7; and ¥, respectively
in & and &* such that s(T)n s(Vy)* = @. For any operator B commuting

5-c. 1789
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with A4, BT, is in & and satisfies s(BT,) n s(V)* = @. By b) of Lemma 3.5 we
have Ran(BT;) 1 RanV, and the closed linear span of | BRanT; is a non-

BA=AB
trivial hyperinvariant subspace for A. %

REMARK. As mentioned in the introduction, Corollary 3.2 can be proved
using local spectral techniques (see {6], for basic definitions and results). In that
context Theorem 2.1 is replaced by a result saying that (under the same hypo-
theses) there exists a nonzero vector y whose local spectrum with respect to A
(notation ¢ ,()) is contained in &G. Instead of Lemma 3.4 we have a proposition
stating that once we have a nonzero vector y such that o,(y) = G we can find
(under the assumption R(X) = C(X)) another vector y, # 0 with ¢,{(3y) cX'n
N A4(Ay, &) (Ao o 4(p), ¢ arbitrary) and such that the local resolvent satisfies a certain
growth condition. Finally Lemma 3.5 is replaced by the following two resuits of
local spectral theory.

1. If 6,(y) = {4} and the local resolvent of y, p, (2) satisfies|lp, (2| <
< ML — 2|7k for some k then 2, is an eigenvalue of A.

2. If o,(x)N(64+(y))* = @ (for nonzero vectors x and y) then A has a
nontrivial hyperinvariant subspace.

4. THE MAIN THEOREM

We are now ready to prove the central result of the paper which is the
following.

THEOREM 4.1. Let A be an operator in L(#) and let G be a bounded
open set in C such that:

(i) G~ is an M-spectral set for A,

(i) o(4) n G is dominating in G,

(iii) R(G™) is pointwise boundedly dense in H®(G),
and

@av) R(0G) = C(6G).

Then there exists a nontrivial subspace invariant under any rational function
of A with poles off G~.

Proof. First we claim that we may assume that G = (G7)°. Indeed let G, ==
= (G~). Since Gf = G~, Hypothesis (i) and the conclusion are unaffected when
we replace G by G,. The inclusions G < G;, G, < 6G together with the maximum
principle imply that the natural embedding H®(G;) =« H®(G) is an isometry; thus
6(A) N G is dominating in G, and consequently so is &{4) N G,. Therefore G,
satisfies (ii). That G, satisfies (iii) follows immediately from the inclusion H®(G;) =
< H*(G). Finally an easy argument based on the norm decreasing inclusion R(6G) <
< R(8G,) and the fact that any f in C(éG,) has a continuous extension to 0G,
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of norm no greater than | f]], shows that R(0G,) = C(dG,); that is G, satisfies (iv).
Thus we may pursue the proof with the additional hypothesis that G = (G-)°.

Let  denote the representation from R(G ™) defined by y(r) = r(4) (f is a
priori defined only for a r rational with poles off G- but, since G~ is an M-spectral
set for A, it extends by continuity to all of R(G~); for details on this extension see
Proposition 5.1 of [10]). By Theorem 3.2 there is no loss of generality in assuming
that one — say ¥ — of the two representations ¢ and ¢~ is w*-S.0.T. sequentially
continuous. Suppose that we can extend ¥ into a norm-continuous, w*-S.0.T.
sequentially continuous representation ¥ of H®(G); then by Theorem 3.2 of [10]
there is a nontrivial invariant subspace for ¢(H*(G)). Thus, since the range of @
contains all rational functions with poles off G-, it is sufficient to extend ¥ as
indicated above to complete the proof. The argument is essentially the same as in
([10], Theorem 7.3) with additional details to obtain directly the w*-S.0.T. sequential
continuity of the extension.

We denote by R,, H,, and 4, the balls of radius p about the origin in R(G-),
H*(G) and Z(#). Also, as usual, if F is a set and d a metric on E we denote
by (£, d) the topological space (E, ©) where 7 is the topology provided by the metric d.
We observe first that the weak* closure of R, in H*®(G) is H, . Indeed H, is weak*
closed (this is true for any ball in the dual of a Banach space) and by Theorem 6.9
of [13] R(G") is strongly pointwise boundedly dense in H*®(G); that is for any g
in H*(G) there exists a sequence r, in R(G~) which is weak® convergent to g and
satisfies the additional condition ||r,|| <|lg|l for all n (note that it is precisely to
have this strongly pointwise bounded density that we need the assumption
(G~)*== G). Our observation follows easily from these two facts. Next recall (fromgq,
for example, [7, Problem 15 NJ) that there exists a translation invariant metric
d on H*(G) such that

(H,,d) = (H,,w*) for all p.

Similarly by [12, p. 33] there exists a translation invariant metric d’ on Z(#)
such that

(B,,d) = (%,,S.0.T) for all p.

Therefore the sequentially continuous map ¥ : (R, , W*) = (#u,, S.0.T.)is actually
continuous. An elementary argument based on the continuity at 0 of ¥ : (R, , W*)
(= (Ry,, d)) > (Bapsp> S-O.T.) (= (B2mp»>d") shows that in fact ¥ is uniformly
continuous from (R,, w¥) into (%,,,, S.0.T.). Since the latter is complete ¥ has
a unique uniformly continuous extension 1, :(H,, w*) = (%,,, S.O.T.). The
uniqueness of i, implies that ¥, is an extension of , whenever ¢ > p. Consequently
by setting ®(g) = y,(g) where ge H*(G) and ||g|| < p we obtain a well-defined
extension of ¥ to H*(G). The above considerations show clearly that @ satisfies
|®(g)|| € M|\g| for any g in H*(G) and that & is w*-S.0.T. sequentially continuous.
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In particular we have

&(g) = (S.0.T.)-lim r,(4)

whenever the sequence {r,} = R(G~) converges weak* to g. From this equality
we easily deduce the linearity of ¢ as well as its multiplicativity (for the latter
recall that the product in £(s#) is jointly sequentially strongly continuous). There-
fore @ is the desired extension of y and the proof is complete.

REMARKS. 1. We could have used the somewhat less involved argument.
of [10] to extend ¥ into a norm-continuous representation of H*(G) into £ (J¢)
and then conclude by Theorem 3.3. However it seems of interest to show that if
is w*-8.0.T. sequentially continuous (from R(G ) into #(5#)) then it has a norm-
-continuous, w*-S.0.T. sequentially continuous extension to H*®(G).

2. The above remark suggests the following question:

Let  be a norm-continuous, w*-S.0.T. sequentially continuous representation
from R(G-) into Z(s#) and assume that R(G~) is strongly pointwise boundedly
dense in H®(G). Does  have a unique norm-continuous extension to H*(G)?

Since the above proof actually shows that ¢ has a unique norm-continuous,
w*-S.0.T. sequential continuous extension the question is equivalent to whether
a norm-continuous representation of H*(G) whose restriction to R(G ) is w#-S.0.T.
sequentially continuous is itself w*-S.0.T. sequentially continuous.

We note that Theorem 7.5 of [10] answers these questions in the affirmative
in the case in which G is a circular domain.

5. C-SETS AND D-SETS IN S

In this section we develop some material on Dirichlet algebras necessary
for our applications of Theorem 4.1. Most of it is contained in [13] where charac-
terizations of conditions (3) and (4) (in Theorem 4.1) and of Dirichlicity of R(K)
are given in terms of analytic capacity. Since we need to extend some of these results
to compact subsets of the Riemann sphere we recall the basic definitions. We deal
with the usual model of the Riemann sphere: 8* = C U {co}. Though most of what
we say applies to any compact subset of S* we are interested only in ordinary com-
pact subsets of C or in complements of bounded open subsets of C (in other words
we never consider compact subsets K of S? such that co € ¢K). The usual definitions
of C(K), R(K) and H®(K) extend obviously to the case co € k(considering that oo
is a pole of a rational function f if 0 is a pole of f(1/{) and that f is analytic at
oo if { — f(1/{) is analytic at 0). We say that K is a Dirichlet set {or briefly a
D-set) if K is a compact set such that R(X) is a Dirichlet algebra (i.e. Re(R(K))
is dense in Cyx(0K)). We say that the compact set K is a C-set if R(6K) = C(0K)
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and R(K) is pointwise boundedly dense in H°°(1€). A circular transformation of S*
is a map ¢ : 8? —» S? of the form @) = (& + b)/(c{ + d) with ad — bc # 0.
If ¢ is a circular transformation such that ¢(K) = K; then the mapf — fo @
maps R(K}), R(0K,), H®(0K,) and C(0K}) isometrically onto, respectively, R(K),
R(0K), H*(K)and C(dK), and preserves pointwise convergence. Consequently ¢(K)
is a C-set (resp. a D-set)if and only if K is a C-set (resp. a D-set). Using a circular
transformation of the type ¢ () = 1/{ — {, ({, ¢ K) we see that the following results
(known to be true in the case of compact subsets of the plane) remain valid in the

case when ocoe K.

ProposiTioN 5.1. ([13], Theorem 5.1). Let K be a compact subset of S*
(0o ¢ 0K). Then the following are equivalent :

(i) K is a D-set.

(ii) K is a C-set and each component of K is simply connected.

ProrosiTioN 5.2. ([13], Corollary 9.6). The intersection of countably many,
decreasing D-sets is a D-set.

We now turn our attention to the characterization of C-sets and D-sets which
involve analytic capacity (denoted by y). Again we merely adjust results of [13]
to our needs. (Here and elsewhere A4({; 0) is the open disk of radius J centered at {.)

PropositioN 5.3, ([13], Theorem 8.9). Let K be a compact subset of S*
(co ¢ OK). Then the following are equivalent

(i) K is a C-set,

(i) There exists 6, > O such that y(A({; §) \ K) = y(A({; 0) \k) for each
(edKand 0 < & < 6,

(iii) There exists a o-curvilinear null set E such that for each { € (6K)\E
there exists r = 1 satisfying

e A NK)
60 y(4(;8)n 610()

Proof. When K < C this is Theorem 8.9 of [13] (the “localized” version of (ii)
clearly implies (iii)).

Suppose gow that co belongs to K. Let 4 be an open disk large enough
to contain the closure of S2\ K. The transformation ¢ : @({) = 1/({ — a) (Where a
is a fixed point in S2\ K) maps Kn 4~ into K; \ 4, where K; = ¢(K) and 4, =
=@(S2\\47); 4, is an open disk whose closure is contained in K . Observing that
conditions (ii) and (iii) are automatically satisfied on 04, we see that K is a C-set
if and only if K;\\ 4, is a C-set. Consequently K is a C-set if and only if Kn 4~
is a C-set. The desired equivalences for K now follow from their counterparts for
Kn A- (observe again that the latter is a compact subset of C for which (ii)
and (ili) are automatically satisfied on d4).
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An immediate consequence of this result is that the characterization of D-sets

(Theorem 9.3 of [13]) can be extended to compact sets K such that co e K
The following lemma will lead us to a somewhat more convenient version
of this characterization when K is connected.

LemMmAa 5.4. Let K be a compact, connected subset of S*. Then the following
are equivalent :

(i) 0K is connected,

(i) Each component of K is simply connected.

Proof. Suppose that a component G of K is not simply connected and let L,
and L, be two nonempty compact disjoint subsets of S such that S*\ G =L, U L,.
From the inclusion S$2\\ K< 82\ G we obtain (K = (¢Kn L,) U (€KX n L,). Since ¢K
contains each ¢L; (because ¢L; < ¢G < ¢K) we have a nontrivial splitting of ¢K
into two disjoint compact sets. This proves that (i) implies (ii).

To prove the converse we use the following observation whose proof we
omit. The boundary of a simply connected domain is connected. Suppose now
that each component of K is simply connected and let ¢K = L, U L, be a splitting
of 0K into two disjoint compact sets. By the above observation for each component G
of K, dG is a connected set; hence we have either ¢G < L, or 6G < L,. Let V;
denote the union of the components G of K such that {G < L; (i = 1,2) and let
Ki=L,u0V;. Since K;nK, =0 and K== K, UK, the proof will be completed
once we show that each KX is closed. Let then A, be a sequence in, say, K that con-
verges to 1. We can assume that / ¢ ¥ (otherwise we are done). We define a sequence
#, in L, as follows: p, = A, whenever 1, € L,; if A, ¢ L, then 1, belongs to a com-
ponent G of Kk satisfying ¢G < L,; in that case we choose g, to be the point of ¢G
nearest to A on the segment with endpoints 4, and A. In all cases u,e L, and
(A — p,| €A~ 4,; therefore A ==lim u, and 2 belongs to L,, hence to K as
desired.

We now state a convenient characterization of connected D-sets.

THEOREM 5.5. Let K be a connected compact subset of S* (00 ¢ (K). Then
the following are equivalent:

(i) Kis a D-set.

(ii) K is connected and there exists &, > O such that, for { in K and
0 < 0 < 9y, YAL; O)\K) > o/4.

Proof. That (i) implies (i) follows from the previous lemma together with
the equivalence of (i) and (iii) in Theorem 9.3 of [13].
Now suppose that condition (ii) holds; since

PA(E; 8) n é’K) < YA o) =6
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we get at each { of 6K
V(A 3\ K)y(AL; 8) n 9K) > 1/4;

therefore K is a C-set by Proposition 5.3; by Lemma 5.4 each component of K
is simply connected; thus K is a D-set (Proposition 5.1).

6. DIRICHLET CHAINS FOR CONNECTED COMPACT SETS

In this section K denotes a fixed connected compact subset in the complex
plane. (It will be convenient to consider K as embedded in S?; the unbounded com-
ponent of the complement of K will be identified as the hole that contains co0.) Let ¢
denote the set of holes in K. For each hole H the set Ky = S?\\ H is a D-set. (This
is a well-known result if oo € H; a suitable circular transformation transfers the
result to any hole — recall that, here, since K is connected each hole is simply
connected). Now if H' is another hole “touching” H (i.e. 0Hn oH' # @) Theo-
rem 5.5 (or Corollary 9.7 of [13]) shows that S®\\(H U H’) is still a D-set. This process
can be repeated and motivates the following definition. A set & of holes (i.e. a subset
of %) is called a Dirichlet chain (or shortly a D-chain) for K if the (compact) set

K¢ = S*\ U His a D-set. We denote by & the set of D-chains for K ordered
He®

by inclusion. Finally we define the boundary of a D-chain (notation &%) to be the

boundary of the corresponding D-set K¢. Since Ky is connected (it is the union

of a connected compact set with some of its holes) and Dirichlet its boundary is

connected. Note that 0% (= 0Ke) = ( Ug 0H)~. We begin with an elementary
He“

but useful result.

LeEMMA 6.1. The union of two Dirichlet chains whose boundaries overlap
is a Dirichlet chain.

Proof. Let €, and ¥, be two D-chains and let ¥ = %, U %,; it follows easily
from the above observation that 0% = 0%, U 0%,; therefore 0% is connected.
The analytic capacity condition (ii) of Theorem 5.5 is satisfied at any point of
the boundary with respect to ngl or K@Z; it is therefore also satisfied with respect
to leu@z:: Kfcl N K(gg because y is a monotone increasing set function. This
concludes the proof. Z

We can now prove the main result on Dirichlet chains.

THEOREM 6.2. Let K be a connected compact set in C and let % denote
its set of holes. Then

(i) any hole in K belongs to a unigue maximal D-chain (consequently these
maximal D-chains determine an (at most countable) partition of %),
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(ii) the boundaries of these maximal D-chains are pairwise disjoint,
and

(i) if € is @ maximal D-chain then Kn Kq is dominating in Ke.

Before proving Theorem 6.2 we observe that the existence of maximal D-
-chains was already implicitly established in [3], offering a convenient substitute
for the transfinite induction argument used in [1] and [15]; we repeat the proof
for completeness.

Proof. (ii) as well as the uniqueness part of (i) follows from Lemma 6.1
and from (i). To finish the proof of (i), let H be a hole in K and let .& be the set
of D-chains containing H. & is nonempty since {H} e %.

Let now {%;}icr be a totally ordered set of D-chains in % and let

= |_J¥,;. Since ¥ is countable we can write ¥ = U‘g where the ¢, are
tel
increasing; we have now K¢ = () K¢; and K¢ is a D-set by Proposmon 5.2;
neN n
thus € is in % and % is an inductive set. Zorn’s lemma now concludes the proof

of (i). To prove (iii) let f belong to H°°(I°<g) where ¢ is a maximal D-chain and

let s= sup |f(A). For any H <% we have either He ¥ or ¢else H- < ke
I€EKNKy

(indeed by (ii) if H ¢ ¥ the maximal D-chain containing H has a boundary disjoint
from 0K¢). For any H ¢ ¥ we have

sup. D] = - Sup, L)) <

{the equality is a consequence of the maximum modulus principle, the inequality
follows from the definition of s combined with the inclusion éH < K n kcg).
Therefore
sup | f(DI (= sup (sup|f(H]) < s
AE(C\ K)nKg H¢g AIEH
and
s = sup | f(A)]

€K €
as desired.

7. SPLITTING H*(G) WHEN G = G, N G,

Throughout this section G, is a bounded open set in C, G, is an open
set of S? such that S*\\G, = G,, and G = G, n G,. A version of the following
decomposition theorem was already given in [10] for circular domains.

THEOREM 7.1. Let Gy, G,, and G as above and let HY(G,) denote the subalgebra
of H®(G,) that consists of those functions in H*(G,) vanishing at oo. Then there are
projections P;, i = 1,2 defined on H*(G) such that:

1) The ranges of P, and P, are respectively H*(G,) and HY(G,), and P, + P, =1,
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2) P, and P, are norm-continuous,
and
3) P, and P, are weak*-continuous.

Proof. 1) We only outline it since it is a standard application of Cauchy

integral techniques. Let 0 < & < inf |4; — A,]. By Problem 5K of [7] we can choose
2,€0G;

(for i =1,2) a system I'; of closed rectifiable Jordan curves in G; such that:

@ If Vi={A:I(I';, A)=96;,} then Vi =« G; and {1eG,:d(} oG, >
>4} < V.

(b) The geometrical range of I'; is the boundary of V;.

(© KI';, 2) = —6,, whenever Ae C\\ V.
(Here I(I', 4) denotes the winding number of I with respect to 4 and ¢, ; the usual
Kronecker symbol). For f in H®(G) we set (i =1,2)

710 =\ rene-nee cevy
2mt
Ty
The following facts (all easy consequences of the definition and of the Cauchy
integral formula) conclude the proof of 1). (We let P(f) = f:.)

— f;1s analytic in ¥, and can be analytically extended on G; .

—f=hHh"+].

— fiis bounded on any compact set contained in G; in particular on 0G,,
thus f; is also bounded near 0G, and consequently belongs to H>(G,); similarly f;
belongs to H*(G,).

— fuloo) = 0 (thus, f, € H(Gy)).

— for fin H®(G,) f,=fand, for fin HF(G,), f» = f.

2) It follows from the maximum modulus principle that the embeddings
H>®(Gy) = H¥(G), HX(G,) = H*(G) are isometries. Thus the ranges of the projections
P, and P, are norm-closed and P, and P, are norm-continuous.

3) Since H®(G,) is the dual of a separable Banach space it is enough to prove
the sequential w* continuity of P, ([9], Theorem 2.3). Let then f, converging point-
wise boundedly to 0 in H*(G). Then P,(f,) is norm bounded and the pointwise con-
vergence to 0 on G, follows from the definition together with the uniform conver-
gence to O of f, on compact sets of G.

Next we wish to show that the notion of dominating set behaves well with
respect to that decomposition of H*(G).

Though the result holds without restriction on G, we give the proof only
in the case that G, is connected, sufficient for our applications.

THEOREM 7.2. Let Gy, G, and G be as above and suppose G, connected. A
subset S of G that is dominating in both G, and G, is also dominating in G.

First we establish the following lemma.

LeEMMA 7.3. Let S and G as in Theorem 7.2 (that is, S is dominating in G, and
G,). Let f in H®(G) such that f|S = 0. Then f = 0.
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Proof. Let f = f; + f, be the decomposition of f given by Theorem 7.1. We
will show that f; and f; are identically 0. Let ¢ = inf |}, — 1,!; by the maximum
2,€06,
modulus principle the set S; = {1 e S:d(4, ¢G;) <e¢/4} is still dominating in G;.
Clearly we have S, US.c S, ST < G,, S5 =G, and S nS;=0. Let
M;; = sup if;(A);. Then we have
€S,

Muy=Mp € My =My, < My

(the equalities come from the relation f, = —f, on S; US, and the inequalities
from the fact that S, is dominating in G;). Now the equality M,, = M,, implies
that f, attains its maximum at some point of ¢G, which is in G,; thus f, must be
constant and equal to 0 = f,(c0); now f;/.S = —/,| S = Oandsince S is dominat-
ing in Gy, f, = 0.

Proof of Theorem 7.2. Proceeding as in Lemma 7.3. we may assume that
S =S8,US8, with S, dominating in G;,S; = G,, S; = G,and S;7nS; = @.
Suppose that S is not dominating in G; then there exists a function of norm one
in H*®(G) such that sup [f(2)] =« < 1. Any subsequence of {f?},en converges

uniformly to O on S. Smece /7] = 1 for all p we can choose one (denote it f,) which
is weak® convergent to say g. Of course g!S = 0. By the previous theorem f, ,
and f; , are weak™ convergent to respectively g; and g, . It follows from Lemma 7.1
that g, = g, = 0. Now the weak*-convergence of f, ,to O implies its uniform con-
vergence (to 0) on the compact set S, . By taking differences (f, , =/ — f;..) we
get that /; , converges uniformly to 0 on S; and consequently f; , converges to 0
in norm (recall that S, is dominating in &;). Similatly iif; ,' tends to zero. Thus
1.1l tends to zero in contradiction to the fact that [|f,}| = | for all a.

8. APPLICATIONS

We are now ready to prove the announced applications of Theorem 4.1.

THEOREM 8.1. Let A be an operator in L(H#) and let G be a bounded open set
in C such that:

a) G~ is a connected, M-spectral set for A,

b) o(A4) 0 G is dominating in G,
an

¢y G~ has only a finite number of maximal D-chains;
then there exists a nontrivial subspace invariant under any rational function of A
with poles off G~.

Before proving this theorem we make two remarks. First the assumption that G~
is connected is necessary if one is to talk about D-chains of G~ but is in fact non-
restrictive; indeed if G~ is disconnected then an easy argument using b) shows
that 6(4) itself is disconnected (with the consequence that A has a nontrivial hyperin-
variant subspace). The other observation is that condition ¢} is obviously satisfied
in the case when G~ has only a finite number of holes (without any restriction on
their boundaries). Thus Theorem 8.1 generalizes Theorem 5.2 of [101.
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Proof of Theorem 8.1. Let K= G~; as in the proof of Theorem 4.1 there

is no loss of generality in assuming that K = G. It is sufficient to show that K is
a C-set: once this is done the conclusion follows from Theorem 4.1. The boundary
of K is the union of the boundaries of the maximal D-chains. Thus for each { € 0K
and ¢ small enough (recall that the boundaries of the maximal D-chains are dis-
Jjoint and there are only a finite number of them) we have y(4((; §)\K) > 6/4. Since
the inequality (4((, 8) n 6K)< 5 is always satisfied we obtain that K is a C-set
via (iii) of Proposition 5.3.

We now turn our attention to the case of an operator having its spectrum as
an M-spectral set and give the following generalization of the main result of [15].

THEOREM 8.2. Let A be an operator in L(H) such that 6(A) is a connected
M-spectral set for A, let €y, ...,%, be (finitely many) maximal D-chains for o(A).
Then there exists a nontrivial subspace invariant under any rational function of A
with poles in the set \_J H.

He%’i
Igign
Proof. Let K=0(A), K,=K¢ (ie. K, =8\ H), i=1,...,n,
! HEY,
L= M K;,and G= L (=M K,) We may assume without loss of generality

1gign I<ign
that ¢, contains the unbounded component of ¢(4). Suppose first that o(4) ¢ G~
(that will happen for instance if part of the boundary of ¢(A4) lies in the interior of
the closure of one hole). It follows from the proof of Theorem 1 of [11] that for
each {, ¢ 6(4Y\G~ and each ¢ sufficiently small there exists a function f, in R(L)
such that f, (1) = 0 for |1 — {gl=¢eand f(4) = 1 for |1 — {,| <&/2. Choose ¢ and §
small enough and such that ¢ < /2 and let 4, = f,(4) and 4; = (1 — f;) (A).
Approximating f, by rational functions with poles off L and using the spectral map-
ping theorem for these rational functions we obtain that f,(¢(4)) =o(f,(4)). There-
fore A, # 0; similarly 4, # 0. Let .4 denote the closure of the range of A4, . Since
A, # 0, 4 # (0). On the other hand since (1 — f;)f, = 0 we have 4,4, =0;
thus .# < Kerd, and 4 # H. It is easily seen that any operator that commutes
with A4 also commutes with 4,. Thus ./# is invariant for any operator that commutes
with 4 and in particular for any rational function of 4 with poles in U H.

reich

To finish the proof we consider now the case 6(4) = G~. An induction argu-
ment based on Theorem 7.2 and Part (iii) of Theorem 6.2 shows that o(4)n G
is dominating in G. A similar argument to the one used in the proof of Theorem
8.1 showsthat L is a C-set. Therefore R(G~) which contains R(L) is pointwise bound-
edly dense in H*(G); the equality R(6G) = C(JG) follows from the similar equality
for &L and the inclusion 6G < dL. (In other words G- itself is a C-set, a fact
which could also have been proved using the more sophisticated characterization
of C-sets given by (ii) of Proposition 5.3). Thus all {the hypotheses of Theorem
4.1 are met and the desired conclusion follows from that theorem.
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